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Abstract In this paper, we investigate the routing optimiza-
tion problem in wireless mesh networks. While existing
works usually assume static and known traffic demand, we
emphasize that the actual traffic is time-varying and difficult
to measure. In light of this, we alternatively pursue a stochas-
tic optimization framework where the expected network
utility is maximized. For multi-path routing scenario, we
propose a stochastic programming approach which requires
no priori knowledge on the probabilistic distribution of the
traffic. For the single-path routing counterpart, we develop
a learning-based algorithm which provably converges to the
global optimum solution asymptotically.

Keywords wireless mesh networks · network utility
maximization · routing

1 Introduction

Wireless mesh networks provide last mile broadband Internet
access with low cost yet high bandwidth. The mesh routers
communicate with each other via wireless links. Meanwhile,
several edge mesh routers provide wireless access to the
client users where all the traffic is directed to the gateway
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node. Due to the multi-hop nature, the routing in wireless
mesh networks is an important and interesting topic and has
attracted significant attention from the community [1].

However, the existing routing schemes in wireless mesh
networks usually assume that the traffic demands aggre-
gated at edge routers are static and known. In practice,
apparently, the instantaneous traffic demand may fluctuate
dramatically due to the client users’ behavior and the mobil-
ity of users. Therefore, the uncertainty of the traffic demands
at edge routers is not negligible and needs to be considered
meticulously in wireless mesh networks.

Traffic estimation is proposed as a feasible solution to
harness the traffic uncertainty. Several prediction models are
proposed in the literature [2–4]. However, we emphasize
that the acquisition of accurate traffic information is by no
means trivial and usually computationally expensive. Even
worse yet, the estimation techniques yield poor performance
in a highly dynamic environment. Therefore, routing design
in wireless mesh networks with uncertain traffic demand is
remarkably challenging.

To circumvent the burden of route recalculation, oblivi-
ous routing schemes are suggested [5–9]. A traffic-oblivious
routing protocol requires limited traffic information and
achieves worst-case performance guarantee. In other words,
by sticking to a fixed routing strategy, the worst-case perfor-
mance is optimized. Therefore, the instability and prohibitive
overhead of rerouting are avoided and the performance is
acceptable if the traffic pattern varies within a certain range.
However, one noticeable drawback of oblivious routing
schemes is the computational complexity [9]. In addition,
the optimization on the worst-case performance is usually
over-conservative. Also, limited knowledge is attained when
the traffic pattern varies drastically and exceeds the tolerance
bound. In light of these concerns, we propose a stochastic
optimum routing strategy in wireless mesh networks where
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the expected network utility is optimized, rather than the
worst-case performance. Our schemes differ from previous
work in several aspects. First, our algorithm does not require
a priori knowledge of the traffic distribution. Therefore, the
computational overhead of traffic estimation can be avoided.
Secondly, our scheme does not require that the traffic pat-
tern varies within a certain range. Thirdly, our proposed
algorithms are amenable to decentralized implementations.

The remainder of this paper is organized as follows.
Section 2 briefly outlines the related work. The system model
used in this paper is introduced in Section 3. The routing
optimization problems with multi-path and single-path rout-
ing constraints are investigated in Section 4 and Section 5,
respectively. A numerical example is provided in Section 6
and Section 7 concludes this paper.

2 Related work

Routing plays a critical role in wireless mesh networks. In
the literature, the routing problem is usually formulated as
an optimization problem where heuristic or decomposition-
based solutions are proposed. The existing works usually
assume that the traffic input from each edge router is static
and known. Meanwhile, the empirical studies based on real
traffic traces reveal that the instantaneous traffic fluctuates
from time to time and is difficult to predict. To address the
uncertainty of traffic demand in mesh networks, two lines of
research effort have been discussed. The first category, which
is in analogy of robust optimization techniques, achieves
optimal worst-case performance. Oblivious routing schemes
fall into this category. The second category, which is in anal-
ogy of the general stochastic optimization techniques, alter-
natively pursues the expected utility maximization [10–14].
Our work falls into this category. In [13], the power schedul-
ing problem with time-varying channel is investigated. In
[11], the impact of noisy feedback is analyzed, where the traf-
fic demand is assumed to be sufficiently large and a rate con-
trol algorithm, based on the dual decomposition approach,
is implemented to adjust the ingress traffic. Nevertheless,
in our work, the traffic demand is dynamic and may even
appear zero sometime. Another related work is [10] where
the throughput maximization routing is considered. The traf-
fic dynamic in wireless mesh networks is well addressed.
However, the authors assume the traffic statistics are known,
i.e., the probability distribution of random traffic demand is
assumed to be a priori. In our scheme, such information is
not required, as will be clarified in following sections.

3 Model

We consider a wireless mesh network depicted in Fig. 1. The
mesh network consists of several edge routers, intermediate
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Fig. 1 Wireless mesh network topology

relay routers and a gateway node W which provides the
connection to the Internet. Each edge router provides wire-
less access and is associated with a number of client users.
Denote the set of edge routers as M and the aggregated traf-
fic demand at the m-th edge router as zm . Naturally, zm is
a random variable which is determined by the behaviors of
client users. We assume that the instantaneous traffic demand
at an edge router forms a stationary stochastic process. In this
paper, we restrain ourselves to wireless mesh networks with
a single gateway node. The extension to multiple gateways
is left as future work.

There are two types of routing protocols in the literature,
i.e., arc-routing and path-routing. In arc-routing protocols,
the decision variable is the amount of traffic allocated on
each link of the network, whereas the path-routing protocols
adjust the fraction of traffic allocated on each distinct path.
We follow the latter approach due to its practical merit [7].
For example, we can utilize the path diversity provided by
OSPF/IS-IS and MPLS techniques. More specifically, OSPF
divides the traffic evenly among all paths with the same cost
whereas MPLS enables more flexible manipulation on the
flows on all available paths. In our scenario, one edge router,
say m, has Pm acyclic paths to the gateway node W . The
instantaneous traffic zm is distributed among all Pm paths
and each path possesses a fraction, denoted by rk

m where1

m = 1, · · · ,M and k = 1, · · · ,Pm . We have

Pm∑

k=1

rk
m ≤ 1,∀m ∈ M. (1)

Define rm as the fraction vector and r = [r1, · · · , rM],
which is the decision variable in our optimization framework

1 In this paper, we slightly abuse the notation by using the same symbol
for a set and its cardinality for notation brevity.
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throughout the paper. We define

δm =
Pm∑

k=1

rk
m,∀m ∈ M (2)

for notation succinctness.
We denote the set of wireless links in the mesh network

as E . We assume in this paper that a scheduling scheme is
available for the medium access where each link possesses
a time share of the channel access. For each link e ∈ E ,
there is a link cost, denoted by le, which is a function of the
instantaneous aggregated flow and the achievable data rate
of the link, denoted by fe and ce, respectively. Note that ce

is given by

ce = c̃e × γe (3)

where c̃e denotes the nominal capacity of the link and γe is the
fraction of time that link e is active following the scheduling.
Without loss of generality, we assume the power of each link
is fixed.

Each edge router has a utility function, denoted by U (xm),
which reflects the degree of satisfaction by transmitting a flow
of xm = zm × δm . In light of the link costs, the surplus of the
m-th edge router, a.k.a., net reward, is given by

Om = Um(zm × δm) −
Pm∑

k=1

zmrk
m

∑

e∈Pk
m

le( fe) (4)

where e ∈ Pk
m represents all links along the k-th path of

Pm . We assume that the link cost function le( fe) is a non-
decreasing and differentiable function of fe. Two such well-
known examples are

le( fe) = 1

ce − fe
(5)

which represents the average waiting time on link e, and

le( fe) = fe

(ce − fe)ce
(6)

which reflects the average queueing time on link e, following
a model of M/M/1 [15]. Note that the cost is considered as
+∞ if fe ≥ ce.

Define a topology matrix Hm for the m-th edge router
where the element Hm

e,k = 1 represents that link e is on the
k-th path of Pm and zero otherwise. Therefore, we have

fe =
M∑

m=1

Pm∑

k=1

Hm
e,k zmrk

m . (7)

Note that in wireless mesh networks, the edge routers and
relay routers are usually static. Therefore, the topology

matrix, i.e., Hm , is a fixed binary matrix and can be acquired
easily. However, the values of fe, zm and le are random
due the uncertain traffic demand, which makes the routing
problem more challenging. In Section 4, we formulate the
multi-path routing optimization problem of wireless mesh
networks in a stochastic programming framework where a
distributed algorithmic solution is derived. The single-path
routing scenarios are investigated in Section 5, where a
learning-based algorithm is introduced to achieve the global
optimum solution asymptotically.

4 Multi-path routing scenario

In this section, we consider the cases where multi-path rout-
ing is allowed for fault tolerance and load balancing purpose,
i.e., the aggregated flow of each edge router is distributed
among several available paths.

In the network, each edge router has a surplus given by
Eq. 4. From the network’s perspective, our objective is to
maximize the overall surplus of the network, i.e.,

∑M
m=1 Om .

However, due to the randomness induced by the traffic
demand uncertainty, the overall surplus itself is a random
variable. Therefore, we alternatively pursue a stochastic opti-
mum solution of r∗, which maximizes the expected overall
surplus of the network. Mathematically, the routing problem
in the wireless mesh network is formulated as

max
r

E

⎛

⎝
M∑

m=1

Om

⎞

⎠

s.t.

E( fe) ≤ ce ∀e ∈ E (8)

Pm∑

k=1

rk
m ≤ 1 ∀m ∈ M (9)

fe =
M∑

m=1

Pm∑

k=1

Hm
e,k zmrk

m ∀e ∈ E (10)

Om = Um(zm × δm) −
Pm∑

k=1

zmrk
m

∑

e∈Pk
m

le( fe) ∀m ∈ M

(11)

where E(.) is the expectation operator. We assume that the
random traffic demands of all edge routers can be discretized
into arbitrarily many yet finite states, where each state is
represented by s ∈ S. The time is slotted and within one
slot, the traffic demands on all edge routers correspond to
one of the states and remain unchanged within the current
slot. Note that Om , fe, le and zm are all state-dependent vari-
ables and hence we will add a superscript s in the following
formulations. Denote the stationary probability distribution
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of state s as πs . We can rewrite the routing optimization
problem as

max
r

∑

s∈S

πs

⎛

⎝
M∑

m=1

Os
m

⎞

⎠

s.t.
∑

s∈S

πs( f s
e ) ≤ ce ∀e ∈ E (12)

Pm∑

k=1

rk
m ≤ 1 ∀m ∈ M (13)

f s
e =

M∑

m=1

Pm∑

k=1

Hm
e,k zs

mrk
m ∀e ∈ E (14)

Os
m = Um(zs

m × δm) −
Pm∑

k=1

zs
mrk

m

∑

e∈Pk
m

ls
e( f s

e ) ∀m ∈ M

(15)

We can verify that if the stationary probability distribu-
tion πs is known as a priori, the optimization problem is a
deterministic convex optimization problem and the Slater’s
condition is satisfied. However, the actual value of πs is either
difficult to measure in practice, or needs significant compu-
tational overhead to estimate. Next, we propose a distributed
solution which converges to the global optimum solution yet
requires no information about the underlying probabilistic
distribution.

We first obtain the Lagrangian as

L(r, λ, μ) =
∑

s∈S

πs

{
∑

m∈M
Um(zs

m × δm)

−
∑

m∈M

∑

k∈Pm

zs
mrk

m

⎛

⎝
∑

e∈Pk
m

ls
e( f s

e )

⎞

⎠

⎫
⎬

⎭

+
∑

m∈M
λm

⎛

⎝1 −
∑

k∈Pm

rk
m

⎞

⎠

+
∑

e∈E
μe

(
ce −

∑

s∈S

πs f s
e

)

=
∑

s∈S

πs

{
∑

m∈M
(Um(zs

m × δm) + λm)

+
∑

e∈E
μece −

∑

m∈M

∑

k∈Pm

×
⎛

⎝zs
mrk

m

⎛

⎝
∑

e∈Pk
m

(ls
e( f s

e ) + μe) + λmrk
m

⎞

⎠

⎫
⎬

⎭

(16)

Note that μ is the link congestion price similar as [16–18].
The dual variables of λ ensure that the summation of fraction
variables is less or equal to unity. Define

Qs = sup
r

{
∑

m∈M
(Um(zs

m × δm) + λm) +
∑

e∈E
μece

−
∑

m∈M

∑

k∈Pm

(zs
mrk

m

⎛

⎝
∑

e∈Pk
m

(ls
e( f s

e ) + μe) + λmrk
m

⎞

⎠

⎫
⎬

⎭

(17)

Therefore, the dual function is given by

g(λ, μ) =
∑

s∈S

πs Qs where λ ≥ 0, μ ≥ 0. (18)

To achieve the minimum value of Eq. 18, or equivalently,
to obtain the stochastic optimum value of r∗, we utilize the
stochastic primal-dual approach [17]. The dual variables, i.e.,
λ and μ are updated as

λm(n + 1) = [λm(n) − αm(n)ζm(n)]+ ∀m ∈ M (19)

μe(n + 1) = [μe(n) − αe(n)ξe(n)]+ ∀e ∈ E (20)

where [x]+ denotes max(x, 0).Similarly, the primal variable,
i.e., rk

m , is updated as

rk
m(n + 1) = [rk

m(n) + αm,k(n)ηm,k(n)]1
0 (21)

where [x]b
a denotes max(min(b, x), a) and we use symbol

α(n) to represent the corresponding stepsizes, i.e., αm(n),
αe(n) and αm,k(n), generally. Note that the instantaneous
link flow is considered as fixed when the fraction variable rk

m
is updated.

The stochastic subgradients, i.e., ζm(n), ξe(n) and
ηm,k(n), can be attained by the Danskin’s theorem [19],
following a similar approach as in [13, 14]

ζm(n) = 1 −
∑

k∈Pm

rk
m∀m ∈ M (22)

ξe(n) = ce −
∑

m∈M

∑

k∈Pm

zs
mrk

m Hm
e,k ∀e ∈ E (23)

ηm,k(n) = −
⎡

⎣λm + zs
m

⎛

⎝
∑

e∈Pk
m

(ls
e + μe)

⎞

⎠

⎤

⎦ ∀m ∈ M.

(24)

The distributed implementation of the algorithm is sum-
marized as follows.
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Algorithm:

Repeat:

– Each link measures

ξe(n) = ce −
∑

m∈M

∑

k∈Pm

zs
mrk

m Hm
e,k . (25)

– Each link updates the link congestion price as

μe(n + 1) = [μe(n) − αe(n)ξe(n)]+. (26)

– Each edge router measures

ζm(n) = 1 −
∑

k∈Pm

rk
m (27)

and

ηm,k(n) = −
⎡

⎣λm + zs
m

⎛

⎝
∑

e∈Pk
m

(ls
e + μe)

⎞

⎠

⎤

⎦ . (28)

– Each edge router updates the fraction variable as

rk
m(n + 1) = [rk

m(n) + αm,k(n)ηm,k(n)]1
0. (29)

– Each edge router updates the dual variable λ as

λm(n + 1) = [λm(n) − αm(n)ζm(n)]+. (30)

Until:

– The difference between successive iterations, i.e.,

ε = |rk
m(n + 1) − rk

m(n)| (31)

is within a predefined convergence threshold ε′.

End

Note that the information needed in the algorithm is either
locally attainable or acquirable by the feedback along the
paths. Therefore, the algorithm is amenable to distributed
implementation. The convergence of the algorithm follows
the results of [11] and thus we provide the following theorem
without proof.

Theorem 1 The algorithm converges to the global optimum
with probability one, provided that the following constraints
are satisfied [11, 20]: α(n) > 0,

∑∞
n=0 α(n) = ∞, and∑∞

n=0(α(n))2 < ∞, ∀m ∈ M and e ∈ E , where α

generally represents all stepsize parameters in (19), (20)
and (21).

5 Single-path routing scenario

In this section, we consider a wireless mesh network where
single-path routing strategy is adopted. Therefore, the frac-
tion variable rk

m is a binary number in this scenario. More
specifically, rk

m = 1 denotes that the m-th edge router selects
the k-th path to deliver traffic and the fraction variables on
other paths are zeros. The integral property of the fraction
variables complicates the routing optimization problem. We
first express the routing optimization problem, with single
path routing constraint, as

max
r

∑

s∈S

πs

⎛

⎝
M∑

m=1

Os
m

⎞

⎠

s.t.
∑

s∈S

πs( f s
e ) ≤ ce ∀e ∈ E (32)

Pm∑

k=1

rk
m ≤ 1 ∀m ∈ M (33)

f s
e =

M∑

m=1

Pm∑

k=1

Hm
e,k zs

mrk
m ∀e ∈ E (34)

Os
m = Um(zs

m × δm) −
Pm∑

k=1

zs
mrk

m

∑

e∈Pk
m

ls
e( f s

e ) ∀m ∈ M

(35)

rk
m ∈ {0, 1} (36)

Apparently, this is a stochastic integer programming which
is difficult and computationally demanding to solve. For
a survey on the algorithmic solutions of stochastic integer
programming problems, refer to [21]. Distinguishing from
previous work, we next propose a learning-based algorithm,
which asymptotically converges to the global optimum of the
aforementioned stochastic integer programming problem.
First, we briefly overview the learning automata technique,
based on which our algorithm is proposed.

5.1 Learning automata

Learning automata techniques have been broadly investi-
gated in the networking community [22–27]. As one of
the stochastic learning schemes, learning automata was first
introduced in the control community for stochastic systems.
As depicted in Fig. 2, the basic single user scenario where
learning automata techniques can be applied consists of a
random environment, a set of finite actions and a rational
decision maker. At a time instance, the decision maker selects
one of the actions according to the selection probability
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Random Environment
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Random Output
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Fig. 2 Structure of a single user learning automata

vector p. The random environment responds with a stochas-
tic output based on which the learning algorithm updates
the selection probability vector and the iteration continues.
In a stationary random environment, the standard learning
automata algorithms asymptotically converge to an action
which is stochastically optimal in the sense that the expected
objective is maximized [28].

In our scenario, each edge router is an independent deci-
sion maker. The action space corresponds to the available
paths of each edge router. Meanwhile, the random envi-
ronment is the uncertain traffic demands at all edge routers
jointly. To incorporate a multi-agent learning scenario, we
form all M edge routers as a learning team, which targets to
the stochastic optimum solution collectively. In addition, we
utilize the gateway nodeW of the wireless mesh network as a
teacher. After each decision maker selects an action, the gate-
way node multicasts a feedback signal, denoted by β, based
on which each edge router updates the selection probability
vector and the algorithm iterates until convergence.

5.2 Learning-based algorithm

Each edge router, say m, maintains a selection probability
vector pm and an inner-state vector um . We use the notation
(m, k) to indicate the k-th path of the m-th edge router, i.e.,
the k-th action from the action space of the decision maker m.

At the initialization phase, the value of um is randomly
generated and pm = [1/Pm, · · · , 1/Pm]. At time instance
n, the algorithm executed at the m-th edge router is described
as follows.

Algorithm:

Repeat:

– Selects a routing path from Pm , say j , according to
the selection probability vector pm(n) and starts the
transmission.

– After receiving the feedback signal from the gateway
node W , denoted by β(n), the inner state vector um is
updated as

um,k(n + 1) =
[

um,k(n) + θ(n)β(n)

×
(

1 − eum,k

∑
k∈Pm

eum,k

)

+ √
θ(n)ωm,k(n)

]L

0

, for k = j (37)

um,k(n + 1) =
[
um,k(n) + √

θ(n)ωm,k(n)
]L

0

for k 
= j (38)

Recall that j denotes the selected action, i.e., the chosen
path.

– The selection probability vector pm is then updated,
following

pm,k = eum,k

∑
k∈Pm

eum,k
∀k ∈ Pm . (39)

Until:

– max(pm(n)) > B where B is a predefined convergence
threshold.

In the algorithm, θ(n) is the learning parameter of the
algorithm satisfying 0 < θ(n) < 1. L is a positive number
which keeps the inner state value bounded. The sequence of
ωm,k(n) is a set of random variables with zero mean and
a variance of σ 2(n). The global feedback signal β(n) is
calculated by the gateway node W as

β(n) =
∑M

m=1 Os
m

J (40)

where J is a sufficiently large number to normalize the out-
put. In other words, the value of β(n) is deliberately tuned
within [0, 1]. We emphasize that the introduced noise param-
eter ω restrains the algorithm from being trapped in an ineffi-
cient equilibrium. Note that the value ofβ(n) can be informed
by efficient multicast algorithms, e.g., [29], initiated by the
gateway node W . The team learning is then executed in
a decentralized fashion. The steady state behavior of the
learning-based algorithm is given in the following theorem.

Theorem 2 The proposed learning-based algorithm con-
verges to the global optimum solution of the single-path
routing optimization problem with probability one, if the fol-
lowing conditions are satisfied [30]: (1) limn→∞ θ(n) = 0
and (2) limn→∞ σ(n) = 0.
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Proof The proof generalizes the results in [30]. First, we
observe that the set of edge routers implicitly form an N-
person game. Moreover, according to Eq. 40, all the players
collectively maximize a common utility function following
the global feedback from the gateway node. Therefore, the
game can be viewed as an identical interest game. Note that
the strategy space of each player is simply the routing paths,
which are determined by the path selection probability vec-
tors. Following Eq. 39, we hereby utilize the inner state vector
u as the variable in our analysis.

We first define an indicator function sm,k = 1 representing
the event that the m-th edge router selects the k-th path in Pm

and sm,k = 0 otherwise. Note that

∂E(β|u)

∂um,k
= ∂

∑
k pm,kE(β|u, sm,k)

∂um,k

=
∑

k

eum,k

∑
k eum,k

(
1 − eum,k

∑
k eum,k

)
E(β|u, sm,k).

Also,

E

(
β

(
1 − eum,k

∑
k eum,k

)
|u

)

=
∑

k

pm,k

(
1 − eum,k

∑
k eum,k

)
E(β|u, sm,k)

=
∑

k

eum,k

∑
k eum,k

(
1 − eum,k

∑
k eum,k

)
E(β|u, sm,k)

= ∂E(β|u)

∂um,k
.

Therefore, from [31] (Chap.6), we conclude that the above
dynamic weakly converges to the following SDE

du = ∇E(β|u) + σdQ (41)

for a sufficiently small θ → 0 where Q is a standard Wiener
Process. Note that the SDE (Eq. 41) falls into the category of
Langevin Eq. [32] which is well-known that the probability
measure concentrates on the global maximum solution of
the objective function, i.e., E(β|u), for a sufficiently small
σ → 0 [30, 32]. Therefore, we conclude that in this identical
interest game, the aforementioned learning-based algorithm
will converge to the global optimum of the objective function
asymptotically and thus completes the proof. �

6 Numerical example

We consider an illustrative wireless mesh network shown in
Fig. 3. Among all available paths, we assign a set of paths

1

2 3 4

5 6 7

Gateway

Relay Router

Edge Router

TrafficTrafficTraffic

Fig. 3 Illustration of Available Paths

for each edge router and the corresponding links2 are shown
in Fig. 3.

The gateway node is indicated as node 1. Three edge
routers are marked as node 5, 6 and 7, respectively, which
consistently deliver the aggregated traffic to the gateway
node. The available paths for each edge router are provided
in Table 1.

Note that each edge router has two acyclic paths to reach
the destination. The link cost function follows Eq. 5. The traf-
fic is randomly generated at each edge router with Gaussian
distribution. The mean is 5 and the variance is 1. In addition,
we limit the traffic to be in the range of [0, 10]. We emphasize
that these settings do not involve any loss of generality. By
setting the traffic of each router with identical statistical char-
acteristics, the stochastic optimum solution coincides with
the load-balancing solution. The computational difficulty of
calculating the global optimum of the stochastic integer pro-
gramming problem can be avoided. Therefore, we can easily
verify the efficacy of our proposed algorithms. In addition,
the actual achievable data rate is a function of the transmis-
sion power and the scheduling algorithm. Without loss of
generality, we assume that the achievable data rate of each
link is 10. We utilize the same stepsize for the stochastic
gradient approach in Eqs. 19, 20 and 21, which is inversely
proportional to the number of iterations.

Table 1 Available paths for each edge router

Edge router 5 P1
5 : {5 → 2 → 1}

P2
5 : {5 → 3 → 1}

Edge router 6 P1
6 : {6 → 2 → 1}

P2
6 : {6 → 4 → 1}

Edge router 7 P1
7 : {7 → 3 → 1}

P2
7 : {7 → 4 → 1}

2 Note that the actual network topology can be much larger.
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We first investigate the multi-path routing scenario where
each edge router can divide the incoming traffic on two avail-
able paths. Restated, it is straightforward to verify that, given
the current settings of link achievable rates and statistical
characteristics, the stochastic optimum solution coincides
with the load-balancing solution. In other words, the solu-
tion of r1

5 = r2
5 = r1

6 = r2
6 = r1

7 = r2
7 = 1

2 maximizes the
expected overall network surplus and thus solves the routing
optimization problem. This observation is verified in Fig. 4.

Figure 4 depicts the evolution of 6 fraction variables of
edge routers where pair m − k denotes rk

m . At initialization,
we manually set the fraction variables as r1

5 = 1, r2
5 = 0,

r1
6 = 1, r2

6 = 0 and r1
7 = 0, r2

7 = 1 which is remarkably
biased. Then, the distributed algorithm derived in Section 4
is executed. As pictorially shown by Fig. 4, all 6 fraction vari-
ables evolve with the iterations and converge to the stochastic
optimum solution gradually.

Next, we investigate the single-path routing scenario.
The network settings are the same as in multi-path scenar-
ios except that each edge router can only select one of the
available paths to transmit. The learning parameter is set to
θ(n) = 1/n where n is the index of the current iteration. The
noise parameters are zero mean Gaussian random variables
with diminishing variances, e.g., σ(n) = 1/n. The bounding
parameter L is 100 and J is 100. The convergence threshold
B is 0.9999. The learning-based algorithm is executed until
each edge router sticks to one of the available routing paths.
The convergence behavior of the learning-based algorithm is
demonstrated in Fig. 5.

In Fig. 5, we denote pair m − k as the probability that the
m-th edge router picks the k-th path for next iteration. For
example, 5 − 1 represents the probability that edge router
5 selects the first path, i.e., P1

5 . As illustrated in Fig. 5,
5 − 1, 6 − 2 and 7 − 1 promptly approach to unity while
others diminish to null. From Fig. 3, it is apparent that such
a routing strategy is indeed a global optimum solution of
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the routing optimization problem with single-path routing
constraints. The learning-based algorithm finds this global
optimum solution effectively. Note that this routing strat-
egy is not the only global optimum solution. For instance,
(p2

5 = 1, p1
6 = 1, p2

7 = 1) is another global optimum
solution due to the statistical symmetry of the network. By
adjusting the initial conditions, the learning algorithm finds
other global optimum routing strategies as well. Duplicate
results are omitted.

7 Conclusions and future work

In this paper, we consider the routing optimization problem
in wireless mesh networks under uncertain traffic demands.
For multi-path routing scenario, we investigate the problem
in a stochastic programming framework and a distributed
algorithmic solution is derived. For the single-path routing
scenario, the problem is formulated as a stochastic integer
programming where a learning-based algorithm is proposed.

In our work, we consider a single gateway in the wireless
mesh network. The extension to the multiple gateway scenar-
ios remains as future research. In addition, the analysis for
the performance of our schemes under non-stationary traffic
demand is challenging and needs further investigation.
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