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ABSTRACT

Route caching strategy is important in an on-demand
routing protocol in wireless mobile ad hoc networks.
While high routing overhead usually has a significant
performance impact in low bandwidth wireless network, a
good route caching strategy can reduce routing overhead
by making use of the available route information more
efficiently. In this paper, we study the effects of two cache
organizations, “link cache” and “path cache”, on the
performance of on-demand routing protocols through
simulation. The effect of a static link timeout mechanism is
studied and an adaptive link timeout mechanism is
proposed. The adaptive timeout mechanism aims to keep
tracking of the “optimal” link lifetime under varied node
mobility levels by dynamically adapting the estimated link
lifetime using a moving average from the real link lifetime
statistics. We present the simulation results in terms of
routing overhead, packet delivery ratio, and end-to-end
delay. The results indicate that without an appropriate
stale link removal mechanism, a link cache organization
may suffer severe performance degradation because of the
large number of route error messages generated.
However, with an appropriate timeout mechanism, the link
cache organization reduces the routing overhead
significantly and outperforms the path cache when the
network traffic load is high. Our simulation is based on the
Dynamic Source Routing (DSR) protocol.

I. INTRODUCTION

An ad hoc network is an infrastructureless multi-hop
mobile wireless network. Its self-configuring, self-
organizing nature, and its capability to be promptly
deployed without any wired base stations or infrastructure
support have made ad hoc network very attractive in
tactical and military applications, where fixed
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infrastructures are not available or reliable, and fast
network establishment and self-reconfiguration are
required. Examples include the tactical communication in
a battlefield and the disaster rescue after an earthquake.

Due to the independent moving of the nodes, the network
topology of an ad hoc network can be changed
dramatically. Traditional Internet routing protocols are no
longer effective in ad hoc networks. It presents a great
challenge for a routing protocol to keep up with the
frequent and unpredictable topology changes. Much work
has been done since the mobile ad hoc networking
(MANET) working group was formed within the Internet
Engineering Task Force (IETF) to develop a routing
framework for IP-based protocols in ad hoc network.
Existing ad hoc routing protocol can be generally
categorized into two classes; table-driven (or proactive)
and demand-driven (reactive) [1]. Most of the performance
studies indicate that on-demand routing protocols perform
better than table-driven routing protocols [2][{3][4]. The
major advantage of the on-demand routing comes from the
reduction of the routing overhead, as high routing
overhead usually has a significant performance impact in
low bandwidth wireless network.

However, on-demand routing also has its disadvantages.
First of all, since a route is discovered on a needed basis,
the packet cannot be sent before such a route has been
found. Since the source node has no idea about where the
destination is, the protocol has to search the entire network
to find the destination. This is a very costly operation. It
also adds the latency to the packet delivered. Secondly, in
order to avoid the need to rediscover each routing decision
for each individual packet, any on-demand routing
protocol must utilizes some type of routing cache to cache
the routes previously discovered. However, due to the
frequent topology changes and lacking of timely update
mechanisms on a regular basis, the cache itself may
contain out-of-date information indicating links that are
actually no longer exist. This stale data represents a
liability that may degrade performance rather than improve



it [5]. There is a tradeoff between using the cached
information -- valid data may reduce route discovery cost
which will contribute to the improved performance while
stale data will cause more errors, longer delay and higher
packet loss.

In this paper, we study the effects of different cache
organizations on the performance of on-demand routing
protocol in an ad hoc network. Two types of the cache
organizations, a path cache and a link cache, are studied. A
path cache is one in which each cache entry represents an
entire path from source to destination, while in a link
cache each individual link is referred to as a cache data
unit. A link cache has the potential to utilize the obtained
route information more efficiently. However, without a
good link update mechanism, stale links may cause more
route errors. Marina and Das [6] studied a few techniques
to improve cache correctness in DSR. Their study was
based on a path cache structure. Hu and Johnson [7] have
conducted a comprehensive study on the caching strategies
in on-demand routing protocols for wireless ad hoc
networks. However, their study on the timeout
mechanisms is limited to a fixed level of node mobility. A
static “optimal” lifetime is assigned to each node with this
mobility level. Their adaptive timeout mechanism is also
limited to fine tune-up of the lifetime within the same level
of node mobility. In this paper, we study two types of link
update mechanisms, a static timeout mechanism and an
adaptive timeout mechanism. The static timeout
mechanism expires a link using a statically assigned
lifetime, while in the adaptive timeout mechanism, we
propose to adapt the link timeout interval to various node
mobility levels based on the estimation from a moving
average of real link lifetime statistics. The performance of
different cache organizations is evaluated through
simulations based on the Dynamic Source Routing (DSR)
protocol [8], since it is a well performed and entirely on-
demand routing protocol. :

II. METHODOLOGY
A. DSR Protocol and Cache Organizations

DSR is an on-demand routing protocol that is based on the
concept of source routing. The mechanisms and operation
of DSR are well defined in [8]. A slight modification in
our simulation is that the destination node will reply to all
the route requests received rather than only reply to the
first one. Actually this is done in most simulation
implementations as DSR is capable of caching multiple
paths to a certain destination and the replies from the
destination most accurately reflect the up-to-date network
topology.
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Besides the basic functions, more optimization
mechanisms are proposed and added to DSR protocol.
These optimizations include gratuitous route replies,
salvaging, gratuitous route errors, snooping, tapping, etc.
[5]. Most of them have been included in our simulation
implementation.

In DSR, the route returned to the source is a complete path
leading to the destination. By caching each of these paths
separately, a “path cache” organization can be formed. A
path cache is very simple to implement. When a route is
needed, the path cache data structure can be efficiently
searched for any path leading to that destination. This type
of cache organization has been extensively studied through
simulations [2][9]. In this paper, we consider an alternative
type of organization, a “link cache”, in which each node
keeps a unified graph data structure representing this
node’s current view of the network topology, the route
returned to this node is decomposed into individual links
and represented in the graph data structure [7]. When a
route is needed, a graph search algorithm, such as the
Dijkstra shortest path algorithm or the breath-first-search
(BFS) shortest path algorithm, is executed to find a path to
the destination.

Route Replies: Route Error:
A—»B-—»D C»D
A+»C—»D .

Link Cache:

A—+» C-»D-—»E

Path Cache:
A—+» B
A—»B—» D
A—»C
A->CD

A3 Coos Doy £

Figure 1 Illustration of path cache and link cache

Compared with a path cache organization, a link cache has
the potential to utilize the route information more
efficiently. Given the same amount of route reply
information, the routes existing in a path cache can always
be found in a link cache, while the link cache may have
new routes that a path cache does not include by
connecting individual links differently. In a path cache, a
complete route will be removed (or is truncated before the
broken link, depending on the path representation in the
cache) when one of its links broke. While in a link cache,
only the broken link is removed. The rest of the links on



that route are still available to form new routes. Consider
the situation illustrated in Figure 1, when link C->D is
broken, there will be no route to destination E exist in a
path cache. A route discovery process has to be initiated if
a route to destination E is desired. While by removing only
link C->D, a link cache still has a route A->B->D->E to
the destination E. A route discovery can be avoided.
Therefore, with a link cache, potential reduction in the
costly route discovery operation can be expected.

B. Link Timeout Mechanisms
As nodes in an ad hoc network are capable of moving, a

links has a limited lifetime. Current existing links may no
longer be valid when the two end nodes moving out of the

transmission range of each other. Due to the on-demand

manner of the routing protocol, the link status will not be
updated until they are used. However, using an actually
broken route will cause a number of route errors to be
generated and potential packet loss. So taking advantage of
using active links individually has to be combined with a
mechanism that removing stale links timely to avoid route
errors. A natural choice is to combine a timeout policy to
the link cache such that each link is given an appropriate
lifetime when it enters the link cache, and is removed
when its lifetime runs out. The lifetime estimation
becomes a critical issue for such a link cache organization.
The lifetime assigned to the link should properly reflect
the expected value of its real lifetime. If this value is
assigned too small, links expire too quickly before they
really break, more costly route discoveries would have to
be performed. On the other hand, if the value is too large,
links break early before the timers expire, more route
errors will be caused, which would degrade the overall
performance of the protocol.

In this paper, we first study the static lifetime assignment,
in which when a link enters the link cache, it is assigned a
predefined static lifetime 77 seconds. During its lifetime, if
the link is used to send packets, the lifetime of this link
will be adjusted so that it won’t expire in the future 72
seconds. Then based on the observations from the static
lifetime experiments, we propose and study an adaptive
lifetime estimation scheme that adaptively estimate the
link lifetime based on the moving average of the pervious
collected lifetime statistics.

In our adaptive link lifetime scheme, each link (7,) in the
link cache is associated with three clock type attributes,
born, lastUsed, and liveTo. Attribute born indicates the
time when a new link enters the link cache. It is updated
when a route reply is received and a new link is found in
the route. Attribute /astUsed is the time stamp when the
link is last used to forward a packet. Attribute /iveTo is the
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predicted time at or after which the link expires. The
statistical lifetime data are collected whenever a link is
removed from the link cache. If it is removed because of
the reception of a route error, the lifetime / is calculated as
I = CurrentTime() - link(i, j).born
or if it is removed because of timeout, lifetime / is
calculated only if this link has ever been used during its
lifetime,
I =linkli, jllastUsed —linkli, j].born

LIFETIME is the variable indicating the estimation of the
link lifetime. It is initially assigned a static value and is
adjusted dynamically using a moving average method
whenever a lifetime datum / is collected,

LIFETIME =(1—-o)* LIFETIME + o *1

where a is the 1* order moving average parameter.
III. SIMULATION AND RESULTS
A. Simulation Framework

The simulation of our link cache DSR protocol is
implemented within the GloMoSim library [10]. The
GloMoSim library is a scalable simulation environment for
wireless network systems using the parallel discrete-event
simulation language called PARSEC. The link layer model
is the Distributed Coordination Function (DCF) of the
IEEE 802.11 wireless LAN standard. The radio model uses
the channel characteristics similar to Lucent’s WaveLAN
product. Radio propagation range for each node is 250
meters and channel capacity is 2 Mbits/sec. The network
simulated consists of 50 nodes. The simulation area is
700x700 square meters. Each simulation is executed for 15
simulated minutes.

The random waypoint mobility model is used in the
simulation [2]. In this model, a node selects a destination
randomly within the simulated territory, moves to that
destination at a speed uniformly distributed between 0 to
20 m/sec, stops there for a predefined pause time and then
repeats this behavior for the duration of the simulation.
The different node mobility levels are achieved by
changing the values of pause time.

The traffic used in this simulation is constant bit rate
(CBR) UDP sessions. The source-destination pairs are
chosen randomly among the 50 nodes. The number of
communication sessions is varied to change the offered
load in the network. All the data packets are 64 bytes and
are sent at a speed of 4 packets/sec. The reason that we
choose 64 bytes small packet size is because our focus is
on routing protocol’s capability of tracking the topology
change. Small packet size will factor out the effects of



other reasons such as the network congestion [2].

We evaluate the performance of the link cache DSR
protocol with static lifetime assignments and the proposed
adaptive lifetime scheme. With static lifetime assignments,
we execute multiple simulations for different (7'7,72)
values as (3,1), (6,1), (12,2), (25,3), (50,5), (100,10),
(900,-). For each (T1,72) value, we execute multiple
simulation runs with various traffic load conditions
(10,20,30,40,50 sources) and various node mobility levels
(pause time = 0s, 30s, 60s, 120s, 240s, 480s, 900s). For
comparison purpose, we also evaluate the conventional
path cache DSR protocol. The traffic load and the node
mobility scenarios are identical across different variations
of DSR protocol.

B. Simulation Results

We first examine the effects of different cache schemes on
the routing overhead generated. The routing overhead is
calculated as the number of control packets transmitted by
the protocol. It is counted as per hop basis. As shown in
Figure 2 and 3, the results confirm our expectation that
small values of lifetime cause increased number of route
requests but decreased number of route errors, while large
values of lifetime cause decreased number of route
requests but increased number of route errors. When the
lifetime is within an appropriate range (in our experiments,
6<=T1<=50), the overall control messages are quite
balanced. However, when the lifetime value becomes very
large (in our experiments, T1>=50), the dramatically
increased route errors would overwhelm the slightly
decreased route requests. The total number of control
messages increases significantly. In general, with an
appropriate static link lifetime, the number of control
packets used by the link cache scheme is less than that
used by the path cache scheme. With the increased
network traffic load, the reduction becomes more obvious.
We also observe that the proposed adaptive cache scheme
tracks the “optimal” link lifetime quite well. Although it is
not always optimal, it keeps the routing overhead “sub-
optimally” low under various mobility level conditions.
The reduced routing overhead, especially in heavy traffic
situation, will contribute to the improved performance.

Next we evaluate the application level performance metric
— packet delivery ratio (the end-to-end throughput). The
packet delivery ratio is the fraction of packets that are
received at corresponding destination over those sent at the
source. There are two major situations that a packet may
drop. One is due to the stale routes. A stale route in the
cache may direct a packet to an actually broken link,
which may cause the packet be dropped. To reduce such
packet drops, small lifetime value is preferred because
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small lifetime value could expire stale routes and reduce
the chances that a stale route is used. The other type of
packet loss is due to the heavy collisions in the MAC layer
that cause a packet drop after failing a certain number of
attempts to transmit the packet. A route discovery process
can cause a large number of route requests and route
replies generated within a short time, thus cause increased
interference to data traffic at MAC layer. When the traffic
load is high, the packet loss caused by collisions becomes
more severe. To reduce the packet loss due to this reason,
a large lifetime value is preferred because a large lifetime
value could minimize the number of route discovery .
performed. Figure 4 summarizes the performance of
packet delivery ratio under various network traffic loads
and node mobility levels. We observe that, in general, the
link cache scheme outperforms the path cache scheme
when the network load is high. Again, the heavier the load,
the wider the performance gap. However, when the traffic
load is low, the performance comparison between the two
types is not certain.

Packet latency is another important performance metric.
The packet latency is also called end-to-end delay, which
is the latency between a packet sent at the source and
received at the destination. The packet latency is only
calculated for packets that are successfully delivered.
Besides the ordinary transmission delay, propagation
delay, and queuing delay, which widely exist in all IP
networks, there are two types of latency caused
particularly by ad hoc on-demand routing protocols. One is
the latency the protocol takes to discover a route to a
destination when there is no known route to that
destination. This type of latency is due to the on-demand
behavior of the routing protocol and exists in all such
protocols. The other one is the latency for a sender to
“recover” when a route used breaks. The latency resulting
from broken routes could be very large because the
amount of latency is the addition of the following three
parts, the time for a packet travel along the route to the
node immediately before the broken link, the time for that
node to detect the broken link, and the time for a route
error message to travel from that node back to the source
node. Among them, the time to detect a broken link could
be very large because the failure of the node can only be
determined after having made a certain number of attempts
to transmit the packet over the broken link but failed to
receive a passive or explicit acknowledgement of success.
Figure 5 shows the performance comparison of packet
latency across different variations of DSR protocol. We
observe that, with an appropriate link lifetime, the packet
latency incurred by the link cache scheme is kept relatively
low compared to the path cache scheme. Especially when
the network traffic load grows high, the advantage of the
link cache becomes clearer. Since the small link lifetime



value tends to expire links earlier than they actually break,
the possibility of using broken links are reduced, thus the
latency caused by broken routes is minimized. Therefore,
we observe that small lifetime values result in low packet
latency. Correspondingly, without an appropriate timeout
mechanism (e.g. the link lifetime assigned is too large),
packets suffer abnormally large latency because too many
broken routes are used. Again we observe that the
proposed adaptive cache scheme maintains comparably
low latency under various mobility level conditions.

IV. CONCLUSIONS AND ONGOING RESEARCH

In this paper, we study the effects of the route cache
organizations on the performance of on-demand routing
protocols in ad hoc networks. We base our simulation on
DSR, the well-evaluated on-demand routing protocol in ad
hoc networks. We first study the link cache performance
with static lifetime assignments. The results indicate that
an appropriate timeout mechanism is critical on the
performance of such a link cache organization. A link
cache with an appropriate timeout mechanism could make
use of the available route information more efficiently,
thus improve the protocol performance. However, without
an appropriate timeout mechanism, a link cache may cause
dramatically increased route errors and consequent
performance degradation. We also found that the link
cache organization performs better when network traffic
load is high. Based on these observations, we propose an
adaptive link timeout mechanism. The adaptive link
lifetime estimation scheme aims at tracking the “optimal”
link lifetime under varied node mobility conditions. The
performance of the proposed strategy is compared with the
conventional “path cache” DSR. The results show that
when the number of traffic sources increases, the proposed
adaptive link cache DSR outperforms the path cache DSR,
with wider performance gap with increasing load. As the
cache organization is a local implementation decision at
each node, all the protocol control messages for route
discovery and maintenance mechanisms remain the same,
we suggest that switching between the two types of cache
organizations dynamically in response to the network load
condition will provide a good way to improve the overall
performance of the DSR protocol.

The simulation results shown in this paper are just the
preliminary results of out study. More systematic study on
the lifetime statistics and finer tune-up of the parameters
are still undertaken.
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