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Abstract—In this paper, we study the problem of resource
allocation in multi-radio multi-channel (MRMC) networks.
Specifically, under the consideration of diverse quality of
service (QoS) requirements, we propose a fair QoS-aware
resource allocation scheme for MRMC networks. In this scheme,
channel allocation, multi-path routing, link scheduling and
radio assignment are jointly considered. The proposed scheme
is obtained by formulating the resource allocation problem into
a cross-layer network utility maximization (NUM) problem,
in which resource is allocated to services with proportional
fairness. To avoid oscillation among optimal solutions due to
the use of multi-path routing, we transform the optimization
program into an equivalent program by utilizing the proximal
optimization algorithm. Then we obtain the optimal solution of
the latter by the decomposition method. Numerical results show
that the proposed scheme indeed achieves proportional fairness
according to diverse QoS requirements while maximizing utility.

Index Terms—multi-radio multi-channel networks, QoS-aware,
proportional fairness, network utility maximization.

I. INTRODUCTION

The popularity of wireless services such as mobile appli-
cations using smart phones has led to a significant growth in
traffic load over wireless networks as well as an increasing
demand for high network performance. However, network
performance is often severely limited by the lack of spectral
resource in wireless networks. The lack of spectral resource
is further aggravated by the existence of interference among
interfering links because the interference limits the number
of transmissions that can be simultaneously active. The per-
formance decrease due to interfering links may be reduced
by effectively utilizing multiple orthogonal channels that are
available in some wireless networks, such as wireless networks
that conform to the IEEE 802.11 standards. The underlying
principle of such an approach is to assign different channels to
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neighboring transmissions so as to alleviate network-wide in-
terference and hence increase the overall network capacity [1]
and [2].

Depending on the number of channels over which a node
can simultaneously transmit or receive, multi-channel net-
works can be divided into two categories: single-radio multi-
channel (SRMC) networks and multi-radio multi-channel
(MRMC) networks. For SRMC networks, the communication
hardware of each node is designed in a way that only one
channel can be active at any given time, although the node is
able to switch dynamically among channels from time to time.
The design of multi-channel medium access control (MAC)
protocols is a major problem in SRMC networks. For example,
So and Vaidya in [3] and So et al. in [4] studied the design
of multi-channel MAC protocols to coordinate the single
communicating channel in SRMC networks. Compared with
SRMC networks, the capability of a node to simultaneously
operate in multiple channels in MRMC networks may ease the
coordination problems experienced in [3] and [4].

The major design challenge in MRMC networks is on the
other hand resource allocation, including channel allocation,
link scheduling, flow routing, and etc. Channel allocation
schemes that reduce interference and improve the network
performance were investigated in [5]–[7]. In [5], Marina et
al. cast channel allocation as a topology control problem
in order to develop a greedy heuristic allocation algorithm.
Felegyhazi et al. in [6] conducted a game-theoretic analysis
on some fixed channel allocation strategies. Subramanian et al.
in [7] designed centralized and distributed channel allocation
strategies with the goal of minimizing the overall network in-
terference. Under the assumption of a fixed channel allocation,
works focusing on the routing problems in MRMC networks
were reported in [8] and [9]. Specifically, Liu and Liao [8]
formulated an integer linear program (ILP) with the objective
of finding the minimal cost multi-cast tree from a source to
multiple destinations. Draves et al. in [9] presented a multi-
channel routing metric to search for high throughput paths.
Furthermore, by considering channel allocation and routing as
interdependent operations, the cross-layer resource allocation
approach over the MAC and network layers suggested in [10]
proves to be useful for optimally scheduling channels and
handling traffic loads in MRMC networks.

Alicherry et al. in [11] and Li et al. in [12] employed
linear programming (LP) to formulate and solve cross-layer
resource allocation problems in MRMC networks with the goal
of maximizing a fairness factor λ. Compared with throughput
maximization in which the total throughput over all services
is optimized without fairness constraints, introduction of the
fairness factor offers fair allocation and eliminates bias to any
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specific service by constraining that the rate requirement for
each service multiplied with the fairness factor λ is to be met.

A

C

FaceTime
Rate Requirement: 0.5 Mbps

Movie Download

Rate Requirement: 4 Mbps

Capacity: 1 Mbps

Capacity: 2 Mbps

B

Fig. 1. An illustrative example that shows the need for QoS-aware resource
allocation.

However, the papers above did not take the diversity of
quality of service (QoS) requirements into consideration. To
illustrate this, consider the toy topology shown in Fig. 1 with
two services: one is an iPhone’s FaceTime service from A
to B with a 0.5 Mbps rate requirement and the other one
is a movie download service from A to C with a 4 Mbps
rate requirement. FaceTime is an inelastic service, and to
support it, the resource allocation algorithm must meet its rate
requirement. Meanwhile, movie download is an elastic service
and satisfying part of its rate requirement is tolerable. As a
result, one feasible interference-free solution is, in a two-slot
frame, allocating separate slots for link A to B and link A
to C. This results in 1 × 0.5 = 0.5 Mbps for the Facetime
service and 2×0.5 = 1 Mbps for the movie download service,
where both services can be supported by the resource limited
network. However, without considering QoS requirements, a
throughput maximization scheme may allocate both slots for
link A to C, which has a higher link capacity, and a λ-
maximization scheme may also assign more time proportion
to link A to C to improve λ. Either scheme would fail to
access the FaceTime service. The above discussion motivates
us to investigate QoS-aware resource allocation along with
fairness considerations in MRMC networks, especially when
the limited network resource can not guarantee all services
requirements.

In this paper, we propose a new cross-layer optimization
formulation for resource allocation in MRMC networks under
proportionally fair resource constraints with respect to QoS
requirements, instead of optimizing the simple fairness factor
λ alone as in [11] and [12]. We consider the scenario in
which full services requirements can not be met due to limited
network resource, but minimal QoS requirements can be guar-
anteed for all services. We introduce a QoS factor α to specify
the minimal QoS requirement for a service and use different
QoS factors to characterize the requirements for different
types of services. After the minimal QoS requirements for all
services are achieved, we allocate the residual resource among
services fairly to improve the quality of experience (QoE) of
users. To obtain a proportionally fair resource allocation, we
mathematically formulate the allocation problem as a network
utility maximization (NUM) problem under QoS constraints.

The NUM problem is then solved using the proximal opti-
mization [13] and decomposition algorithms [14]. Our major
contributions are summarized as follows:

• We introduce the QoS factor α ∈ [0, 1] to differentiate
different types of services in MRMC networks. For a
service, the product between its rate requirement and
QoS factor provides the minimal rate requirement for
the network to support this service. The QoS factor
offers an additional dimension for service adaptation.
More specifically, the QoS factor for a high priority
service (e.g., FaceTime) should be larger than that of
a low priority service (e.g., movie download), implying
that a larger fraction of the network resource should be
allocated to the high priority service.

• We construct a three-dimensional conflict graph [12]
and [15] to analyze MRMC networks. We derive the suf-
ficient condition for the interference-free flow scheduling
using the three-dimensional conflict graph. We provide
a systematic formulation for the cross-layer resource
allocation problem by jointly characterizing the QoS
and other cross-layer constraints, e.g., flow routing, link
capacity and flow scheduling constraints. A logarithmic
function is defined as the user utility. In order to fairly
allocate the network resource, we maximize the overall
network utility under the aforementioned constraints. The
end result is an optimization formulation for resource
allocation in MRMC networks with elastic QoS require-
ments.

• We transform the optimization problem above into an
equivalent problem by the proximal optimization al-
gorithm to avoid solution oscillation caused by multi-
path routing. We then solve the equivalent optimization
problem using the decomposition algorithm.

• By carrying out numerical simulations, we demonstrate
that the proposed scheme can indeed fairly allocate
network resource among services based on their diverse
QoS requirements in MRMC networks.

The rest of this paper is organized as follows. In section II,
we describe the network model and formulate the QoS-aware
resource allocation problem under proportional fairness. We
solve the problem in section III. We present numerical results
obtained from computer simulations in section IV. Finally, we
conclude this paper in section V.

II. MRMC NETWORK MODEL AND PROBLEM
FORMULATION

Given an MRMC network topology with node set V = {vn :
1 ≤ n ≤ |V|} and directed link set E = {ei : 1 ≤ i ≤ |E|},
we define δeivn = 1 if ei is an outgoing link of node vn and
δeivn = −1 if ei is an incoming link of vn. We denote the
non-overlapping channel set by K = {k : 1 ≤ k ≤ |K|} and
the capacity of link ei on channel k by Ck

ei
. For simplicity,

we assume that each node has the same number of transceiver
radios, i.e., at any given time, the number of channels that
each node can simultaneously use is the same. The result can
be easily extended to the case in which nodes have different
numbers of radios. Let I denote the transceiver radio set
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on each node, and tei ∈ I and rei ∈ I represent radios
used by the transmitting node and receiving node of link ei,
respectively. The service set is P = {(sp, dp, ζp, αp) : 1 ≤
p ≤ |P| , sp ∈ V, dp ∈ V, αp ∈ [0, 1]}. We use the quadruple
(sp, dp, ζp, αp) to denote a specific service p, where sp, dp, ζp,
and αp represent its source, destination, rate requirement, and
QoS factor, respectively. For a service p, αp is a fraction within
[0, 1], and αp ·ζp indicates the minimal QoS requirement which
must be guaranteed in order to support the service. Particularly,
αp of a high QoS service is set to be larger than that of a low
QoS service. This implies that high QoS services have higher
rate requirements.

A. Cross-Layer Optimization Constraints

In this section, we examine the constraints for our optimiza-
tion problem.

Flow Routing Constraint: We exploit multi-path routing
to balance traffic load flexibly among paths in the MRMC
network. We denote by xp the allocated rate for service p, and
fk

p(tei
,rei

) the flow rate at which service p can transmit on link
ei over channel k, with the transmitting radio tei and receiving
radio rei . According to the flow conservation principle [16],
at the source node sp, we have

xp =
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeisp ,

where δeisp is determined by the given network topology.
Similarly, at the destination node dp, we have

−xp =
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeidp .

Except for the source and destination, all other nodes in the
network constitute the relay set Rp = {rq

p : rq
p ∈ V\{sp, dp}}

for service p. At a relay node rq
p in the set, the amount of

inflow is equal to the amount of outflow, requiring

0 =
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeir

q
p
.

QoS Constraint: Let αp · ζp indicate the minimal rate
requirement for the network to support service p. In order to
ensure such supportability, at least αp · ζp amount of resource
should be allocated to service p. Hence,

αp ≤ xp

ζp
.

Link Capacity Constraint: Any single link may concur-
rently serve multiple services, as long as the summation of
flow rates of all services does not exceed the link capacity.
Thus, the link capacity constraint can be described as∑

p∈P

∑
tei

∈I

∑
rei

∈I
fk

p(tei
,rei

) ≤ Ck
ei

.

Flow Scheduling Constraint: The conflict graph of a
single-radio single-channel network topology can be derived
by the protocol interference model [17], [18]. For MRMC
networks, the availability of multiple radios and channels at
nodes produces a multi-dimensional resource space, and hence

the corresponding conflict relationship becomes more com-
plicated. Here, we utilize a three-dimensional (3-D) conflict
graph [12], [15], [19] to characterize the conflict relationship
in the MRMC network. In the 3-D conflict graph, each vertex
corresponds to a link-radio-channel tuple (ei, (tei , rei), k),
where ei ∈ E , tei ∈ I, rei ∈ I, and k ∈ K. The tuple indicates
a transmission on link ei over channel k, where radios tei and
rei are used at the transmitting and receiving nodes of ei,
respectively. We define the transmissions of (ei, (tei , rei), k)
and (ej , (tej , rej ), k

′) interfere each other if either of the
following conditions is true:

i) If two tuples are using the same channel, one tuple’s
receiving node is in the interference range of the other
tuple’s sending node.

ii) Two tuples share common radios at one or two nodes.
Specifically, the two conditions account for co-channel in-
terference as well as radio interface conflict (i.e., a single
radio can not support multiple concurrent transmissions).
Checking against the two conditions above, we can obtain the
corresponding 3-D conflict graph Γ, whose vertices represent
the tuples. There is a link between (ei, (tei , rei), k) and
(ej , (tej , rej ), k

′) if the two tuples interfere each other, and

we denote Γ
(tej

,rej
),k′

(tei
,rei

),k = 1; otherwise Γ
(tej

,rej
),k′

(tei
,rei

),k = 0.
Based on the conflict graph, the optimal interference-free

scheduling can be obtained by allocating time fractions to
all its maximal independent sets (MISs). However, according
to [20], getting all MISs is an NP-complete problem, and may
lead to unacceptable complexity. A suboptimal solution may
be obtained by randomly finding a subset of all MISs [21], or
by intelligently computing a set of critical MISs [12]. On the
other hand, in [11], the interference-free scheduling necessary
condition is utilized to get an infeasible solution first, and a
feasible solution (interference-free) is further constructed by a
three-phase channel assignment algorithm.

In this paper, considering the complexity of the algorithms
above, we generalize the interference-free scheduling sufficient
condition under the 3-D conflict graph (cf. Lemma 1 below),
and apply it directly to our formulation. Note that such
scheduling of tuples jointly takes link scheduling, channel
allocation, and radio assignment into consideration.

Lemma 1: An interference-free flow scheduling can be
found if the following constraint is satisfied:∑

p∈P

fk
p(tei

,rei
)

Ck
ei

+

∑
ej∈E

∑
tej

∈I

∑
rej

∈I

∑
k′∈K

∑
p∈P

fk′

p(tej
,rej

)

Ck′
ej

Γ
(tej

,rej
),k′

(tei
,rei

),k ≤ 1.

(1)

Proof: We assume that time is divided into slots and T is
the number of time slots in a schedule. Note that T is chosen
to be a large number. Consider a fixed tuple (ei, (tei , rei), k).
Set Xk

τ(tei
,rei

) = 1 if the tuple (ei, (tei , rei), k) transmits in
slot τ ; otherwise, set Xk

τ(tei
,rei

) = 0. Suppose that a radio
can dynamically switch channels, and the switching delay is
negligible compared to the length of each time slot. Then,∑

τ∈T Xk
τ(tei

,rei
) specifies the total number of active time
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slots for this tuple. Moreover, we also have

1
T

∑
τ∈T

Xk
τ(tei

,rei
) =

1
Ck

ei

∑
p∈P

fk
p(tei

,rei
).

Thus multiplying both sides of (1) by T , we can rewrite the
equation as follows:∑

τ∈T

Xk
τ(tei

,rei
)+∑

ej∈E

∑
tej

∈I

∑
rej

∈I

∑
k′∈K

∑
τ∈T

Xk′

τ(tej
,rej

)Γ
(tej

,rej
),k′

(tei
,rei

),k ≤ T.
(2)

Considering the worst-case scenario in which all tuples
that interfere (ei, (tei , rei), k) also interfere each other, the
inequality (2) implies that the total number of active time slots
for (ei, (tei , rei), k) and all of its interfering tuples can not
exceed T . As a result, under this condition, an interference-
free scheduling algorithm exists, and the scheduling algorithms
proposed in [11] and [22] can be used to find such a schedule.

Since the interference-free scheduling sufficient condition in
Lemma 1 does not require searching for independent sets, em-
ploying the linear constraint simplifies the NUM formulation,
at the expense of introducing performance loss. Numerical
results are given in Section IV to analyze the amount of perfor-
mance loss of the proposed scheme. In addition, according to
the analysis in [11], it is expected that we can mathematically
quantify the performance if an interference-free scheduling
necessary condition under 3-D conflict graph can be obtained.
This will be studied further in our future work.

B. Network Utility Maximization Problem Formulation

Provided that the QoS constraints above can be satisfied,
the remaining problem is how to optimally use the residual
network resource. In this paper, we assume that a service p
maintains an increasing and concave function U(xp) as its
utility function, which indicates a user’s degree of satisfaction
on the allocated rate xp. Instead of maximizing performance
metrics like network throughput or fairness factor λ as sug-
gested in [11] and [12], our objective is to maximize the
overall network utility, which is the summation of all users’
utility functions. From [23], the utility function can be defined
as

U(xp) =

{
wp log xp, α = 1

wp
x1−α

p

1−α , α 6= 1,

where wp > 0. If α = 0, the objective is network throughput
maximization where unfair resource allocation may exist. If
α → ∞, the objective converges to max-min fairness. On the
other hand, setting α = 1 offers proportional fairness. Accord-
ing to the discussion in [24], we choose U(xp) = log xp with
wp = 1 to obtain proportionally fair resource allocation.

Imposing the aforementioned cross-layer design constraints,
we can formulate the QoS-aware resource allocation problem
in MRMC networks as the following NUM problem. We use
below inequality constraints to replace the flow conservation
constraints above. This is because the inequality constraints

facilitate the construction of a dual problem for solving the
convex program, without affecting the solution [25], [26].

max
∑
p∈P

U(xp) = max
∑
p∈P

log xp (3)

subject to

xp ≤
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeisp , (p ∈ P), (3a)

− xp ≤
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeidp , (p ∈ P), (3b)

0 ≤
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeir

q
p
,

(p ∈ P and rq
p ∈ Rp), (3c)

αp ≤ xp

ζp
, (p ∈ P), (3d)∑

p∈P

∑
tei

∈I

∑
rei

∈I
fk

p(tei
,rei

) ≤ Ck
ei

, (ei ∈ E and k ∈ K), (3e)

∑
p∈P

fk
p(tei

,rei
)

Ck
ei

+

∑
ej∈E

∑
tej

∈I

∑
rej

∈I

∑
k′∈K

∑
p∈P

fk′

p(tej
,rej

)

Ck′
ej

Γ
(tej

,rej
),k′

(tei
,rei

),k ≤ 1,

(ei ∈ E , tei , rei ∈ I and k ∈ K), (3f)

0 ≤ fk
p(tei

,rei
), (p ∈ P, ei ∈ E , tei , rei ∈ I and k ∈ K),

(3g)

where δeisp , δeidp , δeir
q
p
, αp, ζp, Ck

ei
and Γ

(tej
,rej

),k′

(tei
,rei

),k are all
constants, and xp and fk

p(tei
,rei

) are optimization variables.

III. PROXIMAL OPTIMIZATION ALGORITHM AND
DECOMPOSITION ALGORITHM

In this section, we employ the proximal optimization and
decomposition algorithms to solve the optimization problem
formulated in section II.

Under multi-path flow routing, xp is a linear summation
of multiple flow rates. For this reason, although the utility
function U(xp) is strictly concave in xp, there may still exist
multiple combinations of fk

p(tei
,rei

) whose summation is xp.
This situation is caused by the multi-path flow routing, and is
often referred to as the oscillation problem [27]. By introduc-
ing auxiliary variables yk

p(tei
,rei

), we can solve the oscillation
problem using the proximal optimization algorithm [13]. To
that end, consider the following optimization:

max
{ ∑

p∈P
log xp−

∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

∑
p∈P

c

2
(fk

p(tei
,rei

) − yk
p(tei

,rei
))

2

}
subject to (3a) – (3g),

(4)

where c is a positive constant. Note that by adding a quadratic
term, program (4) is strictly concave both in xp and fk

p(tei
,rei

),
and hence an unique optimal solution is ensured.
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Based on Proposition 4.1 of [13], program (4) is equivalent
to program (3). Let x, f , and y denote the collections formed
by xp, fk

p(tei
,rei

) and yk
p(tei

,rei
), respectively. Let f∗ and x∗ be

an optimal solution to program (3). An intuitive understanding
is, by setting y = f∗, the optimal solutions to program (4)
are f∗ and x∗. In addition, the quadratic term in program (4)
ensures the uniqueness of the optimal f∗. Therefore, the
optimal solution to (4) coincides with that to (3), and the
optimal objective functions are equal. Utilizing the proximal
optimization algorithm, we iteratively solve (4) in Algorithm 1.
The sequence {f∗(t)} and {x∗

(t)} will converge to one of optimal
solutions to the original program (3).

Algorithm 1 At the t-th iteration of the proximal optimization
algorithm:

1: Input: f∗(t−1);
2: Set y = f∗(t−1);
3: Solve program (4) in f and x;
4: Output: Optimal solutions f∗(t) and x∗

(t).

The remaining problem is then how to solve program (4) in
step 3 at each iteration of Algorithm 1. Since program (4) is a
convex optimization problem and all constraints are linear, i.e.,
the Slater’s condition is satisfied, by exploiting the Lagrange
relaxation and sub-gradient algorithms [14], [28], we can solve
it through its Lagrange dual program and the optimal primal-
dual gap is zero [29]. To that end, let λ1p, λ2p, λprq

p
, λ3p,

λk
ei

, and λk
(tei

,rei
) be the Lagrange multipliers (prices) for

constraints (3a), (3b), (3c), (3d), (3e), and (3f), respectively. To
simplify notation, group all these multipliers into the vector λ.
Denote the Lagrangian of program (4) by L(x, f ,λ). Through
Lagrange relaxation, L(x, f ,λ) is given as below:

L(x, f ,λ) =
∑
p∈P

log xp−∑
p∈P

∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

c

2
(fk

p(tei
,rei

) − yk
p(tei

,rei
))

2−

∑
p∈P

λ1p(xp −
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeisp)+

∑
p∈P

λ2p(xp +
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeidp)+

∑
p∈P

∑
rq

p∈Rp

λprq
p
(
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk
p(tei

,rei
)δeir

q
p
)−

∑
p∈P

λ3p(αpζp − xp)−∑
ei∈E

∑
k∈K

λk
ei

(
∑
p∈P

∑
tei

∈I

∑
rei

∈I
fk

p(tei
,rei

) − Ck
ei

)−

∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

λk
(tei

,rei
)

( ∑
p∈P

fk
p(tei

,rei
)

Ck
ei

+

∑
ej∈E

∑
tej

∈I

∑
rej

∈I

∑
k′∈K

∑
p∈P

fk′

p(tej
,rej

)

Ck′
ej

Γ
(tej

,rej
),k′

(tei
,rei

),k − 1
)

.

The Lagrange dual problem of (4) is then given by

minD(λ)
subject to λ ≥ 0,

(5)

where D(λ) = maxx,f L(x, f ,λ) is the Lagrange dual func-
tion.

In order to simplify notation, we define D1(λ; p) and
D2(λ; p, ei, tei , rei , k) as follows:

D1(λ; p) = max
xp

(
log xp − λ1pxp + λ2pxp + λ3pxp

)
,

D2(λ; p, ei, tei , rei , k) =

max
fk

p(tei
,rei

)

[
− c

2
(fk

p(tei
,rei

) − yk
p(tei

,rei
))

2+

λ1pf
k
p(tei

,rei
)δeisp + λ2pf

k
p(tei

,rei
)δeidp − λk

ei
fk

p(tei
,rei

)+∑
rq

p∈Rp

λprq
p
fk

p(tei
,rei

)δeir
q
p
− λk

(tei
,rei

)

fk
p(tei

,rei
)

Ck
ei

−

fk
p(tei

,rei
)

Ck
ei

( ∑
ej∈E

∑
tej

∈I

∑
rej

∈I

∑
k′∈K

λk′

(tej
,rej

)Γ
(tei

,rei
),k

(tej
,rej

),k′

)]
.

In this way, D(λ) can be rewritten as

D(λ) =
∑
ei∈E

∑
k∈K

λk
ei

Ck
ei
−

∑
p∈P

λ3pαpζp+∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

λk
(tei

,rei
) +

∑
p∈P

D1(λ; p)+

∑
p∈P

∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

D2(λ; p, ei, tei , rei , k).

(6)

Note that the form of (6) is a direct consequence of the
linearity of constraints and additivity of the objective function
in (4).

At each iteration of Algorithm 1, we solve program (4)
by solving its Lagrange dual program (5). The latter can
be iteratively solved using the decomposition algorithm. We
observe from (6) that evaluating the Lagrange dual function
D(λ) mainly involves the two optimal programs D1(λ; p) and
D2(λ; p, ei, tei , rei , k), both can be straightforwardly solved.
More specifically, at iteration t′ of the decomposition al-
gorithm, each source independently performs flow control
optimization by calculating

x∗
p(t′) =

[
1

λ∗
1p(t′−1) − λ∗

2p(t′−1) − λ∗
3p(t′−1)

]+

, (7)

where [x]+ = max{0, x}. In parallel, each link individually
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solves the optimal resource allocation by calculating

fk∗
p(tei

,rei
)(t′)

=

[
yk

p(tei
,rei

) +
1
c

(
λ∗

1p(t′−1)δeisp + λ∗
2p(t′−1)δeidp+

∑
rq

p∈Rp

λ∗
prq

p(t′−1)δeir
q
p
− λk∗

ei(t′−1) −
λk∗

(tei
,rei

)(t′−1)

Ck
ei

−

1
Ck

ei

( ∑
ej∈E

∑
tej

∈I

∑
rej

∈I

∑
k′∈K

λk′∗
(tej

,rej
)(t′−1)Γ

(tei
,rei

),k

(tej
,rej

),k′

))]+

.

(8)

Then, using the sub-gradient algorithm, each node and link
update their corresponding Lagrange prices as follows:

λ∗
1p(t′) = [λ∗

1p(t′−1)+

β(x∗
p(t′) −

∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk∗
p(tei

,rei
)(t′)δeisp)]+ (9a)

λ∗
2p(t′) = [λ∗

2p(t′−1)−

β(x∗
p(t′) +

∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk∗
p(tei

,rei
)(t′)δeidp)]+ (9b)

λ∗
prq

p(t′) = [λ∗
prq

r(t′−1)−

β
∑
ei∈E

∑
tei

∈I

∑
rei

∈I

∑
k∈K

fk∗
p(tei

,rei
)(t′)δeir

q
p
]+ (9c)

λ∗
3p(t′) = [λ∗

3p(t′−1) + β(αpζp − x∗
p(t′))]

+ (9d)

λk∗
ei(t′)

= [λk∗
ei(t′−1) + β(

∑
p∈P

∑
tei

∈I

∑
rei

∈I
fk∗

p(tei
,rei

)(t′) − Ck
ei

)]+

(9e)

λk∗
(tei

,rei
)(t′) = [λk∗

(tei
,rei

)(t′−1) + β(
∑
p∈P

fk∗
p(tei

,rei
)(t′)

Ck
ei

+

∑
ej∈E

∑
tej

∈I

∑
rej

∈I

∑
k′∈K

∑
p∈P

fk′∗
p(tej

,rej
)(t′)

Ck′
ej

Γ
(tej

,rej
),k′

(tei
,rei

),k − 1)]+,

(9f)

where β = d/(a + bt′) is the step size with properly chosen
constants a, b, and d.

Algorithm 2 presents the pseudo code for the decomposition
algorithm described above. We observe from Algorithm 2
that the term

∑
ei∈E

∑
tei

∈I
∑

rei
∈I

∑
k∈K fk∗

p(tei
,rei

)(t′)δeisp

in (9a) is only related to the flow rates, that are incident to sp.
That means only local information is needed to update λ∗

1p(t′).
Similarly, (9b)–(9f) also merely require local information to
update λ∗. In summary, Algorithm 3 gives the whole iteration
procedure to solve program (3).

IV. PERFORMANCE EVALUATION

In this section, we first study the convergence behavior
of the proximal optimization and decomposition algorithms
through simulations. Second, we compare the performance
of the proposed QoS-aware scheme with other two schemes.
Then we discuss the impact of the number of channels and
radios on network utility. Finally we analyze the efficiency
ratio of the proposed scheme.

Algorithm 2 At the t′-th iteration of the decomposition
algorithm:

1: Input: λ∗
(t′−1);

2: Each source calculates D1(λ; p) by (7) ;
3: Each link calculates D2(λ; p, ei, tei , rei , k) by (8) ;
4: Each node and link update their corresponding prices

by (9a)–(9f) ;
5: Output: Optimal dual price λ∗

(t′).

Algorithm 3 Overall iteration procedure:
1: Initialization: Set t = 0 and f∗(0) to be a set with non-

negative elements;
2: t = t + 1, y = f∗(t−1);
3: t′ = 0, each node and link initialize the corresponding

multiplier λ∗
(0);

4: t′ = t′ + 1, each source node locally determines x∗
p(t′)

by (7) and each link locally decides fk∗
p(tei

,rei
)(t′) by (8);

5: Exchange optimal solution information obtained from step
4 between neighbors;

6: Each node and link update the multiplier λ∗
(t′) by (9a)–

(9f);
7: Go to step 4 until the termination criterion is satisfied,

and return the optimal primal variables f∗(t) = f∗(t′) and
x∗

(t) = x∗
(t′);

8: Go to step 2 until the termination criterion is satisfied;
9: Output: Optimal solutions f∗ and x∗.

A. Simulation Setup

We randomly generate four different topologies in an
1000m×1000m area. The transmission range and interference
range are set to be 250m and 500m, respectively. Each
topology has |K| = 2 non-overlapping channels. Based on
the IEEE 802.11g standard, the capacity of each link on each
channel is randomly selected from 6 Mbps, 9 Mbps, 12 Mbps
and 18 Mbps. Each topology has |V| = 20 nodes, each of
which has |I| = 2 radios. There are |P| = 4 services, each of
which has a random source-destination pair and a random rate
requirement within [0, 8] Mbps. To characterize the diversity
of QoS requirements, we set αp ∈ [0.6, 0.8] for high priority
services and αp ∈ [0.1, 0.3] for low priority services.

B. Numerical Results and Performance Analysis

We show the first network topology in Fig. 2. Four services
are considered in the network, and the QoS requirements (α, ζ)
of the services are (0.896 Mbps, 0.748), (5.987 Mbps, 0.206),
(7.981 Mbps, 0.125) and (4.001 Mbps, 0.298), respectively.

We show the convergence performance of the proximal
optimization algorithm and the decomposition algorithm of
Topology 1 in Fig. 3. Similar results are obtained for the other
three topologies. We use the proximal optimization algorithm
to solve the equivalent program (4) through 10 iterations. In
each iteration, we set c = 1. We observe from Fig. 3(a)
that, the gap between the auxiliary objective and the original
objective becomes very small after eight iterations. In addition,
at each iteration of the proximal optimization algorithm, we
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Fig. 3. Convergency behavior of the proximal optimization and decomposi-
tion algorithms in Topology 1.

use the decomposition algorithm to solve the Lagrange dual
problem in 100 iterations with step size β = d/(a + bt′) =
0.2/(10+0.5t′), where t′ is the iteration index. Fig. 3(b) shows
the Lagrange dual objective converges to the primal objective
with increasing number of iterations.

We apply our proposed QoS-aware scheme, the fairness fac-
tor maximization scheme (λ-maximization) of [11], [12], and
the throughput maximization scheme (T-maximization) of [30]
to the four generated topologies and compare results in Fig. 4.
For the purpose of comparison, we define the ratio γp = xp

αp·ζp

to measure the gap between the allocated rate and minimal
rate requirement for each service. From Fig. 4, we observe
that under the proposed QoS-aware scheme, the ratio of each
service is equal to or larger than 1. However, the ratios of some
services are zero under the T-maximization scheme or less than
1 under the λ-maximization scheme. As a result, compared
with the T-maximization and λ-maximization schemes, the
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Fig. 5. Network utility versus channel number and radio number.

proposed scheme is more suitable for the scenarios in which
services have diversity of QoS requirements.

In Table I, we give the routing and scheduling results
obtained by the proposed scheme under Topology 1. Each
tuple in the table corresponds to a specific transmission:
(transmitting node, receiving node, channel, transmitting radio,
receiving radio, service). For example, (2, 3, 2, 1, 1, P1) means
a transmission from node 2 with transmitting radio 1 to node 3
with receiving radio 1, working on channel 2 and serving the
first service, i.e., the service from node 12 to 1 in Topology
1. From Table I, we can see that the scheduling results are
interference-free. For example, from Topology 1 in Fig. 2,
transmission from node 3 to 18 interferes with transmission
from node 2 to 3 and transmission from node 19 to 9 if they
are scheduled on the same channel. However, transmissions
from node 2 to 3 and from node 19 to 9 do not interfere
with each other and can work on the same channel. For this
reason, in time slot 1 in Table I, both transmissions from node
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TABLE I
QOS-AWARE SCHEME SCHEDULING RESULTS

Slot Active Links
1 (2,3,2,1,1,P1),(3,18,1,2,2,P1),(19,9,2,1,1,P3)
2 (2,3,1,2,1,P1),(2,3,2,1,2,P1),(19,9,1,1,2,P3),(19,9,2,2,1,P3)
3 (2,3,1,2,2,P1),(2,3,2,1,1,P1),(19,9,1,2,1,P3),(19,9,2,1,2,P3)
4 (2,3,1,1,1,P1),(2,3,2,2,2,P1),(19,9,1,1,1,P3),(19,9,2,2,2,P3)
5 (2,3,2,2,1,P1),(3,18,1,1,2,P1)
6 (3,18,1,1,1,P1),(3,18,2,2,2,P1)
7 (3,18,1,2,1,P1),(3,18,2,1,2,P1)
8 (3,18,2,1,1,P1),(4,5,1,2,1,P2)
9 (3,18,2,2,1,P1),(4,5,1,2,1,P2)

10 (4,5,1,2,1,P2),(4,14,2,1,2,P4)
11 (4,5,1,2,2,P2), (4,5,2,1,1,P2)
12 (4,5,1,2,2,P2), (4,5,2,1,1,P2), (12,8,1,1,1,P1)
13 (4,5,2,1,1,P2), (4,14,1,2,2,P4), (12,8,1,1,2,P1)
14 (4,5,2,2,1,P2), (4,18,1,1,2,P4),(12,8,2,1,1,P1)
15 (4,14,1,2,1,P4), (4,18,2,1,2,P4), (12,8,1,2,1,P1)
16 (4,14,2,2,1,P4), (5,10,1,1,1,P3),(8,16,1,1,1,P1)
17 (4,18,1,1,1,P4), (4,18,2,2,2,P4)
18 (4,18,1,2,1,P4), (5,10,2,2,2,P3), (8,16,2,1,1,P1)
19 (4,18,1,2,2,P4), (4,18,2,1,1,P4)
20 (4,18,2,2,1,P4), (5,10,1,1,2,P3), (8,16,1,1,2,P1)
21 (4,18,2,2,2,P4), (5,10,1,1,2,P3), (8,16,1,2,1,P1)
22 (5,10,1,2,1,P3), (8,16,1,2,2,P1), (9,14,2,1,1,P3), (12,2,2,1,1,P1)
23 (5,10,1,2,2,P3), (8,16,2,1,2,P1), (9,14,2,1,2,P3), (13,1,1,2,1,P1)
24 (5,10,2,2,2,P3), (8,16,2,2,1,P1), (9,14,1,1,2,P3), (12,2,1,1,1,P1)
25 (5,10,2,2,2,P3), (8,16,2,2,2,P1), (12,2,1,1,2,P1), (13,1,1,2,2,P1)
26 (13,9,2,1,1,P4), (14,9,1,2,2,P4)
27 (9,14,2,2,1,P3),(12,2,1,2,2,P1),(13,1,1,2,2,P1)
28 (9,14,2,2,2,P3),(12,2,2,1,2,P1),(14,5,1,1,1,P3)
29 (9,14,2,2,2,P3), (12,2,2,2,1,P1),(14,5,1,1,1,P3)
30 (9,14,2,2,2,P3), (12,2,2,2,2,P1),(14,5,1,1,1,P3)
31 (12,2,2,2,2,P1),(13,1,2,1,2,P1),(13,9,1,2,1,P4)
32 (12,8,1,2,2,P1),(13,1,2,2,1,P1),(14,5,1,1,2,P3)
33 (12,8,2,2,1,P1),(13,9,1,2,1,P4),(14,5,2,1,1,P3)
34 (13,9,1,2,1,P4),(14,5,2,1,2,P3)
35 (13,9,1,2,1,P4),(14,5,2,2,1,P3)
36 (13,9,2,1,1,P4),(14,5,1,1,2,P3)
37 (5,10,2,2,2,P3), (12,2,1,2,1,P1),(12,8,2,1,2,P1)
38 (13,9,2,1,1,P4), (15,18,1,1,2,P1)
39 (13,9,2,2,1,P4), (14,9,1,1,2,P4)
40 (14,5,2,2,2,P3),(14,9,1,1,1,P4)
41 (14,9,1,1,2,P4), (14,9,2,2,1,P4)
42 (14,9,1,2,1,P4), (15,18,2,1,2,P1)
43 (14,9,2,1,1,P4), (15,18,1,1,2,P1)
44 (15,18,2,1,1,P1), (18,13,1,1,2,P4)
45 (15,18,2,2,1,P1), (18,13,1,1,2,P4)
46 (16,15,1,2,1,P1), (18,4,2,1,2,P2),(19,9,1,2,1,P3)
47 (16,15,1,2,1,P1), (18,4,2,1,2,P2),(19,9,1,2,2,P3)
48 (16,15,2,2,1,P1), (18,4,1,1,1,P2)
49 (18,4,1,2,2,P2), (18,13,2,1,2,P1)
50 (18,4,2,1,2,P2), (19,9,1,2,2,P3)

TABLE II
PERFORMANCE ANALYSIS OF THE INTERFERENCE-FREE SCHEDULING

SUFFICIENT CONDITION.

Gird Topologies
Node Number Optimal Utility QoS-aware Utility

3 × 3 3.562276 2.096231
3 × 4 5.689401 2.038531
3 × 5 9.112094 2.418386
4 × 4 10.095972 2.789186

Random Topologies
Node Number Optimal Utility QoS-aware Utility

9 4.308028 2.698485
12 5.380582 2.557413
15 11.793908 4.583163
16 9.049829 2.942601

2 to 3 and from node 19 to 9 are assigned to channel 2,
while transmission from node 3 to 18 is assigned to channel
1, in order to avoid co-channel interference. Moreover, node
3 assigns radios 1 and 2 for transmissions from node 2 to 3
and from node 3 to 18, respectively, in order to guarantee no
radio interface conflict is generated.

By varying the number of radios and channels, Fig. 5 shows
the impact of resource on network utility in the four topolo-
gies. From the numerical results, we find that the network
utility increases with the number of channels and radios. This
is because with more resource available in networks, more
transmission can be concurrently active and hence interference
is mitigated. This demonstrates that our scheme can effectively

take advantage of the available resource to improve network
utility.

Finally, since a sufficient condition is used as the flow
scheduling constraint, the proposed scheme may incur per-
formance loss. In Table II, we numerically analyze this loss
under grid and random topologies. Considering the intractable
complexity in enumerating all MISs in high user density
scenarios, we consider scenarios with relatively low user
density and create 3×3, 3×4, 3×5 and 4×4 grid topologies,
and four random topologies with 9, 12, 15 and 16 nodes,
respectively. We set |I| = 1 for simplicity. Other parameters
are described in section IV-A. Based on each topology’s 3-
D conflict graph, we enumerate all MISs and compute the
corresponding optimal utility. For the four grid topologies,
the numbers of the MISs are 216, 2496, 16680 and 26432,
respectively. For the four random topologies, the numbers
of the MISs are 312, 2392, 12888 and 53011, respectively.
Table II illustrates a comparison between the optimal utility
and utility obtained by the proposed QoS-aware scheme. We
observe that the efficiency ratio of the proposed QoS-aware
scheme is around 60% for the small scale networks with 9
nodes, and around 30% for the larger scale networks with 16
nodes. Moreover, note that in the formulation of the optimal
utility case where all MISs are utilized, the complexity of the
algorithm comes from two aspects: one is searching for MISs,
and the other one is solving the corresponding optimization
problem, which contains a large number of MISs in flow
scheduling constraints. Therefore, considering the complexity
generated in the optimal utility situation, the optimality loss
caused by the proposed algorithm is acceptable.

V. CONCLUSION

We have studied the problem of resource allocation in
MRMC networks. In particular, we have proposed a fair QoS-
aware resource allocation scheme for MRMC networks with
services requiring diverse QoS levels. In order to meet minimal
QoS requirements of services and to obtain a proportionally
fair resource allocation, we have formulated the resource
allocation problem as a NUM problem with QoS constraints.
Moreover, to avoid the oscillation problem caused by multi-
path flow routing, we have adopted the proximal optimization
algorithm to transform the problem into an equivalent primal
optimization problem, which has an unique optimal solution.
We have used the decomposition algorithm to solve the result-
ing primal problem. By carrying out numerical simulations,
we have verified the effectiveness of the proximal optimiza-
tion algorithm and the decomposition algorithm. Besides,
the numerical results demonstrate that our proposed scheme
outperforms previous schemes in terms of guaranteeing QoS.
We also discuss efficiency ratio of the proposed scheme under
both grid and random topologies. Based on the discussion, the
performance loss of the proposed scheme is acceptable.
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