
CHOKeW: Bandwidth Differentiation and TCP

Protection in Core Networks

Shushan Wen, Yuguang Fang
Department of Electrical and

Computer Engineering
University of Florida

Gainesville, Florida 32611, USA
Email: wen@ecel.ufl.edu, fanggece.ufl.edu

ABSTRACT

Both bandwidth differentiation and TCP protection is im-
portantfor implementing Quality ofServices (QoS) in TCPIIP
networks. To the best of our knowledge, no other schemes
have combined these two tasks together so far. In this paper
we present a stateless Active Queue Management (AQM)
algorithm called CHOKeW CHOKeW uses "matched drops"
created by CHOKe to control the bandwidth allocation, but
excludes the RED module. Based on the congestion status and
the priority of the arriving packet, CHOKeW adjusts the max-
imum number ofpackets drawn from the buffer for matched
drops. Using simulations, we show that CHOKeW is capable of
working in different congestion scenarios, supporting multiple
bandwidth priority levels by giving high priority flows with
high throughput, and restrict the throughput of high-speed
unresponsive flows to protect TCP flows.

I. INTRODUCTION

Nowadays, one of the technical problems related to Quality
of Services (QoS) in the Internet that need to be solved is
how to provide bandwidth differentiation cost-effectively in
core routers.

In the literature, bandwidth differentiation has been inves-
tigated by some researchers. A typical scheme is RED with
In/Out bit (RIO) [8], which uses two sets of RED parameters
to differentiate high priority traffic (marked as "in") from
low priority traffic (marked as "out"). The parameter set
for "in" traffic usually includes higher queue thresholds that
causes a smaller dropping probability. In RIO an "out" flow
may be starved because there is no mechanism to guarantee
the bandwidth share for low-priority traffic [3], which is a
disadvantage of RIO.

In general, routers in the DiffServ architecture, similar
to those proposed in Core-Stateless Fair Queueing (CSFQ)
[23], are divided into two categories: edge (boundary) routers
and core (interior) routers. Sophisticated operations, such
as per-flow classification and marking, are implemented at
edge routers. In other words, core routers do not necessarily
maintain per-flow states. As [15] proposed, a set of priority
services can be applied to modelling and analyzing DiffServ,

and
Hairong Sun

Sun Microsystems
Broomfield, Colorado 80021, USA

Email: hairong.sun@sun.com

by mapping the PHBs that receive better services into the
higher priority levels.
When studying the method to provide bandwidth differen-

tiation to Transmission Control Protocol (TCP), the primary
transport layer protocol in the Internet, we must consider the
mechanisms to protect TCP at the same time.

The importance of TCP protection has been discussed by
Floyd and Fall [12]. They predicted that the Internet will
collapse if there is no mechanism to protect TCP flows. In the
worst case, the routers are consumed with forwarding packets
even though no packet is useful for receivers.

Conventional Active Queue Management (AQM) algorithms
such as Random Early Detection (RED) [10] cannot protect
TCP flows. It is strongly suggested that novel AQM schemes
be designed for TCP protection with in routers [4], [12]. Cho
[5] proposed a mechanism which uses a "flow-valve" filter
for RED to punish non-TCP-friendly flows. However, this
approach requires three parameters to be reserved for each
flow, which increases the memory requirement significantly. In
[14], Mahajan and Floyd described a simpler scheme, known
as RED with Preferential Dropping (RED-PD), in which the
drop history ofRED is used to help identify non-TCP-friendly
flows, inspired by the understanding that flows at higher speeds
usually have more packet drops in RED. RED-PD is also a per-
flow scheme and at least one parameter needs to be reserved
for each flow to record the number of drops.
Compared with previous methods, CHOKe [19], proposed

by Pan et al., does not require per-flow state maintenance,
which makes the implementation in core networks much
simpler. CHOKe serves as an enhancement filter for RED in
which a buffered packet is drawn at random and compared
with an arriving packet. If both packets come from the same
flow, they are dropped as a pair (hence we call this "matched
drops" in short). If the two packets are not from the same
flow, the arriving packet is delivered to RED and the buffered
packet is kept intact.
CHOKe is simple and effective for TCP protection, but it

only supports best-effort traffic. In DiffServ networks where
flows have different priority, TCP protection is still an im-
perative task. In this paper, we use the technique of matched
drops to design another scheme called CHOKeW. The letter

W represents a function that has the capability of supporting
multiple weights for bandwidth differentiation.

Both TCP protection and bandwidth differentiation is quite
important for providing QoS to TCP traffic in the Internet.
This is the goal of our scheme. To our best of knowledge, no
other schemes have combined TCP protection with bandwidth
differentiation thus far.
Our scheme use matched drops to control bandwidth shares.

When a low-priority TCP flow only has a small bandwidth
share, the backlog in the buffer for this flow is also small,
and the packets from this flow are unlikely dropped. So this
TCP flow is unlikely to be starved. To avoid flow starvation
successfully is one of the advantages of our scheme.

In fact, some scheduling schemes, such as Weighted Fair
Queueing (WFQ) [9] and other packet approximation of the
Generalized Processor Sharing (GPS) model [20], [21] may
also support differentiated bandwidth allocation. However, the
main disadvantage of these schemes is that they require con-
stant per-flow state maintenance, which is not cost-effective in
core networks as it will cause memory-requirement complexity
O(N) and per-packet-processing complexity usually larger
than O(1), where N denotes the number of flows being served
by the router.1 Our scheme is a stateless scheme, and the
packet processing time is independent of N. Both the memory-
requirement complexity and the per-packet-processing com-
plexity of CHOKeW is O(1). The simplicity is another advan-
tage of our scheme.

The rest of the paper is organized as follows. Section
II describes our algorithm, CHOKeW. Section III presents
and discusses the simulation results, including the effect of
supporting two priority levels, multiple priority levels, TCP
protection, and fairness comparison. We conclude our paper
in Section IV.

II. CHOKEW ALGORITHM

CHOKeW uses the strategy of matched drops presented by
CHOKe [19] to protect TCP flows. Like CHOKe, CHOKeW
is a stateless algorithm that is capable of working in core
networks where a myriad of flows are served.
More importantly, CHOKeW supports differentiated band-

width allocation for traffic with different priority weights. Each
priority weight corresponds to one of the priority levels; a
heavier priority weight represents a higher priority level.

Although CHOKeW borrows the idea of matched drops
from CHOKe for TCP protection, there are significant dif-
ferences between these two algorithms. First of all, the goal
of CHOKe is to block high-speed unresponsive flows with
the help of RED to inform TCP flows of network congestion,
whereas CHOKeW is designed for supporting differentiated
bandwidth allocation with the assistance of matched drops that
are also able to protect TCP flows.

While the authors of [19] suggested to draw more than one
packet if there are multiple unresponsive flows, they did not

1For example, according to [22], the per-packet-processing complexity is
O(N) for WFQ, O(log N) for WF2Q [1], and O(log log N) for Leap Forward
Virtual Clock [24].

provide further solutions. In CHOKeW, the adjustable number
of draws is not only used for restricting the bandwidth share
of high-speed unresponsive flows, but also used as signals
to inform TCP of the congestion status. In order to avoid
functional redundancy, CHOKeW is not combined with RED
since RED is also designed to inform TCP of congestion. Thus
we say that CHOKeW is an independent AQM scheme, instead
of an enhancement filter for RED. Simulations were used to
compare the performance of CHOKeW and that of CHOKeW-
RED (i.e., CHOKeW with RED) and the results are similar.
We do not show the simulation results in this paper due to the
space limit.

In order to determine when to draw a packet (or packets)
and how many packets are possibly drawn from the buffer, we
introduce a variable, called the drawing factor, to control the
time as well as the maximum number of draws. For flow i
(i = 1, 2, ... , N, where N is the number of active flows), the
drawing factor is denoted by pi (pi > 0).

Roughly speaking, we may interpret pi as the maximum
number of random draws from the buffer upon an arrival from
flow i. The precise meaning is discussed below.

Let wi (wi > 1) denote the priority weight of flow i. If two
flows, say, i and j, are given the same priority, then wi = wj.

Let p0 denote the drawing factor for traffic with the low-
est priority. The relationship among wi, pi, and po can be
described as

Pi = Po/wi. (1)
If flow i has a higher priority weight than flow j (wi > wj),

flow i will have a smaller drawing factor than flow j
(Pi < pj). In other words, the maximum number of random
draws upon an arrival from flow i is smaller, and hence flow
i will have a lower possibility of becoming the victim of
matched drops. This is the basic mechanism for supporting
bandwidth differentiation in CHOKeW. In addition, from (1)
we have Pi = pj when flow i and flow j are of the same
priority; this is how CHOKeW provides better fairness among
flows with the same priority).
Now we discuss the precise meaning of drawing factor Pi,

which depends upon its value. According to the value of Pi
(pi > 0), the drawing process can be categorized into two
cases:

Case 1. When 0 < pi < 1, pi represents the probability of
drawing one packet from the buffer at random for comparison.

Case 2. When Pi > 1, Pi consists of two parts, and we may
rewrite Pi as

pi = m+ f. (2)

where m C E* (the set of nonnegative integers) represents
the integral part with the value of Lpi] (the largest integer
< Pi), and f represents the fractional part of Pi. In this case,
at the most m or m + 1 packets in the buffer may be drawn
for comparison. Let dmax denote the maximum number of
random draws. We have

{ Prob[dmax
Prob[dmax

m+1]= f,
m] = -Jf.

For each packet (pkt) arrival
(1) Update po
(2) Check the priority level of pkt

IF it corresponds to weight wi
THEN pi -po/wi m -Lpi, f = pi- m

(3) Generate a random number vE [0,1)
IF v < f
THEN m- m +1

(4) IF L>Lth
THEN
WHILE m >0

mm- 1
Draw a packet (pkt') at random
IF pkt' and pkt are from the same flow
THEN
Drop both pkt' and pkt
Return

ELSE keep pkt' intact
IF buffer is full
THEN drop pkt
ELSE let pkt enter the buffer

Parameters:
L: Queue length
Lth: Queue length threshold to activate drawing

Fig. 1. The algorithm of drawing packets

The algorithm of drawing packets is described in Fig. 1. In
this figure, we only use one variable m to record the value
of m (before Step (3)) and dmax (after Step (3)). Note that
no more packets need to be drawn as soon as matched drops
occur. On the other hand, if no match is found, the drawing
process will continue until the number of draws reaches dmax.
CHOKeW is a stateless algorithm since it does not need

any variables to store per-flow states. In the DiffServ network
architecture, the routers are categorized into edge routers and
core routers. The edge routers are designed to support fewer
flows and are able to perform more complicated functions for
better service. The core routers are designed to support a vast
number of flows, but only perform simpler functions for cost
effectiveness. Edge routers are able to maintain some per-flow
states. For instance, they may continually measure the arrival
rate for each flow. If the priority of a flow is determined by
end users but its arrival rate is above a threshold defined by
the network, edge routers may lower the priority of this flow
by remarking the DS fields of its packets. If the priority is
assigned by a negotiation mechanism between the network
and end users, the values in DS fields may be initialized by
edge routers. In any case, the packets in excess of the rate
threshold are (re)marked with lower priority and are prone to
being dropped by core routers.

The congestion status of a router may become either heavier
or lighter after a period of time, since circumstances (such as
the number of users, the application types, and the traffic pri-
ority) constantly change. When the router is more congested,
CHOKeW informs TCP senders to decrease their sending rates
by dropping more packets. Otherwise, CHOKeW drops fewer
packets. This adaptive function is implemented by updating

Initialization:
PO <-- 0

IF L < L
THEN

P-PoPoP
IF po < 0
THEN po °- 0

IF L > L+
THEN po -Po +P+

Parameters:
L: Queue length
L+ : Queue length threshold to increase po
L- : Queue length threshold to decrease po
Lth < L- < L+
po: Basic drawing factor with initial value 0
p+: Step length required for increasing po
p-: Step length required for decreasing po

Fig. 2. The algorithm of updating p0

TABLE I

THE STATE OF CHOKEW VS. THE RANGE OF L

State of Range of L
CHOKeW [0, Lthl (Lth, L-) [L , L+] (L+, Llim]

Matched Drops Inactive Active

Po |- max{0,po p } PO Po+P+

p0. The updating process is shown in Fig.2, which details
Step (1) of the algorithm of drawing packets that is shown in
Fig. 1. The combination of Fig. 1 and Fig.2 provides a complete
description of the CHOKeW algorithm.

The present state of CHOKeW can be described by the
activation of matched drops and the process of updating po,
which is further determined by the range the current queue
length L falls into, shown in Table I. At any time, CHOKeW
works in one of following states:

1) inactive matched drops and decreasing po (unless
p0 = 0), when 0 < L < Lth;

2) active matched drops and decreasing po (unless po = 0),
when Lth < L < L-;

3) active matched drops and constant po, when
L- < L < L+;

4) active matched drops and increasing po, when
L+ < L < Llim.

The implementation ofCHOKeW is feasible in core routers,
because CHOKeW only needs to check the DS field, without
aid of the flow ID,2 to find the priority upon each packet
arrival. Therefore, when CHOKeW is used in core routers,
priority becomes a packet feature. In terms of service qualities
in the core network, packets from different flows shall be
served the same if they have the same priority; on the other
hand, packets from the same flow may be treated differently

2In CHOKeW, the flow ID is only used to check whether two packets are
from the same flow. This operation (XOR) can be executed efficiently by
hardware.

>1

a-)
a1)

a1)
I>
(1

lYM

Fig. 3. Network Topology

if their priority is different (e.g., some packets are remarked
by the routers).

For ease of explanation, let w(k) denote the priority weight
corresponding to priority k (k = 1, 2,. , M, where M is
the number of predefined priority levels). If a packet from
flow i is marked with priority k, for this packet wi = w(k).
When remarking is allowed, another packet from flow i
may be remarked with priority k' (k'V k), for this packet
wi = W(kl/). If a packet from flow j (j 7 i) is also marked
with priority k, for this packet, also, W= w(k).
Now we discuss the complexity of CHOKeW. Based

on the above description, we know that CHOKeW needs
to remember only w(k) for each predefined priority level
k (k= 1,2, ,M), instead of wi for each flow i
(i = 1, 2,... , N). The complexity of CHOKeW is only af-
fected by M. In DiffServ networks, it is reasonable to expect
that M will not be a large value even in the foreseeable future,
i.e., M < N. Since M is independent of N, we know that
with respect to N, the memory-requirement complexity as
well as the per-packet-processing complexity of CHOKeW is
O(1), while for conventional per-flow schemes, the memory-
requirement complexity is O(N) and the per-packet-processing
complexity is usually larger than O(1).

III. PERFORMANCE EVALUATION

To evaluate CHOKeW in different scenarios and to compare
it with some other schemes, we implemented CHOKeW using
ns simulator version 2 [17]. The CHOKeW code is designed
as a patch for ns, and it is available at [26].

In this section, we use the network topology shown
in Fig.3 where Bo 1 Mb/s and Bi = 10 Mb/s
(i = 1, 2,... , N). Unless specified otherwise, the link propa-
gation delayTo = Ti 1Ims. The buffer limit is 500 packets,
and the mean packet size is 1000 bytes. TCP flows are driven
by FTP applications, and UDP flows are driven by CBR traffic.
All TCPs are simulated as TCP SACK. Each simulation runs
for 500 seconds.

Parameters of CHOKeW are set as follows: Lth = 100
packets, L- = 125 packets, L+ = 175 packets, p+ = 0.002,
and p- = 0.001.

Parameters of RED are set as follows: minth = 100
packets, maxth = 200 packets, gentle = true, pmax = 0.02,
and the EWMA weight is set to 0.002.

Parameters of RIO include those for "out" traffic and those
for "in" traffic. For "out" traffic, mirnth out = 100 packets,

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.002 0.004 0.006 0.008

Goodput (Mb/s)

0.01 0.012 0.014

Fig. 4. The Relative Cumulative Frequency of RIO and CHOKeW

maxth out = 200 packets, pmax out = 0.02. For "in"
traffic, minth in = 110 packets, maxth in = 210 packets,
pmax in = 0.01 (except in Subsection III-A where different
parameters are specified to compare RIO with CHOKeW).
Both gentle out and gentle in are set to true.

Parameters of BLUE are set as follows: 1 = 0.0025
(the step length for increasing the dropping probability),
62 = 0.00025 (the step length for decreasing the dropping
probability), and freeze time= 100 ms.

A. Two Priority Levels

One of the main tasks ofCHOKeW is supporting bandwidth
differentiation for multiple priority levels when working in
a stateless method. We validate the effect of supporting two
priority levels in this subsection and three or more priority
levels in the next subsection.
As mentioned before, flow starvation often happens in

RIO but is avoidable in CHOKeW. In order to investigate
seriousness of the flow starvation, we record the Relative
Cumulative Frequency (RCF) of goodput for flows in the same
priority. The RCF of goodput g for flows in a certain priority
represents the number of flows that have goodput lower than
or equal to g divided by the total number of flows in this
priority.
We simulate 200 TCP flows. For CHOKeW, 100 flows

are of low priority with w(i) = 1, and the other 100 flows
are of high priority with W(2) = 2. For RIO, 100 flows
belong to "out" traffic and the other 100 flows belong to "in"
traffic. The RCF of goodput for flows in each priority level
of CHOKeW and RIO is shown in Fig.4. Here we show three
sets of results from RIO, denoted by RIO 1, RIO 2 and RIO 3,
respectively. For RIO 1 we set minth in = 150 packets and
maxth in = 250 packets; for RIO 2 minth in = 130 packets
and maxth in = 230 packets; for RIO 3 minth in = 110
packets and maxth in = 210 packets.
From Fig.4 we see that for "out" traffic of RIO 1 the RCF

of goodput zero is 0.1. In other words, 10 of the 100 "out"
flows are starved. Similarly, for RIO 2 and RIO 3, 15 and 6
flows are starved, respectively. Even some "in" flows of RIO

0.7 0

w (1).o
vv-- 2 =2.0

60 80 100 120 140
The numbe of TCP flows

160 180 200

; 0.35

0.30~0
H-

n 0.25

0
0.2

100 150 200
The number of TCP flows

w (1 =1.0
w-2 = 1.5
w-(3 =2.0 E

250 300

Fig. 5. The aggregate TCP goodput for two priority levels

0.7

2.5 3.5
w_(2) / w_(1)

Fig. 7. The relationship between the aggregate goodput and the number of
TCP flows for three priority levels

0.4 \A/ (1)=1 n -

li 0.35

a 0.3

0 0.25

n 0.2

a) <;
m) 0.15

0.14.5

W ('I ='I.U
w- 2 =1.5
w (3 =2.0
w-(4 =2.5

100 150 200 250 300
The number of TCP flows

350 400

Fig. 6. The relationship between aggregate TCP goodput and W(2) W(I)

may have very low goodput (e.g., the lowest goodput of "in"
flows of RIO2 is only 0.00015 Mb/s). Flow starvation is very

common in RIO, but it is rarely observed in CHOKeW.
Now we investigate the relationship between the number of

TCP flows and the aggregate TCP goodput for each priority
level. The results are shown in Fig.5. Here two priority levels
are corresponding to w(i) = 1 and W(2) = 2. Half of the flows
are assigned w(i) and the other half assigned W(2). As more

flows are going through the CHOKeW router, the goodput
difference between the higher-priority flows and the lower-
priority flows changes, but high-priority flows can get higher
goodput no matter how many flows exist.

The aggregate TCP goodput for each priority level versus

the ratio of the higher priority weight to the lower priority
weight (i.e., W(2)/W(l)) is shown in Fig.6, where 100 TCP
flows is simulated and w(i) is set to 1. We can see that as

W(2)/W(1) ascends, the goodput difference between the flows
at the higher priority level and the flows at the lower priority
level is more significant. When the number of flows at the
higher priority level equals that at the lower priority level,
considering CHOKeW maintains good fairness among flows
with the same priority, the per-flow goodput for a higher-
priority flow is greater than that for a lower-priority flow.3

3Here we only show the results of the scenario in which two priority levels
have the same number of flows. The results about per-flow goodput still hold
true in an environment where the number of TCP flows at two priority levels
is different, although the aggregate goodput of the higher-priority flows may
be smaller than that of the lower-priority flows if there are much fewer flows
in the higher priority.

Fig. 8. The relationship between aggregate goodput and the number of TCP
flows for four priority levels

B. Three or More Priority Levels

In situations where multiple priority levels are used, the
results are similar to those of two priority levels, i.e., the flows
with higher priority achieve higher goodput. Since RIO only
supports two priority levels, the results are not compared with
RIO in this subsection. Fig.7 and Fig.8 demonstrate the aggre-

gate TCP goodput for each priority level versus the number
of TCP flows for three priority levels and for four priority
levels, respectively. Three priority levels are configured using
W(1) = 1.0, W(2) = 1.5, and W(3) = 2.0. Four priority levels
are configured using w(1) = 1.0, W(2) = 1.5, W(3) = 2.0, and
W(4) = 2.5. Although the goodput fluctuates when the number
of TCP flows changes, the flows in higher priority are still
able to obtain higher goodput. In the simulations of multiple
priorities, no flow starvation is observed.

C. TCP Protection

TCP protection is another task of CHOKeW. We use UDP
flows at the sending rate of 10 Mb/s to simulate misbehaving
flows. 100 TCP flows (50 with the w(i) = 1 and 50 with
W(2) = 2) are simulated. In order to evaluate the performance
of TCP protection, the UDP flows are assigned the high
priority weight W(2) = 2 Obviously, it would be easier to
block the misbehaving flows if they only correspond to the
low priority w(i). Hence the effectiveness of TCP protection
is validated if the high-priority misbehaving flows are blocked
successfully.
CHOKeW are compared with RIO in the simulations. The

o; 0.6

- 0.5

° 0.40-

O 0.3
-a

m 0.2

2 0.1

0

n 0.6

- 0.5

° 0.40-

o 0.3
H-

0 0.2

2 0.1

2

0.4

CHOKeW: TCP w (1) 1.0
CHOKeW: TCP w-(2=2.0
CHOKeW: Aggregate TCP
CHOKeW: Aggregate UDP

RIO: Aggregate TCP
RIO: Aggregate UDP

Zo 0.8

Q 0.6
-o
0

a) 0.4

<: 0.2

o0 104 6
The number of UDP flows

Fig. 9. The relationship between the aggregate goodput and the number of
UDP flows

55

D 50

45

40

t- 35

30

25
o 2 4 6

The number of UDP flows
8 10

Fig. 10. p0 versus the number of UDP flows

goodput versus the number of UDP flows is shown in Fig.9.
Since no retransmission in UDP flows, goodput is equal
to throughput for UDP. Even if the number of UDP flows
increases from 1 to 10, for CHOKeW, the TCP goodput in
each priority level (and hence the aggregate TCP throughput)
is quite stable. In other words, the link bandwidth is shared
by these TCP flows, and the high-speed UDP flows are
completely blocked by CHOKeW. However, when high-speed
UDP flows exist, the bandwidth shares for TCP flows in a RIO
router are all nearly zero. RIO cannot protect TCP flows.

Fig.10 illustrates the relationship between p0 and the num-
ber of UDP flows. As more UDP flows start, p0 increases,
but the value of po is not high enough to block TCP flows.
In this experiment, we also find that few packets of TCP
flows are dropped due to buffer overflow. In fact, when the
edge routers cooperate with the core routers, the high-speed
misbehaving flows will be marked with lower priority at the
edge routers. Therefore, CHOKeW should be able to block
even more misbehaving flows than shown in Fig.9 and p0
should also be smaller than shown in Fig.10.

D. Fairness

We compare the fairness of CHOKeW with that of RED
and BLUE in this subsection. Since RED and BLUE do not
support multiple priority levels and are only used in best-effort
networks, we let CHOKeW work in one priority state (i.e.,
w(i) = 1 for all flows).

The network topology is shown in Fig.3. The end-to-end
propagation delay of a flow is set to one of 6, 60, 100, or 150

0.98

0.96

U- 0.94
x '_
'- 0.92

(, 0.9 <

E 0.88

UL 0.86

0.84

0.82

0.8
160

CHOKeW
RED
BLUE

180 200 220 240
The number of TCP flows

260 280

Fig. 11. The relationship between the fairness index and the number of flows
for CHOKeW, RED and BLUE

ms. Each of the four values is assigned to 25% of the total
number of flows.4
When there are only a few (e.g., no more than three)

flows under consideration, the fairness can be evaluated by
directly observing the closeness of the goodput or throughput
of different flows. When many flows are active, however, it is
hard to measure the fairness from direct observation; in this
case, we introduce the fairness index:

(N2

F = (=)
N

N E gi2
i=l

(3)

where N is the number of active flows during the observation
period, and gi (i = 1, 2, ... , N) represents the goodput of
flow i. From (3) we know F C (0,1]. The closer the value of
F is to 1, the better the fairness. In this paper we use gi as
goodput instead of throughput so that the TCP performance
evaluation will more accurately reflect the successful delivery
rate. Fig.11 shows the fairness index of CHOKeW, RED, and
BLUE versus the number of TCP flows ranging from 160 to
280. The fairness decreases as the number of flows increases,
however, CHOKeW provides better fairness than both RED
and BLUE in this situation.

ACKNOWLEDGMENT

We would like to thank the U.S. Office of Naval Re-
search for providing grant N000140210464 (Young Investi-
gator Award), and the U.S. National Science Foundation for
providing grant ANI-0093241 (CAREER Award).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a stateless, cost-effective AQM
scheme called CHOKeW that provides bandwidth differentia-
tion among flows at multiple priority levels. Both the analytical
model and the simulations showed that CHOKeW is capable
of providing higher bandwidth shares to flows with higher
priority, maintaining good fairness among flows with the same
priority, and protecting TCP against high-speed unresponsive

4For flow i, the end-to-end propagation delay is 4Ti + 2To. Since To is
constant for all flows in Fig.3, the propagation delay can be assigned a desired
value given an appropriate Ti.

flows when network congestion occurs. The simulations also
demonstrate that CHOKeW is able to achieve efficient link
utilization with a shorter queue length than conventional AQM
schemes.
Our analytical model was designed to provide insights into

the behavior of CHOKeW and gave a qualitative explanation
of its effectiveness. Our simulation provided a quantitative
investigation of CHOKeW, though future understanding of
network dynamics may allow for more comprehensive models.

The parameter tuning is another area of exploration for
future work on CHOKeW. When the priority-weight ratio
W(2) /w(l) is higher, the bandwidth shares being allocated
to the higher-priority flows will be greater; meantime, con-
sidering the total available bandwidth does not change, the
bandwidth shares allocated to the lower-priority flows will be
smaller. The value ofW(2) /IW(i) is particular to the application,
the network environment, and the users' demand. The results
of this research can be incorporated with price-based DiffServ
networks to provide differentiated bandwidth allocation as well
as TCP protection.

[19] R. Pan, B. Prabhakar, and K. Psounis, CHOKe: A Stateless Active Queue
Management Schemefor Approximating Fair Bandwidth Allocation, IEEE
INFOCOM'01

[20] A. K. Parekh and R. G. Gallager, A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: the Single-
Node Case, IEEE/ACM Transaction on Networking, Aug. 1993, 1(3):344-
357

[21] A. K. Parekh and R. G. Gallager, A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: the Multiple-
Node Case, IEEE/ACM Transaction on Networking, Aug. 1994, 2(2): 137-
150

[22] S. Ramabhadran and J. Pasquale, Stratified Round Robin: A Low Com-
plexity Packet Scheduler with Bandwidth Fairness and Bounded Delay,
ACM SIGCOMM'03

[23] I. Stoica, S. Shenker, and H. Zhang, Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocation in High Speed Net-
works, ACM SIGCOMM'98

[24] S. Suri, G. Varghese, and G. Chandramenon, Leap Forward Virtual
Clock: A New Fair Queueing Scheme with Guaranteed Delay and
Throughput Fairness, IEEE INFOCOM '97, April 1997

[25] A. Tang, J. Wang, and S. H. Low, Understanding CHOKe, IEEE
INFORCOM'03

[26] S. Wen and Y. Fang, CHOKeW Patch on ns, April 2005. [Online].
Available: http://www.ecel.ufl.edu/ wen/chokew.zip

REFERENCES

[1] J. Bennet and H. Zhang, WF2Q: Worst Case Fair Weighted Fair Queuing,
IEEE INFOCOM'96, 1996

[2] S. Blake, D. Black, M. Carlson, et al., An Architecture for Differentiated
Service, IETF RFC 2475, December 1998

[3] U. Bodin, 0. Schelen, and S. Pink, Load-Tolerant Differentiation
with Active Queue Management, ACM CCR'00. [Online]. Available:
http://www.acm.org/sigcomm/ccr/archive/ccr-toc/ccr-toc-2000.html

[4] R. Braden, D. Clark, and J. Crowcroft, et al., Recommendations on Queue
Management and Congestion Avoidance in the Internet, IETF RFC 2309,
April 1998

[5] K. Cho, Flow-Valve: Embedding a Safety-Valve in RED, IEEE GLOBE-
COM'99

[6] R. B. Cooper, Introduction to Queueing Theory, 2nd ed. Elsevier North
Holland, 1981

[7] D. D. Clark, S. Shenker, and L. Zhang, Supporting Real-Time Ap-
plications in an Integrated Services Packet Network: Architecture and
Mechanism, ACM SIGCOMM'92

[8] D. D. Clark and W. Fang, Explicit Allocation of Best Effort Packet
Delivery Service, IEEE/ACM Transactions on Networking, August
1998, 6(4):362-373

[9] A. Demers, S. Keshav, and S. Shenker, Analysis and simulations of a
Fair Queueing algorithm, ACM SIGCOMM'89

[10] S. Floyd and V. Jacobson, Random Early Detection Gateways
for Congestion Avoidance, IEEE/ACM Transaction on Networking,
Aug.1993, 1(4):397-413

[11] S. Floyd, RED: Discussions of Setting Parameters, November 1997.
[Online]. Available: http://www.icir.org/floyd/REDparameters.txt

[12] S. Floyd and K. Fall, Promoting the Use of End-to-End Conges-
tion Control in the Internet, IEEE/ACM Transaction on Networking,
Aug.1999, 7(4):458-472

[13] J. Heinanen, F. Baker, W. Weiss, et al., Assured Forwarding PHB Group,
IETF, RFC 2597, 1999

[14] R. Mahajan and S. Floyd, Controlling High-Bandwidth Flows at the
Congested Router, ICSI Tech Report TR-01-001, April 2001. [Online].
Available: http://www.icir.org/red-pd/

[15] P. Marbach, Pricing Differentiated Services Networks: Bursty Traffic,
IEEE INFOCOM'01

[16] N. Nichols, S. Blake, F. Baker, et al., Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers, IETF RFC 2474,
Dec. 1998

[17] ns-2 (Network Simulator version 2). [Online]. Available:
http://www.isi.edu/nsnam/ns/

[18] J. Padhye, V. Firoiu, D. Towsley, et al., Modeling TCP Throughput: A
Simple Model and its Empirical Validation, ACM SIGCOMM'98

