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AbstrAct
A massive number of devices are expected 

to fulfill the missions of sensing, processing and 
control in cyber-physical IoT systems with new 
applications and connectivity requirements. In 
this context, scarce spectrum resources must 
accommodate high traffic volume with stringent 
requirements of low latency, high reliability, and 
energy efficiency. Conventional centralized net-
work architectures may not be able to fulfill these 
requirements due to congestion in backhaul 
links. This article presents a novel design of an 
RDNA for IoT that leverages the latest advances 
of mobile devices (e.g., their capability to act as 
access points, storing and computing capabilities) 
to dynamically harvest unused resources and miti-
gate network congestion. However, traffic dynam-
ics may compromise the availability of terminal 
access points and channels, and thus network 
connectivity. The proposed design embraces solu-
tions at the physical, access, networking, appli-
cation, and business layers to improve network 
robustness. The high density of mobile devices 
provides alternatives for close connectivity, reduc-
ing interference and latency, and thus increasing 
reliability and energy efficiency. Moreover, the 
computing capabilities of mobile devices proj-
ect smartness onto the edge, which is desirable 
for autonomous and intelligent decision making. 
A case study is included to illustrate the perfor-
mance of RDNA. Potential applications of this 
architecture in the context of IoT are outlined. 
Finally, some challenges for future research are 
presented.

IntroductIon
The Internet of Things (IoT) is a new paradigm 
that will connect a plethora of physical objects to 
the Internet and enable them to make intelligent 
decisions. The underlying technologies of IoT 
include RFID, sensor networks, pervasive com-
puting, communication technologies, and Internet 
protocols. In IoT, objects may collaborate and 
connect to the Internet in a smart way without 
human intervention to provide new applications. 
These applications include transportation, manu-
facturing, healthcare, industrial automation, and 
emergency handling, offering great market oppor-
tunities. The analysis of data trends anticipates that 
a vast majority of IoT applications will demand 
high-reliability and low-latency services from ser-
vice providers. In this context reliability refers to 
the capability of guaranteeing successful message 

delivery within a given latency bound, and latency 
refers to the time elapsed from when data is trans-
mitted (e.g., by an object) until it is received by 
the destination. In Fig. 1, the latency and reliability 
requirements are shown for the most popular IoT 
applications with the latency varying between 1 
ms (ultra-low) and 100 ms (low) and the reliability 
between 1 – 10-4 (high) and 1 – 10-9 (ultra-high). 
Numbers are indicative and may vary for each 
application area. Mission-critical applications such 
as factory automation require ultra-high reliability 
and ultra-low latency, while process automation 
is less demanding. In order to meet these require-
ments, the evolution of LTE for cellular IoT focus-
es on extending the battery life of IoT devices and 
optimizing coverage, capacity, and deployment 
costs with the introduction of enhanced machine-
type communication (eMTC) and narrowband 
IoT (NB-IoT). These can be adopted in either cel-
lular or unlicensed spectrum communications. 
For further details on communication technolo-
gies and standardization efforts for IoT we refer 
the reader to the survey by Palattella et al. [1]. 
Despite the existing connectivity solutions, more 
comprehensive work is needed in the design of 
new architectures that provision communication 
and computing resources to successfully support 
massive IoT deployments. The new architectures 
should scale operationally and economically with 
the expansion of IoT and provide smart function-
alities for autonomous reasoning among objects.

Several works propose architectures to 
improve connectivity for specific IoT applications. 
Schleicher et al. [2] developed an architecture for 
smart city applications and identified key aspects 
for its implementation. Wang et al. [3] present-
ed an energy-efficient architecture for Industrial 
IoT and proposed a sleep scheduling and wake-
up protocol to extend the lifetime of the whole 
system. Xu et al. [4] analyzed the integration of 
IoT with existing networked systems including 
cloud computing, the Internet, smartphones, and 
industrial networks. With the large-scale expan-
sion of IoT, cloud-computing-based architectures 
aim to provide complete coverage of process-
ing, computation, and storage demands in data 
centers. However, the centralization of cloud 
computing and the growing traffic demands of 
IoT may result in huge bottlenecks degrading net-
work performance. Edge computing architectures 
could potentially overcome the drawbacks of this 
approach, moving service provisioning closer to 
the network edge. Three edge computing archi-
tectures have been proposed so far: mobile edge 
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computing, fog computing, and cloudlets. Mobile 
edge computing deploys cloud servers at base 
stations (BSs) bringing computational capability 
closer to end users. The business and technical 
benefits of mobile edge computing and its inte-
gration with IoT are discussed in [5]. Fog comput-
ing edge routers, originally proposed by Cisco for 
IoT traffic, carry out computing tasks even closer 
to users. Sun et al. [6] proposed a hierarchical fog 
computing architecture to provide flexible IoT 
services. They showed that it substantially reduces 
the traffic load in the core network and the delay 
between IoT devices and computing resources 
as compared to traditional IoT architectures. The 
concept of cloudlets is an extension of the cloud 
integrated with WiFi and cellular networks. It is 
motivated by the fact that it is easy to deploy in 
coffee shops or office premises for near-real-time 
provisioning.

Regardless of the previous efforts to improve 
the quality of service in IoT, a holistic approach is 
needed to improve the robustness of edge com-
puting architectures for IoT to face the dynamic 
characteristics of wireless network traffic, which 
result in intermittent connectivity with objects and 
consequently degrade data quality. Furthermore, 
in the process of moving service provisioning 
toward the edge, mobile devices keep advanc-
ing technologically and getting smarter regarding 
both their communication and computing capa-
bilities. However, these capabilities have not been 
fully explored yet in the IoT context.

This article takes a step forward in the design 
and networking of edge computing wireless 
architectures for IoT and presents a novel design 
of a robust dynamic edge network architecture 
(RDNA). The architectural design encompasses 
solutions at different layers to enhance network 
robustness against dynamic availability of resourc-
es and provide ubiquitous service for IoT. In 
RDNA, connectivity is provided by users who act 
as access points for objects and share their storing 
and computing capabilities, improving scalability, 
latency, reliability, spectrum efficiency, and energy 
efficiency. Besides, the smart features of mobile 
devices facilitate autonomous and intelligent deci-
sion making at the edge, simplifying control and 
monitoring of the network.

In the next section, we elaborate the design 
methodology of RDNA as well as its smart fea-
tures and applications. Then we provide some 
hints for possible business models. Following that, 
we describe a case study to illustrate its perfor-
mance in terms of latency, reliability, and energy 
efficiency. Next, we highlight some design chal-
lenges and future research directions. Finally, we 
draw our conclusions.

robust dynAmIc network ArchItecture
PrelImInArIes

Initially, dynamic network architectures (DNAs) 
were proposed to offload traffic in cellular net-
works by incentivizing users to share their con-
nectivity and act as access points for neighboring 
cellular users [7, 8]. The intermittent availability 
of these access points renders the architecture 
dynamic. Shams et al. [7] developed a framework 
for topology reconfiguration in DNA and showed 
that by encoding the problem with a genetic 

algorithm, the optimum topology can track net-
work dynamics and thus satisfy users’ quality of 
service (QoS) requirements. Then Lorenzo et al. 
[8] incorporated cognitive capabilities into DNA 
and showed that underutilized spectrum can be 
shared temporally and spatially, increasing net-
work capacity significantly. DNA gains in terms 
of capacity and revenues make its extension to 
IoT promising. In particular, the motivation for 
this extension is threefold. First, the dynamic traf-
fic bursts in IoT can benefit from the additional 
capacity generated by user participation, anticipat-
ing high reuse of network resources. Second, the 
underlying computing capabilities of user termi-
nals in DNA have not been explored yet and may 
satisfy the computing needs of IoT traffic. Final-
ly, the smart features of advanced user terminals 
project smartness onto the edge, which could be 
exploited to simplify control and monitoring in a 
DNA with a large number of IoT devices. Howev-
er, to meet the heterogeneous, sometimes excep-
tionally stringent, requirements of IoT traffic in a 
dynamic setting, a holistic approach to improving 
network robustness is needed.

ArchItecturAl desIgn
We propose RDNA, which leverages the latest 
advances of wireless devices (e.g., their capability 
to act as access points, storing and computing 
capabilities) to provide Internet connectivity and 
computing capabilities to lightweight IoT objects. 
The architecture is illustrated in Fig. 2 (left). In this 
architecture, user terminals (phones, PCs, tab-
lets) share their connectivity and act as access 
points for IoT objects for some rewards. We 
denote these access points enabled by user ter-
minals as terminal access points (TAPs). In Fig. 2, 
TAPs U1and U3 collect data from objects O1, 
O2, and O3. The data collected may be used to 
serve those users or user U2. In a simple business 
model, an IoT service provider (IoTSP) buys data 
from object owners and organizes the RDNA by 
incentivizing its users to share their connectivity 
with IoT objects to meet the demands of an IoT 
application. RDNA creates an IoT market with 
opportunities for different providers to cooperate, 
such as a storage provider negotiating the price 

FIGURE 1. Reliability and latency requirements in IoT.
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The smart features of advanced user terminals project smartness onto the edge, which could be 
exploited to simplify control and monitoring in a DNA with large number of IoT devices. However, to 

meet the heterogeneous, sometimes exceptionally stringent, requirements of IoT traffic in a dynamic 
setting, a holistic approach to improving network robustness is needed.
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to store long-term data at user terminals (U1, U3) 
and distributing that data to other parts of the 
network (U2), in collaboration with a cloud/fog 
provider.

The communication and computing capabil-
ities of user terminals are highly heterogeneous 
and should be managed intelligently to match the 
heterogeneous demands of IoT traffic. For exam-
ple, TAPs with wired connectivity (U1, a PC) may 
serve high-priority traffic requiring medium com-
puting processing. Mobile TAPs with wireless con-
nectivity (U3, a phone or tablet) may serve high-/
medium-priority traffic requiring medium/low com-
puting power. This will help to reduce network 
congestion and preserve dedicated access points 
or BSs with more powerful computing resources 
(cloud/fog) for medium-/low-priority traffic that 
requires high/medium computing power.

The high density of user terminals brings many 
opportunities for connectivity and distribution 
of the collected data throughout the network. 
Besides, its integration within the cellular infra-
structure favors interoperability and seamless 
addition of heterogeneous IoT objects, facilitating 
scalability and large-scale expansion of RDNA. 
Furthermore, RDNA improves energy efficiency 
by utilizing short-distance transmissions to reduce 
interference, and spectrum efficiency by reus-
ing local available channels. In the following we 
present the design methodology to realize its full 
potential. Then we explore the smart features 

enabled by RDNA, and its possible applications 
and business models.

Since connectivity is provided by mobile user 
terminals that have limited resources (i.e., battery, 
CPU, memory) with their own traffic needs, the 
availability of TAPs and channels is dynamic. This 
may compromise connectivity and thus data qual-
ity. In this context, robustness is the property of 
the network to stay connected under dynamic 
availability of resources, which has a direct impact 
on reliability, latency, and energy efficiency, as 
well as on overall network performance. In the 
subsequent development, we present design 
solutions to improve the robustness of RDNA 
at different levels: physical, access, networking, 
application, and business. These solutions are illus-
trated in Fig.2. They may be combined to attain 
the desired performance.

Physical Level:
Data Redundancy: TAPs may aggregate data 

by collecting it from multiple objects, as shown in 
Fig. 2 (physical level). The degree of data redun-
dancy — repeated data collected for backup and 
recovery purposes — should be adjusted to satisfy 
the requirements of the IoT application given the 
traffic dynamics and to save the energy of objects. 
An efficient way to control data redundancy and 
maximize resource utilization is by using pricing 
schemes. In [9], Luong et al. survey the latest eco-
nomic models used for data collection in IoT.

Access Level:
Cognitive Radio Capabilities: Interference 

affects connectivity and degrades quality of com-
munication links. Equipping objects with cogni-
tive capabilities enables them to detect and avoid 
interference, and opens the possibility of utilizing 
additionally available communication spectrum. 
Current regulations of radio spectrum are based 
on static spectrum allocation policies where spec-
trum is granted to license holders for long periods 
of time in large geographic areas. Unfortunately, 
it has been observed that many allocated spec-
trum portions are intermittently utilized and hence 
may be reused at different times and locations. 
However, spectrum sensing and spectrum switch-
ing processes will consume additional energy; 
thus, they may deplete the battery of lightweight 
IoT objects. Despite the existing works on ener-
gy-efficient and green-energy -powered cognitive 
radio networks, cognitive radio capabilities might 
not be fully exploited without an appropriate net-
work architecture. In RDNA, TAPs can sense the 
available spectrum and assist IoT objects with-
out cognitive capabilities so that they could still 
benefit from cognitive radio technology (e.g., 
indicating to IoT objects which channel can be 
used). For more details on cognitive harvesting 
network architectures, please see [10]. The links 
established by harvesting available spectrum are 
referred to as cognitive links. Service providers 
may also trade available spectrum to meet IoT 
traffic demands and guarantee required perfor-
mance levels [8]. In Fig. 2 (access level), objects 
O1 and O2 connect to primary users/TAPs PU1 
and PU2 via cognitive links, and O3 also transmits 
by cognitive links to TAP PU3. The primary users 
are the licensed holders who have higher priority 
in the usage of the spectrum, while the objects 

FIGURE 2.  Illustration of RDNA (left) and levels of robustness enhancement of 
RDNA (right).
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(secondary users) have lower priority. Distant 
objects may reuse channels to avoid interference.

Channel Redundancy: Backup channels 
increase link reliability against traffic dynamics 
through channel diversity. Backup channels can 
be licensed or unlicensed to serve high-priority 
or low-priority traffic, respectively. A combination 
of both can be used to achieve different perfor-
mance and cost trade-offs. As shown in Fig. 2, O1 
uses redundant cognitive links to connect to PU1, 
while O3 has a licensed channel and a backup 
harvested channel to connect to PU2. A detailed 
analysis of the benefits of channel redundancy in 
cognitive networks is given in [11].

Access Point Redundancy: Since the avail-
ability of TAPs is dynamic, backup access points 
increase connectivity availability by spatial diversi-
ty. TAPs may have wireless or wired connections, 
resulting in different levels of reliability. This is illus-
trated in Fig.2 where O2 keeps PU1 and PU2 as 
backup TAPs, and each one has a different type 
of backhaul connectivity. Object O3 combines 
the diversity of licensed and unlicensed channels 
with redundant TAPs PU2 and PU3. A framework 
to optimize the number of access points to meet 
quality of service constraints given a fixed cost per 
access point is elaborated in [7]. Further work on 
distributed dynamic scheduling schemes is need-
ed to flexibly utilize the available resources.

Networking Level: 
Collaborative Data Sharing: Subscribers 

demanding the same data may collaborate by 
sharing their data using device-to-device (D2D) 
communications and serve as backup for each 
other’s connections. The data can be freely 
exchanged in a social network or through a con-
tent provider that incentivizes users to share their 
data. The communication can be established by 
D2D links using licensed or unlicensed channels. 
For example, in Fig.2 (networking level), PU2 and 
PU3 share their data with SU1 and PU4, respec-
tively. In [8], the benefits of collaborative network-
ing for users and operators are outlined. Epidemic 
algorithms seem promising for data dissemination 
in large networks since they are simple to imple-
ment and robust against failures. 

Distributed Computing: Mobile terminals 
may share out their computing capabilities. Since 
they have heterogeneous capabilities and limited 
power, highly demanding computing tasks should 
be decomposed and distributed to different termi-
nals. Distributed computing increases reliability as 
there is no single point of failure, and it is more 
cost effective than a single high-end computer. 
In RDNA, a subscriber may request data collect-
ed by another user terminal, and on the way, the 
computing capabilities of the terminals forwarding 
the data can be exploited. For instance, SU1 may 
request data collected by PU1, and thus, PU1 and 
PU2 may perform related computing tasks. If the 
computing power is not enough, heavy comput-
ing tasks could be delegated to the cloud/fog, as 
illustrated by the colored cloud.

Application Level:
Caching: Popular contents can be stored at 

the network edge to reduce backhaul capaci-
ty. Users can share the storage capacity of their 
terminals temporarily. Unlike collaborative shar-

ing, in caching, users sharing their storage space 
(PU1, PU2, and PU3) may not be interested in 
the data to be stored. Cache placement should 
be optimized to efficiently allocate storage space 
considering data lifetime, available battery at user 
terminals, and the geographic area where that 
data is popular. Learning mechanisms may help to 
decide what content to cache. Dedicated access 
points and BSs can be used to store long-term 
data and higher data volumes. Bringing content 
close to end users reduces latency and traffic 
load, avoiding duplicate transmissions of the same 
content across the whole network.

Business Level:
Incentives: Incentive mechanisms are crucial 

for the adoption and success of RDNA. They 
should be carefully designed to encourage users 
to collaborate and share their resources and fos-
ter good behaviors. Given the heterogeneity of 
user terminals and their capabilities, user valuation 
of its remaining resources should be considered 
in the design of incentives. Figure 2 (business 
level) shows the incentives that the IoTSP offers to 
TAP PU1 to share its connectivity, as well as the 
revenue earned by SU1 and PU2.

Multi-Provider Cooperation: The IoT mar-
ket will create business opportunities in RDNA 
between users and multiple providers. For exam-
ple, in Fig. 2, PU1 provides connectivity to objects 
O1 and O2 whose data have been requested by 
secondary users SU2 and SU3. IoTSPs of prima-
ry and secondary networks cooperate to serve 
those users. SU3 will pay more than SU2 for the 
data since SU3 requests a service that requires 
additional cloud/fog computing capabilities (col-
ored cloud). The business relationship between 
the parties involved can be exploited to guarantee 
service delivery.

smArt FeAtures: 
AutomAtIon, reconFIgurAbIlIty, And IntellIgence

User terminals are getting smarter and smarter 
and can offer substantial storage, communica-
tions, control, configuration, measurement, and 
management capabilities at the network edge. 
Terminals can collect context-aware information 
regarding traffic demands for the IoTSP to deploy 
RDNA in congested areas with appropriate 
robustness. Activating TAPs in such areas con-
tributes to the sustainable deployment of RDNA, 
since user terminals have limited resources, and 
incentivizing them to cooperate incurs a cost for 
the IoTSP. By increasing the number of TAPs, 
the coverage of the IoT as well as the control of 
the network and physical systems improves. The 
resulting wider coverage of IoT facilitates remote 
control of objects and ubiquitous positioning.

Additionally, empowering objects with cogni-
tive capabilities yields high configuration autono-
my by dynamic spectrum access, self-adaptation 
to dynamic scenarios, and interference avoidance. 

Terminals can collect context-aware information regarding traffic demands for the IoTSP to deploy 
RDNA in congested areas with appropriate robustness. Activating TAPs in such areas contributes to the 
sustainable deployment of RDNA, since user terminals have limited resources and incentivizing them to 

cooperate incurs a cost for the IoTSP.
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A detailed description of how cognitive capa-
bilities contribute to intelligent decision making 
is given in [12]. Monitoring network conditions 
(traffic demands, spectrum availability, channel 
quality) is crucial to reconfigure the network and 
maintain required reliability and latency levels. 
The computing power of user devices further 
broadens the reasoning and reconfiguration capa-
bilities of RDNA toward autonomous operations 
based on the contexts or circumstances. The 
autonomous control and monitoring of RDNA 
reduces signaling, which is crucial in the presence 
of a large number of IoT devices. Providing nodes 
with information entails excessive signaling and 
overhead cost. Machine learning schemes such as 
multi-arm bandits can be used to deal with uncer-
tainty and lack of information to solve resource 
management problems distributively (e.g., TAPs 
could make their own decisions about schedul-
ing). Research on intelligent distributed schedul-
ing schemes is left for future work.

The proximity of TAPs accelerates content, 
service, and application responsiveness from the 
edge and may allow performing time-critical con-
trol applications such as healthcare monitoring. 
Data provided by objects have diverse levels of 
reliability and trust. Since users value information 
differently, the intelligence at the network edge 
can contribute to match user valuations with the 
expected level of trustworthiness of the data pro-
vided. Behavioral game theory is an emerging 
framework for decision making in the presence 
of varying levels of intelligence, and hence can 
be used to study RDNA and the corresponding 
strategies to boost its performance.

The smart features in RDNA enable highly 
improved scalability, adaptability to different situa-
tions, and initiation and execution of services with 
minimal human intervention.

APPlIcAtIons oF thIs ArchItecture
RDNA operates within the existing cellular infra-
structure, facilitating device interoperability, 
and harvesting communication and computing 
resources network-wide. In the following, we 
describe some possible applications of this archi-
tecture for IoT, which can be used as basis for 
more specific applications.

Flexible Internetworking: IoT devices are 
highly heterogeneous and generate data with dif-
ferent life spans. RDNA makes internetworking 
flexible by fulfilling connectivity requirements with 
TAPs in a dynamic environment without addition-
al infrastructure cost. Therefore, it provides low-
cost ubiquitous networking toward the Internet 
of Everything (IoE), where objects and humans 
interconnect seamlessly.

Computational Offloading: TAPs can perform 
computing tasks. Choosing among the comput-
ing capabilities of TAPs, dedicated access points 
or BSs will depend on the computational load, 
tolerated latency, and remaining resources at the 
terminals (e.g., battery, CPU, memory).

Cloud/Fog Computing: Fog computing 
extends cloud computing services to the edge. 
It improves the efficiency of cloud computing by 
reducing the amount of data transported to the 
cloud for processing, analysis, and storage. TAPs 
can be part of the fog paradigm, delegating long 
permanency data to the cloud.

Collaborative Computing: Mobile terminals 
can combine their computing capabilities to joint-
ly accomplish a common task, increasing their 
individual computational power. 

Contextual Computing: Data collected from 
objects can be analyzed and combined with con-
text-aware data collected by TAPs themselves. 
The data collected may include information about 
user preferences, location, and surroundings.

Transparent Computing: RDNA intelligence 
enables the network to solve user problems learn-
ing from their habits and offer services transpar-
ently to end users. In [13] an implementation of 
an IoT architecture based on transparent comput-
ing is presented along with a detailed description 
of its underlying challenges.

Content Delivery: The robust distributed net-
work formed by TAPs allows serving contents to 
subscribers with high availability and high perfor-
mance. A content provider can collaborate with 
an IoTSP to bring contents closer to the edge 
by storing them in TAPs. In turn, the IoTSP can 
build a content infrastructure and control network 
resources for efficient data delivery.

Mobile Big Data Analytics: Data stored 
at terminals can be used to extract meaningful 
data and identify data patterns. This can further 
increase the intelligence at the edge, encouraging 
autonomy of IoT devices. For instance, data ana-
lytics can optimize content delivery by providing 
insight on the most demanded contents in certain 
areas of the network.

busIness oPPortunItIes
Internetworking and resource trading at different 
RDNA levels for the transmission of IoT data cre-
ate an IoT market with plenty of business oppor-
tunities. Figure 3 outlines the interaction among 
different entities of this market and the resourc-
es to trade. IoTSP negotiates with object own-
ers the price for the data to serve its end users. 
Since objects have limited capabilities and IoT 
data is valid for a limited time, IoTSP encourages 
users to share the connectivity and computing 
capabilities of their terminals to meet IoT service 
requirements. If there are not enough terminals 
or computing resources available, IoTSP may 
negotiate with other service providers to access 
the communication and computing capabilities of 
their users. The benefits of multi-operator collabo-
ration for data and spectrum trading are described 
in [8, 14] for different networks. If a data item is 
requested by end users that are sparsely distribut-
ed throughout the network, IoTSP may negotiate 
with the fog/cloud provider to distribute the data. 
Popular data can be cached in TAPs, dedicated 
access points, or BSs depending on user locations. 
A more comprehensive survey in [9] summarizes 
recent economic and pricing models used in IoT 
for data collection and wireless communications. 
These models can be extended to RDNA to study 
topological formation for user terminals collabora-
tion, coverage optimization, computing task allo-

FIGURE 3. Interaction between different entities in the IoT market.
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cation, and content distribution. The advantages 
of economic and pricing models are mainly two-
fold. First, they provide a theoretical framework to 
study revenue generation, and thus analyze bene-
fits and costs. Second, IoT entities have different 
interests and objectives. Pricing can be used to 
model the interaction among different entities and 
encourage them to reach an agreement.

RDNA scales operationally and economically 
with the proliferation of IoT traffic since its expan-
sion creates more opportunities to collaborate. 
However, to realize the expected economic 
impact in IoT, a careful design of economic mod-
els is needed to exploit the collaboration oppor-
tunities.

cAse study
We consider an RDNA with objects I = {1, 2, 
…, no} and TAPs J = {1, 2, …, nTAP} that provide 
Internet connection to those objects and perform 
pre-processing and data storage. Objects transmit 
their data using cognitive links in the set B = {1, 
2, …, B}, which have identical bandwidth equal 
to 1. RDNA serves ns end users who access IoT 
data through the BS or TAPs. Channel availability 
varies in time and space as these bands may be 
occupied by primary users (PUs). We first assume 
that the IoTSP has no prior knowledge of channel 
demands of secondary objects (SUs), and later on 
we utilize the smartness at the edge to monitor 
such demands. We denote by ab

ij the probabili-
ty that channel b at link lij is available for object 
transmission [11]. Topology formation is based 
on channel availability and user terminals’ avail-
ability to share their connectivity. The signaling 
exchange for distributed topology formation has 
order O(nonTAPB) in the worst case, where there 
is no prior knowledge on the preferred associa-
tion. We use an absorbing Markov chain model, 
where TAPs denote the absorbing states as in 
[11], and extend it to model the topology evo-
lution in IoT. The latency is obtained as tj = to + 
tp + ta where t0 is the transmission latency from 
the object to the TAP, tp is the pre-processing 
delay, and ta is the access delay of each user to 
RDNA. We assume that the IoTSP has 40 end 
users. Figure 4 shows the mean latency vs. nTAP 
for different values of no. It can be observed that 
increasing nTAP reduces the latency exponential-
ly. On the other hand, increasing the number of 
objects no increases the latency, especially when 
nTAP is small. Let us now take advantage of the 
intelligence provided by TAPs to monitor channel 
demands of objects. This knowledge is utilized 
by the IoTSP to reduce the connectivity interrup-
tions by primary user returns and assign channels 
to the objects that will be available during their 
transmission period. As shown in Fig.4, smartness 
at the edge may reduce latency up to 30 percent 
for small nTAP. In addition, if users collaborate and 
share their data using D2D links, latency decreas-
es up to 40 percent. The mean power consump-
tion for transmission, computation, and storage is 
plotted in Fig. 5. The transmission power is set to 
0.75 W, and the power consumption for comput-
ing and storage varies as in [15]. The power used 
for channel switching has been neglected. As the 
transmission distance decreases with nTAP, the 
mean power consumption decreases accordingly.

Let us now determine the redundancy needed 

to guarantee a level of reliability xmin. We define 
link reliability xij as the probability that the chan-
nel is available (no PU return). We consider that 
PU arrivals are independent and identically dis-
tributed (i.i.d). Hence, link reliability is the same 
on every channel, xij = ab

ij. If a PU returns to the 
channel currently allocated to an SU, the transmis-
sion will be interrupted, and the SU will switch to 
another channel.

Redundant Channels: As we seek spectrum-effi-
cient solutions, the switching interval should be the 
maximum that satisfies link reliability requirements 
so that the number of channels is minimized. Thus, 
the channel switching time per link per message 
can be determined as t*w = argmaxtw tw · (x(tw) – 
xmin), where t*w is the maximum duration of the 
time interval that satisfies xmin. The more restric-
tive xmin is, the more often the channel should 
be switched to avoid PU return. Similarly, for a 

FIGURE 4. Mean latency vs. number of TAPs.
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FIGURE 5. Mean power consumption vs. number of TAPs.
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maximum tolerable latency tmax, the number of 
backup channels needed can be obtained as w* 
= argminw≥wmin(tmax – t(w))2, where t(w) is the 
delay when w backup channels are used.

Redundant Terminal Access Points: Let us 
assume that each object selects a set of TAPs on 
channel b denoted by set Ji

b. Introducing na = 
|Ji

b| backup TAPs will improve reliability to xij 
= 1 – (1 – xij)na. Since energy cost will increase 
with the additional access points, the objective 
is to minimize na to meet the required reliability 
level: (Ji

b)* = argmin(Jib)(x(Ji
b) – xmin/na), where 

x(Ji
b) denotes the reliability level when the set of 

backup TAPs Ji
b is used.

In Fig. 6, the number of channels w needed to 
satisfy xmin is shown. We assume different ratios 
of traffic loads in the secondary (objects) and pri-
mary network where mS is the service rate of SUs 
and lP is the arrival rate of PUs. We can observe 
that the more imbalanced the network is (i.e., 
mS = 6lP), the lower w is. Besides, increasing the 
number of backup TAPs significantly reduces w. A 
reliability of xmin = 0.999 can be achieved with 1 
to 2 channels and 2 to 3 backup TAPs when mS = 
6lP. Besides, by exploiting smartness at the edge 
to monitor the traffic in the secondary network, 
we can achieve xmin = 1 with only 1 channel. By 
combining channel and access point redundancy, 
different reliability requirements can be achieved 
at a reasonable cost.

desIgn chAllenges And Future reseArch
RDNA moves service provisioning to the edge, 
contributing to the expansion of IoT. It also brings 
new challenges and promising research directions 
as highlighted below.

Internet of Everything: In the future IoE, 
human-type communications (HTC) and object-
type communications (OTC) will coexist and 
share limited wireless resources. Each communi-
cation type has different needs and capabilities. 
For example, HTC may require high data rate, 
while OTC may have stringent latency require-
ments. Thus, the main challenge is to develop 

resource allocation policies that accommodate 
the heterogeneous nature of IoE traffic with vari-
ous requirements on service quality.

Security and Privacy: Service providers want 
to collect as much information as possible regard-
ing user preferences, behavior, and localization, 
among other metrics, to bring smartness to the 
edge. This poses a serious challenge for user 
privacy. Different service providers may need 
to access content of each other’s networks, fur-
ther complicating security concerns. In addition, 
sharing connectivity and computing capabilities 
of mobile devices poses extra security design 
challenges. To protect their privacy, users need 
to restrict collaboration to other highly reliable 
and trustworthy users. Likewise, service providers 
need to ensure the trustworthiness of their sub-
scribers and encourage honest behaviors through 
proper incentive mechanisms.

Mobility Support: IoT objects have limited 
transmission range. Mobility support is import-
ant to guarantee their connectivity with mobile 
TAPs. The smart features of RDNA will help to 
identify new connectivity options and adapt the 
connections to the circumstances on the fly to sat-
isfy user demands. Thus, further work is needed 
in smart topology reconfiguration mechanisms for 
RDNA in response to mobility.

Business Models: In the IoT market, entities 
will change their roles depending on situations 
and environments. For instance, an IoTSP may act 
as a data provider or data consumer. A user may 
buy data and later on sell it to other users. Thus, a 
sound business model should adapt flexibly to the 
changing roles of all entities and manage them 
accordingly.

conclusIons
This article presents a novel design of a robust 
dynamic edge network architecture (RDNA) to 
mitigate the congestion problem in wireless net-
works, paving the way toward the full realization 
of IoT. This architectural design leverages the 
latest technological advances of mobile devices 
to provide low-cost ubiquitous communications 
and computing. A holistic approach to improving 
network robustness is developed, which includes 
solutions at the physical, access, networking, 
application, and business layers. The expected 
performance in terms of reliability, latency, and 
energy efficiency emphasizes the potential of 
RDNA for a global IoT architecture. Besides, 
RDNA brings smart functionalities to the network 
edge and plenty of business opportunities.
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