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Analysis
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Abstract—The Internet-of-Things (IoT) becomes a novel paradigm as more and more devices are connected to the Internet, enabling
several innovative applications such as smart home, industrial automation, and connected health. However, the cyber-attack to these
applications is a big issue and countermeasures are in dire need to provide system security and user privacy. In this paper, we address
the traffic analysis attack to smart homes, where adversaries intercept the Internet traffic from/to the smart home gateway and profile
residents’ behaviors through digital traces. Traditional cryptographic tools may not work well due to the effectiveness of adversaries’
machine learning algorithms in classifying encrypted traffic, so here we propose a privacy-preserving traffic obfuscation framework to
achieve the goal. To be specific, we leverage the smart community network of wirelessly connected smart homes and intentionally
direct each smart home’s traffic to another home gateway before entering the Internet. The design jointly considers the network energy
consumption and the resource constraints in IoT devices, while achieving strong differential privacy guarantee so that adversaries
cannot link any traffic flow to a specific smart home. Besides, we consider a hostile smart community network and develop secure
multi-hop routing protocols to guarantee the source/destination unlinkability and satisfy each user’s personalized privacy requirement.
To evaluate the effectiveness of our framework in protecting privacy and reducing network energy consumption, extensive simulations
are conducted and the results demonstrate that our design outperforms other differential privacy mechanism in preserving privacy and
minimizing network utility cost.

Index Terms—Internet-of-Things, traffic analysis attack, differential privacy, Bayesian inference, secure routing, energy efficiency.
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1 INTRODUCTION

IOT is a novel paradigm that encompasses inter-connected
smart devices, such as sensors, actuators, displays, vehi-

cles, home appliances, and etc., which are enabled to com-
municate with one another and collaboratively accomplish
certain goals. It is estimated that there will be more than
50 billion network connected devices by 2020. Such a rapid
development of IoT will foster a variety of novel appli-
cations, such as industrial automation, mobile healthcare,
smart grids, intelligent transportation, and many others
[1]. Among these applications, smart home is one of the
promising IoT practices where home appliances such as
surveillance cameras, medical sensor devices, thermostat,
etc. provide pervasive sensing and can be remotely con-
trolled by home owners or caregivers, providing residents
with the most convenience, comfort and security [2].

Recently, smart home is also becoming a locus for the
health care innovations, such as the Intel’s Health Guide
[3] and GE’s QuietCare [4], as this new paradigm gives the
patients higher freedom and reduces the societal costs. On
the one hand, studies show that in 2003, United States alone
spent $1.7 trillion on health care, with 75% of these costs
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directed toward the treatments of chronic diseases [5], such
as heart disease, diabetes, HIV and cancer. Whereas using
the smart home-based remote health systems, caregivers
can access patients’ health status in a timely manner and
provide them with preventive instructions, helping to avoid
emergency care and hospital admissions, which reduces a
huge amount of societal costs. On the other hand, studies
show that people, especially the elderly, regard their home
as a sanctuary and therefore prefer to stay at home for medi-
cal treatments of the chronic diseases [6], which necessitates
the development of the remote health monitoring systems
in smart homes.

However, for many individuals, home is a foundational
area with the highest level of privacy, but the remote
health systems require the collection, disclosure and usage
of the personal health data, which breeds serious privacy
concerns. For example, a glucometer measuring the blood
sugar level, a spirometer tracking the air entering/leaving
the lungs, and a sleep monitoring sensor recording the sleep
conditions can potentially reveal whether the resident car-
ries diabetes, seasonal allergy-induced asthma, or depres-
sive disorder, respectively. For privacy concerns, patients are
inclined to restrict the access of these data to a limited group
of people like their personal doctors.

To enforce the data confidentiality, integrity and access
control, some protection mechanisms [1] - lightweight cryp-
tography, secure protocols, and privacy assurance - have
already been proposed in current literatures. For instance,
Intel Health Guide [3] applies 128 bit Secure Sockets Layer
(SSL/TLS) technology to encrypt the sensory and control
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data. However, the adversarial side channel attacks like
Internet traffic analysis (e.g., through analyzing packet sizes
and timing) over the encrypted digital traces that the smart
home generates can reveal surprising information about the
traffic’s contents [7], [8]. For instance, Meidan et al. in [9]
shows the effectiveness of identifying smart home devices
by applying machine learning algorithm to the encrypted
network traffic. By doing so, the attacker could identify
what specific health monitoring or actuating devices are
utilized in the smart homes. Furthermore, through contin-
uous observation of the Internet traffic, such as destination
address of the smart homes traffic and the periodicity of the
interactions, the attacker may deduce what type of disease
or health issues the residents have. For instance, if the sleep
monitoring sensor shows intermittent sleeping patterns (i.e.,
traffic exhibiting intermittent bursts) over the night and this
traffic is directed to a phycological clinic, after observing
this pattern for a long period of time, the adversary has
a high confidence to infer that the resident may have the
depressive disorder. Unfortunately, if this health condition
is disclosed to the resident’s colleagues or friends, it may
exacerbate his/her health condition and ruins his/her social
life. Similarly, for other chronic diseases like HIV or other
maternal health issues like miscarriage [10], their unique
serving health devices and periodicity of sensory/medical
instruction data transmissions could reveal many useful
information to the adversaries, which causes great impacts
on the residents’ privacy.

In the smart home-based health systems, all devices
communicate with the health care service providers through
the Internet via a home wireless router (i.e., home gate-
way), so the adversaries could just intercept the network
traffic remotely from the Internet, and extract many useful
health information about the resident. However, the current
countermeasure techniques to defend against traffic analysis
(e.g., onion routing, traffic morphing) on one hand may
not be effective, and on the other hand could result in
huge network resource consumption. A detailed survey for
the common solution tactics are discussed in Section 6. To
this end, it seems that it is difficult for the smart home
standalone to effectively defend against the traffic analysis
attacks given the limited resources it has.

In this paper, we resort the newly introduced concept
called smart community [11] to address the traffic analysis
attack from the network perspective. We intend to explore
how we can manage or maneuver the network resources
to preserve the privacy of each smart home residents in
a better way. This network-level solution features one of
the mostly accepted approaches to manage the IoT security
and privacy [12], especially considering IoT devices are
resource-limited. Here, the smart community is a network
of connected smart homes located in a geographical region.
Home gateways, representing their smart homes, are inter-
connected via wireless multi-hop transmissions using any
radio access technology (e.g., Wi-Fi). The home gateway is a
critical component in this context and it should not only be
considered merely as a communications device but a local
computing platform which executes certain cryptographic
operations for security purposes. The basic idea behind this
approach is that the smart home traffic are intentionally
directed towards and aggregated at certain home gateways

(i.e., “proxy gateways” or “outlet gateways”) before enter-
ing the Internet. This local traffic obfuscation (or “shuffle”)
leveraging other smart devices in wireless environment is
expected to make adversaries unable to link the network
traffic observed from the core Internet to a specific physical
smart home.

Selecting the appropriate proxy gateways is a nontrivial
task when it comes to provide strong privacy guarantees so
that adversaries are incapable of distinguishing the source
of a specific traffic flow. Meanwhile, the proxy gateway
selection strategy should consider network resource con-
sumption (e.g., energy, computing and communications
resources), so that a good balance between privacy and
utility is achieved. Furthermore, when we consider a hos-
tile environment where some smart home gateways are
compromised by adversaries, the multi-hop routing design
between the source and destination is in dire need to ensure
any intermediate or proxy gateway is unaware of where a
traffic flow originates from. To cope with these challenges, in
this paper, we propose an Efficient and Privacy-preserving
traffIc obfusCation (EPIC) framework for connected smart
homes. Our contribution can be summarized as follows.

• We develop a differentially private (DP) mechanism
for the selection of proxy gateways. The DP mecha-
nism aims to minimize the network energy consump-
tion due to multi-hop transmissions while providing
differential privacy guarantee for the smart homes,
and satisfying round-trip delay and computing re-
source constraints in home gateways. The DP mech-
anism design is modeled as a linear optimization
problem, which is solved to obtain each smart home’s
selection strategy.

• To ensure unlinkability between the source and des-
tination home gateways, we propose a directed ran-
dom walk (DRW) scheme for uplink transmissions
and a DRW and flooding hybrid routing scheme for
downlink transmissions. In particular, the downlink
routing protocol is designed to limit the capability
of the intermediate gateway in inferring the source
gateway under a specified level. The overall design is
further coupled with the prior DP mechanism design
and an iterative algorithm is developed to search for
solutions.

• Extensive simulations are conducted based on the
real community topology. We apply the exponential
DP mechanism as the benchmark and numerically
demonstrate that our framework has the advantage
in reducing the network resource consumption and
ensuring the privacy level of smart homes.

The rest of the paper is organized as follows. Section
2 describes the network model. Section 3 presents the
adversarial model and gives necessary preliminaries. The
EPIC framework design is presented in Section 4 and the
performance evaluation is followed in Section 5. We give
a brief survey of related work in Section 6, and draw a
conclusion in Section 7.
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2 NETWORK MODEL AND DESIGN OBJECTIVE

2.1 Network Model

We consider a smart community consisting of M wirelessly
connected smart homes1, as shown in Fig.1, which are
indexed as M = {1, 2, ...,m, ..., M } with the physical loca-
tion being represented as X = {x1, x2, ..., xm, ..., xM }. Each
home gateway has a wired connection to the Internet and
wireless interfaces to connect with other home gateways.
Smart homes in the community form a multi-hop mesh
network with communications resources (e.g., transmission
power, frequency channel) being controlled by the smart
community center. In this work, we assume the communi-
cations resources are well coordinated and each smart home
is aware of the global topology of the wireless multi-hop
community network. The home gateway is not merely a
communications device but rather assumed to carry com-
puting capabilities to perform computations such as encryp-
tion/decryption and pseudonym generations. We assume
a heterogeneous scenario where the computing capabilities
(e.g., in unit of CPU cycles) of smart homes are denoted as
C = {c1, c2, ..., cm, ..., cM }.

Figure 1: Smart community: a network of connected
smart homes

For the private and secure data communications, a mul-
tiple pseudonym techniques can be applied for each home
gateway to generate pseudonyms {pidm}, and we assume
home gateways be distributed public/private key pairs
(pkm, skm) at the system initialization. The communications
in smart home IoT environment is a two-way process,
where home gateways aggregate and send the intra-home
IoT sensory traffic to the Internet or clouds (i.e., uplink
transmissions) while the control messages are streamed to
the IoT devices via home gateways (i.e., downlink trans-
missions). All the traffic here could be encrypted to ensure
data confidentiality, authenticity and access control, but this
design is not the focus of our work.

2.2 Design Objective

To protect smart homes from attackers conducting traffic
analysis, we aim at designing for each smart home an ob-
fuscation mechanism A, following which a proxy gateway
is selected as its traffic outlet to the Internet. Upon designing
obfuscation A, we are concerned about the incurred QoS

1. Throughout the paper, we use “smart home” and “home gateway”
interchangeably to represent the same meaning.

and network resource costs, and here in this work the eval-
uation metrics are delay, energy and computing resources
consumption, respectively.

To move one step forward, we develop a secure multi-
hop routing scheme to ensure the unlinkability between the
source smart home gateway and the proxy gateway, when
considering some smart homes in the community may be
curious about the traffic origination.

3 ADVERSARIAL MODEL AND PRELIMINARIES

3.1 Adversarial Model

In this paper, we focus on the side channel attacks where
adversaries monitor the incoming/outgoing network traf-
fic to/from smart homes, employ classification algorithms
to infer activities of smart home IoT devices, and then
create residents’ profiles to gain advantages in conducting
subsequent severe attacks. In assessing the effectiveness of
our approach, we consider the informed adversaries who
are aware of the protection mechanism, i.e., how it works
and the exact obfuscation (i.e., proxy gateway selection)
strategy A. Suppose the adversary employs the Bayesian
inference attack, where for each proxy gateway z being
observed by the adversary, the posterior probability distri-
bution over all community smart homes is used to invert the
noise/randomness added by our mechanism A, and thus,
to estimate the actual source smart home as follows:

h (x |z) =
Pr (x, z)
Pr (z)

=
Pr (z |x) ψ (x)∑

x
′
Pr
(
z |x′ ) ψ (x′ ) = Ax (z) ψ (x)∑

x
′
Ax′ (z) ψ

(
x′
) ,

(1)
where ψ (x) denotes the adversary’s prior knowledge of
where the source smart home is. This information could
come from traffic analysis: for instance, some unique IoT
devices or traffic pattern may help adversaries correlate
it with their side information about some residents, thus
giving adversaries prior information to aid the inference
attack.

Besides, we follow the definition in [13] and quantify
residents’ privacy as the adversary’s expected error in her
Bayesian inference attack as in (1). The calculation is as
follows

privacy (x) =
∑
x
′ ∈X

∑
z∈X
Ax (z) h

(
x
′ |z
)

derr

(
x, x

′ )
, (2)

where derr

(
x, x

′ )
could be the Euclidean or Hamming dis-

tance measure between x and x
′
, which is the adversary’s

error in guessing x.
Inside the smart community, we consider a wireless en-

vironment where some smart homes are honest-but-curious
(HbC), in the sense that they honestly follow the data trans-
mission protocol but are curious where the traffic originates
from.

3.2 Preliminary on Differential Location Privacy

Here, we define the ϵdX-differential privacy on a discretized
location set [14], with the intuition that observed point z will
not help adversaries to differentiate any instance inside this
location set who actually initiates the point z.
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Definition 3.1. A randomized mechanism A satisfies ϵdX-
differential privacy on location set X if for any released location z
and any two locations x and x

′
, the following holds:

Ax (z) ≤ eεdX
(
x,x
′ )
Ax

′ (z) (3)

where dX (·, ·) is a distance metric (e.g., Hamming dis-
tance or Euclidean distance), which expresses the distin-
guishability level between x and x

′
. Given the location set,

obfuscation can be performed to satisfy differential privacy
following approaches such as 2-dimensional Laplace dis-
tribution [14], utility-optimal mechanism [15], exponential
mechanism [16] and so on.

4 EPIC: A FRAMEWORK TO PROTECT SMART
HOMES IN IOT ENVIRONMENTS

4.1 Utility-Aware DP Proxy Gateway Selection

Conventional obfuscation mechanisms (e.g., K-anonymity)
only rely on syntactic privacy models and lack strong pri-
vacy guarantee. In our design, we apply the ϵdX-differential
privacy, which limits privacy leakage by bounding the rel-
ative information (between prior and posterior) gain of the
adversary, regardless of what kind of prior information the
adversary may have. However, in a resource-constrained
IoT environment, here the smart homes, traditional DP
mechanisms (e.g., exponential or 2-D Laplacian approach)
may not be cost-effective or even workable. Therefore, in
this work, instead of applying existing schemes, we develop
a novel DP obfuscation mechanism in our smart home IoT
context, to achieve minimum utility cost while providing
DP guarantee. The design is cast into solving a convex
optimization problem and we will elaborate it in details as
follows.

4.1.1 Delay Constraint
Suppose A is the DP mechanism we aim to obtain. When
smart home x follows the distribution Ax to decide the
proxy gateway z as its traffic outlet from/to the Internet,
certain delay is incurred due to multi-hop transmissions.
Denote tprop and tproc as the propagation and processing
time, respectively. If the traffic has a delay requirement,
such as the urgent health instruction data, the following
constraints must be satisfied:∑

z∈X
Ax (z) ·

[
ntprop + (n + 1) tproc

]
≤ Tul,∀x ∈ X;∑

z∈X
Ax (z) ·

[
ktprop + (k + 1) tproc

]
≤ Tdl,∀x ∈ X;

(4)

where n and k represent the number of hops for uplink and
downlink transmissions, respectively, which are dependent
on the source/destination pair (x, z) and the corresponding
routing protocol (i.e., f : (x, z) → n and f is the routing
protocol). In later part of this work, the value of n and k
will be elaborated. Besides, note that the processing time in-
cludes the computation of encryption/decryption (that will
be discussed later) at both source and destination gateways,
which accounts for (n + 1) and (k + 1) times of processing
unit. Tul and Tdl are delay requirements for the uplink
sensory traffic and the downlink control data, respectively.
The constraints in (4) describes that the expected delay

for any smart home x ∈ X by following the obfuscation
distribution A should be less than the required delay. On
the other hand, we could also apply the concept of value-
at-risk (VaR) [17] and model it as a chance constraint of β-
confidence level

Pr
{[

ntprop + (n + 1) tproc
]
≥ Tuplink

}
≤ β,

which can be simplified as Pr
{
n ≥ Tuplink−tproc

tprop+tproc

}
≤ β. Here,

the n is a random variable (r.v.) following distribution of
Ax (z). Suppose the cumulative distribution function (CDF)
of r.v. n is Cn, which can be obtained from Ax (z). Then, the
above chance constraint can be reformulated as follows:

C−1
n (1 − β) ≤

Tuplink − tproc
tprop + tproc

(5)

The downlink delay constraint can be characterized in a
similar manner.

4.1.2 Computing Resource Constraint
Given that the proxy gateway z could be selected by several
smart homes and we shall see later that certain crypto-
graphic calculations are executed at z to ensure secure
multi-hop routing, we should guarantee that the aggregated
traffic at z will not cause overloading at the resource-limited
gateway. This requirement can be captured by the following
constraint: ∑

x∈X
Ax (z) · r (x) ≤ cz,∀z ∈ X, (6)

where r (x) represents the encrypted traffic generated from
source smart home gateway x and the cz is the computing
capability of proxy gateway z measured in CPU cycles. For
instance, if the gateway carries 2.8GHz Core 2 family CPU,
the speed for CTR mode of encryption is 230 MB/s (inter-
ested readers are referred to [18] for details), which means
the aggregated incoming traffic rate should be smaller than
that. Note that the constraint (6) could also be reformulated
using the concept of VaR similar to inequality (5).

4.1.3 Problem Formulation
To this end, we can construct the utility-aware DP proxy
gateway selection mechanism as an optimization problem,
which minimizes the expected utility cost while satisfying
ϵdX-differential privacy:

Min
∑
x∈X

∑
z∈X
Ax (z) ·U (x, z)

s.t. Ax (z) ≤ eεdX
(
x,x
′ )
Ax

′ (z) , ∀x, x
′
, z ∈ X∑

z∈X
Ax (z) = 1, ∀x ∈ X

0 ≤ Ax (z) ≤ 1, ∀x, z ∈ X∑
z∈X
Ax (z) ·

[
ntprop + (n + 1) tproc

]
≤ Tul,∑

z∈X
Ax (z) ·

[
ktprop + (k + 1) tproc

]
≤ Tdl,∑

x∈X
Ax (z) · r (x) ≤ cz .

(7)

To convey our basic design philosophy, we utilize (4)
and (6) as the optimization constraints and leave the chance
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Figure 2: Subfigure (a) demonstrates the inefficiency of the pure
random walk scheme due to the routing loop; Subfigure (b)
shows how the hop-based directed random walk mechanism
works, where the dashed arrow-line indicates the possible next-
hop routes.

constraints formulation to the future exploration. Here in
(7), U (x, z) represents the utility function measured in en-
ergy consumption of unit J/bit. U (x, z) is not explicitly
given here as it is related to the secure routing mechanism
design and we will elaborate it later. dX

(
x, x

′ )
is a measure

of Euclidean distance between smart gateways x and x
′
,

whose implication is that if the distance is small, then the
“secrets” (here two smart gateways) should remain indistin-
guishable; while if the distance is large, then the adversary
is able to distinguish the “secrets” from each other. In the
optimization problem (7), we aim to obtain the obfuscation
mechanism Ax (z) for each smart home x and the first three
constraints enforce the ϵdX-differential privacy.

When the secure uplink and downlink multi-hop routing
protocols are developed, which will be elaborated in Section
4.2, the problem (7) becomes an convex optimization prob-
lem, specifically a linear optimization problem. It consists of
|X|2 decisional variables and

(
|X|3 + |X|2 + 4|X|

)
constraints,

which could be solved via tools like CPLEX.

4.2 Secure Multi-hop Routing
In this section, we discuss the routing protocol design for
round-trip transmissions, namely, the uplink sensory data
transmissions from source smart home gateway to the proxy
gateway, and the downlink control data transmissions from
proxy gateway to the source gateway. The design goal aims
at preventing proxy or any intermediate gateways from
knowing the origination of any particular network traffic
flow.

4.2.1 Uplink Routing Design
There exists several secure routing protocols to preserve
source node location privacy/anonymity, such as the onion
routing [19] and the random walk [20]. However, these pro-
tocols introduce large computational cost and energy con-
sumption, which are not suitable in the resource-constraint
smart home IoT environments. In light of this, we leverage
the directed random walk (DRW) mechanism [21], which
is developed from the pure random walk, as our uplink
routing scheme to preserve the privacy of source gateways.

Comparing to the pure random walk scheme that may
generate a routing loop as shown in Fig.2, the hop-based

DRW is more energy efficient as it directs the traffic less
randomly towards the destination. The hop-based DRW is
feasible in our scenario because each smart home stores
the whole network topology and the scheme works as
follows. For each smart home gateway x, it checks its hop
distance to the destination (i.e., proxy gateway z) and also
its neighbours’ hop distance to the destination. Then, the
gateway x divides its neighbours into two sets, one of
which stores the neighbours of equal or larger hop distance
to the destination, while the other records the neighbours
of smaller hop distance to the destination. The gateway x
randomly selects a node x

′
from the latter set with equal

probability as its next-hop node. The algorithm runs on
every intermediate node till the destination proxy gateway
z. At the source gateway x, the following encrypted message
bundle should be created and transmitted following the
above routing protocol:

γx→z =
(
pidx |ul_msg |rn|pvt |(ttl)pkpvt

)
pkz
|z.

The pidx indicates the source of sensory traffic so that the re-
turned control message could be sent back correspondingly.
ul_msg is the encrypted sensory traffic from x; rn, pvt and
ttl represent a random number, the pivot gateway address
and the time-to-live (TTL) value, respectively. These three
parameters are utilized in the downlink transmissions and
we will elaborate later in this section. Here, all these data
are concatenated and encrypted using the proxy gateway’s
public key pkz to provide confidentiality along the multi-
hop transmissions, while the address of proxy gateway is in
plaintext for the intermediate gateways to perform routing.

Following the hop-based DRW routing protocol, the sen-
sory traffic reaches the proxy gateway along the minimum-
hop path. For any source-destination pair (x, z), suppose
the number of hops along this path is n, then the energy
consumption for uplink transmissions can be calculated as

Uul (x, z) = n (Erx + Etx ) , (8)

where Ere and Etx represent the receiving and transmitting
energy consumption measured in J/bit, respectively.

4.2.2 Downlink Routing Design
In contrary to the uplink routing design, the reverse trans-
mission should provide the location privacy/anonymity for
the destination, which is the previous source smart home
gateway x. With this in mind, the prior hop-based DRW
mechanism is clearly infeasible as the destination address
is in plaintext. Therefore, in this section, we introduce a
hybrid of the hop-based DRW and the flooding mechanism
to realize the secure multi-hop routing.

Compared to the pure flooding scheme [22] where the
proxy gateway floods the downlink control messages to the
whole network, our design is more energy efficient in the
sense we initiate the flooding at an intermediate node (a.k.a.,
the pivot gateway) which is in close proximity to the source
smart home so that the flooding mechanism only affects a
subset of the network nodes. However, we shall analyze
later that despite energy efficiency, this design could let
the pivot gateway confine the source gateway in a smaller
geographical area which reduces the privacy level. Clearly,
there is a tradeoff between utility and privacy and therefore,
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(a) Downlink routing scheme
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Figure 3: Subfigure (a) illustrates the mechanism of hybrid
DRW and flooding with the design parameter < s, v >=< 2, 2 >;
subfigure (b) outlines all the candidate pivot gateways in pur-
ple circles.

we will investigate the pivot gateway selection problem in
later part of this section so as to achieve a sound balance
between energy efficiency and privacy.

Firstly, we discuss the basics of the downlink secure rout-
ing protocol as follows. Upon receiving the control message
β = pidx |dl_msg from the cloud or remote homeowners,
where dl_msg could be encrypted, the proxy gateway z
obtains rn and pvt by decrypting the prior uplink traffic
using its private key skz . The pvt indicates the address of
the pivot gateway, from where the data will be flooded. The
proxy gateway then creates the following bundle and sends
it to the pvt following the prior hop-based DRW routing
protocol:

γz→pvt = (pidx |dl_msg)rn |(ttl)pkpvt
|pvt.

When the pivot gateway receives γz→pvt , it decrypts ttl
using its private key skpvt and then floods the message
(pidx |dl_msg)rn into the smart community network follow-
ing the TTL requirement which was initially specified by the
source gateway. For the victim nodes in the flooding area,
only the source smart home gateway x can decrypt dl_msg
using its rn. The downlink routing protocol is also described
in Fig.3a.

It is important to note that selecting the pivot gateway is
a nontrivial task. To be specific, suppose the source gateway
x selects a pivot gateway pvt which is s-hop away from the
proxy gateway and v-hop away from itself. On one hand,
it is obvious that the tuple < s, v > has a great impact
on the network energy consumption. On the other hand,
since the TTL information is known at the pivot gateway,
the location of the source gateway x could be confined
in a small area. For instance, if the TTL is measured in
hop count, the pivot gateway is confident that the source
gateway is one of her TTL-hop neighbours. Clearly, there
exist a tradeoff between utility and privacy, but the DP
mechanism standalone is insufficient in defending against
the inference attack from the pivot node, which is illustrated
as the following theorem.

Theorem 4.1. With the adversaries’s improved prior knowledge,
the differentially private mechanism can only bound the adver-
saries’ knowledge gain, but is incapable of providing absolute
protection against Bayesian inference attacks.
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nected graph of 20 nodes.
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(c) The network-level energy
consumption.

Figure 4: A demonstrative example showing how the selection
of pivot node and design of flooding scheme jointly impact the
privacy and energy consumption.

Proof. See Appendix A. �

To give a insight into this tradeoff and facilitate our
following design, we generate a random connected graph
of 20 nodes in a geographic area of 280×220m2 as shown in
Fig.4a, execute the Bayesian inference attack at two candi-
date pivot nodes, and examine how the selection of pivots
and the design of the flooding mechanism could jointly
impact the privacy level of the source node and the network
energy consumption. The DP obfuscation distributions are
obtained through solving problem (7), and the privacy level
and energy consumption are displayed in Fig.4b and Fig.4c,
respectively. Clearly, the pure flooding over the whole net-
work gives the source node the highest privacy level, but
also generates the largest energy consumption. In contrary,
flooding in a confined area saves energy but compromising
the privacy of the source node. It is also interesting to
point out that selecting pivot 2 for flooding gives higher
privacy than selecting pivot 1, since the density of the
neighbourhood nodes is higher at pivot 2, which is captured
by the concept privacy mass in [23].

To this end, we propose a term called personalized privacy
bound ρx , which is explicitly chosen as the lower bound
by each smart home x ∈ X to defend against inferences
from pivot gateways. Here, we select the pivot gateway
and design the flooding mechanism in such a way that
the network energy consumption is minimized while each
source gateway’s personalized privacy bound is satisfied.
Suppose for each x ∈ X, the set of candidate pivot gateways
Φx is determined from the connected network graph using
x’s adjacency matrix, for instance as shown in Fig.3b. Then
for each candidate pivot gateway pvtxi ∈ Φx , we associate
it with a decisional variable ωx

i ∈ {0, 1}, where ωx
i = 1
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indicates pvtxi is selected and 0 if not selected. For each
candidate pivot gateway pvtxi , denote the set of its infected
network nodes due to flooding as K

(
pvtxi , ttl

)
. Then the

pivot selection and flooding design problem can be cast into
the following optimization problem:

Min
|Φx |∑
i=1

ωx
i · |K

(
pvtxi , ttl

)
| · (Etx + Erx )

s.t.
|Φx |∑
i=1

ωx
i

∑
z∈X
Ax (z)

∑
x
′ ∈K (pvtxi ,ttl)

h
(
x
′ |z
)
·d
(
x, x

′ ) ≥ ρx,

|Φx |∑
i=1

ωx
i = 1, ∀x ∈ X

ωx
i ∈ {0, 1} , ∀x ∈ X

x ∈ K
(
pvtxi , ttl

)
, ∀ttl ∈ Z+.

(9)

where h
(
x
′ |z
)
=

A
x
′ (z)ψ

(
x
′ )∑

y∈K (pvt x
i
, t t l) Ay (z)ψ(y) denotes the poste-

rior probability derived at the pivot node, and Z+ represents
the set of positive integers. Here, each victim node may
receive the same packets from its several neighbours but
we assume it only transmits the packets once. Besides, for
simplicity, we utilize |K

(
pvtxi , ttl

)
|Erx to denote the total

receiving power consumption. Due to the integer nature
of variable ωx

i and the discrete nature of K
(
pvtxi , ttl

)
, the

optimization problem (9) is not easily tractable. However,
observing the non-decreasing property of K

(
pvtxi , ttl

)
w.r.t.

ttl for each pvtxi , we propose a heuristic searching algorithm
for problem (9) in a cost-effective manner. The algorithm is
described in Alg.(1).

Algorithm 1 Heuristic Algorithm for Solving Problem (9)

Input: Network topology of the smart community, v, ob-
fuscation distribution Ax (z), Etx , Erx , and personalized
privacy level ρx .

Output: The design tuple (pvtx, ttlx ).
1: for i = 1 : |X| do
2: Construct xi’s v-hop neighbour nodes in set Φxi ;
3: for j = 1 : |Φxi | do
4: Utilityxij ← 0; ttlxij ← 1;
5: while Utilityxij == 0 do
6: Construct pvtxij ’s ttlxij -hop neighbour nodes in set

K
(
pvtxij , ttl

xi
j

)
;

7: if xi ∈ K
(
pvtxij , ttl

xi
j

)
& privacyxij ≥ ρxi then

8: Utilityxij ← |K
(
pvtxij , ttl

xi
j

)
| · (Etx + Erx );

9: else
10: ttlxij ← ttlxij + 1;
11: end if
12: end while
13: end for
14: (pvtxi , ttlxi ) = arg min(

pvt
xi
j ,ttl

xi
j

) {Utilityxij
}
;

15: end for

The basic idea of the Alg.1 is to search the candidate
pivot gateways for the ones satisfying the first and last
constraint in problem (9). Specifically, the privacyxij equals

to
∑
z∈X
Ax (z)

∑
x
′ ∈K

h
(
x
′ |z
)
d
(
x, x

′ )
while xi ∈ K enforces the

source gateway being in the flooding region. The worst-
case complexity of addressing problem (9) using Alg.1 is
O
(
N2 M

)
, where N and M represent the number of nodes

in the network and the maximum hop distance between
any two nodes, respectively. Note that problem (9) may
not have solutions as the achievable maximum privacy
level is bounded by the size of the network, which means
the pure flooding mechanism provides the privacy upper
bound. Therefore, ρx should be selected lower than that. On
the other hand, for the case that the DP obfuscation gives
the strategy where proxy gateway is the source gateway
itself, the prior design for uplink/downlink secure multi-
hop routing is not necessary.

Upon selecting the pivot gateway for each source gate-
way x, we can calculate its hop distance to any poten-
tial proxy gateway d (pvtx, z) using for instance Dijkstra
algorithm. Thus, the network energy consumption for the
downlink multi-hop transmissions can be calculated as

Udl (x, z) = d
(
pvtx, z

) · (Erx + Etx ) +Utilityx . (10)

Therefore, the utility loss function, which indicates the over-
all round-trip energy consumption, in optimization problem
(7) can be obtained as follows

U (x, z) = Uul (x, z) +Udl (x, z) . (11)

Given all the utility measures are quantified, we could
solve problem (7) and obtain the DP obfuscation A for
each smart home. However, it should be noted that an
iterative algorithm is needed as the problem (7) and (9)
are mutually dependent on each other. In light of this, we
propose an iterative algorithm as shown in Fig.5, where
a DP obfuscation distribution is obtained given a certain
system initialization and the algorithm terminates when the
selected pivot gateway from the prior step is the same as
the one in the current step. In other words, the solution
converges as (pvtx, ttlx ) |t = (pvtx, ttlx ) |t+1 for any x ∈ X.

Utility-aware DP 

Subproblem (5)

Pivot Selection and 

Flooding Design 

Subproblem (7)

Figure 5: The diagram for the iterative algorithm

5 PERFORMANCE EVALUATION

5.1 Privacy Analysis

First of all, to assess the effectiveness of our DP mechanism
in protecting smart homes, we utilize Eq.(2) to quantitatively
show how the privacy of each smart home can be protected
against the Bayesian inference attacks in later section.
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As for the HbC smart homes in the wireless environ-
ment, the uplink DRW scheme only allows any interme-
diate node and the proxy gateway to learn about their
preceding gateway, but being unaware of the number of
hops between source and destination, they cannot find
the source smart home. Furthermore, without any collu-
sion between smart homes, the randomness grows rapidly
for the latter gateways, especially the proxy gateway, due
to the multiple possible paths resulted from the random
selection of next-hop node in the DRW scheme. On the
other hand, the downlink hybrid mechanism of DRW and
flooding also achieves unlinkability between source and
destination gateways. Any intermediate node including the
pivot gateway is unaware of the proxy gateway, while they
can neither know the source smart home due to the flooding
mechanism. However, the pivot gateway could confine the
location of the source gateway in a small area. Later, we will
quantitatively examine how our design could protect smart
homes from pivot gateway’s inference attacks.

5.2 Numerical Evaluation
5.2.1 Simulation Setup
In this section, we evaluate the performance of proposed
framework based on a community in Gainesville, Florida
USA. The geographical map is shown in Fig.6, where a total
of 77 homes are distributed in a 640 × 300m2 area. We adopt
the widely accepted channel model [24] Prx = ηd(x, y)−ζ ·Ptx

and assume transmit power Ptx of 5W , antenna gain η of
5.78 and path loss factor ζ of 4. A communication link exists
between two smart home routers if the received power
exceeds the threshold Pth

rx . Thus, by setting Pth
rx = 2 × 10−6W ,

we can obtain that the transmission range of any smart
home router is 61m. Given this setup, the connected graph
can be generated accordingly and it is shown in Fig.7.
Furthermore, we consider each smart home gateway gen-
erates uplink encrypted sensory traffic of rate 15 MB/s, and
the computing capability for each smart home gateway is
100 MB/s. The energy consumption for transmitting and
receiving data are 0.8 µJ/bit and 0.6 µJ/bit, respectively.
The delay requirement for each smart home is assume to
be 15 µs for both uplink and downlink transmissions, and
the processing and transmission delays are 3 µs and 0.2 µs,
respectively. Moreover, we set the source gateway selects
the pivot gateway from its 2-hop neighbour nodes. In other
words, v = 2.

5 10 15 20 25 30

5

10

15

Figure 6: A geographical view of a smart community

Figure 7: The connected graph of the smart commu-
nity

5.2.2 Benchmark Mechanism
To compare the effectiveness of our mechanism in protecting
user privacy and preserving network utility, we put forward
a benchmark differential privacy mechanism, which is con-
structed using exponential distribution [16]. Specifically, for
any smart home x ∈ X, the probability of selecting z ∈ X as
its proxy gateway equals to

Jx (z) = e
( −εd (x,z )

2∆u

) /∑
y∈X

e
( −εd (x,y)

2∆u

)
, (12)

where ∆u is the sensitivity of the utility function, which
captures the intuition that the longer the distance, the larger
the energy consumption (i.e., utility loss). ∆u is calculated as
follows:

∆u = max
z∈X

max
x,y∈K

|d (x, z) − d (y, z) |. (13)

According to the triangle inequality, for any two nodes
x, y ∈ K in the confined region, |d (x, z) − d (y, z) | ≤ D (K )
where D (K ) is the diameter or the longest distance between
two nodes of any particular region K , so here the sensitivity
∆u is set as D(K ).

5.2.3 Performance Analysis
Firstly, we conduct simulations to examine the performance
of our pivot selection and flooding design in problem (9). As
shown in Fig.8a, the incurred network energy consumption
by each smart home is given. We can see that with the
increase of ρx , the network energy consumption increases,
which is for the reason that the flooding area becomes larger
in order to satisfy the higher personalized privacy bound.
In addition, we shall see that for the same ρx , the network
energy consumption slightly decreases by reducing the DP
parameter ε. The rationale comes from Theorem.4.1 and the
derivations in the appendix, where we have seen that the
smaller the ε, the tighter the DP mechanism bounds the
prior and posterior probability. Therefore, with the smaller
ε, the Bayesian inference attack using the corresponding
posterior probability distribution h (·) causes larger infer-
ence error compared with the one with the larger ε. In light
of this, to achieve a certain privacy bound ρx in our design
(9), a small ε helps alleviate the necessity to generate a large
flooding area, which as a result reduces the network energy
consumption.

On the other hand, Fig.8b demonstrates the convergence
performance when we run the iterative algorithm as shown
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Figure 8: The performance of the pivot selection and flooding
mechanism design.

in Fig.5. Here, ρx is set as 40m. As we can see, the iterative
algorithm converges in a few steps and the convergence rate
is dependent on the design parameter ε. First of all, the
reason that the converged solution gives a higher energy
consumption than the initial value is that the design in prob-
lem (9) aims to provide the bound on user’s privacy level,
which as a result sacrifices the network utility. Secondly,
the larger the ε, the larger variation the DP obfuscation
distributionAx (z) as the bounding effect of the DP property
Eq.(3). Therefore, the iterative algorithm takes more steps to
converge given a larger value of ε.

Next, we compare our design with the benchmark mech-
anism and evaluate how these two designs impact the
network performances, such as energy consumption, round-
trip delay and user privacy. First of all, the ratio of the
energy consumption incurred by exponential DP mecha-
nism over the one caused by our proposed utility-aware DP
mechanism is shown in Fig.9a. It is obvious that the ratio
is always greater than 1 regardless of the design parameter
we select, meaning that the exponential DP mechanism is
(around 10%) less energy-efficient than our utility-aware DP
mechanism. On the other hand, with the increase of ρx or
ε, the advantage of our mechanism over the exponential

DP mechanism slightly decreases for the similar reason we
demonstrated before. Secondly, we show in Fig.9b the user’s
privacy level in terms of the Bayesian inference error mea-
sured in meters. Clearly, our utility-aware DP mechanism
gives higher privacy level than the exponential mechanism.
Besides, with the increase of ε, the privacy level slightly
reduces for both mechanisms because of the loose bound
of the obfuscation probability distribution. Thirdly, as for
the round-trip delay, it can be seen that the exponential
DP mechanism incurs a higher value than our utility-aware
DP mechanism, the reason is easily obtainable by observing
Fig.10, where the exponential DP mechanism generates a
roughly uniform distribution meaning a smart home could
possibly select a proxy gateway that is far away from itself
which results in huge round-trip delay. Moreover, the delay
decreases with the increase of ε for the same reason we
presented before.

To give a deep insight of these two mechanisms, we
randomly select 20 out of 77 smart homes and show how
they differ in generating obfuscation probability distribu-
tions. The result is shown in Fig.10, where node 1 and node
2 are geographically in close proximity but are far from node
20. We can see that Ax for node 1 and 2 are more similar to
each other than Ax for node 1 and 20 or node 2 and 20.
Besides, there are only 5 candidate proxy gateways (node 1,
9, 11, 13 and 16) for them to select from, which is due to the
optimization in (7) for utility concern. On the other hand,
the exponential mechanism applied to the same set of smart
homes gives a relatively uniform probability distribution Jx ,
which inevitably results in a higher utility cost and longer
round-trip delay.

Last but not least, we conduct simulations to examine
how the system parameter could impact the performance
of our framework. The result is shown in Fig.11, where
we can observe that with the increase of smart home data
rate r , the total network utility cost increases due to the
computing resource constraint at smart home gateways,
which negatively impacts the selection of proxy gateways;
whereas the total utility loss reduces as the increase of ε,
meaning a higher ε reduces the utility cost (in terms of both
energy consumption and delay), which coincides with our
observation at Fig.9b and Fig.9c. However, it is interesting
to note that a higher ε causes privacy loss as observed in
Fig.9b, which sheds the light on the fact that the tradeoff
between utility and privacy should be neatly designed via
the tuning knob ε.

6 RELATED WORK

Traffic analysis is by no means a new area of research, and
indeed there have been many research efforts in this do-
main. For instance, by observing encrypted Internet traffic,
some valuable information like the language of a VoIP call
[25] and the passwords in secure shell logins [26] could be
leaked to the network eavesdropper. In this realm, without
directly accessing the data contents, adversaries leverage the
protocol level information (a.k.a., side channel information),
such as packet lengths, IP address/TCP port numbers, and
packet inter-arrival timings, to recover a certain level infor-
mation about the data traffic or devices in the network.
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Figure 9: Performance comparison between two DP mecha-
nisms.

As more and more connected devices feature in ev-
eryday objects, the IoT has become a reality giving users
the most convenience, but the traffic analysis attack is still
applicable in most IoT applications [7], in particular the
smart homes where WiFi is used for connectivity [9]. At
first glance, it may seem that the existing countermeasures
for traffic analysis could be applied in the smart home IoT
environments. However, there are nuances of this applica-
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generated by two DP mechanisms.
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Figure 11: Energy consumption w.r.t. the system pa-
rameter.

tion scenario where the countermeasures should be properly
designed. In what follows, we survey recent work in this
area.

Wright et al. propose a technique called traffic morphing
where one class of traffic is intentionally modified (via
chopping and padding) to look like another class [27]. An
optimal morphing strategy is derived by solving a convex
optimization problem, which aims to reduce the accuracy
of traffic classifier while incurring less overhead. Iacovazzi
et al. in [28] propose a similar technique named traffic
masking via padding, fragmentation or dummy messages to
camouflage the original traffic pattern (e.g., traffic burst).
Luo et al. present several traffic flow obfuscation mecha-
nisms such as injecting dummy request packets or delaying
response packets to defend against timing analysis attack
[29]. In short, the common tactic for mitigating the threat of
traffic analysis is to obfuscate the traffic patterns like packet
sizes, timing and other statistical features of the traffic flow.
However, a recent study by Dyer et al. in [30] demonstrate
that these countermeasures are vulnerable to simple attacks
using naïve Bayes-based classifier that use coarse features
of traffic (e.g., total time and bandwidth). Unfortunately,
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with the advance of machine learning algorithms and more
traffic features being exploited, it is getting even harder to
defend traffic analysis attacks by purely relying on traffic
pattern obfuscation approaches. Moreover, obfuscating a
wide range of traffic patterns also incurs significant over-
head in terms of delay and bandwidth, which is undesirable
in resource-constrained IoT environments.

Based on the aforementioned research work, it is clear
to see that the smart home standalone is incapable of
defending the traffic analysis attacks due to its limited
resources and the inefficacy of the existing countermeasure
techniques. In light of this, leveraging the network level
approach via collaborating with other devices seems to be
the viable way to pursue.

7 CONCLUSION

In this work, we presented an efficient and privacy-
preserving traffic obfuscation framework to defend smart
homes against the traffic analysis attack. We focused on
a resource-constrained IoT environment and exploited the
smart community network of wirelessly connected smart
homes to perform local traffic obfuscation for each indi-
vidual smart home. In particular, we designed a utility-
optimal differential privacy mechanism to obfuscate the
source of traffic flows. A hostile wireless environment was
also considered so we developed a secure and privacy-
preserving multi-hop routing scheme to guarantee the
source/destination unlinkability and to satisfy the user’s
personalized privacy bound. Extensive simulations were
conducted and our framework showed advantages over the
benchmark mechanism in protecting smart home’s privacy
and in reducing the network energy consumption.

APPENDIX A
PROOF OF THEOREM.4.1
Suppose X is the initial protection region, and R is the
region after adversaries excludes a node ∆ ∈ X from X,
in other words R = X\∆, representing the adversaries’
improved knowledge. Thus, for any observed output z ∈ X,
the posterior probability can be constructed to invert the
input x ∈ R as follows:

h (x |z) =
Ax (z) ψ(x)∑

y∈R ψ(y)∑
x
′ ∈R Ax′ (z) ψ(x′ )∑

y∈R ψ(y)

=
Ax (z) ψ (x)∑

x
′ ∈R Ax′ (z) ψ

(
x′
)

=
ψ (x)∑

x
′ ∈R

Ax′ (z)
Ax (z) ψ

(
x′
) ≤ ψ (x)

ψ (x) +
∑

x
′ ∈R,x,x′ e−εd(x,x′ )ψ

(
x′
)

≤ ψ (x)
e−εDR

∑
x
′ ∈R ψ

(
x′
) , or

ψ (x)
e−ε
∑

x
′ ∈R ψ

(
x′
) .

(14)
The first inequality is due to the definition of differential
privacy (3). The last inequality respectively represents the
Euclidean and Hamming distance measures, and DR is the
diameter or longest distance between any two nodes in
region R. From (14), we see that the DP mechanism bounds
the multiplicative distance between the prior and posterior
probability regardless of what specific prior knowledge the
adversaries may have.

Next, we examine how the improved prior knowledge
facilitates the Bayesian inference attack in reducing user’s
absolute privacy level. Following (2), for any x ∈ R, we
prove the privacy metric is monotonically decreasing w.r.t.
the size of the protection region R. First of all, let h (∆|z) = α
for presentation clarity.

privacy (x;R)

=
∑

z∈X
Ax (z)

∑
x
′ ∈R

Ax
′ (z) ψ

(
x
′ )∑

y∈R Ay (z) ψ (y)
d
(
x, x

′ )
=
∑

z∈X
Ax (z)

∑
x
′ ∈X

Ax
′ (z) ψ

(
x
′ )∑

y∈R Ay (z) ψ (y)
d
(
x, x

′ )
−
∑

z∈X
Ax (z)

A∆ (z) ψ (∆)∑
y∈R Ay (z) ψ (y)

d (x,∆)

=
∑

z∈X
Ax (z)

∑
x
′ ∈X

[∑
y∈X Ay (z) ψ (y)∑
y∈R Ay (z) ψ (y)

] Ax
′ (z) ψ

(
x
′ )∑

y∈X
Ay (z) ψ (y)

d
(
x, x

′ ) −∑
z∈X
Ax (z)

A∆ (z) ψ (∆)∑
y∈R Ay (z) ψ (y)

d (x,∆)

=
∑

z∈X
Ax (z)

∑
x
′ ∈X

[1 + α]
Ax

′ (z) ψ
(
x
′ )∑

y∈X Ay (z) ψ (y)
d
(
x, x

′ )
−
∑

z∈X
Ax (z) · α · d (x,∆)

(15)
Therefore, the privacy loss can be calculated as follows:

privacy (x;X) − privacy (x;R)

=
∑

z∈X
Ax (z)

{
α ·

[
d (x,∆) −

∑
x
′ ∈X

h
(
x
′ |z
)

d
(
x, x

′ )]}
.

(16)

• Case 1: when d (·, ·) is in measured in
Hamming distance, (16) is rewritten as∑

z∈X Ax (z) {α · [1 − (1 − α)]}, which is greater
than zero;

• Case 2: when d (·, ·) is in measured in Euclidean
distance,

∑
x
′ ∈X h

(
x
′ |z
)

d
(
x, x

′ )
is the weighted ge-

ometric median of region R. Under the mild as-
sumption that R and X are both convex regions,
d (x,∆) >

∑
x
′ ∈X h

(
x
′ |z
)

d
(
x, x

′ )
.

Thus, privacy (x;X) > privacy (x;R), meaning the inference
error decreases as the protection region shrinks. On the
other hand, privacy (x;R) = 0 if R = {x} as d (x, x) = 0 for
both distance measures. Therefore, we can claim that pri-
vacy level is monotonically decreasing with the minimum
privacy level being zero.

To this end, the Theorem 4.1 is proven.
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