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Abstract—Dynamic spectrum sharing between licensed incumbent users (IUs) and unlicensed wireless industries has been well
recognized as an efficient approach to solving spectrum scarcity as well as creating spectrum markets. Recently, both U.S. and
European governments called a ruling on opening up spectrum that was initially licensed to sensitive military/federal systems.
However, this introduces serious concerns on operational privacy (e.g., location, time and frequency of use) of IUs for national security
concerns. Although several works have proposed obfuscation methods to address this problem, these techniques only rely on syntactic
privacy models, lacking rigorous privacy guarantee. In this paper, we propose a comprehensive framework to provide real-time
differential location privacy for sensitive IUs. We design a utility-optimal differentially private mechanism to reduce the loss in spectrum
efficiency while protecting IUs from harmful interference. Furthermore, we strategically combine differential privacy with another privacy
notion, expected inference error, to provide double shield protection for IU’s location privacy. Extensive simulations are conducted to
validate our design and demonstrate significant improvements in utility and location privacy compared with other existing mechanisms.

Index Terms—Differential privacy, location privacy, Bayesian inference attack, cognitive radio networks, optimization.
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1 INTRODUCTION

Radio spectrum is a precious resource and a prerequisite
for modern communication systems. However, current spec-
trum utilization efficiency is relatively low. For example,
as of September 2012, National Telecommunications and
Information Administration (NTIA) estimated that 43 per-
cent of the spectrum between 225 MHz to 3,700 MHz (the
spectrum most highly desired by the wireless community)
is predominantly occupied by federal systems but is used
inefficiently. Concurrently, there is an ever-increasing indus-
trial demand for wireless spectrum. To mitigate the problem
of unbalanced spectrum usage, dynamic spectrum access
(DSA) technique has been well recognized as a promising
solution. Federal Communications Commissions (FCC) in
the U.S. recently issued a ruling that the 3,550-3,700 MHz
band, which was initially licensed to DoD’s military radar
systems, will be opened to wireless industries for shared
usage [1]. In Europe, a similar DSA framework named li-
censed shared access (LSA) is also being developed, and the
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2.3-2.4 GHz band originally belonging to military aircraft
services and police wireless systems is now open for wire-
less industries for shared access [2]. Among these rulings,
a spectrum access system (SAS) database is recommended
to be set up to manage the shared spectrum usage between
licensed incumbent users (IUs) and unlicensed secondary
users (SUs) [1]. Specifically, SUs send queries to the SAS
database for the available spectrum and allowable trans-
mit power. The SAS database responds according to IUs’
operational information (e.g., location, frequency band, and
time of operation) to ensure that no harmful interference is
generated.

It is recognized that most IUs are not classified systems
like fixed satellite radars whose operational information is
public, but some are quite sensitive such as the Ground/Air
Task Oriented Radar (GATOR) which is used to detect
unmanned aerial systems, cruise missiles, rockets, mortars,
etc [3]. In practice, the GATOR system operates in the
lower adjacent 3.5 GHz band; has very low interference
thresholds (e.g., -102 dBm for GATOR Block 3); and is
frequently redeployed by a medium-tactical vehicle replace-
ment (MTVR) to fulfill various homeland defense missions
[4]. The SAS database, therefore, incorporates the protection
for the GATOR system to avoid the high adjacent channel
leakage from the 3.5 GHz band. Unfortunately, research
studies have shown that the query-response process, which
is initially intended to protect IUs from power interference,
reveals unexpected useful information to adversaries who
can compromise IUs’ operational privacy [5], [6].

As we know, traditional cyber-attacks apply the in-
field spectrum sensing technique to triangulate the radar
system, whereas military systems normally react using the
frequency hopping over a wide range of spectrum [7].
However, in the SAS database-based DSA system, adver-
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saries gain extra or asymmetric advantages in this cy-
berspace battlefield, meaning that they can remotely initiate
large number of innocuous database queries and infer the
possible operational information of radar systems before
deploying in-field sensing or jamming. This unfortunately
benefits adversaries in terms of reducing their attacking cost
and increasing the attacking accuracy. Therefore, to ensure
successful military operations, it is critical to develop ob-
fuscation techniques in the SAS database to complicate and
confound adversaries in conducting cyber-attacks, which in
turn avails IUs in this cyber battle.

Even though prior research work [5], [8]–[10] proposed
several privacy-preserving mechanisms to protect IUs’ op-
erational privacy in terms of location, time and frequency
of use, these approaches only focused on one time ran-
domization or obfuscation. Besides, these approaches could
fail for two reasons. First, in real-time series, independently
applying these mechanisms for multiple times may help ad-
versaries to remove the noise and compromise IUs’ privacy.
Second, the added noise could be filtered out by adversaries
with certain prior knowledge that these works clearly ig-
nore. Furthermore, these mechanisms typically add extra
non-existing dummy records in spatial, temporal or spectral
domain to preserve IUs’ operational privacy, which yet
sufficiently reduces spectrum efficiency.

In this paper, we consider a DSA system where users
come or go in dynamic fashions, and we intend to protect
the IU’s location privacy in real-time series while mini-
mizing the loss to SUs’ spectrum efficiency. Specifically,
we leverage user diversity to include SUs and IU in a
location cloaking set such that every user therein is subject
to obfuscation and could be released to represent the IU.
Here, these SUs are coined as “avatars” and we propose a
framework called DPavatar to achieve Differential location
Privacy for the IU by leveraging avatar SUs in real-time
sequence. Our contributions are listed as follows.

• To the best of our knowledge, this is the first work
to incorporate SUs to obfuscate IU’s location. The
benefit is to reduce the loss in spectrum efficiency
by elevating any SU as the IU and protecting it from
interference. However, natural concerns could rise up
in the sense that these SUs could infer IU’s location
and the IU may suffer from harmful interference.
We tackle the first concern by constructing the lo-
cation cloaking set satisfying reciprocity, a property
to preserve spatial K-anonymity so that the included
SUs cannot distinguish which one is the real IU. For
the second concern, we design a feedback control
mechanism to suppress the power interference to the
IU.

• The obfuscation is performed at certain time instants
and we design an interference-utility-aware differen-
tially private mechanism which is cast as a linear
optimization problem. The optimal DP obfuscation
distribution is obtained while the loss in spectrum
efficiency is minimized.

• This is the first work so far to address IU’s location
privacy in the real-time setting. Specifically, we con-
sider privacy loss due to continuous application of
obfuscation mechanism and apply (ω, ε)-differential

privacy mechanism to guarantee that the IU could
retain ε-differential location privacy at any ω length
of time window.

• We argue that differential privacy only confines ad-
versary’s information gain between prior and poste-
rior knowledge but may not be sufficient for location
protection if an adversary has certain prior knowl-
edge that can uniquely identify the IU. We prove
this claim both theoretically and numerically in this
paper. To cope with this issue, we combine DP with
another privacy notion named expected inference error
[11] which takes adversary’s specific prior knowl-
edge into consideration. We claim that this strategic
combination can double shield IU’s location privacy
by simultaneously limiting information leakage of
the DP mechanism and ensuring the inference error
to be constrained for inference attacks with prior
information the adversary may have.

The reminder of this paper is organized as follows.
Section II describes the related work. Section III introduces
some background information and describes the adversary
model. Essential preliminaries are followed at Section IV.
Then our DPavatar scheme is discussed in details in Section
V. Section VI gives the privacy analysis. The performance
evaluations are presented in Section VI and finally, Section
VII concludes the paper and outlines the future work.

2 RELATED WORK

Spectrum sharing is an interactive process among different
parties that could introduce security or privacy threats. One
type of attacks such as Primary User Emulation Attack
(PUEA) [12] and Spectrum Sensing Data Falsification (SSDF)
attack [13] is about compromising the security of spectrum
sharing, which is not necessarily based on SAS database
system. Therefore, in this survey, we focus on works in
protecting IU’s operational privacy in database-driven DSA.
Authors in [14], [15] consider the adversary model that the
SAS database is semi-trusted. Cryptographic tools, namely
CP-ABE in [14] and homomorphic Paillier cryptosystem
[15], are used to protect IU’s operational information such
as IU’s antenna height and gain, transmission power and in-
terference threshold against the SAS database. Obfuscation
strategies can also be applied to protect IU’s operational
information from being inferred. In [9], Robertson et al.
insert to the SAS database dummy records of frequency
bands that the IU operates on, so that adversaries cannot
distinguish IU’s exact operating spectrum. In [8], Bahrak et
al. apply K-anonymity to preserve IU’s location privacy and
add false entries in time domain to prevent adversaries from
learning IU’s correct operational time. In [5], [10], authors
add random noise to IU’s operating information such as the
radius of protected contour and interference threshold. As a
result, the adversaries may not correctly infer IU’s location.

Although these obfuscation strategies seem workable at
first glance, they rely on syntactic privacy models without
rigorous privacy guarantee. On the other hand, the differen-
tial privacy [16], initially applied in statistical databases, has
been accepted as a standard for privacy protection. Recently,
the notion of differential privacy has been extended to
preserve location privacy [17]–[20]. In general, differentially
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private location obfuscation requires a location set contain-
ing the actual user’s location and “neighbouring” locations,
such that they have the similar probabilities (bounded by
eε) to produce a pseudo-location. Andrés et al. [17] propose
the notion geo-indistinguishability and a planar Laplace
mechanism is developed to produce fake locations from a
polar Laplacian distribution. Based on this work, Bordenabe
et al. propose a utility-optimal obfuscation mechanism to
achieve ε-geo-indistinguishability [18]. Chatzikokolakis et
al. define privacy mass over an area and generalize the
geo-indistinguishability by adaptively adjusting the privacy
parameter. Xiao et al. in [19] consider temporal correlations
of user’s mobility pattern and obfuscate the location based
on a planar isotropic mechanism.

However, most of them only consider obfuscation in
a static scenario without considering privacy loss due to
continuously applying differentially private obfuscation.
Therefore, we resort to the ω-event ε-differential privacy
proposed in [21], [22] to protect IU’s location privacy on-the-
fly in a dynamic spectrum sharing environment. Besides, it
is well-known that the location obfuscation affects utility
(or quality) of services. Here, by releasing pseudo-location
in spectrum sharing scenario could incur harmful power
interference to the IU, which is much more severe than just
degrading utilities. Therefore, we propose an interference-
aware differentially private mechanism in this paper to
remedy this problem.

On the other hand, it has been recently recognized that
the differential privacy may not be effective in location
protection for Bayesian adversaries with sufficient prior
knowledge [20], [23], [24]. Shokri et al. in [24] is the first
to combine differential privacy with adversary’s expected
inference error using a linear programming framework to
demonstrate the potential for privacy protection improve-
ments. Yu et al. [23] based on this work propose a user
defined personalized error bound in the differential privacy
framework to limit Bayesian adversaries’ inference accuracy.
In this paper, we intend to bound the Bayesian adversary’s
inference error in our differential privacy framework to
provide double-shield protection for IU’s location privacy.

3 BACKGROUND AND ADVERSARY MODEL

3.1 Overview of Spectrum Access Systems
An SAS generally consists of IUs, SUs and a centralized
database system that coordinates the spectrum sharing be-
tween IUs and SUs. For instance, the 3.5 GHz SAS operates
via a three-tier spectrum access approach, wherein IUs
operate at the first tier with the highest priority, while SUs
operate either at the second tier with licensed priority access
(the small-cell services), or at the third tier with general
authorized access. Fig.1 shows a typical spectrum access
process and it is explained in details as follows. Firstly, IUs
send the SAS database their operational data such as loca-
tion xu∗ , occupied channels fu∗ and interference threshold
Λth
u∗ for interference protection. Moreover, in our design,

IUs can send a personalized error bound ϕ to the SAS
database, specifying the required protection level against
Bayesian adversaries. After receiving queries from SUs for
available channels at specific locations xu , SAS database

responds with a list of available channels
→

f along with

the allowable transmit power
→

Pf . The power is calculated
based on the accurate radio propagation model and IUs’
operational data 1 such that the accumulated interference
from all operating SUs is below IUs’ interference threshold.
Finally, upon receiving responses from the SAS database,
the SU claims a channel and registers its usage at the SAS
database.

DPavatar 

Protection Scheme

Access Contol

SAS Database

Notify:

IU operation 

data, privacy 

parameter IUSU

1. Query:

2. Respond::

3. Register: 

Figure 1: The system model of SAS database

3.2 Adversary Model

We assume Bayesian adversaries whose goal is to geo-
locate the sensitive IU (e.g., the GATOR) through innocuous
queries to the SAS database. We assume adversaries have
sufficient computational resources in the sense that (1) they
can generate a large number of fake locations to query the
SAS database simultaneously; (2) and they can perform
real-time analysis of database responses to triangulate the
sensitive IU. Moreover, adversaries may possess a variety
of prior knowledge, which is obtained from other public
databases. For instance, the NTIA in [3] lists 30 coarse-
grained installation locations of the GATOR system across
the United States. In particular, we can assume the ad-
versary has a prior (probability) distribution π of the IU
over the set of possible locations Ψ (e.g., one of those 30
installation cities).

We consider the adversary as an informed one in the
sense that it knows the location obfuscation mechanism,
i.e., how it works and the exact obfuscation technique A
(i.e., its probability distribution). Under this assumption,
by geo-locating every released (real and dummy) IU using
algorithms available in [5], [6], Bayesian adversaries aim to
filter the dummy IUs and infer the real one. Particularly,
Bayesian adversaries will firstly compute the following pos-
terior probability distribution:

Pr(x |xû) =
π(x)Pr (A(xû |x))∑

x∈Ψ π(x)Pr (A(xû |x))
(1)

Based on the posterior distribution, the adversary could
infer IU’s location through Bayesian Inference Attack, repre-
sented by

x̃u∗ = arg max
x∈Ψ

Pr(x |xû) (2)

We further quantify IU’s location privacy as the Bayesian
adversary’s error in her inference attack. We see for a given
released dummy IU û, IU’s conditional location privacy (i.e.,

1. Since SAS database knows users’ exact locations, radio specs (e.g.,
antenna height/gain, terrain data, weather, etc) and transmit power,
it can adopt the channel model (e.g., Longley-Rice) for interference
calculation.
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the conditional expected inference error) can be computed
as follows:

Err =
∑

x∈Ψ
Pr(x |xû) · dh(x̃u∗, x) (3)

where dh(·, ·) is the Hamming distance between two points
and it equals to 1 if x̃u∗ , x and 0 otherwise. Note that this is
an absolute measure of adversary’s capability to geo-locate
the IU given a specific prior knowledge π.

In the end, we claim that the SAS database is trusted
since it is authorized and censused by FCC and NTIA to
manage the DSA system, whereas the semi-trusted database
model has been addressed elsewhere in Liu et. al [14]. Be-
sides, the operating SUs that have obtained spectrum access
opportunities are assumed curious about IU’s location but
they do not actively collude with each other or outside
attackers.

4 PRELIMINARIES

4.1 Differential Privacy

Differential privacy has become a de facto standard pri-
vacy model, which was originally introduced in statistical
databases, requiring that a randomized mechanism should
produce similar results when a query is applied to neighbour-
ing databases. Formally, the notion of ε-differential privacy
is formulated as follows [25].

Definition 4.1 (Differential Privacy). A privacy mechanism
A gives ε-differential privacy where ε > 0 if for any
neighbouring databases D and D

′

differing on at most
one record, and for all sets S ⊆ Range(A), the following
holds

e−ε ≤
Pr (A (D) ∈ S)
Pr (A (D′) ∈ S)

≤ eε (4)

The commonly used technique to achieve ε-differential
privacy is the Laplace mechanism [25], whose main idea is
to add random noise drawn from a Laplace distribution into
the statistics to be published. One of the most important
properties of DP mechanisms is the composition theorem,
meaning any DP mechanism is bound to cause privacy loss
when used repeatedly [21].

Theorem 4.1 (Sequential Composition). LetA1,A2 ,...,Ar be
a set of mechanisms and each Ai provides εi-differential
privacy. Let A be another mechanism that executes
A1(D), A2(D) ,..., Ar (D) using independent randomness
for each Ai . Then A satisfies (

∑r
i=1 εi)-differential pri-

vacy.

4.2 Differentially Private Location Obfuscation

The ε-differential privacy concept in statistical data release
context can be naturally extended to the setting of location
privacy preservation. Here, we define the ε-differential pri-
vacy on a discretized location set containing the IU, with
the intuition that the released location z will not help an
adversary to differentiate any instance inside this location
set.

Definition 4.2 (Differential Location Privacy). A random-
ized mechanism A satisfies ε-differential privacy on

location set X if for any released location z ∈ X and any
two locations x and x

′

∈ X, the following holds:

e−ε ≤
Pr (A (x) = z)
Pr (A (x′) = z)

≤ eε (5)

The location set could be created in various ways ac-
cording to different problem settings [17]–[19], [23]. Given
the location set, noise could be generated to satisfy differ-
ential privacy following approaches such as 2-dimensional
Laplace distribution [17], utility-optimal mechanism [18],
[26], planar isotropic mechanism [19] and exponential mech-
anism [23].

4.3 (ω, ε)-Privacy
ω-event ε-differential privacy [21], [27], (ω, ε)-privacy used
for short when there is no confusion, is proposed as an
extension of differential privacy to address release of infinite
streams. The model emphasizes the guarantee of user level
ε-differential privacy in any ω contiguous time intervals in
a sliding window.
Definition 4.3 ((ω, ε)-privacy). The randomized mechanism
A gives (ω, ε)-privacy if for any two ω-neighbouring
series of input databases Dω and D

′

ω , and for all sets
S ⊆ Range(A), the following holds

e−ε ≤
Pr (A (Dω) ∈ S)
Pr

(
A

(
D′

ω

)
∈ S

) ≤ eε (6)

Theorem 4.2. [21] Let A be a randomized mechanism that
takes as input stream Dt, where Dt[i] = Di ∈ D, and out-
puts st = (s1, ..., st ) ∈ S. Suppose A can be decomposed
into t randomized mechanisms A1, A2 ,..., At such that
Ai(Di) = si , each Ai generates independent randomness
and satisfies εi-differential privacy. Then , A achieves
(ω, ε)-privacy iff

∀i ∈ [t],
∑i

k=i−ω+1
εk = ε

This theorem views ε as the privacy budget for every
subsequence of length ω anywhere (i.e., in any sliding win-
dow of ω) in the original series of input databases. This is the
fundamental theorem, based on which we design a novel
real-time (ω, ε)-privacy mechanism by properly allocating
portions of ε across multiple time instants.

5 DPAVATAR: REAL-TIME DIFFERENTIAL LOCA-
TION PRIVACY FOR THE IU
5.1 Overview
Fig.2 illustrates the basic idea of how our proposed DPavatar
protection scheme works. For the presentation clarity, we
first give an overview of each function block in Fig.2 and
then outline some assumptions that are essential in our
design.

Firstly, we consider a time-slotted system where the
SAS database only registers one user per time instant for
the spectrum access. This is because the mutual authen-
tication is executed in the registration phase and limiting
the number of registered users per time instant can thwart
the denial-of-service (DoS) attack. Besides, the time interval
can be dynamically adjusted based on the number of users
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Figure 2: The overview of DPavatar protection
scheme.

participating in the DSA system. Next, suppose when the
IU registers in the SAS database at t0, several operating
SUs (i.e., avatars), including the IU, are selected to form a
location cloaking set. We assume these avatar SUs are pro-
vided with incentives (e.g., power interference protection)
to obfuscate the IU’s location from t0 to tN , but they might
be curious about IU’s location. After t0, the following proce-
dures are carried out at each time instant ti (t0 < ti ≤ tN ):

• When a SU joins the DSA system at ti , the SAS
database checks whether the accumulated power
interference to any user in the location cloaking set
exceeds the threshold or not;

• If yes, the incoming SU is rejected and the inter-
fered avatar IU is released at ti for public queries;
otherwise, the scheme continues to verify if ti is the
sampling time instant to perform the differentially
private (DP) location obfuscation;

• If not, the SAS database utilizes the last re-
leased avatar IU for public queries; otherwise, the
Interference and Budget Aware (IBA) adaptive sam-
pling function module calculates the next sampling
time instant and meanwhile informs the dynamic
budget allocation block to determine certain privacy
budgets (i.e., ε) for the location obfuscation;

• The DP location obfuscation function block then
takes ε and the location cloaking set as input and
produces the avatar IU at ti .

Note that if there are not many SUs participating in
the DSA system, our scheme is naturally equivalent to the
conventional approaches [5], [8] in the sense that dummy
records (e.g., false locations, noisy interference threshold,
etc.) are injected to create the location cloaking region, which
is even similar to the Exclusion Zone (EZ) proposed by
NTIA [28]. However, this work intends to examine how
the design (i.e., privacy, spectrum efficiency, and power
interference) would be different when the DSA system
includes a large number of SUs. In other words, we aim to
investigate how the user diversity can be fully leveraged to
better protect IU’s location privacy. Next, we will elaborate
each function block in more details.

5.2 Location Cloaking Set

The application of standard differential privacy in statisti-
cal database is intended to “hide” a true database in its
“neighbouring databases” which are obtained by adding
or removing one record (or one user). However, location
protection for a user only involves a single record, which is
his own location. Hence, differential privacy in this context
requires the definition of “neighbouring” location points
to the targeted user’s location. One intuitive method is to
include a set of “neighbouring” locations and the user’s
actual location in a location set. In this case, differentially
private mechanism can be applied to it such that a per-
turbed location is released but the real location cannot be
differentiated among other instances in this set.

Instead of using a fake location, we argue that releasing
the location of an operating SU to represent the location
of IU is more beneficial. The reasons are two-fold. First, if
the adversary with certain prior information knows that no
radio devices are transmitting at the released fake location,
it can confidently exclude it from the locations where the
IU could possibly operate, thus reducing the size of the
anonymity set. Second, releasing “IU’s” location, regardless
of the real or fake one, inevitably restricts SUs’ spectrum
access and reduces the spectrum efficiency. However, report-
ing the location of a SU (e.g., a pair of transceivers or a WiFi
access point along with its served users) could reduce the
overall spectrum efficiency loss because the SAS database
protects it from power interference in the same way as how
the IU is protected.

With this in mind, we intend to construct a location
cloaking set containing the real IU and its “neighbouring”
SUs. However, selecting the location cloaking set is by no
means a trivial task especially when it comes to protect
IU’s location against operating SUs. In particular, at t0 when
the IU comes, some SUs might be cleared due to their
interference to the IU, which unfortunately could help these
SUs geo-locate the IU given this “firsthand experience”.
Moreover, after a long time observation from t0 to tN , all in-
stances (i.e., locations) in the location cloaking set are likely
released. Without proper design, the IU’s location could be
the “outlier” among others which is easily discerned. For
instance, in [8], Bahrak et al. create a K-anonymity cloaking
set by including K − 1 nearest users around the targeted IU.
However, we argue that using nearest neighbouring users
may compromise IU’s location in a scenario as shown in
Fig.3. Since the adversary knows all locations in the cloak-
ing set after continuous observations, the adversary could
confidently decide u∗ is IU’s real location as the cloaking
sets would have been different if u1, u2 or u3 were the real
IU.

The above observation motivates us to design a location
cloaking set satisfying the following two properties: (1)
any user/location in the location cloaking set excludes its
interfered SUs; (2) the location cloaking set should preserve
reciprocity whose definition can be found in [29].

To give a general picture, Alg.1 outlines the procedures
in creating the location cloaking set. Firstly, based on the
accurate channel fading model (e.g., Longley-Rice (L-R)
model [30]) available at the SAS database and the operat-
ing parameters of all users, the SAS database is aware of



1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2897099, IEEE
Transactions on Mobile Computing

6

u1u8

u7 u6

u2

u4
u3

u5

Figure 3: An example of forming the location cloaking set
using nearest neighbouring users. Suppose the size of loca-
tion cloaking set is 4 and {u∗, u1, u2, u3} is the cloaking set via
nearest neighbouring algorithm. However, if u1 were the IU,
its cloaking set would have been {u1, u6, u7, u8}. Similarly, if u2
were the IU, its cloaking set would have been {u2, u3, u4, u5}.

Algorithm 1 Creating the Location Cloaking Set

Input: channel fading model; operating frequency, location,
transmit power of all users; system parameters: εth , Λth

u∗ ,
ϕ, xu∗ .

Output: location cloaking set X.
1: Construct a conflict graph G (V, E);
2: Find the maximum independent set Iu∗ ;
3: Calculate the size of location cloaking set from (10);
4: Create the location cloaking set X of size K from Iu∗ .

the interference relationship between any two users and
can construct a conflict graph G (V, E). Specifically, each
vertex v (v ∈ V) represents each user while an edge (u, v)
((u, v) ∈ E) between two vertices u and v indicates these two
users interfere with each other (or conflict). Secondly, using
G (V, E), the SAS database then determines the maximum
independent set (MIS) [31] Iu∗ which includes the real IU u∗.
The algorithm in [31] can be utilized as an efficient approach
to constructing the MIS that includes the real IU.

Next, we determine the size of the location cloaking set
to guarantee a certain level of inference errors for Bayesian
adversaries, and then we can create the location cloaking
set of size K from Iu∗ . From our prior discussion, in Step 4
of Alg.1, the location cloaking set should be constructed to
preserve reciprocity, which naturally leads us to an approach
using the Hilbert space-filling curve [32]. The Hilbert curve
maps the 2-D Cartesian coordinate of each user into a
1-D value, and provides that if two points are in close
proximity in 2-D space, with high probability they will
also be close after 1-D transformation. Fig.4, for instance,
illustrates the location of 10 users and the Hilbert curve for
a 8×8 space partitioning. It also shows users’ sorted Hilbert
values and how to construct cloaking sets of different sizes.
In particular, users are split into K-buckets, each of which
contains exactly K users except the last one which may
contain at most 2·K-1 users. The cloaking set generated in
this respect satisfies reciprocity because all users in the same
bucket will generate the same cloaking set. Enlightened by
the algorithm in [33], the cloaking set can be generated by
the following procedures. Firstly, the SAS database obtains
IU’s Hilbert value H(u∗) and gets its position Ru∗ in the
sorted sequence of all instances in Iu∗ . Given K , the SAS

u1
u8

u7 u6

u2

u4

u3

u5

u9

(a) 8 × 8 Hilbert Curve

u1 u8u7u6u2 u4u3 u5

2 9 13 25 32 36 49 51 54 57

u9

Hilbert 

Value

Buckets for K=3

u1 u8u7u6u2 u4u3 u5

2 9 13 25 32 36 49 51 54 57

u9

Hilbert 

Value

Buckets for K=4

(b) User’s sorted Hilbert values

Figure 4: Forming location cloaking sets of different sizes
based on 8 × 8 Hilbert Curve.

database then calculates the start and end positions defining
the K-bucket that includes H(u∗), as follows:

start = Ru∗ − (Ru∗ mod K)

end = start + K − 1

After the location cloaking set of K users are formed,
the SAS database will exclude all other users that interfere
with any of these K users. We will show later in Section
6 that the proposed Alg.1 can prevent adversaries from
discerning the real IU from these K − 1 avatar SUs. Next,
the natural question arises that how the size of K should be
chosen. As it is shown in Fig.2, DP obfuscation mechanism
is applied to this location cloaking set to provide geo-
indistinguishability for these K users. However, studies [23]
have shown that the notion of differential privacy does
not protect against Bayesian inference attacks using prior
information; whereas the other privacy notion, namely, the
expected inference error, promotes resilience to Bayesian in-
ference attacks but lacks differential privacy guarantee in
terms of geo-indistinguishability. Therefore, we intend to
combine these complementary privacy notions to provide
double shield protection for the IU’s location privacy. Specif-
ically, we base the selection of K on the expected inference
error, which can be thought of the first phase; then the DP
obfuscation mechanism is applied to this location cloaking
set in the later phase.

First of all, let us examine the relationship between
these two privacy notions. For demonstrative purposes,
we give an example to evaluate IU’s location privacy by
applying differential privacy against Bayesian inference
attack. As shown in Fig.5(a), the adversary may have a
prior knowledge (denote as prior 1) of IU’s appearance at
a specific location at a given area of its interest. On the other
hand, the adversary could obtain some side information
that eliminates loc.#4 as the possible IU’s locations (denote
as prior 2). We apply the exponential mechanism [23] to
achieve differential privacy on the location cloaking set of 10
possible locations. The adversary’s expected inference errors
for IU’s appearance at any of these locations are evaluated
based on (2) and (3). As shown in Fig.5(b), the adversary
could identify IU at loc.#4 or loc.#5 when adversary has
prior 1 or 2, respectively. This figure also shows that by
eliminating loc.#4 as the possible locations from the cloak-
ing set, the adversary could increase its inference success
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(a) The adversary’s prior information
on IU’s location at a 16 × 13 region.
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(c) ε v.s. inference error

Figure 5: Demonstrative example of how differential privacy
can protect IU’s absolute location privacy when adversary has
different prior knowledge.

probability at every other possible location. In particular,
considering the adversary with prior 1 and the IU operating
at loc.#6, Fig.5(c) plots how differential privacy could help
protect IU’s location privacy. We can see that the adver-
sary’s expected inference error decreases as the parameter
ε increases. However, with the improved prior information,
the adversary’s inference error can be reduced despite the
protection of differential privacy. Clearly, we can conclude
that the adversary with different prior knowledge has differ-
ent capability to compromise IU’s absolute location privacy
in terms of the inference error. The extreme case would be
that the adversary having certain prior information could
uniquely geo-locate IU while differential privacy clearly has
no control over it.

From the above numerical analysis, we conclude that
differential privacy is not robust to ensure absolute location
privacy guarantee against Bayesian adversaries with certain
prior knowledge. Furthermore, we also observe that when
differential private mechanism is applied in the location
cloaking set, it allows the adversary to narrow its guesses in
a smaller area. Therefore, we propose a dynamic selection
of the size of cloaking set K by taking the adversary’s
prior knowledge π and IU’s privacy requirement ϕ into
consideration. Next, we will theoretically explore how to
decide K in accordance to π and ϕ. First, let us assume
x̃u∗ = arg max

x∈Ψ

Pr(x |xû) to be the Bayesian adversary’s es-

timated location. Based on (3), the conditional expected
inference error can be calculated as:

Err =
∑

x∈X

Pr(x |xû)∑
y∈X Pr(y |xû)

· dh(x̃u∗, x)

=
∑

x∈X

π(x)Pr (A(xû |x))∑
y∈X π(y)Pr (A(xû |y))

· dh(x̃u∗, x)

≥ e−ε
∑

x∈X

π(x)∑
y∈X π(y)

· dh(x̃u∗, x)

≥ e−ε
∑

x∈X

π(x)∑
y∈X π(y)

· dh(x̃u∗
′

, x)

= e−ε
∑

x∈X\{x=x̃u∗
′
}

π(x)∑
y∈X π(y)

(7)

where the first inequality is due to (5) and the second
inequality is due to x̃u∗

′

= arg max
x∈X

Pr(x |xû), which means

the guessed location is now within the cloaking set. Above
equation validates our numerical analysis in the previous
discussion, where the adversary’s inference error or IU’s
absolute location privacy is dependent on adversary’s prior
knowledge π(x)∑

y∈X π(y)
whereas given an ε, differential privacy

only guarantees a lower bound of it. Due to the fact that
the SAS database may not know the adversary’s prior
information, we consider a simple scenario that all locations
in X have equal prior probability and π(x)∑

y∈X π(y)
would be 1

K .
As a result, (7) becomes

Err ≥ e−ε(1 −
1
K
) (8)

Here, ε is chosen as the privacy budget for DP obfuscation
and we shall see in Section 5.5 that any allocated privacy
budget ε should be no greater than εth . Thus, the inequality
(8) can be further written as follows:

Err ≥ e−ε(1 −
1
K
) ≥ e−εth (1 −

1
K
) (9)

To guarantee the protection for IU’s location privacy
satisfies its specified requirement ϕ in any DP obfuscation
case, we have to let Err ≥ ϕ. To ensure that, it is sufficient
to satisfy that e−εth (1 − 1

K ) ≥ ϕ. According to (9), we can see
that the size of location cloaking set can be determined as
follows:

K ≥
1

1 − eεthϕ
(10)

Intuitively, the size of cloaking set should be set as large
as possible. However, we shall see later that the larger of the
cloaking set size, the higher the computational complexity
in the obfuscation phase. Besides, when the cloaking set
is large enough, the obfuscated locations may be distant
from the IU’s location which as a result will cause high
obfuscation error in terms of power interference to the IU.
Therefore, we can select K as the lower bound value in (10).

5.3 Interference Check
After the IU joins the system and the location cloaking set
being constructed at t0, new SUs could join the system at
any time instant from t0 to tN . To avoid harmful interference
to the IU while guaranteeing the IU is not inferred from the
deterministic feature about releasing the IU as soon as the
interference threshold exceeds, we propose that any avatar
SU or the real IU will be released if the incoming SUs’
transmissions interfere with it. In so doing, the adversary
is expected to be incapable of discerning the IU from other
avatar SUs from this function block.

To be specific, the aggregated power interference to any
user in the location cloaking set is described as follows:

Pint,u =
∑
u
′
∈Iu

Pu
′ · hu′,u (11)
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where Iu is the set of SUs that interfere with the user u
in the location cloaking set; Pu

′ is the transmit power of
the SU u

′

; and hu′,u represents the wireless channel gain
between u and u

′

. Since the SAS database adopts accurate
radio propagation model or deploys in-field sensors for
interference management, the element of Iu can be easily
obtained. Thus, the aggregated power interference Pint,u can
be calculated in a timely manner.

Whenever the power interference exceeds the threshold,
the interfered avatar SUs or the real IU will be released as
the “avatar” IU and the respective interfering SUs will be
excluded.

5.4 IBA Adaptive Sampling

If the interference threshold for all users in the location
cloaking set is not violated at ti , the DPavatar scheme
then verifies whether to perform DP obfuscation or not.
The reason is that each obfuscation comes at the cost of
privacy budget (ε) while the total budget is constant. We
are thus motivated to apply a sampling mechanism to select
certain time instants for the DP obfuscation while reusing
the previously released avatar IU between two consecutive
obfuscation time instants, as shown in Fig.2. Although in
this way the budget can be saved for future usage, using one
avatar IU for a long time may cause power interference to
other avatars or even the real IU. Based on this observation,
we need to design an adaptive sampling mechanism by
jointly considering the incurred power interference and the
remaining privacy budget.

The previous work [34] in the context of numerical
data (or histograms) publications adopt PID control [35]
to adjust the sampling rate according to historical data
dynamics. However, the framework therein uses a fixed rate
sampling scheme and allocates equivalent budget to each
predefined sampling time instant, which is not desirable in
our setting to keep tracking of aggregated power interfer-
ence (i.e., feedback error) as well as the remaining privacy
budget and to adjust the sampling rate on-the-fly. In this
paper, we propose a novel Interference and Budget Aware
adaptive sampling mechanism based on feedback error to
cast a balance on power interference and remaining privacy
budget. In particular, we use the PID control to characterize
the effect of power interference on sampling intervals, and
then determine the next sampling time instant by jointly
considering the remaining privacy budget.

In our framework, the feedback error measure is defined
as the proportion of the power interference increase between
two sampling time instants to the remaining interference
tolerance budget, as shown below:

Etn =
(
Ptn

int − Ptn−1
int

)/
max{Λth

u∗−Ptn
int, 0}, (12)

where Ptn
int = max{Ptn

int,u1
, Ptn

int,u2
, ..., Ptn

int,uK
} measures the

largest power interference level of one particular user in
the location cloaking set. We treat every user equally so
that adversaries cannot deduce extra information from the
variation of sampling time instants.

Furthermore, the remaining interference tolerance bud-
get defined in (12) captures that the feedback error is infinity
if the interference power exceeds IU’s threshold, whereas

the feedback error is a proportional measure of the interfer-
ence increase if not. Then, we can apply the PID control to
evaluate the effect of feedback errors on the sampling rate.
First of all, the PID error control law ∆ is defined as follows:

∆ = CpEtn + Ci

∑n
j=n−Ti+1 Etj

Ti
+ Cd

Etn − Etn−1

tn − tn−1
(13)

where the first term represents the proportional error with
Cp being the proportional gain which amplifies the current
error; the second term is the integral error standing for the
accumulated error in the past Ti integral time window and
Ci denotes the integral gain; the third term is the derivative
error capturing the predicted errors to prevent large errors
in the future with Cd being the derivative gain. In general,
the control gains Cp , Ci and Cd denote the weights that
account for the final calibrated PID error control and they
satisfy the following constraints:

Cp,Ci,Cd ≥ 0
Cp + Ci + Cd = 1

(14)

From our prior discussion, we know the sampling rate
should increase when the feedback error is high. In other
words, avatar IUs should be frequently released to suppress
the power interference due to the incoming SUs. With this in
mind, the adjusted new sampling interval (the time between
two sampling time instants) can be determined as:

I
′

= max{1, I + θ(1 − e∆−ν ·λr )}, (15)

where θ is the system parameter to adjust the sampling
interval and ν is the scaling factor to unify the PID error
control and the remaining budget λr which is 1

εr
. Here,

we assume the smallest sampling interval is 1. The time
unit could be in any degree of granularity such as seconds,
minutes or hours depending on the time scale of SUs’ join-
ing rate. The reason of applying (15) to determine sample
interval is as follows. It is intuitive that the sampling interval
I is a decreasing function w.r.t. PID control error ∆ and
remaining privacy budget εr . In other words, obfuscation
should be applied frequently when PID error is large (to
avoid interference) or when there is enough privacy budget
left (to select an avatar with high utility). That is to say εr
(or λr ) and ∆ jointly affect whether the sampling interval
should be reduced or increased. Thus, ν is introduced as a
weighting factor to bias between λr and ∆ for determining
a new sample interval. Specifically, e∆−ν ·λr is greater than 1
when ∆ > ν · λr and the new sampling interval is reduced;
and e∆−ν ·λr is less than 1 when ∆ < ν · λr and the new
sampling interval is increased.

5.5 Dynamic Budget Allocation

Next, if ti is the sampling time instant, it implies that the DP
obfuscation should be performed over the location cloaking
set. Thus, our next objective is to determine the amount of
privacy budget to be allocated for the obfuscation.

In this section, we propose a dynamic budget allocation
mechanism that adapts to the variation of sampling inter-
vals and allocates privacy budget accordingly to guarantee
(ω, ε)-privacy in the sense that the sum of budget usage
within any sliding window of length ω is less than the
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total budget ε . Recall that in the prior IBA adaptive sam-
pling mechanism, the sampling interval decreases when the
feedback error increases. In other words, we anticipate more
sampling time instants within a time window of length ω,
which as a result leads us to allocate smaller share of budget
at each sampling time instant so that more available budget
will be reserved for the successive ones. On the contrary,
when the feedback error decreases, we have fewer sampling
time instants within the ω time window and thus a large
fraction of remaining budget can be allocated at the current
sampling time instant to preserve utilities.

With this in mind, we need to first obtain the remaining
budget in window [n − ω + 1, n] as εr = ε −

∑i=n−1
i=n−ω+1 εi .

Next we need to determine the fraction of privacy budget to
be allocated at the current sampling time instant. Based on
our previous analysis, we realize the logarithmic function
can perfectly capture the relationship between the sampling
interval I

′

and the fraction f . Thus, we define the amount
of the privacy budget allocated at the current sampling time
instant as follows:

εn = min{µ ln(I
′

+ 1) · εr, εth} (16)

where µ is the normalizing factor to scale the fraction in (0, 1)
and we use ln(I

′

+ 1) instead of ln I
′

in order to avoid zero
since I

′

could be 1. Besides, the reason we setup a minimum
privacy budget is to prevent from leaving too few budget to
the future.

5.6 Differentially Private Location Obfuscation
Given location cloaking set X, our scheme achieves differ-
ential privacy (with privacy budget εn) on it to protect IU’s
location. We attempt to obtain an optimal obfuscation mech-
anism A(·|·) in such a way that the utility loss is minimized
while the differential privacy guarantee and the interference
protection are satisfied. In particular, the mechanism A(·|·)
achieving differential privacy means that any two users
in the location cloaking set have approximately the same
probability (within a factor of eε) to generate the released
avatar IU. The utility loss in our context is defined as the
loss in spectrum efficiency.

In our proposed scheme, operating SUs instead of non-
existing dummy users are selected to obfuscate the real IU’s
location. The benefit is that when an avatar SU is released as
an IU, it is protected from harmful interference so its quality
of service is guaranteed. Even though the avatar SU rejects
its interfering SUs in the same way as the real IU, the overall
spectrum efficiency loss is much less than that by relying on
non-existing users. Specifically, the utility loss in spectrum
efficiency (bits/s/Hz) by releasing avatar u as IU can be
described as follows:

c(u) =
∑
u
′
∈Iu

log2(1 +
PRx(u

′

)

Pint,u′ + N0
)−[

log2

(
1 +

PRx (u)
min

{
Λth
u∗, Pint,u

}
+ N0

)
− log2(1 +

PRx(u)
Pint,u + N0

)

]
(17)

where PRx(∗) is the receiving power at a particular user
and Pint,∗ is the aggregated interference power on that user
which can be calculated in the same way as in (11). Note that

the first term represents the loss of spectrum efficiency by
expelling SUs while the latter two terms in square brackets
indicate the spectrum efficiency gain due to elevating the
avatar SU to become the IU. In particular, if the real IU is
released, the utility loss in spectrum efficiency is calculated
as follows:

c(u∗) =
∑
u∈Iu∗

log2(1 +
PRx(u)

Pint,u + N0
) (18)

With the utility function defined as above, we also as-
sume a prior π over X, representing the probability of the
real IU being at any location at any given time. Therefore,
given the allocated privacy budget εn at nth sampling time
instant, we can construct an optimal mechanism by solving
a linear optimization problem, minimizing the expected
utility loss while satisfying εn-differential privacy:

minimize
A

∑
xu∗,xû ∈X

π(xu∗ )Pr (A(xû |xu∗ ))c(û)

subject to Pr (A(xû |xu∗ )) ≤ eεnPr
(
A(xû |x

′

)

)
xu∗, x

′

, xû ∈ X∑
xû ∈X

Pr (A(xû |xu∗ )) = 1 xu∗ ∈ X

0 ≤ Pr (A(xû |xu∗ )) ≤ 1 xu∗, xû ∈ X

E(Pint,u∗ ) ≤ Λ
th
u∗ xu∗ ∈ X

(19)
In the above optimization problem, the first three con-

straints are set to guarantee differential privacy while the
last constraint is to make sure the expected interference to
the real IU by releasing û does not exceed the threshold.
More explicitly, the fourth constraint can be written as
follows:∑

xu∗ ∈X

∑
x
û
∈X

π(xu∗ )Pr (A(xû |xu∗ ))
∑

u∈Iu∗ \Iû

Puhu,u∗ ≤ Λth
u∗ . (20)

We also observe that there are |X|2 decision variables
and up to O(|X|3) constraints in (19). Based on our analysis
at Section V.A, it is clear that with the increasing size of
the location cloaking set, the IU’s location privacy is better
preserved but the computational complexity will increase
dramatically. We will examine this tradeoff in the following
evaluation section. As far, after the optimal obfuscation
strategy A is obtained, the SAS database could follow this
probabilistic distribution and release the avatar IU accord-
ingly. To have a clearer picture of the working flow and
interactions of the above-mentioned mechanics, Algorithm
2 sketches the outline of DPavatar protection scheme.

6 PRIVACY ANALYSIS

We show in this section that the design blocks, namely
the location cloaking set and the IBA adaptive sampling,
leaks no extra information to adversaries facilitating their
attacks to our scheme. Based on that, we prove the proposed
DPavatar scheme achieves (ω, ε)-privacy over the IU’s oper-
ating time. Before the analysis, we pose one fundamental
assumption that adversaries cannot manipulate the SAS
database by registering fake SUs at certain locations due
to the authentication process.

Firstly, the location cloaking set is constructed to pre-
serve reciprocity through searching for the MIS and then
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Algorithm 2 DPavatar Protection Scheme

Input: user join/leave dynamics; channel fading model;
system parameters: ε, ω, θ, υ, εth , µ, Cp , Ci , Cd ; IU’s
parameters: Λth

u∗ , ϕ, xu∗ ; the next sampling time instant
ns, the time span N .

Output: xû
1: construct the location cloaking set according to Alg.1;
2: ns← 1; I ← 1
3: for n = 1:N do
4: for i = 1:K do
5: if Pn

int,ui
> Λth

u∗ then
6: release xns

û
← xnui ;

7: jump to Step 3;
8: end if
9: end for

10: if n == ns then
11: n is the sampling time instant;
12: calculate Pn

int according to (11);
13: calculate PID error ∆ according to (13);
14: update interval I

′

according to (15);
15: ns← ns + I

′

; I ← I
′

;
16: compute remaining budget εr = ε −

∑i=n−1
i=n−ω+1 εi ;

17: calculate budget allocation εn from (16);
18: solve the optimization problem (19) and obtain A;
19: release xn

û
according to A;

20: else
21: n is not the sampling time instant; keep using xns

û
;

22: end if
23: end for

using Hilbert curve. Although the number of MISs in a
graph is dependent on the number of vertices n and edges,
normally for a random graph (without adversarial manipu-
lations) like our scenario, the number of MISs containing the
real IU is at least n1−τ (τ is a small value) whereas the num-
ber of elements in any MIS is almost surely 2 (1 + O (1)) log2n
[36]. This indicates that the operating SUs and adversaries
have extremely low probability to discern the IU from the
MIS phase when the number of operating SUs are large. On
the other hand, the sufficient number of elements in any MIS
guarantees the Hilbert curve can be applied to construct the
location cloaking set to preserve reciprocity.

Secondly, it seems that adversaries can learn from the
change of sampling intervals to gain extra information about
where the IU is. However, the IBA adaptive sampling block
calculates the sampling interval based on the maximum
power interference to all the users in the location cloaking
set. By doing so, adversaries cannot deduce the specific user,
to which the power interference causes to, actually results in
the variation of the sampling interval.

Last but not least, we argue that the DPavatar scheme
preserves (ω, ε)-privacy for the IU from t0 to tN . First of
all, the DP obfuscation scheme is applied to the location
cloaking set that has been proven to be private and it
cannot be manipulated in any stage. Then, we see that the
dynamic budget allocation guarantees that

∑i=n−1
i=n−ω+1 εr ≤ ε

for any slide window of size ω, and at any sampling time
instant εth ≤ εn ≤ ε. Therefore, the DP obfuscation at any
time instant is εn-differential privacy and consequently, the

DPavatar scheme is (ω, ε)-privacy across t0 to tN .

7 PERFORMANCE EVALUATION

In this section, we conduct simulations to evaluate the
performance of our DPavatar scheme, and compare it with
other differentially private mechanisms on utility and pri-
vacy.

We focus on an 13×13 Km2 geographical area, where the
IU could possibly operate. At the initialization as shown in
Fig.6, we randomly generate 50 users and scatter them into
this area. We select randomly one and set it as the IU, for
instance the solid dot in Fig.6, whose interference tolerance
threshold is assumed as 0dBm and personalized privacy
requirement is ϕ. For the channel model, we consider the
large scale fading which is described as PRx = γd−ξPTx

[37]. Here, we set the antenna gain γ=2.5, the transmitting
power PTx=10W and the path loss factor ξ=4, while d is the
Euclidean distance between transceiver pairs. We assume
that two nodes interfere with each other when the inter-
ference power exceeds -40dBm and we can therefore build
a bipartite interference graph for these users, as shown in
Fig.6. Also considering the AWGN channel, we assume the
noise power N0 = 10−9W. Since we consider the real-time
scenario, we assume that the IU’s operation duration is 30
minutes and the granularity of SUs’ joining/leaving rate is
in seconds. To be specific, we set each time interval to be
10 seconds, during which with probabilities α and β one SU
joins and leaves the DSA system, respectively. Equivalently,
we can claim that on average the SUs’ net arrival rate is
ρ = 6 (α − β) users/minute. Note that here the departing SUs
are those who finish their services but not the expelled SUs.
On the other hand, incoming SUs are admitted according to
SAS database access control and they are randomly placed
in this area. In the simulation, we set {Cp,Ci,Cd} = {1, 0, 0},
θ=5, υ=0.1, εth=0.3, µ=0.1 while privacy budget ε and time
window ω are evaluated to examine their impacts on the
performance.

2 Km

Figure 6: The initialization of simulations, where 50
users are distributed in an 13×13 Km2 area and their
bipartite interference relationship is also given.

The metrics we use in the evaluation are the following:
the size of X, the computational time in DP obfuscation,
the utility loss concerning spectrum efficiency, the privacy
in terms of the adversary’s expected inference error, the
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Figure 7: System performance at a given sampling time instant.

aggregated power interference to the IU. We examine how
the designed variables impact the system performance with
respect to these metrics.

7.1 Performance of the Obfuscation at a Sampling Time
Instant
First, we focus on evaluating the performance at one specific
sampling time instant when the obfuscation mechanism is
performed. Simulations are conducted for the IU being at
any of these 50 possible locations and we then take the
average of 100 independent runs.
|X| vs. ϕ. To perform location obfuscation, the location

cloaking set should be constructed by taking the adversary’s
prior knowledge into consideration. Fig.7a indicates the
impact of privacy parameter ϕ and ε on the selection of
the location cloaking set. For the same ε, with the increase
of ϕ, the cloaking set size (technically, the lower bound)
becomes larger because more SUs should be included for
obfuscation to satisfy the IU’s higher error (location privacy)
demand. On the other hand, for the same ϕ, the cloaking set
size increases when ε increases, which coincides with our
theoretical analysis on (7).

Utility loss vs. ε. At the sampling time instant when
the location obfuscation is performed according to the opti-
mization problem (19), we can see that the lower the ε is, the
tighter the differential privacy constraint (the 1st inequality
in (19)) is, which results in more similar probabilistic dis-
tributions for every cloaking user. As a result, the released
avatar may not be the one giving low utility loss. When ε
increases, the utility loss decreases but barely changes when
ε becomes large enough as shown in Fig.7b, which coincides

with our intuition about differentially private mechanisms.
On the other hand, given the same ε, the utility loss de-
creases when ϕ increases. The reason is that larger ϕ gives
bigger cloaking set which includes more SUs, which takes
advantages of user diversity and could possibly generate
an avatar with low utility loss. However, we shall see later
that the increase of cloaking set has negative impact on the
power interference to the IU.

Utility loss comparison. We compare the utility loss in
our scheme with the loss by applying exponential mech-
anism [23]. The results are shown in Fig.7c, from which
we can see that our differentially private mechanism by
solving an utility-based optimization problem outperforms
the exponential mechanism at any value settings of privacy
parameters. Besides, the trend of the utility loss regarding
different values of privacy parameters coincides with the
previous results.

Location privacy comparison. Next, we show the com-
parison with respect to the location privacy provided by
our scheme and the exponential mechanism. As shown
in Fig.7d, our scheme at most locations provides higher
expected inference error or location privacy than the expo-
nential mechanism. It is interesting to note that the reason
for the large variation of inference error in our scheme
is that different locations creating the cloaking set have
different utility loss values, which is taken into account in
the obfuscation mechanism by solving the optimization (19).

Computational Cost for Solving Problem (19)
{εth, ϕ} |X| Time(s)
{0.1, 0.7} 5 0.0156
{0.25, 0.7} 10 0.1092
{0.25, 0.725} 15 1.7316
{0.27, 0.725} 20 8.7985

Table 1: Execution time of our obfuscation approach for
different values of ϕ, εth .

Responsiveness: From previous analysis, we know that
larger cloaking set increases adversaries’ expected inference
error. Here we examine the computational time for solving
optimization (19) w.r.t. different sizes of cloaking set. Note
that the delay of our framework mainly comes from con-
structing the location cloaking set, calculating privacy bud-
get and solving optimization problem (19). On one hand,
the cloaking set construction is a one-time computation at
the system initialization which can be considered to have
no impact on the responsiveness of our framework in later
time. On the other hand, solving optimization problem (19)
dominates the delay of our framework while the overhead
for calculating privacy budget can be neglected. Thus, we
only consider the responsiveness of our framework accord-
ing to the delay incurred in solving (19). The measurements
are based on a desktop of Intel i3 processor and 8GB mem-
ory while we use Simplex algorithm to solve problem (19).
Table 1 shows that the execution time of our obfuscation
approach increases for larger size of cloaking set. However,
we anticipate that using spanning graph to approximate the
Hamming distance of (19) as in [18] and higher computing
capacity in real SAS database (e.g., enterprise-level comput-
ers) the responsiveness of our framework will be highly
improved.
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Figure 8: Impact of design variables ε, ω on system perfor-
mance.

7.2 Real-time Performance

Now, we examine the system performance in real-time with
SUs joining in and departing from the targeted area. The
number of time instants during IU’s operation duration can
be calculated as N = 180. Here, we fix the IU’s personalized
privacy requirement ϕ as 0.7.

Sampling Times vs. ε First, we set ω = 20 and examine
how the total privacy budget affects the number of sampling
points. Here, the sampling point is the time instant when
the obfuscation is about to execute. As shown in Fig.8a, the
number of sampling points increases with the increase of
ε since more privacy budget allows our scheme to squeeze
in more sampling time instants in any ω sliding window
and each of them could be allocated with a fair amount
of ε. Besides, given ε, more incoming SUs cause higher
power interference to users in the location cloaking set so
the number of sampling time instants increases to suppress
the interference.

Sampling Times vs. ω Here, we set privacy budget
ε = 2.0 and vary the length of sliding window to see its
impact on number of sampling points. As shown in Fig.8b,
the number of sampling points reduces when ω increases.
The reason is intuitive in the sense that with ε being fixed,
the sampling rate is lower when the window size increases
in order to save the privacy budget. On the other hand, the
more incoming SUs also increases the number of sampling
points for the same reason we described previously. It
should be noted that the number of sampling time instants
affects the computational complexity of the SAS database
system since it needs to solve optimization problem (19).

Total utility loss vs. ε Besides the complexity cost we
envision, we now show the total utility loss w.r.t. the design
parameter ε and ω. First, by setting ρ = 5, we conduct
simulations to examine the impact of ε on the total utility
loss and the results are shown in Fig.8c. Clearly, higher
privacy budget gives larger utility loss since our observation
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Figure 9: Utility/interference error tradeoff w.r.t. design vari-
ables.

at Fig.8a indicates that more frequent obfuscation happens
when the privacy budget becomes higher. As a result, the
avatar is released more often to expel interfering SUs which
brings down the total utility.

Total utility loss vs. ω The same effect can be observed
for the design parameter ω as shown in Fig.8d. Larger
sliding window size reduces the total utility loss because
the obfuscation is not performed frequently enough and not
many SUs are expelled.

From the previous analysis, it seems that ε and ω should
be designed in such a way that the obfuscation times must
be as few as possible to reduce the utility loss. However,
we shall see that there is a tradeoff between the utility loss
and the IU’s interference error, which should be balanced by
selecting appropriate ε and ω.

Utility loss vs. interference error w.r.t. ε. First, we
examine the tradeoff between the total utility loss and the
IU’s interference error w.r.t. ε. Here, the interference error
is averaged across the total time horizon (i.e., N = 180)
and ω is set to 20. The result shown in Fig.9a indicates
that higher privacy budget gives lower average interference
error since more obfuscation are performed so that avatars
are frequently released to suppress the power interference.
On the other hand, an opposite phenomenon is observed for
the utility loss curve, whose analysis was given previously.
Therefore, there is a clear tradeoff between these two mea-
suring quantities and ε should be chosen to cast a balance
between them.

Utility loss vs. interference error w.r.t. ω. Similarly,
when we conduct simulations on the tradeoff relationship
w.r.t. ω, the result shown in Fig.9b implies the same ob-
servation. Actually, the design goal should be that ε and
ω are chosen to cause as few obfuscation as possible while
satisfying the IU’s interference error below the threshold.

7.3 Performance Comparison with Other Schemes
To assess the performance of our scheme compared to other
state-of-the-art ones, we refer to Clark et al. [5] and Bahrak
et al. [8] as benchmark schemes. Both works focused on
location preservation for static IUs under a strong adver-
sary assumption that all SUs are malicious. Specifically, the
former work applied power allocation randomization and
false location injection interchangeably to maximize IU’s
privacy-preservation time (coined as Clark’16) whereas the
latter one obfuscated IU’s location in a larger area (coined
as Bahrak’14). Since our work is based a weaker adversary
assumption that operating SUs are not malicious, to make
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Figure 10: Comparison with the state-of-the-art schemes.

a fair comparison, we adopt the same threat model as in
[5], [8] so the IU has to inject dummy locations whose
release still ensures differential-privacy guarantee (coined
as mDPavatar). However, one can easily expect that the total
spectrum-efficiency loss increases as the IU introduces more
dummy locations to substitute the untrusted SUs. A simple
numerical simulation for an anonymity set of k = 15 over
N = 200 time instants is conducted as shown in Fig.10a.

Note that the simulation settings in Clark’16, Bahrak’14
and our work are different, so we adopt them in our setting
for fair comparison. Besides, we follow [5] and break the
whole area into small grids, each of which only has one
user. IU’s privacy is then evaluated using Eq.(3) but the
Euclidean distance measurement is applied to unify these
three schemes. Moreover, we let these schemes run sufficient
amount of time and the total utility loss is then calculated.
With respect to a Bayesian adversary in both our work and
[5], the IU’s corresponding privacy level can be derived after
sufficient runtime (or adversary’s inference periods).

Since there is a clear tradeoff between privacy and utility,
we only compare the utility of these schemes for the same
privacy target. Here, we set the privacy level to be 4.3Km
and then randomization parameters of these designs can
be traced backward. Specifically, in our design, the bud-
get of {εth, ϕ} = {0.25, 0.725} gives an anonymity set of
size 15, which satisfies the above privacy level. Similarly,
Clark’16 is estimated to apply a uniform distribution of
mean 3.7dB to reduce SUs’ power assignment profile for a
setting of PTx = 10W and a new IU’s interference threshold -
80dBm and this calculation is based on their proposed single
PU error (SPE) adversarial estimation scheme. In addition,
Bahrak’14 is expected to generate a protected contour of
16.81 × 16.81Km2 to provide the same privacy level. Notice
that a protected contour of such size covers the whole region
of interest so Bahrak’14 serves as the baseline case where the
utility loss is the maximum.

Simulation results are shown in Fig.10b. It is clear that
our scheme causes the least spectrum-efficiency loss over
a long time period, but the performance gap between our
scheme and Clark’16 shrinks as the IU operates longer
time. The reason is that when N is relatively small, our
scheme selects an avatar with utility awareness as in (19) but
Clark’16 randomizes power allocation attempting to prolong
the expected time of privacy preservation [5]. However, as N
increases, the gain vanishes as our scheme releases avatars
directly without solving (19) due to power interference from

joined SUs. In other words, our scheme operates similar to
Clark’16 in the sense that dummy records (in mDPavatar)
and obfuscated response (in Clark’16) are applied respec-
tively.

8 CONCLUSION

In this paper, we proposed DPavatar, a real-time differential
privacy framework to preserve IU’s location privacy. This
work novelly leveraged operating SUs as the obfuscated ob-
jects and included them in a location cloaking set, in which
we developed an utility-optimal differentially private mech-
anism. We strategically combined differential privacy with
the expected inference error in our design to improve IU’s
location privacy. Moreover, we adopted the (ω, ε)-privacy
notion to ensure differential privacy guarantee for the IU in
real time. Privacy analysis was given and evaluation results
showed that DPavatar framework can achieve better utility
and location privacy performance than existing solutions
and other differentially private mechanisms.
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