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Abstract—In this work, we consider a multi-hop cognitive
radio network with multiple flows. The challenges induced by
the random behaviors of the primary users are investigated in
a stochastic network utility maximization framework. To fully
utilize the scarce network resource, we propose an optimal traffic
splitting scheme for each source node to explore multiple paths
effectively. In addition, the algorithm is fully distributed which
provably converges to the global optimum solution with proba-
bility one. The analytical results are validated via simulations.

I. INTRODUCTION

The past decade has witnessed the emergence of new
wireless services in daily life. One of the promising techniques
is the metropolitan wireless mesh networks (WMN), which
are envisioned as a technology which advances towards the
goal of ubiquitous network connection. Figure 1 illustrates
an example of wireless mesh network. The wireless mesh
network consists of edge routers, intermediate relay routers as
well as the gateway node. Edge routers are the access points
which provide the network access for the clients. The relay
routers deliver the traffic aggregated at the edge routers to the
gateway node, which is connected to the Internet, in a multi-
hop fashion.

One hinderance for the network performance is the limited
usable frequency resource. In current wireless mesh networks,
the unlicensed ISM bands are most commonly adopted for
backbone communications. Not surprisingly, the wireless mesh
network is largely affected by all other devices in this ISM
band, e.g., nearby WLANSs and Bluetooth devices. Moreover,
the limited bandwidth of the unlicensed band cannot satisfy
the increasing demand for the bandwidth due to the evolving
network applications. Ironically, as shown by a variety of
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Fig. 1. Architecture of Wireless Mesh Networks

empirical studies [1], the current allocated spectrum is drasti-
cally under-utilized. As a consequence, the urge to explore the
unused whitespace of the spectrum, which can significantly
enhance the performance of the wireless mesh networks,
attracts tremendous attention in the community [2]-[6].

Cognitive radios are proposed as a viable solution to the
frequency reuse problem [7]. The cognitive devices are capable
of sensing the environment and adjusting the configuration
parameters automatically. If the primary user, i.e., the le-
gitimate user, is not using the primary band currently, the
cognitive devices, namely, secondary users, will utilize this
whitespace of the spectrum. Incorporating with the estab-
lished interference-free techniques such as [8] and [9], the
throughput of the wireless mesh network can be dramatically
enhanced. The protocol design for cognitive wireless mesh
networks (CWMN), or more generally, multi-hop cognitive
radio networks, is an innovative and promising topic in the
community [10] and has been less studied in the literature.
In this paper, we consider a cognitive wireless mesh network
where the unlicensed band, e.g., ISM band, is utilized by the
mesh routers for the backbone transmission. Moreover, each
router is a cognitive device and hence is capable of sensing
and exploiting the unused primary bands for transmissions
whenever the primary users are absent.



In this paper, we investigate the optimum traffic splitting
problem in multi-hop cognitive radio networks. More specif-
ically, we are particularly interested in how the traffic in the
multi-hop cognitive radio networks should be steered, under
the influence of random behaviors of primary users. It is worth
noting that given a routing strategy, the corresponding net-
work’s performance, e.g., the average queueing delay encoun-
tered, is a random variable. The reason is that the available
bandwidth for a particular link depends on the appearance
of all the affecting primary users. If all the primary users
are vacant, a link can utilize all available frequency trunks
collectively by utilizing advanced physical layer techniques,
e.g., OFDMA. However, if all the primary users are present,
the only available frequency space is the unlicensed ISM band
and thus the traffic on this link will experience longer delay
than the previous case. We emphasize that in multi-hop cogni-
tive radio networks, this distinguishing feature of randomness,
induced by the random behaviors of primary users, must be
taken into account in protocol designs. Due to the location
discrepancy, it is possible that some node is affected by many
primary users while others are not. As a consequence, if we
route the traffic via this particular node, the transmissions are
more likely to be corrupted by the returns of the primary
users. Apparently, a favorable solution is more inclined to
steer the traffic from those “severely-affected area”, to the
paths which are less affected by the primary users. We will
make this intuitive approach precise and rigorous in this paper.
Our work is partially inspired by [11]. However, our paper
differs from theirs in three crucial aspects. First, by targeting
the optimum traffic splitting solution, our model differs from
the joint power scheduling and rate control work in [12].
Secondly, in [11], [12], the authors only consider a single-
path scenario while our work extends to a multi-path routing
network where the network traffic can be steered. Thirdly and
most importantly, [11], [12] require that the current system
state is fully observable at the decision maker. To achieve this,
the authors assume a centralized mechanism which knows all
the channel states of all the links over the network. However,
our work differs from [11], [12] significantly in that we do not
require that the current system’s state is known, which is of
great practical interest since in multi-hop cognitive wireless
mesh networks, the decision makers, i.e., the edge routers
in our scenario, cannot be aware of the appearance of all
primary users in the whole network as a priori. Moreover, our
scheme enjoys a decentralized implementation, in contrast to
centralized mechanisms in [11], [12], by utilizing the feedback
signals and local information only.

The rest of this paper is organized as follows. Section II
provides the system model of our work. The optimum traffic
splitting problem is investigated in Section III. Performance
evaluation is provided in Section IV, followed by concluding
remarks in Section V.

II. SYSTEM MODEL

We consider a multi-hop wireless mesh network illustrated
in Figure 1 where an uplink traffic model is considered, i.e.,

all edge routers aggregate the traffic from clients and deliver
to the gateway node via the intermediate relay routers. To
ensure connectivity, we utilize the ISM 2.4G band as the
underlying common channel for the wireless mesh network.
In addition, each link can utilize the opportunistic channels,
i.e., secondary bands to increase the link’s achievable data
rate whenever the primary user is vacant. We assume that
there exists! |M| primary users. Each primary user possesses a
licensed frequency channel and each mesh router is a cognitive
node which has the capability of sensing the current wireless
environment. We model the multi-hop cognitive wireless mesh
network as a directional graph G where the vertices are the
nodes. We also denote link (4,5) as link e,e € E where
t(e) = i and r(e) = j represent the transmitter and the receiver
of link e.

We first consider a particular link denoted by (m,n).
The instantaneous available frequency bands, at time ¢, for
a node i is denoted by I;(t), which is determined by the
current presence of the primary users. Besides the underly-
ing ISM band, the communication between m and n can
further utilize all secondary bands within I, (I, if avail-
able. The current cognitive radio devices benefit largely from
the software-defined radio (SDR) techniques with advanced
coding/modulation capabilities. For example, by utilizing the
multi-carrier modulation, e.g., OFDMA, a cognitive radio
device can utilize all the disjoint available frequency band
simultaneously. At the transmitter, a software based radio
combines waveforms for different sub-bands and thus transmit
signal at these sub-bands simultaneously. While at the receiver,
a software based radio decomposes the combined waveforms
and thus receives signal at these sub-bands simultaneously
[13]-{16]. In this paper, we assume a spectrum sensing scheme
available that each node can sense the presence of the primary
users in range, such as [7], [17], although the time of random
returns cannot be predicted. We further assume that some
scheduling mechanism is in place or some physical layer
mechanisms are utilized such that the nodes cannot interfere
with each other during the transmissions. For example, in a
multi-channel multi-radio wireless mesh network, the channels
can be assigned properly that the transmissions do not interfere
with the neighboring nodes [8], [18]. Other examples are
the OFDMA/CDMA based wireless mesh networks [19], [20]
where the interference among nodes can be eliminated by
assigning orthogonal subcarriers/codes. We emphasize that this
assumption is only for the sake of modeling simplicity and
does not incur any loss of generality, as will be clarified
shortly.

It is worth noting that the available bandwidth of each link
in the cognitive wireless mesh network is a random variable.
For example, at time instance ¢;, node m has three secondary
bands available, i.e., In,(t1) = {lo,I1,1I2,I3} and I, (1) =
{Io, I2, I3, I4, Is } due to the location discrepancy, where band
0 is the underlying unlicensed ISM band and 1,2, 3,4,5 are
the licensed bands of primary users. The current bandwidth

IThe symbol of |X| represents the cardinality of the set X.



of link (m,n) is represented by W, ,,(t1) = BWy + BW, +
BW3; where BW; is the bandwidth of band i. At another
time instance 2, the primary user 2 returns and the bandwidth
of link (m,n) becomes Wy, »(t2) = BW, + BWs3. In other
words, the bandwidth of links are random variables which are
determined by the unpredictable appearance of the primary
users. We model this randomness induced by the primary users
as a stationary random process with arbitrary distribution. The
system is assumed to be time-slotted. In each time slot n,
the system state is assumed to be independent and is denoted
by a state vector s = {01, ,dm,s € S} where §; = 1
denotes the absence of the i-th primary user and 0 otherwise.
We denote the stationary probability distribution of state s as
ms. Without loss of generality, we express the link capacity
in the form of CDMA-based networks, i.e., the capacity of a
wireless link e € E, given the system state s, is denoted by ¢,
which is given by [21], [22] ¢} = Wj% log,(1+ K~¢), where
W¢ is the bandwidth of link e in state s and +y; is the current
SINR value of link e. The constant T is the symbol period and
will be assumed to be one unit without loss of generality [22].
The constant K = W*;;I;BIE_I?) where ®; and ®; are constants
depending on the modulation scheme and BE R denotes the bit
error rate. We will assume K = 1 in this paper for simplicity
[21]. Note that our network model can be incorporated into
other types of networks such as MIMO, OFDM with TDMA
or CSMA/CA based MAC protocols by modifying the form of
the capacity accordingly, which represents the achievable data
rate in general. For example, if we consider a scheduling-
based MAC protocol where each link obtains a time share
of the channel access, the achievable data rate is given by
¢ = ¢ x 1, where v, is the fraction of time that the link is
active following the scheduling scheme and c¢ is the nominal
Shannon capacity of the link.

There are |L| unicast sessions in the network, denoted by set
L, where each session [ has a traffic demand d;. We associate
each session with a unique user. Therefore, we will use session
| and user [ interchangeably. For each session [ € L, we
denote the source node and destination node as S(!) and D(l),
respectively. Recall that we assume an uplink traffic model and
thus all the source nodes are edge routers and the destination
node is the gateway. Furthermore, to improve the reliability
and dependability, we allow multi-path routing schemes. We
denote the available? set of acyclic paths from S(I) to D(l)
by P; and the k-th path is represented by P. We introduce a
parameter rl’“ as the flow allocated in the k-th path of session
l. The overall flow of user [, represented by z;, is given as

d
P | :

o= |30k
k=1 |,

where [z]% denotes max{min{b,z},a}. Define an |E|-by-|P;|

matrix H; where the element Hi’k = 1 if link e is on the

ey

2The available set of multiple paths can be obtained by signalling mecha-
nisms such as RSVP-TE [23] or pre-configured manually. In this paper, we
assume a predetermined set of acyclic paths. The protocol design for acquiring
such paths is beyond the scope of this paper.

k-th path of IP; and O otherwise. Hence, H = {H,--- ,Hjy}
represents the network topology.

For each link e € E, there is an associated cost function,
denoted by I5( fe, c3) where f. is the accumulated flow on link
e. We assume the function [ is an increasing, differentiable
and convex function of f. for a fixed c¢. Note that in our
scenario, even the accumulated flow f. is fixed, the value of
cost function is random due to the state-dependent variable c.
From the network’s perspective, the optimum traffic splitting
solution will distribute the aggregated flow among multiple
paths properly, in the sense that the overall network utility is
maximized. In next section, we will formulate the optimum
traffic splitting problem in a stochastic network utility max-
imization framework [22] and provide a distributed solution
which requires no priori information about the underlying
probability distribution, i.e., 7, of the system states.

III. OPTIMAL TRAFFIC SPLITTING ALGORITHM
A. Formulation

In the standard network utility maximization framework,
each user has a utility function Uj(x;). In this section, we
assume the utility functions to be concave and differentiable.
Note that the fairness issue can be embodied in the utility
functions [22]. For example, in the seminal paper [24], the
log-utility functions are adopted to achieve the proportional
fairness among different flows.

Define a feasible traffic splitting solution as
r = [rg,---,r) where r; £ [r},-- ,rllpll]. We can
formulate the optimum traffic splitting problem as

P

max > Ui() rf)

=7 leL  keP,

s.t.

ZrlksleIEL (2)

keP,

Somed i Y B(fed) | <tiViel )
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fe < 277502 Ve e E )
s€S

fe= 2 2 Hé,krf Ve e E 5)
LEL keP;

Ce = Wﬁ% logy(1+ K7;) Ve € E ©)

where e € Plk represents the links along the k-th path of user [.
The variable in P; is the vector of r. The first set of constraints
reflect that the overall data rates of all paths cannot exceed
the traffic demand d;. The second set of constraints indicate
that for each user [, the expected cost has to be no more
than a predefined constraint b;. The third set of constraints
represent that the aggregated flow on link e cannot exceed the



average link capacity. Apparently, if the underlying probability
distribution of each state 7 is known as a priori, P is
a deterministic convex optimization problem and thus easy
to solve. However, in practice, the accurate measurement of
probability distribution is a non-trivial task. In [25], we utilized
a stochastic approximation based approach to circumvent the
difficulty of estimating the probability distribution. In the
following, we will extend this technique and develop a tailored
distributed algorithm to address the issues of time-varying link
capacities as well as the user-specific QoS requirements, which
are of particular interest in multi-hop cognitive wireless mesh
networks.
First, define the Lagrangian function of P; as

L(r, A, p, v)
=Y U +Y M- )
leL keP, lel keP,
+ Z'Ul b — Zﬂ's 2 le( Z lZ(fe,CZ))
leL s€S  k€P  eePf
- Zﬂe(fe - 277862)
ecE SES
=Z {Ul(z T'lk) + Ai(dy — Z le) + vy
leL keP; keP;
oY w3 rE( D 1 (fercl))
SES  k€P,  eeP}
- Zﬂe(fe - 277562)
ecE sES
= Zﬂ's {2 (Ul(z le) + /\l(dl — 2 T;c) + by
sSES leL keP; keP,
- 2 T Z 'Ulls fea e) +l"e + zﬂecz}
k€P,  ecPk =
Define
ME(A 1, v)
= sup {z (Ul(z T{c) + )\l(dl — Z le) + by
r20 L jeL keP, kEP;
- Z ) ( 2 ('Ulls(fe’ + l"e) + Z/J'CCZ} @)
kePi  ecPf ecE

Let  be the optimum solution of (7). We will discuss how to
obtain T shortly. The dual function of P; is obtained by

9 m,v) =Y mME(N, v ®)
sES
Thus, the dual problem of P; is given by
Pa:
min g()\ W, V). )]
Apy v

B. Distributed algorithmic solution with the stochastic primal-
dual approach

In this subsection, we propose a distributed algorithmic
solution of Pj, or equivalently P5, based on the stochastic
primal-dual method. In order to reach the stochastic optimum
solution, the dual variables A, 1 and v are updated according
to the following dynamics

A(n+1) = [M(n) —a(n)G(n)" VieL (10)
pe(n+1) = [te(n) — ae(n)ée(n)]* Ve E (11)
un+1) = [un)—a®@e®)]tViel (12

where [z]* denotes max (0, z) and n is the iteration number.
ay(n), ae(n) and ap(n) are the current stepsizes while ¢;(n),
&e(n) and p;(n) are random variables. More precisely, they are
named the stochastic subgradient of the dual function g(\, u)
and the following requirements need to be satisfied

{G(n)IA1), -, A(n)} = Ong(Am,v) VIEL  (13)
€{&e(m)u(l), -+ u(n)} = Ou.g(A p,v) Ve € E - (14)
E{p(n)v(1),---,v(n)} = Oy g\ p,v) VIEL  (15)
where €(.) is the expectation operator and A(1),---,A(n),

w(l), -+ ,u(n) and v(1),---,v(n) denote the sequences of
solutions generated by (10), (11) and (12), respectively. By
Danskin’s Theorem [26], we can obtain the subgradients as

Gn)=d; =Y FF(n)VieL (16)
keP;

€e(n) =ci(n) — fo(n) Ve e E a7

pn) =b =Y 7f(n) Y I(fe,c)) VIeL  (18)

keP, eEPL’c

where Flk is the optimum solution of (7).
We next show how to calculate M*(\, u,v) in (7), ie.,
finding the optimum solution, denoted by r, which maximizes

Z (UI(Z T'lk) + )\l(dl — Z T'lk) + vib;

leL keP, keP;
=TT il (ferd) + pe)) | + Y ecs
ecE

k€Pr  eePf

19)

Note that when updating the primal variable, i.e., r, the link
costs are deterministic which are obtained via the feedback
signal, e.g., ACK messages. Therefore, by utilizing the same
stochastic subgradient approach, we have

rk(n+1) = [rf(n) + ar(n)n(n)]y 0)

where

%
0 Yker, 7 (n)

is the stochastic subgradient measured at time n.

Theorem 1: The proposed algorithm converges to the global
optimum of P; with probability one, if the following con-
straints of stepsizes are satisfied: (1) a(n) > 0, (2)

77(") = AL — Z (:u'e + 'Ulle(fe’Cz)) @21

e€P}



Y oa(n) = oo, and (3) Yool (a(n))? < oo, VI €
L and e € E, where « represents o, oy, o and o, generally.
Proof: The proof follows similar lines as [27]. Specif-
ically, we can show that in our traffic splitting scenario, the
technical conditions for convergence of the stochastic primal-
dual algorithm are satisfied. The detailed proof is omitted. W
It is worth noting that the aforementioned distributed al-
gorithm enjoys the merit of distributed implementation from
an engineering perspective. With the current values of dual
variables, each source node S(!) optimizes (19) according
to (21) and (20). The information needed is either locally
attainable or acquirable by the feedback along the paths. The
source node updates the A; and v; according to (10) and (12)
where the needed information is calculated by (16) and (18),
respectively. For each link e, the current status of (17) is
measured. Next, the value of p. is updated following (11).
The iteration continues until an equilibrium point is reached.

IV. PERFORMANCE EVALUATION

In this section, we present a simple yet illustrative example
to demonstrate the theoretical results.

Fig. 2. Example of Cognitive Wireless Mesh Network

We consider a cognitive wireless mesh network® depicted
in Figure 2. There are three edge routers as the source nodes,
denoted by A, B, C, which transmit to the gateway node GW
via the relay routers X,Y and Z. Among all feasible paths,
we select the following available paths for edge routers, as
summarized in Table 1.

TABLE I
AVAILABLE PATHS FOR EDGE ROUTERS.

Al PL: {A— X — GW}
P35 {A-X->Y — GW}
Pl {A-X->Y—>Z—-GW}
B | Py {B— X — GW}
PZ: {B—Y — GW
P3: {B—-Y - X — GW}
Pr: {B—-Y —7Z — GW}
P2 B—7—GW
C | PL: C—27Z—-GW}
P&: {C—>2Z2->Y —>GW}
Pl {C—-Z2—-Y—>X—>GW}

3Figure 2 only shows the links on the available paths obtained by the sig-
nalling mechanisms or manually configurations. The actual physical topology
of the network can be potentially larger.

There are five primary users in the area, denoted by 1,2, 3,4
and 5 where each one has a primary band of 10M Hz. The
common ISM band is assumed to be 10M Hz. The return
probability of the primary users is given as @ = [0.2,0.3, 0.4,
0.3,0.3]. The transmitting power of each node is fixed as
100mW and the noise power is assumed to be 3mW. We
consider a model where the received power is inversely
proportional to the square of the distance. Note that the
transmitting power is uniformly spread on all available bands.
In addition, we explicitly specify the affecting primary users
for a particular node. We use {i,j,k,---} to represent that
a particular node is affected by primary user ¢, j,k,---. For
example, node X is labeled with {1,2} which indicates that
the transmission of node X will devastate the transmissions
of primary user 1 and 2 if the corresponding primary band
is utilized. Note that the central node, namely, Y, is most
severely affected by all primary users. Intuitively, to achieve
an expected optimum solution, the optimum traffic splitting
algorithms are inclined to steer the traffic away from Y. We
will demonstrate this detour effect next.

We first consider the cognitive wireless mesh network with
convexity, e.g., Uj(xz;) = logz; to achieve a proportional
fairness among the flows [21]. The link cost is assumed to
be in the form of 3(f.,ct) = ﬁ, which reflects the delay
experienced for a unit flow on link e under the M/M/1
assumption [28]. Note that if f, > c., the cost is +00. We
set the traffic demand of all edge routers as d; = 30Mbps
while the cost budget is b; = 5. The step sizes are chosen
as a = 1/n where n is the current iteration step. Figure 3(a)
illustrates the trajectories of the rate variables and Figure 3(b)
shows the convergence of the network overall utility as well as
the individual utility functions*. We observe that while the rate
variables converge as the iterations go, the overall objective,
i.e., the sum of the individual utilities, approaches to the global
optimum indicated by the dashed line, which is attained by
calculating the steady state distribution following the return
probability w.

In addition, Table 2 provides the rate on each path after
convergence for a sample run of the algorithm. It is interesting
to note that each user allocates a relatively small amount
of flow on the paths which traverse node Y. Recall that
node Y is affected by all five primary users. Therefore, our
proposed optimum traffic splitting algorithm steers the traffic
away from the severely affected areas automatically, without
a prior knowledge of the cognitive network, in a distributed
fashion.

V. CONCLUSIONS

In this paper, we investigate the optimum traffic splitting
problem in cognitive wireless mesh networks. To harness the
randomness induced by the unpredictable behaviors of primary
users, we formulate the problem in a stochastic network utility
maximization framework. We derive a distributed algorithmic

“4Note that Figure 3(b) also reflects the evolution of the throughput of each
edge router logarithmically.
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TABLE I
RATE ON EACH PATH AFTER CONVERGENCE.

A | PL: [ 103035
P2 | 33034
P3| 23034

B | PL: | 47983
PZ | 17982
P3| 22982
Pi [ 27982
P> | 48743

C [ PL | 71077
P2 | 14409
P [ 27743

solution via the stochastic primal-dual approach, which prov-
ably converges to the global optimum solution.

In our work, we restrict ourself in a single gateway sce-
nario. The extension to the multiple gateway scenario seems
interesting and needs further investigation. In addition, we
assume a negligible delay for the feedback signal while in a
more general case, the impact of feedback delay needs further
investigation.
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