
SECURE LOCALIZATION IN WIRELESS SENSOR NETWORKS

Yanchao Zhang, Wei Liu and Yuguang Fang
Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL 32611
Email: {yczhang@, liuw@, fang@ece.}ufl.edu

ABSTRACT

Ad hoc wireless sensor networks (WSNs) have attracted a
great deal of attention in recent years for their broad po-
tential in both military and civilian operations. The proper
operations of many WSNs rely on the knowledge of phys-
ical sensor locations. However, most existing localization
algorithms developed for WSNs are vulnerable to attacks
in hostile environments. As a result, adversaries can easily
subvert the normal functionalities of location-dependent
WSNs by exploiting the weakness of localization algorithms.
In this paper, we first present a general secure localization
scheme to protect localization from adversarial attacks.
We then propose a mobility-assisted secure localization
framework for WSNs.

I. INTRODUCTION

Many applications of wireless sensor networks (WSNs)
require sensors to be aware of their physical locations,
e.g., target detection and tracking, precision navigation and
security surveillance. Driven by this demand, a number of
localization algorithms have been proposed to provide per-
node location information in WSNs, which can be classified
into two categories: range-free such as [1]–[4] and range-
based such as [5]–[8]. Both categories attempt to localize
sensor nodes with the aid of a few anchors that are assumed
to know their own locations, for instance, through GPS
receivers or manual configuration. The former depends on
individual sensors to estimate their locations based on the
contents of messages received from neighboring sensors
or anchors, while the latter relies on absolute point-to-
point distance estimates or angle estimates between anchors
and sensors. Although having less requirements on sensor
hardware, range-free approaches only offer coarse-grained
location accuracy [2], which makes them possibly suited
for civilian applications but less suitable for military appli-
cations demanding high location accuracy. In this paper, we
concentrate on range-based approaches for their capabilities
in producing fine-grained locations.

This work was supported in part by the U.S. Office of Naval Research
under Young Investigator Award N000140210464 and the US National
Science Foundation under grant ANI-0093241 (CAREER Award).

We observe that almost all previous range-based pro-
posals were designed for non-adversarial scenarios and
thus are ill-suited for unattended and often hostile settings
such as tactical military and homeland security operations.
Under such circumstances, adversaries can easily subvert
normal network functionalities by exploiting the weakness
of localization algorithms to make sensors obtain wrong
locations away from their true ones. For example, in se-
curity monitoring applications, sensor nodes, if improperly
localized, cannot report the correct locations of intruders.

Motivated by this observation, our intention in this paper
is not to provide any brand-new localization technique for
WSNs, but to analyze and enhance the security of existing
range-based approaches built upon Time-of-Arrival (TOA),
the most commonly-used ranging technique. In particular,
we make two main contributions. First, we propose a
novel TOA-based secure localization scheme to protect
localization from attacks. Second, we develop a mobility-
assisted secure localization framework for WSNs.

The rest of this paper is structured as follows. Section II
gives the adversary model under consideration and analyzes
the security of the TOA technique. Section III presents
our secure localization scheme called SLS. Section IV dis-
cusses our mobility-assisted secure localization framework
for WSNs. Section V surveys the related work and this
paper is finally concluded in Section VI.

II. PRELIMINARIES

A. Adversary Model

Adversaries in WSNs can be classified as either external
and internal adversaries. The former have no access to the
authentic keying material of the network and can be kept
out of the network by effective authentication schemes. By
contrast, internal adversaries might be either compromised
nodes running malicious code or adversaries who stole
authentic keying material from legitimate nodes. Internal
adversaries can authenticate themselves to other legitimate
nodes and thus are more difficult to defend against than
external adversaries. We also assume that intrusion detec-
tion systems are imperfect, meaning that both types of
adversaries are non-detectable at least for some time.

1 of 7

B. Security Analysis of TOA

In a WSN, there might be two types of nodes needed
to be localized: common sensors and moving or static
targets. For ease of presentation, we refer to a node to
be localized as a locatee hereafter. We also focus our
discussion on a general scenario that a set of anchors
collectively determine the locations of certain locatees. A
typical range-based localization algorithm with TOA works
in two basic phases, (1) distance measurements between
anchors and the locatee; and (2) data fusion that combines
measurements to derive a location estimate. Adversaries
usually launch attacks on phase one so as to affect the
precision of locations calculated at phase two.

TOA [6] measures the signal arrival time, which can be
directly translated into a distance estimate based on the
known signal propagation speed. To eliminate the need for
tight clock synchronization between anchors and locatees, a
TOA two-way ranging method is often desired [9]. Assume
that there are three anchors A/B/C . B first transmits at time
t1 a challenge to the locatee S and receives a response
at time t2. Then B can estimate its distance to S as
dsb = (t2 − t1)c/2, where c is the speed of light. Once
anchors A and C obtain their distance estimates to S in the
similar way, the well-known multilateration [6] technique
can be applied to get a location estimate of S.

TOA is susceptible to attacks. For example, to make itself
appear to be farther from anchor B than it actually is, an ad-
versarial locatee can delay its response to B so as to enlarge
t2 and thus dsb. Adversaries can achieve much the similar
purpose by jamming and then replaying the response of an
legitimate locatee. In addition, if used inappropriately, the
challenge-response process would introduce opportunities
for adversaries to carry out the distance reduction attack.
For example, if adversarial, the locatee S might send a
seemingly correct response to anchor B before receiving
a complete challenge from B in order to reduce the TOA
measurement at B and thus dsb. Apparently, both distance
enlargement and reduction attacks on TOA would lead to
imprecise location estimates.

III. A SECURE LOCALIZATION SCHEME

In this section, we present a general TOA-based secure
localization scheme, called SLS. It allows a few anchors to
securely localize a locatee, either adversarial or legitimate,
in the presence of adversaries. For simplicity, this paper
focuses on how to obtain a secure 2-D location estimate,
but our scheme can be easily extended to the 3-D case.

A. Network and Trust Models

Let A denote the set of anchors and S be the locatee
to be localized. Notice that the cardinality of A, denoted

Algorithm SLS: Generating a Valid Location Estimate
Inputs: A: the anchor set, S: the locatee, K: a constant
Output: a location estimate (xs, ys) or (0, 0) if not found
1: A1 broadcasts a “start” message
2: for each Ai ∈ A do
3: dsi = K-Distance(Ai, S, K)
4: send dsi securely to A1

5: end for /*The following is done by A1*/
6: D = {(dsi, xi, yi), |1 ≤ i ≤ |A|}, C = {D}
7: m = |A|, k = 1, (xs, ys) = (0, 0)
7: while C! = φ do
8: C1 = GetOneWithoutReplacement(C)
9: (xs, ys) = CalPos(C1)
10: if TestValid(C1, xs, ys) == 1 then
11: break while
12: end if
13: (xs, ys) = (0, 0)
13: if ((−− k ==0) && (−−m ≥ 3)) then
14: C ← all m-cardinality subsets of D
15: k =

(

|A|
m

)

15: end if
16: end while
17: return (xs, ys)

Fig. 1. Algorithm SLS.

by na = |A|, should be at least 3 for determining a 2-
D location. As is well known, the more anchors (distance
estimates), the more precise location estimates are at the
cost of increased overhead. Each anchor Ai (1 ≤ i ≤ na)
is assumed to know its own location (xi, yi) at any time
and place through GPS receivers or manual configuration
or other means. For convenience, we assume A1 to be the
anchor leader in charge of the localization process, though
each anchor should take turns to act as the leader in order
to balance their resource usage in practice.

We also assume that all the anchors and S are within
the transmission range of each other. We further assume
the existence of an effective MAC protocol to support
reliable radio transmissions among anchors and the locatee.
Moreover, we assume that each pair of anchors share a
pairwise secret key, based on which they can securely
communicate with each other based on efficient symmetric-
key algorithms. Hereafter, by saying a message is se-
curely transmitted, we mean that the message is encrypted,
integrity-protected and/or authenticated with the pairwise
key shared between the transmitter and receiver. We fur-
ther postulate that anchors are trusted and unassailable to
adversaries, which is an assumption also made by previous
work [10], [11]. Notice that this assumption is reasonable
in that anchors are usually much fewer than locatees such
as sensors. Therefore, we can spend more on them by
enclosing them in high-quality tamper-proof enclosures and
putting them under perfect monitoring. How to deal with
compromised anchors is our ongoing work. In addition, we
assume that the locatee S can establish a pairwise secret

2 of 7

Algorithm K-Distance: Estimating the Distance to the Locatee
Inputs: Ai: an anchor, S: the locatee, K: number of rounds
Output: a distance estimate dsi

1: T = φ
2: for (j = 1; j ≤ K; j + +) do
3: Ai sends a random challenge nonce Nj to S
4: S responds with Nj and another random nonce Ns,j

5: Ai sets tj = time elapses between challenge and response
6: S sends to Ai a number v = h(Nj ‖ Ns,j ‖ ks,i)
7: if h(Nj |Ns,j |ks,i) == v then /*by Ai*/
8: tp = (tj − tAi

proc − tS
proc − ttran)/2

9: T = T ∪ {tp}
10: end if
11: end for
12: tsi = median(T)
13: return dsi = tsic /*c is the light speed*/

Fig. 2. Algorithms K-Distance.

key ks,i with each anchor Ai. This can be accomplished by
the method to be given in Section IV-B.

B. Overview

The operations of SLS are summarized in Fig. 1. The
anchor leader A1 triggers the protocol by broadcasting a
“start” message. Then each anchor Ai including A1 runs an
algorithm called K-Distance to obtain a distance estimate
dsi to the locatee S and securely transmits dsi to A1. To
avoid possible transmission collision, A1 can schedule the
activities of anchors through the “start” message. Once
obtaining a set D (|D| = na) of distance estimates from
all peers, A1 utilizes algorithm CalPos to derive a location
estimate (xs, ys) and then tests its validity through algorithm
TestValid. If the current (xs, ys) is valid, the algorithm fin-
ishes without further operations. Otherwise, A1 re-executes
CalPos with as input each of the (na−1)-cardinality subsets
of D to get a new location estimate whose validity is also
tested by using TestValid. If all the (na − 1)-cardinality
subsets are traversed and still no valid distance estimate is
generated, A1 again runs algorithms CalPos and TestValid
for each of the the (na − 2)-cardinality subsets of D. This
process repeats itself until either a valid distance estimate
is found or all the 3-cardinality subsets of D are examined
(3 is the minimum number of distance estimates required
to derive a 2-D location estimate). If the latter case occurs
without yielding a valid distance estimate, A1 may consider
that the localization process was subject to adversarial
attacks and then take certain actions, e.g., reporting this
abnormality to the control center, as stipulated by concrete
network applications. In what follows, we will dwell on the
aforementioned algorithms one by one.

C. K-Distance: a K-Round Distance Estimation Algo-
rithm

Upon receiving a “start” message, each anchor Ai exe-
cutes the algorithm K-Distance given in Fig. 2 to obtain a

location estimate to the locatee S. Ai begins with sending
to S a l-bit random nonce Nj and then starts a timer when
the last bit of Nj is sent. When receiving such a challenge,
S needs to immediately echo Nj concatenated by another
l-bit random nonce Ns,j generated by itself. To reduce the
impact of processing delays, S should select Ns,j from a
set of pre-generated random nonces instead of generating
one in real time. Subsequently, S sends to Ai a message
authentication code v = h(Nj |Ns,j|ks,i). Here h can be
any computationally efficient hash function such as SHA-1
[12], ks,i is the pairwise secret key shared between S and
Ai, and “|” represents the concatenation of messages.

When receiving the last bit of the response, Ai stops
the timer and sets tj equal to the elapsing time. Later,
when v arrives, Ai can verify that the formerly received
response indeed came from S by re-computing a keyed hash
value and checking its equality to v. If so, Ai proceeds to
calculate the one-way signal propagation time from itself
to S as tp = (tj − tAi

proc− tSproc− ttran)/2 and appends tp to
an initially-empty set T . Otherwise, tj is simply dumped.
tAi

proc represents the time duration from when the last bit
of the response hits the antenna of Ai until the response
is completely decoded. Similarly, tSproc is the time duration
from when the last bit of the challenge reaches the antenna
of S until S transmits the first bit of the response. tAi

proc and
tSproc are device-dependent and usually are constant or vary
in a tiny scale. Both can be pre-determined and preloaded to
Ai to calibrate the time measurements to certain precision.
Assume that transmission links from S to anchors have a
bandwidth of b bps. Then the response transmission time
ttran is equal to 2l

b
s.

K-Distance guarantees that adversaries cannot reduce tp

and thus the distance estimate dsi = tpc with non-negligible
probability. One reason is that using message authentication
code can ensure that an authentic response can only be
sent by the locatee S. Another important reason is that
nothing can travel faster than light so that S (if adversarial)
would have great difficulties in sending the correct response
before receiving the complete challenge. This is because the
probability that S guesses a correct challenge Nj is pg = 1

2l ,
which is often negligible when l is sufficiently large. For
instance, if l = 10, pg ≈ 1.5 × 10−5.

Adversaries, however, can enlarge tp and thus the dis-
tance estimate dsi by means of, for instance, delaying or
jamming and replaying the response. If this happens, Ai

would have no way to identify it. To mitigate such attacks,
we require Ai to perform K times of distance estimations.
The motivation is that adversaries might not be able to affect
all K tp values and thus distance estimates. Also notice that
our method can help mitigate sporadic measurements errors.
Here K is a design parameter that determines the tradeoff

3 of 7

between algorithm overhead and resilience to adversarial
attacks and measurement errors. The next question is how to
securely aggregate the resulting K time estimates in T . The
naive use of the average is insecure because adversaries can
easily make the calculated average far away from the true
one by enlarging just one time estimate to be sufficiently
large.

As pointed out in [13], the median is a safer replacement
for the average, so K-Distance uses the median of K time
estimates to calculate dsi

1. For brevity only, we assume
K ≥ 3 to be odd in what follows and the extension to
the case that K is even is straightforward. Let t(1),..., t(K)

denote trustful time estimates (without attacks) in T placed
in an increasing order. We then have tsi = median(T) =
t(r) for r equal to K+1

2 . Consider first the simple case
that adversaries enlarged just one time estimate from t(j)
to t′(j). If t(j), t

′
(j) < t(r), the median time estimate tsi

remains unchanged; otherwise, it changes to some value
between [t(r−1), t(r+1)]. It is easy to see that K-Distance
is vulnerable to single distance enlargement attack when
K is equal to 1 (as all previous TOA-based proposals)
or 2. In general, if m time estimates were enlarged, tsi

either remains unchanged or changes to some value between
[t(r−m), t(r+m)], depending on how adversaries contami-
nated the time estimates. It is obvious that the median
method can tolerate the enlargement of up to about half
of the time estimates. This may be enough for defending
against less powerful adversaries in most cases. However, if
K assumes a small value and adversaries launch persistent
attacks, the final median time estimate tsi might be enlarged
to be an arbitrarily large value when m is greater than K+1

2 .
Fortunately, we can deal with this worse situation using the
TestValid algorithm that will be explained shortly.

D. CalPos: Calculating a Location Estimate

After collecting distance estimates from all peers, A1 is
able to calculate a location estimate (xs, ys). Remind that
each anchor Ai has a 2-D location (xi, yi) known to A1.
For each distance estimate dsi, we then have

fi(xs, ys) = dsi −
√

(xs − xi)2 + (ys − yi)2.

A ML location estimate can be obtained by taking the
MMSE of a system of fi(xs, ys) equations, i.e., minimizing
F (xs, ys) =

∑na

i=1 f2
i (xs, ys). There are many methods to

compute MMSE estimates. A popular one is the Taylor-
Series method given in [14].

1We notice that there might exist other methods such as Least Median
Squares (LMS) to deal with outliers (distance estimates enlarged in our
case). However, they are less computationally efficient than the median
method.

E. TestValid: Testing the Validity of Location Estimates

TestVaild is executed by A1 to test the validity of
a location estimate (xs, ys). This protocol is necessary
because K-Distance cannot completely prevent distance
enlargement attacks and thus some distance estimates used
by CalPos to generate (xs, ys) might have been maliciously
enlarged by adversaries.

Consider first the simple case that there are no mea-
surement errors. If all the na distance estimates were not
enlarged by adversaries, (xs, ys) should be exactly the
intersection point of na circles {(x − xi)

2 + (y − yi)
2 =

d2
si|1 ≤ i ≤ na}. See Fig. 3(a) for an example with three

anchors. In the presence of adversaries, we just need to
check whether the location estimate is inside the na-vertex
polygon formed by all anchors. The underlying logic is very
simple. If adversaries want to make S appear to be at any
location other than its true location, they have to enlarge
certain distance estimates, while at the same time reduce
certain distance estimates to keep the bogus location inside
the triangle. As mentioned before, however, our K-Distance
algorithm can prevent adversaries from launching distance
reduction attacks. Therefore, anchors can be assured that
the location estimate is trustable as long as it resides in the
na-vertex polygon.

To determine the inclusion of a point inside a polygon,
we select the well-known ray-tracing method [15], denoted
by IfInside, for its simpleness and computational efficiency.
This method works by starting at the point in question
and drawing a straight line in any direction. If the number
of times the ray intersects the polygon edges is odd, the
starting point is inside the polygon and is outside otherwise.
It is easy to understand intuitively. Each time the ray crosses
a polygon edge, its in-out parity changes since each edge
always separates the inside of a polygon from its outside.
Eventually, any ray must end up beyond and outside the
bounded polygon. Therefore, if the point is inside, the se-
quence of crossings “→” must be: in→out→ · · ·→in→out,
and there are an odd number of them. Similarly, if the point
is outside, there are an even number of crossings in the
sequence: out→ · · ·→in→out.

In practical scenarios, however, time measurement errors
and thus distance estimate errors occur inevitably. As a
result, the na circles centered at anchors will not have a
common intersection point, but form an intersection area in
which the location estimate is located. This would introduce
opportunities for adversaries to launch attacks on localiza-
tion. Consider again the example with three anchors shown
in Fig. 3(b). Suppose the distance estimate ds1 was mali-
ciously enlarged, while the other two ds2 and ds3 were just
enlarged because of measurement errors. It is obvious that,
by adjusting the level of enlarging ds1, adversaries might

4 of 7

3sd

2sd

1sd

A1

A2A3

A1 A1

A3 A2 A2A3

3sd 3sd

2sd 2sd

1sd 1sd

S

(a) No measurement errors. (b) Measurement errors exist. (c) is maliciously enlarged.1sd

Fig. 3. An example of location validity test with three anchors.

Algorithm TestValid: Testing the Validity of a Location Estimate
Inputs: B: an anchor set, (xs, ys): a location estimate
Output: 1 if valid, else 0
1: v = 0
2: if IfInside(B, xs, ys) then
3: v = 1
4: for (i = 1; i ≤ |B|; i + +) do
5: if (dsi −

√

(xs − xi)2 + (ys − yi)2 > δ) then
6: v = 0
7: break for
8: end if
9: end for
10: end if
11: return v

Fig. 4. Algorithm TestValid.

be able to freely enlarge the intersection area of the three
circles and thus make the ML distance estimate (though still
inside the triangle) deviate much from the true location of
the locatee S. Fortunately, we can efficiently mitigate this
attack by imposing certain reasonable constraints on the ML
distance estimate. Define δ to be the two-sided maximum
allowable measurement error with regard to distance esti-
mates. Now (xs, ys) should be within the intersection area
of na rings {(dsi − δ)2 ≤ (x − xi)

2 + (y − yi)
2 ≤ d2

si|1 ≤
i ≤ na}. It means that, after calculating a ML distance
estimate through CalPos, we need to further check if2

dsi−
√

(xs − xi)2 + (ys − yi)2 ≤ δ holds for each distance
estimate dsi. If so, (xs, ys) is considered valid and invalid
otherwise. With our method in place, adversaries might only
be able to enlarge dsi a little bit to make the resulting
(xs, ys) appear to be valid, leading to a tolerable location
imprecision. Instead, if they enlarge dsi by a relatively
large amount, the resulting (xs, ys) would be detected as
invalid. Therefore, although our method cannot completely
eliminate distance enlargement attacks, which is believed

2Notice that the left part of the inequality is always no less than zero
because the ML method always yields a location estimate inside the
circle with radius dsi.

to be impossible for any security mechanism, it does very
much constrain the impact of adversaries to an acceptable
level. It is worth pointing out that the above method only
makes sense when the location estimate is inside the na-
vertex polygon. This is easily understandable by taking a
close look at Fig. 3(c). Since the two rings centered at A2

and A3 respectively have two intersection areas, one inside
the triangle and the other outside, adversaries might be able
to enlarge ds1 by a large amount so as to make the three
rings intersect with each other outside the triangle and thus
result in a seemingly valid location estimate. Therefore,
IfInside needs to be executed at any time. The complete
location validity test process is summarized in Fig. 4.

IV. SECURE LOCALIZATION IN WSNS

In this section, we demonstrate the use of SLS in
heterogenous WSNs, where a few anchors have known lo-
cations and are much more powerful than common sensors
in terms of computational capacities and energy resources.

A. Overview

We assume that there are totally Na = ng · na mobile
anchors divided into ng(≥ 1) groups of size na(≥ 3).
Here ng is a design parameter that determines the trade-
off between network bootstrapping delay and localization
overhead: the larger ng, the smaller bootstrapping delay, the
more mobile anchors are needed, and vice versa. Examples
of mobile anchors include mobile robots, Unmanned Aerial
Vehicles (UAVs) flying at low level, or even persons carry-
ing wireless devices. Also notice that mobile anchors can
undertake other important tasks besides sensor localization,
e.g., acting as data mules to collect sensor data or message
ferries to improve data delivery performance in large-scale
sensor networks. We also assume that anchors and sensors
have the same transmission range r0.

Our scheme consists of three steps: (1) each anchor of an
ng-member group obtains a distance estimate to a sensor

5 of 7

to be localized through the aforementioned two-way TOA
ranging method; (2) anchors collaboratively run SLS to
get a valid location estimate; and (3) if found, the location
estimate is securely transmitted to the target sensor. Notice
that traditional sensor localization methods such as AHLos
[6] require each sensor to measure distances to anchors and
then perform multilateration to get a location estimate by
itself. In contrast, our scheme shifts the resource-hungry
ranging and computation tasks to a few powerful anchors
so that individual sensors no longer need to possess precise
ranging and powerful computation capabilities and thus
can be made much cheaper. It also justifies the previous
assumption on the tamper-proofness of anchors as required
by SLS. The reason is that, anchors are rarer as compared to
common sensors and hence we can spend more on them, so
it may be feasible to enclose them in high-quality tamper-
proof enclosures and/or put them under perfect monitoring.
More important, our scheme enables the secure localization
in the face of adversaries, which is a mission impossible to
be undertaken by resource-constrained sensors themselves.

B. Mobility-Assisted Sensor Localization

Each anchor group is instructed to perform strategic
group pause/movement across the sensor field, during which
group members always maintain a physically na-vertex
regular polygon3 with the longest distance between any
two vertices equal to r0. For example, if na = 4 and
ng = 1, then mobile anchors form a square with side length√

2r0

2 . Starting from the left bottom of the sensor field, the
anchor group can move

√
2r0

2 upward each time, pause for
a while until sensors in the square are all securely localized
through SLS, and then move upward again until reaching
the upper boundary of the sensor field4. Then the anchor
group makes a horizontal right shift for

√
2r0

2 and starts
moving downward with one-time moving distance

√
2r0

2 .
This process continues until all N sensors in the field are
securely localized. It is worth pointing out that the one-
time moving or shifting distance in reality should be less
than

√
2r0

2 to guarantee that sensors near polygon edges
can be correctly localized. The remaining problem is how
to securely transmit calculated location estimates from the
anchor group leader to individual sensors. For this purpose,
we need an efficient method to establish pairwise shared
secret keys between anchors and common sensors.

Assume that there is a master key κma known only
to the network planner and tamper-proof anchors. Before
deployment, each sensor i is preloaded with an ID-based

3Other polygon shapes might be used as well as long as a full coverage
is guaranteed.

4Some anchors may need to move outside the sensor field a little bit
to ensure that boundary nodes are properly localized.

individual key IKi = h(i ‖ κma) corresponding to its
unique ID, where h can be any computationally efficient
hash functions such as SHA-1 [12]. During the network
operation, when one anchor, say A1, wants to securely
communicate with sensor i, it can generate IKi on the fly
to be used as the pairwise key shared with node i. This
pairwise key establishment method is very efficient in that
each sensor only needs to memorize its own ID-based key
and the computational overhead is often negligible since
anchors just need to execute highly efficient hash functions.
Below is described the whole localization process.

Whenever pausing after one movement, the anchor
leader, say A1, announces the group existence by broad-
casting a “helloLocation” message. Due to the shared
wireless medium, all the sensors inside the transmission
range of A1 will hear the “helloLocation” message, of
which some might already have been properly localized.
Only those who have not been localized yet will respond
to the message. Among them, most sensors are inside the
anchor polygon, while a few others might be outside. The
latter would be detected by A1 when running the IfInside
test. It is worth noting that, if all the neighboring sensors
of A1 simultaneously send replies to A1, possible MAC-
layer collisions may occur. For simplicity, we assume the
reliable transmission of such replies in this paper. It can be
achieved for instance through MAC-layer retransmissions
or by using a random jitter delay for which each sensor has
to wait before responding to a “helloLocation” message.
Once collecting all responses, A1 together with its group
peers proceeds to localize corresponding sensors one by
one. Below is shown the complete process for securely
localizing a sensor i inside the anchor polygon:

A1
broadcast
−−−−−−→ node i : “helloLocation”

node i
unicast
−−−−→ A1 : i, time, h(i ‖ time ‖ IKi)

A1
unicast
−−−−→ node i : {i, (xi, yi)}IKi

Sensor i responds to the “helloLocation” message by uni-
casting to A1 a message including its ID i, a timestamp and
a keyed hash value of the former two with any efficient
hash function h such as SHA-1 [12]. After receiving i’s
response, A1 first generates IKi and then verify that the
response did come from sensor i by calculating a keyed
hash value and checking its equality to the received one.
This step is indispensable because otherwise adversaries
might deceive A1 and hence the anchor group into wasteful
localization operations. Once authenticating sensor i, A1

together with its group peers runs the SLS algorithm
to derive a secure location estimate (xi, yi). After that,
A1 unicasts {i, (xi, yi)}IKi

back to node i, where {·}k

denotes an encryption operation with key k using any
efficient symmetric encryption algorithm such as RC6 [16].

6 of 7

Subsequently, node i can decrypt the ciphertext with the
preloaded IKi. Also notice that, in the third step above,
A1 might pack together the responses (if any) for several
sensors and broadcast them in one message to target sensors
so as to reduce the communication overhead.

The purpose of embedding i in the ciphertext is to
withstand the attack that an adversary may send a forged
location to node i. Since adversaries do not have the knowl-
edge of IKi, they cannot form the appropriate ciphertext
which would be decrypted to produce the correct field i. As
a result, if its own ID i does not match the first field of the
decrypted result, node i should discard the packet because
it might come from an adversary. Otherwise, i accepts the
packet and thus the location inside.

V. RELATED WORK

In this section, we briefly review some important work
that is closely related to this paper. Brands and Chaum [17]
proposed a TOA-based distance bounding protocol that can
be used to verify the proximity of two devices connected by
a wired link. Sastry et al. [18] proposed a similar distance
bounding approach based on ultrasound and RF signals to
verify the presence in a region of interest instead of the
exact location of a wireless device. The same problem
was also addressed later by Vora and Nesterenko [19].
More recently, Lazos and Poovendran [10] proposed an
approach to secure range-free localization techniques [1]–
[4] for sensor networks. By contrast, this paper concentrates
on securing range-based localization techniques [5]–[8].
The closest work to ours SLS can be found in [11], in
which a scheme called Verifiable Multilateration (VM) was
proposed for secure positioning of wireless devices. Similar
to our proposed SLS, VM also works by first obtaining
distance estimates to the device to be localized and then
deriving a MMSE location estimate. However, SLS differs
significantly from VM in two major aspects. First, the K-
Distance algorithm used by SLS is able to mitigate the
impact of adversarial attacks and sporadic measurement
errors in the first place, which is a nice property not
provided by VM. In fact, the distance bounding process in
VM can be treated as a special case of K-Distance when
K = 1, despite the different message formats. Second, VM
calculates location estimates on the basis of three anchors or
triangles. By contrast, we consider a more general case by
using na-vertex polygon formed by na anchors for na ≥ 3.

VI. CONCLUSION

In this paper, we analyze the security of TOA-based
localization techniques proposed for WSNs. We also present
a novel secure localization algorithm, called SLS, to en-
able secure localization in the presence of adversaries. In

addition, we develop a mobility-assisted scheme to apply
SLS in WSNs. As the future research, we plan to extend
our approach to range-free localization techniques. We
also intend to further investigate the potentials of location
information in securing WSNs, see for example [20].

REFERENCES

[1] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low cost outdoor
localization for very small devices,” IEEE Personal Commun. Mag.,
vol. 7, no. 5, pp. 28–34, Oct. 2000.

[2] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher,
“Range-free localization scheme in large scale sensor networks,” in
ACM MOBICOM’03, San Diego, CA, Sep. 2003.

[3] D. Niculescu and B. Nath, “DV based positioning in ad hoc
networks,” Journal of Telecommunication Systems, 2003.

[4] L. Hu and D. Evans, “Localization for mobile sensor networks,” in
ACM MOBICOM’04, Philadephia, PA, Sep/Oct 2004.

[5] L. Doherty, K. S. Pister, and L. E. Ghaoui, “Convex optimization
methods for sensor node estimation,” in IEEE INFOCOM’01,
Anchorage, Alaska, April 2001.

[6] A. Savvides, C. Han, and M. Srivastava, “Dynamic fine-grained lo-
calization in ad-hoc networks of sensors,” in ACM MOBICOM’01,
Rome, Italy, July 2001.

[7] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using
AoA,” in IEEE INFOCOM’03, San Francisco, CA, April 2003.

[8] X. Cheng, A. Thaeler, G. Xue, and D. Chen, “TPS: A time-based
positioning scheme for outdoor wireless sensor networks,” in IEEE
INFOCOM’05, Miami, FL, March 2005.

[9] D. D. McCrady, L. Doyle, H. Forstrom, T. Dempsey, and M. Mar-
torana, “Mobile ranging using low-accuracy clocks,” IEEE Trans.
Microwave Theory Tech., vol. 48, no. 6, pp. 951–957, June 2000.

[10] L. Lazos and R. Poovendran, “Serloc: Secure range-independent lo-
calization for wireless sensor networks,” in ACM WiSe’04, Philadel-
phia, PA, Oct. 2004.

[11] S. Čapkun and J.-P. Hubaux, “Secure positioning of wireless de-
vices with application to sensor networks,” in IEEE INFOCOM’05,
Miami, FL, March 2005.

[12] NIST, “Digital hash standard,” Federal Information Processing
Standards PUBlication 180-1, April 1995.

[13] D. Wagner, “Resilient aggregation in sensor networks,” in ACM
SASN’04, Washington, DC, Oct. 2004.

[14] W. Foy, “Position location solutions by taylor-series estimation,”
IEEE Trans. Aerosp. Electron. Syst., vol. 12, no. 2, pp. 187–194,
March 1976.

[15] W. R. Franklin, “Pnpoly - point inclusion in polygon
test.” [Online]. Available: http://www.ecse.rpi.edu/Homepages/
wrf/Research/Short Notes/pnpoly.html

[16] R. Rivest, M. Robshaw, R. Sidney, and L. Yin, “The rc6
block cipher,” v1.1, Aug. 1998. [Online]. Available: http:
//www.rsasecurity.com/rsalabs/rc6/.

[17] S. Brands and D. Chaum, “Distance-bounding protocols (extended
abstract),” in Theory and Application of Cryptographic Techniques,
1993, pp. 344–359.

[18] N. Sastry, U. Shankar, and D. Wagner, “Secure verification of
location claims,” in ACM WiSe’03, San Diego, CA, Sep. 2003.

[19] A. Vora and M. Nesterenko, “Secure location verification using
radio broadcast,” in OPODIS’04, Grenoble, France, Oct. 2004.

[20] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Securing sensor networks
with location-based keys,” in IEEE WCNC’05, 2005.

7 of 7

