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Abstract

In-home Smart Grid (SG), the integration of Renewable Power Systems (RPSs) with Conventional
Power Systems (CPSs), calls for cost-effective management for the electricity usages of end users’
household appliances. In this paper, by taking the charging process of RPSs and multiple types of household
appliances in to consideration, we have developed analytical models to characterize the electricity cost in
the in-home smart grid. Based on these models, we formulate the electricity cost minimization problem as
a finite-horizon continuous-time Markov decision process (CTMDP), from which we obtain a threshold policy
to minimize the cost. Numerical results show that the threshold policy can manage the electricity usage very
effectively.
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1 INTRODUCTION

Smart Grid (SG) [1], [2] consists of both conventional power systems (CPSs) and renewable

power systems (RPSs) such as solar and wind energy systems. By utilizing the communication

technologies, SG offers many functionalities, such as realtime monitoring and realtime pricing

(RTP) for electricity usages of end users’ household appliances. In particular, the in-home SG

allows end users to manage the energy usage of their household appliances in a cost-efficient

way. Fig. 1 depicts a general system architecture of the in-home SG adopted in many existing

works or products (see, e.g., [1], [3], [4]). The in-home SG is composed of three major subsystems:
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Fig. 1. The general architecture of an In-home SG

the RPS (Fig. 1(a)), the CPS (Fig. 1(b)), and the in-home Energy Management System (in-home

EMS; Fig. 1(c)).

There are three major components in the RPS: the solar panel (Fig. 1(1)), the battery (Fig. 1(2)),

and the DC/AC inverter (Fig. 1(3)). The solar panel gathers the solar power and stores it in the

battery. The DC/AC inverter converts the direct current (DC) provided by the battery to the

alternating current (AC) to serve the household appliances. More details of the RPS can be

found in [3].

In the CPS, electrical power is generated by power plants and delivered to households through

power lines. A smart meter (Fig. 1(5)) performs the appliance power metering task and generates

the report on the electricity usage, and provides the RTP information to end users. The details

of the CPS can be found in [5].

Based on the RTP information and the battery status of the RPS, the in-home EMS determines

whether the power demand from an appliance should be served by either the RPS or the CPS

(Fig. 1(4)). Depending on the availability of renewable energy sources and the RTP information,

different control policies in the in-home EMS will incur different electricity costs, and the power

supplied by the RPS and CPS may differ significantly. As pointed out in [1], [4], [6], the CPS has

sufficient energy to supply power demands from the end users consistently, whereas the power

supplied by the RPS is intermittent, depending on the availability of renewable energy sources

(e.g., solar or wind energy). As described in [7] and [8], the cost of using one unit (i.e., kWh)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2014.2317171

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

energy from the CPS is a function, say f(·), of the current total power (unit: kW) supplied by

the CPS. f(·) will be elaborated in Section 3.1.

In contrast to the RTP, the cost to use one kWh from the RPS is a constant that depends on

the cost of the RPS hardware facilities. If the hardware facilities are damaged due to aging, the

cost of replacing the damaged facilities can be significant. Based on statistical data [9], the cost

to use per kWh from the RPS is around 0.1884 USD.

Most existing in-home EMSs (e.g., in [3]) use the following policy: When a power demand

arrives, it is served by the RPS as long as there exists energy in the battery; otherwise (i.e.,

no energy in the RPS), the power demand is served by the CPS. For ease of reference, we call

this policy as default policy. The default policy may not minimize the electricity cost in an in-

home SG. To address the optimality, we propose a threshold policy to minimize the cost of the

electricity usage. In the threshold policy, in response to power demands of household appliances

with different types of energy usage profiles, we use different thresholds to determine whether

a power demand should be met by the CPS or the RPS. The threshold is dynamically adjusted

based on the current state of the in-home SG, the power demand arrival time, and the RTP

information.

In this paper, we first propose analytical models to characterize the cost for energy usage

in an in-home SG when the default policy is applied. Because the renewable energy sources

exhibit greater variability across timescales, the energy that can be supplied by the RPS is hard

to predict. To smooth out the variability in the RPS, batteries will be deployed. To simplify the

presentation, we term the battery charging/discharging as the “charging process” for the RPS. In

our analytical models, we use a stochastic process to model the charging process for the RPS. We

also consider multiple types of household appliances. The behavior of each type is characterized

by its usage frequency, power requirement, and time duration for its electricity usage. Because

of the uncertainty of the power demands from household appliances, we propose a threshold

policy to minimize the electricity cost by applying finite-horizon Continuous-Time Markov De-

cision Processes (CTMDP) [10]. We conduct numerical study to compare the performance of the

threshold policy against the default policy.

The main contributions of this work are summarized as follows:
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• Our work is of the first few that consider both the charging process on the RPS and multiple

types of household appliances in an in-home SG environment with both the RPS and CPS.

• Our proposed threshold policy is a multi-dimensional policy, i.e., for power demands of

different appliances, different thresholds are used to determine whether the power demands

should be served by the CPS or RPS.

• Our work is the first one that uses the finite-horizon CTMDP to deal with the cost minimiza-

tion problem in an in-home SG. Compared to the previous works based on infinite-horizon

optimization, our model is more amenable to be applied to a real system.

The rest of this paper is organized as follows. Section 2 surveys the related works. In Sec-

tion 3, we develop analytical models for the default policy. Based on the analytical models, we

propose our threshold policy in Section 4. Numerical studies have been carried out in Section 5

to demonstrate the effectiveness of our proposed scheme. Section 6 concludes our work.

2 RELATED WORK

In this section, we survey the previous works mainly on minimizing the cost of electricity

usage in the SG.

The previous works such as [4], [11–13] adopted the offline approach to minimizing the elec-

tricity cost. They mostly assumed that the power demand arrivals and the amount of electricity

that the RPS can generate are known in advance. Based on these assumptions, the researchers

were able to determine the amount of electricity to purchase from the CPS, and then schedule

to serve the power demands. However, because the user behavior of using appliances and

the charging process of the RPS cannot be precisely predicted, the amount of electricity (to

be purchased from the CPS) and the scheduling algorithms may not meet users’ actual needs,

degrading users’ quality of experience. How to manage unpredictable power demands is what

we focus on in this paper.

To enhance the offline scheduling, the works [1], [6], [14], [15] adopted the online approach

to minimize the electricity cost. The in-home EMS references the RTP information to decide

whether the power demands, either new or currently being served, should be postponed or

interrupted for a certain period.
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More specifically, in [6], Koutsopoulos et al. used a CTMDP to minimize the electricity cost.

When a new power demand arrives, if the RTP exceeds a threshold (obtained by CTMDP),

the new power demand is postponed and put into a queue. Otherwise (i.e., the RTP is below

the threshold), the new power demand is served immediately. In [14], Kim et al. classified the

power demands into two categories: noninterruptible and interruptible. When the RTP exceeds

a threshold (obtained by discrete-time MDP), the services for interruptible power demands are

postponed. Based on the deadline constraint for power demands and the RTP information, they

proposed a policy to decide when to resume the service of an interruptible power demand and

when to serve a new power demand. However, the works [6] and [14] did not consider the RPS

and its charging process.

In [15], Alizadeh et al. proposed a policy to determine how much energy to purchase from the

CPS by a day-ahead scheduling, which relies on the prediction of the amount of electricity that

can be produced by the RPS next day. Because the availability of the renewable energy sources

is uncertain, the policy may not precisely determine the right amount of energy to purchase.

In [1], [16], Guo et al. considered the similar issue in [15] with different formulations. Based on

the Lyapunov optimization technique, they obtained online scheduling algorithms to determine

the amount of electricity to purchase from the CPS. In [17], Guo et al. shows that the Lyapunov

optimization technique can also be used to better utilize the green energy and help cloud service

providers reduce the carbon footprint. However, their solution targets at the infinite-horizon

optimization, which may not work well for short-term optimization.

Note that our threshold policy is for a global minimization for the power usage within a day

given that the power demands are unknown, and power demands from the end users can be

served immediately.

3 ANALYTICAL MODEL FOR THE DEFAULT POLICY

3.1 Problem Formulation

As shown in Fig. 1, we consider an in-home SG that consists of the RPS and CPS. In the default

policy, new power demands are served by the RPS whenever there is electricity in the RPS. When

the electricity stored in the RPS runs out, the in-home EMS switches the power demands from

the RPS to the CPS.
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Suppose that power demand arrivals to the in-home EMS form a Poisson process with rate

λJ . and there are n types of household appliances among these arrivals. With probability pk, a

power demand arrival is of type k appliance, where k ∈ {1, 2, . . . , n} and
n∑

k=1

pk = 1.

For a type k power demand, it requests wk (∈ R+) kW for a time period that is assumed to

have an exponential distribution with mean 1/µk hrs. To simplify the notation, we denote the

vector w = (w1, w2, ..., wn), u = (µ1, µ2, ..., µn), 0 = (0, . . . , 0︸ ︷︷ ︸
n terms

) and ek = ( 0, . . . , 0︸ ︷︷ ︸
(k−1) terms

, 1, 0, . . . , 0︸ ︷︷ ︸
(n−k) terms

),

where 1 ≤ k ≤ n.

The charging process for the battery in the RPS is modeled as follows. The number of charges

during the time period [s, t], where t > s > 0, is assumed to have a Poisson distribution with

mean λB(t− s). We assume that all charges are i.i.d. Let X denote the amount of kWh from one

charge, which is assumed to be with a general probability distribution function FC(·). Let Bmax

(units: kWh) be the maximum amount of electricity that can be stored in the battery.

Note that with the exponential assumptions on inter-arrival times for power demand arrivals,

the service time for power demands, and inter-arrival times for charges, our analytical models

can provide mean-value analysis. These assumptions will be released through our simulation

study.

Let S = (SC ,SR, SL) denote the system state, where SC = (SC,1, . . . , SC,n), SR = (SR,1, . . . , SR,n)

and SL ∈ R+. For k ∈ {1, . . . , n}, SC,k (resp. SR,k) denotes the number of type k appliances that

are served by the CPS (resp. the RPS). SL (unit: kWh) denotes the current energy level of the

battery.

Let b (unit: USD/kWh) denote the cost for using per kWh from the RPS. As discussed in

Section 1, on average, b is equal to 0.1884. The price for the usage of the CPS energy should

depend on the aggregated demand from a number of consumers. In other words, if we assume

that all consumers are i.i.d., the dynamic pricing function can be expressed as

f(·) = a×

(
Z∑
i=1

SC,iw
T

)2

.

In the above equation, Z is a random number to model the number of end users. SC,i represents

the SC for end user i, where 1 ≤ i ≤ Z. In this study, to simplify our discussion, we consider
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the case for Z = 1 and follow the previous works [7], [8] to assume f(S) as follows:

f(S) = a× (SCw
T )2 (unit: USD/kWh), (1)

where SCw
T represents the total instantaneous power demand supplied by the CPS and a is

a scaling factor with units USD
(kW)2kWh , which measures the rate of price change response to the

change of (SCw
T )2. Following the previous works [1], [4], [6], for smart grids, we assume that

the CPS has sufficient energy to supply power demands from the end users.

We define three types of events that may occur in the in-home SG:

• The event Jarrival represents that a power demand arrives at the system.

• The event Jdeparture represents that a power demand departures from the system.

• The event charge represents a charge on the RPS.

The random processes for the three types of events are independent Poisson processes with rates

λJ , u, and λB, respectively.

3.2 Electricity Cost for the Default Policy

In this section, we propose an analytical model to characterize the expected electricity cost

when the default policy is applied to the in-home EMS.

Suppose the system state is S(0) = (SC ,SR, SL) at t0. Let ti (where i ∈ N) denote the time when

the ith event (that can be the event Jarrival, the event Jdeparture, or the event charge) occurs

after t0. Let S(i+) = (S
(i+)
C ,S

(i+)
R , S

(i+)
L ) and S(i−) = (S

(i−)
C ,S

(i−)
R , S

(i−)
L ) denote the system states at

lim∆→0+ ti+∆ and lim∆→0+ ti−∆, respectively. By default, we let S(0−) = S(0). Let Vj(S(0)) denote

the expected electricity cost from t0 to tj subject to the initial system state S(0) at t0. We obtain

Vj(S(0)), where j ∈ N, by using the following recursive algorithm.

3.2.1 The First Step

The fist step of the recursive algorithm is to obtain V1(S(0)). Because the three types of events

are independent Poisson processes, t1 − t0 is an exponential random variable with mean γ−1,

where γ = λJ + λB + (SC + SR)u
T . Given the initial state S(0), the service time of the appliances

served by the RPS is unpredictable, so the electricity in the battery of the RPS may run out before

t1. Denote Φ = SL/
(
SRw

T
)
. For any s, t ∈ [t0, t1] and s < t, let C(s, t) denote the electricity cost
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during the time period [s, t). We obtain V1(S(0)) by considering the two cases: {t1 − t0 > Φ} and

{t1 − t0 ≤ Φ}, i.e.,

V1(S(0)) =Pr[t1 − t0 > Φ]E
[
C(t0, t1)

∣∣∣t1 − t0 > Φ
]

+Pr[t1 − t0 ≤ Φ]E
[
C(t0, t1)

∣∣∣t1 − t0 ≤ Φ
]
, (2)

where Pr[t1 − t0 > Φ] = exp (−γΦ), and E
[
C(t0, t1)

∣∣∣t1 − t0 > Φ
]

and E
[
C(t0, t1)

∣∣∣t1 − t0 ≤ Φ
]

are

obtained below:

Case I: t1 − t0 > Φ. In this case, the electricity of the battery in the RPS runs out before the

first event occurs. Since C(t0, t1) = C(t0, t0 + Φ) + C(t0 + Φ, t1),

E
[
C(t0, t1)

∣∣∣t1 − t0 > Φ
]

=E
[
C(t0, t0 + Φ)

∣∣∣t1 − t0 > Φ
]

+E
[
C(t0 + Φ, t1)

∣∣∣t1 − t0 > Φ
]
. (3)

For the first term on the right hand side of (3),

E
[
C(t0, t0 + Φ)

∣∣∣t1 − t0 > Φ
]

=bSRw
TΦ + f(S(0))SCw

TΦ. (4)

The second term on the right hand side of (3) is derived as follows:

Denote S′
= (SC +SR,0, 0). Because the electricity in the battery of the RPS runs out at t0+Φ,

all power demands being served by the RPS should be switched to the CPS at time t0 + Φ.

Furthermore, because t1 − t0 has an exponential distribution, from the memoryless property,

t1 − t0 − Φ has the exponential distribution with rate γ. Hence,

E
[
C(t0 + Φ, t1)

∣∣∣t1 − t0 > Φ
]

=f(S′
)(SC + SR)w

T

∫ ∞

t0+Φ

(
t− t0 − Φ

)
γe−γ(t−t0−Φ)dt

=
1

γ
f(S′

)(SC + SR)w
T . (5)

Case II: t1 − t0 ≤ Φ. In this case, the electricity in the battery of the RPS does not run out

before the first event occurs. We obtain

E
[
C(t0, t1)

∣∣∣t1 − t0 ≤ Φ
]

=

∫ t0+Φ

t0

C(t0, t)
γe−γ(t−t0)

Pr [t1 − t0 ≤ Φ]
dt. (6)
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Since for any t ∈ (t0, t0 + Φ),

C(t0, t) = bSRw
T (t− t0) + f(S(0))SCw

T (t− t0) ,

(6) can be rewritten as

E
[
C(t0, t1)

∣∣∣t1 − t0 ≤ Φ
]

=

1
γ
− Φe−γΦ − 1

γ
e−γΦ

Pr [t1 − t0 ≤ Φ]

(
bSR + f(S(0))SC

)
wT . (7)

From (4), (5) and (7), (2) is rewritten as

V1(S(0)) =
1

γ
e−γΦf(S′

)(SC + SR)w
T

+

(
1

γ
− 1

γ
e−γΦ

)
(bSR + f

(
S(0)
)
SC)w

T . (8)

3.2.2 The (j + 1)th Step (for j ≥ 1)

We obtain the expected cost function Vj+1 by using

Vj+1(S(0)) = V1(S(0)) + E[C(t1, tj+1)], (9)

where V1(S(0)) is the result of the first step. We derive E[C(t1, tj+1)] as follows:

In the default policy, for a power demand arrival at ti (where i ≥ 1), the power demand is served

by the RPS if the energy in the battery is not empty (i.e., S(i−)
L > 0). Otherwise (i.e., S(i−)

L = 0),

this power demand is served by the CPS. Therefore, we consider two cases {t1 − t0 ≥ Φ} and

{t1 − t0 < Φ} to obtain E[C(t1, tj+1)].

Case I: t1 − t0 ≥ Φ: This case implies that the electricity of the RPS has been run out at time

t0 + Φ. At time t0 + Φ, all power demands being served by the RPS should be switched to the

CPS, i.e., at time t0 + Φ, the system state changes to S′
= (SC + SR,0, 0).

Consider the system state S(1−) at t−1 = lim∆→0+(t1 −∆). Because the event arriving at t1 can

be an event Jarrival, an event Jdeparture, or an event charge, we consider the following three

cases to obtain E
[
C(t1, tj+1)

∣∣∣t1 − t0 ≥ Φ
]
.

Case I-1. The event arrival at t1 is an event Jarrival of a type k power demand with probability

λJpk/γ. In Case I, because the power demand will be served by the CPS, we have S(1+) =
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(SC + SR + ek,0, 0). Therefore

E
[
C(t1, tj+1)1Case I-1

∣∣∣t1 − t0 ≥ Φ
]

=
n∑

k=1

λJpk
γ

Vj((SC + SR + ek,0, 0)). (10)

Case I-2. The event arrival at t1 is an event Jdeparture of a type k power demand with the

probability µk(SC,k + SR,k)/γ. At t−1 , the system state is (SC + SR,0, 0). Because a type k power

demand leaves from the CPS at t1, at t+1 , the system state changes to S(1+) = ((SC+SR−ek)
+,0, 0),

where (SC+SR−ek)
+ = (SC,1+SR,1, . . . , SC,k−1+SR,k−1, (SC,k+SR,k−1)+, SC,k+1+SR,k+1, . . . , SC,n+

SR,n). Consequently, we have

E
[
C(t1, tj+1)1Case I-2

∣∣∣t1 − t0 ≥ Φ
]

=
n∑

k=1

µk (SC,k + SR,k)

γ
Vj

(
(SC + SR − ek)

+,0, 0
)
. (11)

Case I-3. The event arrival at t1 is an event charge with the probability λB/γ. For each

charging, the RPS gets X kWh that has CDF FC(x). In this case, at t+1 , the system state changes

to S(1+) = (SC + SR,0, X ∧Bmax). Hence, we have

E
[
C(t1, tj+1)1Case I-3

∣∣∣t1 − t0 ≥ Φ
]

=
λB

γ

∫ ∞

0

Vj(SC + SR,0, x ∧Bmax)dFC(x). (12)

From Cases I-1, I-2, and I-3, we have

Pr[t1 − t0 ≥ Φ]E[C(t1, tj+1) | t1 − t0 ≥ Φ]

=e−γΦ {(10) + (11) + (12)} . (13)

Case II: t1 − t0 < Φ: In this case, there is electricity in the RPS at t1, i.e., SL(t1) > 0, where

SL(t) =
(
SL − (t− t0)SRw

T
)+

for t0 ≤ t ≤ t1. Similar to Case I, we consider the following three

cases to obtain E
[
C(t1, tj+1)

∣∣∣t1 − t0 < Φ
]
:

Case II-1. The event arrival at t1 is an event Jarrival of a type k power demand. Since there is

electricity in the RPS at t1, i.e., SL(t1) > 0, the type k power demand must be served by the RPS
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under the default policy and the system state changes to S(1+) = (SC ,SR + ek, SL(t1)). Therefore,

Pr[t1 − t0 < Φ]E
[
C(t1, tj+1)1Case II-1

∣∣∣ t1 − t0 < Φ
]

(14)

=

∫ t0+Φ

t0

{
n∑

k=1

λJpk
γ

Vj(SC ,SR + ek, SL(t))

}
γe−γ(t−t0)dt.

Case II-2. The event arrival at t1 is an event Jdeparture of a type k power demand from the

CPS (or RPS). If a type k power demand leaves from the CPS (or RPS) at t1, the system state

changes to S(1+) = ((SC − ek)
+,SR, SL(t)) (or S(1+) = (SC , (SR − ek)

+, SL(t))) at t+1 . Hence,

Pr[t1 − t0 < Φ]E
[
C(t1, tj+1)1Case II-2

∣∣∣ t1 − t0 < Φ
]

=

∫ t0+Φ

t0

{
n∑

k=1

µkSC,k

γ
Vj((SC − ek)

+,SR, SL(t))+

n∑
k=1

µkSR,k

γ
Vj(SC , (SR − ek)

+, SL(t))

}
γe−γ(t−t0)dt. (15)

Case II-3. The event arrival at t1 is an event charge. If the RPS gets X kWh from the event charge,

the system state changes to S(1+) = (SC ,SR, X ∧Bmax) at t+1 . Hence,

Pr[t1 − t0 < Φ]E[C(t1, tj+1)1Case II-3

∣∣∣ t1 − t0 < Φ]

=

∫ t0+Φ

t0

{λB

γ

∫ ∞

0

Vj(SC ,SR, (SL(t) + x) ∧Bmax)

dFC(x)
}
γe−γ(t−t0)dt. (16)

From Cases II-1, II-2, and II-3, we have

Pr[t1 − t0 < Φ]E[C(t1, tj+1)
∣∣∣ t1 − t0 < Φ]

=(14) + (15) + (16). (17)

Therefore, from Case I and Case II, if the default policy is applied to the EMS, the expected

electricity cost Vj+1(S(0)) from t0 to tj+1 is equal to V1(S(0)) + (13) + (17).

4 THRESHOLD POLICY

In this section, based on our analytical model for the default policy, we propose a threshold policy

to reduce the electricity cost. An optimal threshold settings is derived based on the exponential

assumptions on the inter-arrival times for power demand arrivals, the service times for power

demands, and inter-arrival times for charges. In the real situation, the inter-arrival times and
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service times may not be exponentially distributed. We will investigate the effectiveness of our

optimal threshold settings through the simulation experiments by relaxing these assumptions.

The threshold policy is multi-dimensional, where we provide different thresholds for different

types of power demands. For each type of appliance, we derive a set of thresholds at time points

t1, t2, ..., tN−1, where t0 < t1 < t2 < ... < tN−1 < tN . The time period [t0, tN) is a finite time period

during which we expect to obtain the minimum electricity cost. Our threshold policy is obtained

based on the finite-horizon CTMDP approach. As pointed out in [20], the finite-horizon CTMDP

approach requires large storage for the state space. Due to page limitation, we do not include

the complexity analysis for storage space, and it can be found in [20].

Consider a power demand of type k appliance arriving at tN−j , where 1 ≤ j ≤ N − 1. Let

τN−j,k be the policy at tN−j applied to determine whether the power demand of type k appliance

is served by the RPS or CPS. The value of τN−j,k can be 1 or 0, which indicates that the power

demand is served by the RPS or CPS. Denote πN−j = (τN−j,1, . . . , τN−j,n) with the following

definition: For 1 ≤ k ≤ n and 1 ≤ j ≤ N − 1,

τN−j,k =

{
1, if S((N−j)−)

C,k ≥ gk(j, S((N−j)−)
−k );

0, if S((N−j)−)
C,k < gk(j, S((N−j)−)

−k ).
(18)

In (18), gk(·, ·) is a function of the number of the remaining time steps, i.e., j, and the current

system state S((N−j)−)
−k excluding S

((N−j)−)
C,k , which is expressed as

S((N−j)−)
−k =(S

((N−j)−)
C − S

((N−j)−)
C,k ek,S

((N−j)−)
R , S

((N−j)−)
L ).

Let Uj(S((N−j)+);πN−j+1, . . . , πN−1) be the expected electricity cost accumulated from tN−j to tN

by applying the threshold policies πN−j+1,...,πN−1. Our objective is to find an optimal threshold

function g∗k(·, ·) for type k appliance so that the expected electricity cost

Uj(S((N−j)+); πN−j+1, . . . , πN−1)

is minimized. In other words, with function g∗k(·, ·), we obtain the corresponding threshold policy

π∗
N−j = (τ ∗N−j,1, . . . , τ

∗
N−j,n), where

τ ∗N−j,k =

{
1, S

((N−j)−)
C,k ≥ g∗k(j,S

((N−j)−)
−k );

0, S
((N−j)−)
C,k < g∗k(j, S

((N−j)−)
−k ),

(19)
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such that

Uj(S((N−j)+); πN−j+1, . . . , πN−1)

≥Uj(S((N−j)+); π∗
N−j+1, . . . , π

∗
N−1)

holds for arbitrary threshold policies πN−j+1, . . . , πN−1.

To simplify the notation, we use U∗
j (S((N−j)+)) to denote the minimum expected electricity cost

from tN−j to tN , i.e.,

U∗
j (S((N−j)+))

△
= Uj(S((N−j)+); π∗

N−j+1, . . . , π
∗
N−1)

= min
πN−j+1,..,πN−1

Uj(S((N−j)+); πN−j+1, .., πN−1).

In Theorem 1, we propose a recursive algorithm to obtain U∗
j (S((N−j)+)) by using the CTMDP

technique, (8) and the following functions

W (p, S) = λJ

n∑
k=1

pkU
∗
j−1(SC + ek(1− p),SR + ekp, SL), (20)

where p = 0, 1 and S = (SC ,SR, SL), and

X1(S) =
n∑

k=1

µkSC,kU
∗
j−1((SC − ek)

+,SR, SL),

X2(S) =
n∑

k=1

µkSR,kU
∗
j−1(SC , (SR − ek)

+, SL), (21)

X3(S) =λB

∫ ∞

0

U∗
j−1(SC ,SR, (SL + x) ∧Bmax)dFC(x).

Note that in (20), p = 0 means that a type k power demand is served by the CPS. On the other

hand, when SL > 0, p = 1 means that the power demand is served by the RPS. More elaboration

on (20) and (21) can be found in the proof of Theorem 1.

Theorem 1. U∗
j (S((N−j)+)) is the minimum if the following two conditions hold: (i) U∗

1 (S((N−1)+)) =

V1(S((N−1)+));

(ii) U∗
j (S((N−j)+)) = V1(S((N−j)+))

+
1

γ
E
[ 3∑
m=1

Xm(S((N−j+1)−)) + min
p=0,1

W (p, S((N−j+1)−))
]

for 2 ≤ j ≤ N .
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Proof: Consider time point lim
∆→0+

(tN−j −∆) (for j ∈ {1, . . . , N − 1}), and the current system

state is given by S(N−j)−. Let Ûj(S((N−j)−);πN−j, . . . , πN−1) denote the expected cost accumulated

on the time interval (tN−j, tN) subject to the system state S((N−j)−) at time lim
∆→0+

(tN−j −∆), and

the threshold policies (πN−j, . . . , πN−1) applied at the time points tN−j, . . . , tN−1. We define the

minimum expected electricity cost Û∗
j (S(N−j)−) from tN−j to tN as:

Û∗
j (S(N−j)−)

∆
= min

πN−j ,...,πN−1

Ûj(S(N−j)−;πN−j, . . . , πN−1),

where j is the number of the remaining time steps during the time interval (tN−j, tN).

Consider the time point tN−1. πN−1 is the last decision made before time tN . Since the electricity

cost on the time interval (t0, tN−1) cannot be changed by the policies made after time tN−1, the

optimal threshold policy π∗
N−1 at tN−1 should satisfy

Û∗
1 (S((N−1)−)) = Û1(S((N−1)−);π∗

N−1)

= min
πN−1

Û1(S((N−1)−);πN−1). (22)

Consider the time point lim
∆→0+

(tN−2−∆), where the system state is S((N−2)−). The decision πN−2

made at time tN−2 affects not only the expected electricity cost Û1(S((N−2)−);πN−2) during the

time interval (tN−2, tN−1) but also the system state S((N−1)−) at lim
∆→0+

(tN−1 − ∆). Therefore, the

optimal threshold policy π∗
N−2 at time tN−2 should satisfy

Û∗
2 (S((N−2)−)) = Û2(S((N−2)−);π∗

N−2, π
∗
N−1)

=min
πN−2

{
Û1(S((N−2)−); πN−2)

+ E
[
Û1(S((N−1)−); π∗

N−1)
∣∣∣πN−2, S((N−2)−)

]}
. (23)

Repeating the same procedures (i.e., (22) and (23)), we obtain

Û∗
N−1(S(1−)) = min

π1

{
Û1(S(1−); π1)

+E
[
ÛN−2(S((2)−); π∗

2, . . . , π
∗
N−1)

∣∣∣π1,S((1)−)
]}

. (24)

By substituting (24) into

Û∗
N(S(0)) = V1(S(0)) + E

[
Û∗
N−1(S(1−))

]
, (25)
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we have

Û∗
N(S(0)) = V1(S(0)) + E

[
min
π1

{
Û1(S(1−);π1)

+E
[
ÛN−2(S(2−); π∗

2, . . . , π
∗
N−1)

∣∣∣π1,S(1−)
]}]

, (26)

where

Û1(S(1−);π1)

=
n∑

k=1

λJpk
γ

V1(S
(1−)
C + ek(1− π1),S

(1−)
R + ekπ1, S

(1−)
L ) (27)

+
n∑

k=1

µkS
(1−)
C,k

γ
V1((S

(1−)
C − ek)

+,S
(1−)
R , S

(1−)
L ) (28)

+
n∑

k=1

µkS
(1−)
R,k

γ
V1(S

(1−)
C , (S

(1−)
R − ek)

+, S
(1−)
L ) (29)

+
λB

γ

∫ ∞

0

V1(S
(1−)
C ,S

(1−)
R , S

(1−)
L + x)dFC(x), (30)

and

E
[
ÛN−2(S(2−); π∗

2, . . . , π
∗
N−1)

∣∣∣π1,S(1−)
]

=
n∑

k=1

λJpk
γ

E
[
ÛN−2(S(2−);π∗

2, . . . , π
∗
N−1)

∣∣∣ S(1+)

= (S
(1−)
C + ek(1− π1),S

(1−)
R + ekπ1, S

(1−)
L )

]
(31)

+
n∑

k=1

µkS
(1−)
C,k

γ
E
[
ÛN−2(S(2−); π∗

2, . . . , π
∗
N−1)∣∣∣ S(1+) = ((S

(1−)
C − ek)

+,S
(1−)
R , S

(1−)
L )

]
(32)

+
n∑

k=1

µkS
(1−)
R,k

γ
E
[
ÛN−2(S(2−); π∗

2, . . . , π
∗
N−1)∣∣∣ S(1+) = (S

(1−)
C , (S

(1−)
R − ek)

+, S
(1−)
L )

]
(33)

+
λB

γ

∫ ∞

0

E
[
ÛN−2(S(2−); π∗

2, . . . , π
∗
N−1)

∣∣∣ S(1+)

= (S
(1−)
C ,S

(1−)
R , (S

(1−)
L + x) ∧Bmax)

]
dFC(x)

}]
. (34)
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Using W (·, ·) defined in (20), we have

(27) + (31)

=
n∑

k=1

λJpk
γ

U∗
N−1(S

(1−)
C + ek(1− π1),S

(1−)
R + ekπ1, S

(1−)
L )

=W (π1,S
(1−)
C ,S

(1−)
R , S

(1−)
L ). (35)

In terms of X1(·), X2(·) and X3(·) defined in (21),

(28) + (32) =
n∑

k=1

µkS
(1−)
C,k

γ
U∗
N−1((S

(1−)
C − ek)

+,S
(1−)
R , S

(1−)
L )

=
1

γ
X1(S

(1−)
C ,S

(1−)
R , S

(1−)
L ), (36)

where X1(·)/γ is the expected electricity cost during (t1, tN) given that a power demand departs

from the CPS at t1. Similar to (36),

(29) + (33) =
n∑

k=1

µkS
(1−)
R,k

γ
U∗
N−1(S

(1−)
C , (S

(1−)
R − ek)

+, S
(1−)
L ),

=
1

γ
X2(S

(1−)
C ,S

(1−)
R , S

(1−)
L ), (37)

where X2(·)/γ is the expected electricity cost during (t1, tN) given that a power demand departs

from the RPS at t1, and

(30) + (34)

=
λB

γ

∫ ∞

0

U∗
N−1(S

(1−)
C ,S

(1−)
R , (S

(1−)
L + x) ∧Bmax)dFC(x)

=
1

γ
X3(S

(1−)
C ,S

(1−)
R , S

(1−)
L ), (38)

where X3(·)/γ is the expected electricity cost during (t1, tN) given that an event charge occurs

at t1.

From (36), (37) and (38), (26) can be re-written as

U∗
N(S(0)) =V1(S(0)) +

1

γ
E
[ 3∑
m=1

Xm(S
(1−)
C ,S

(1−)
R , S

(1−)
L )

+min
p=0,1

W (p,S
(1−)
C ,S

(1−)
R , S

(1−)
L )

]
. (39)

Therefore, Theorem 1 holds when j = N . The proof for 1 < j < N can be obtained by shifting

the index N of U∗
N(S(0)) to j and replacing S(0) with S((N−j)−) in (39).
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t0 t1 t3 t4 t5event_Jarrival(type k) tN (N=6)t2event_Jdeparture event_charge event_Jarrival(type     ) event_charge event_Jdeparture
or CPS RPS and 

Fig. 2. Decision scenarios for threshold policy

In the following, we use U∗
j (S((N−j)+)) obtained from Theorem 1 to find the optimal threshold

function g∗k(·, ·). The decision scenario is illustrated in Fig. 2. Suppose that a power demand of

type k appliance arriving at tN−j , and at lim∆→0+ tN−j − ∆, the system state is S((N−j)−) with

S
((N−j)−)
L > 0. If the power demand is dispatched to be served by the RPS at tN−j (i.e., the policy

applied at tN−j is τN−j,k = 1), the system state at lim∆→0+(tN−j +∆) changes to

S((N−j)+) = (S
((N−j)−)
C ,S

((N−j)−)
R + ek, S

((N−j)−)
L ).

Otherwise (i.e., the policy applied at tN−j is τN−j,k = 0), the system state at lim∆→0+(tN−j + ∆)

changes to

S((N−j)+) = (S
((N−j)−)
C + ek,S

((N−j)−)
R , S

((N−j)−)
L ).

The two possible states at lim∆→0+(tN−j + ∆) result in two minimum expected electricity costs

for the remaining time period (tN−j, tN):

U∗
j (S

((N−j)−)
C ,S

((N−j)−)
R + ek, S

((N−j)−)
L )

and

U∗
j (S

((N−j)−)
C + ek,S

((N−j)−)
R , S

((N−j)−)
L ).

If S((N−j)−)
L = 0 (i.e., no electricity in the RPS) or

U∗
j (S

((N−j)−)
C + ek,S

((N−j)−)
R , S

((N−j)−)
L )

≤U∗
j (S

((N−j)−)
C ,S

((N−j)−)
R + ek, S

((N−j)−)
L ), (40)
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we prefer the power demand of type k appliance arriving at tN−j to be served by the CPS.

Otherwise, i.e., S((N−j)−)
L > 0 and

U∗
j (S

((N−j)−)
C + ek,S

((N−j)−)
R , S

((N−j)−)
L )

>U∗
j (S

((N−j)−)
C ,S

((N−j)−)
R + ek, S

((N−j)−)
L ), (41)

the power demand of type k appliance arriving at tN−j is served by the RPS.

Theorem 2. Let SC,−k = SC − SC,kek. If

g∗k(j, S−k) = min
{
l ∈ N ∪ {0} | U∗

j (SC,−k + (1+

l)ek,SR, SL) > U∗
j (SC,−k + lek,SR + ek, SL)

}
, (42)

then the minimum expected cost U∗
j (S((N−j)+)) is achieved by substituting g∗k(j,S

((N−j)−)
−k ) into τ ∗N−j,k in

(19).

Proof: Denote the system state at time lim∆→0+(tN−j −∆) by (SC ,SR, SL). Consider a power

demand of type k appliance arriving at time tN−j . For q (where q ∈ N∪{0}), we define a threshold

policy based on q as:

τ
(q)
N−j,k =

{
1, SC,k ≥ q,
0, SC,k < q.

(43)

In the following, we consider two cases to prove that when q ̸= g∗k(j,S−k), the expected electricity

cost Q from tN−j to tN (obtained from policy τ
(q)
N−j,k) is larger than or equal to the expected

electricity cost G from tN−j to tN (obtained from policy τ ∗N−j,k).

Case 1: SC,k ≥ q > g∗k(j, S−k) or q > g∗k(j, S−k) > SC,k. In this case, the τ
(q)
N−j,k obtained from (43)

is equal to τ ∗N−j,k obtained from (19). Therefore Q = G.

Case 2: q > SC,k ≥ g∗k(j,S−k). In this case, from (43), τ (q)N−j,k = 0. For the decision τ
(q)
N−j,k = 0,

the power demand of type k appliance is served by the CPS, the system state at tN−j becomes

(SC,−k+(SC,k+1)ek,SR, SL), and the minimum expected electricity cost for the future time period

(tN−j, tN) is

Q = U∗
j (SC,−k + (SC,k + 1)ek,SR, SL). (44)
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From (19), we have τ ∗N−j,k = 1. For the decision τ ∗N−j,k = 1, the power demand is served by the

RPS, and the system state at tN−j becomes (SC,−k + SC,kek,SR + ek, SL). Hence, we have

G = U∗
j (SC,−k + SC,kek,SR + ek, SL). (45)

In the following, we consider the following cases to compare Q and G for different SC,k (satisfying

q > SC,k ≥ g∗k(j,S−k)):

Case 2.1: q > SC,k = g∗k(j, S−k). In this case, (44) and (45) are rewritten as follows.

Q = U∗
j (SC,−k + (g∗k(j, S−k) + 1)ek,SR, SL)

G = U∗
j (SC,−k + g∗k(j, S−k)ek,SR + ek, SL)

By (42), we have Q > G.

Case 2.2: q > SC,k > g∗k(j,S−k). Let SC,k = g∗k(j, S−k) + a where a ∈ {1, 2, ..., q − g∗k(j, S−k)− 1}.

In this case, (44) and (45) are rewritten as

Q = U∗
j (SC,−k + (g∗k(j, S−k) + 1)ek + aek,SR, SL)

G = U∗
j (SC,−k + g∗k(j, S−k)ek + aek,SR + ek, SL)

By the increasing property of f(·) and (42), we have Q > G.

Case 3: q < g∗k(j, S−k). The proof for this case is similar to that for Cases 1 and 2, whose details

are omitted.

Based on Theorem 2, we develop Algorithm 1 to compute g∗k(·, ·), and obtain an Optimal

Threshold Table (OTT) that can be implemented in the in-home EMS. When a power demand

of type k appliance arrives, the in-home EMS looks up the OTT to make the decision.

5 NUMERICAL RESULTS

In our performance study, we evaluate the performance of the default policy and the threshold

policy in terms of the cost saving ratio

αj =
(Vj − U∗

j )

Vj

× 100%,

where Vj and U∗
j are the expected electricity costs saved by the default policy and the threshold

policy, respectively. In the numerical results, we consider two scenarios for the parameter setups.
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Algorithm 1: Optimal Threshold Functions
1 Input: N , n, λJ , (p1, . . . , pn), (w1, . . . , wn), (µ1, . . . , µn), λB, F , f , b, Bmax;
2 Initialization: U∗

1 (SC ,SR, SL) = V1(SC ,SR, SL);
3 Loop: for j ∈ {2, 3, . . . , N − 1}, using Theorem 1 to calculate U∗

j (SC ,SR, SL);
4 foreach k = 1, . . . , n, j = 1, . . . , N − 1 and S−k do
5 int gk(j, S−k) = 0;
6 for l = 0; l ++ do
7 if U∗

j (SC,−k + (1 + l)ek,SR, SL) > U∗
j (SC,−k + lek,SR + ek, SL)

8 then
9 gk(j, S−k) = l;

10 break;
11 end
12 end
13 return gk(j, S−k);
14 end

TABLE 1
Specifications of appliances

mean inter-arrival power mean service
time (hrs) (kW) time (hrs)

Computer 8 0.2 2.67
Air conditioner 24 1 6
Washing machine 48 0.31 2

Scenario I: We consider three types of household appliances with the specifications listed

in Table 1. Initially, the system state at time t0 is S
(0)
C = (1, 0, 0), S(0)

R = (0, 1, 0), S
(0)
L = 1. We

observe the behavior of expected electricity costs from t0 to t7. From Table 1, we set λJ = 5.33

1/hr, (p1, p2, p3) = (0.67, 0.22, 0.11), u = (1/2.67, 1/6, 1/2) 1/hr, w = (0.2, 1, 0.31) kW. The capacity

of the battery is Bmax = 2 kWh. The charging rate is set to λB = 1/8 1/hr. To simplify our

discussion, we set X = 1 kWh for each charge and a = 1 in (1).

Scenario II: We use this scenario to investigate the effects of the power demand arrival rate.

We set λJ and u as follows: We consider only one type of appliance, i.e., n = 1, and λ1 =

λJ = 0.1, 0.15, 0.2, 0.25, ..., 0.5 (units: 1/hr). By fixing λ1w1/µ1 = 5 kW where w1 = 2 kW (i.e., on

average 5 kWh is consumed to serve the power demands for one hr), we have µ1 = 0.4λ1 1/hr.

We observe the electricity cost for the time period [t0, t10]. The setups for other parameters are

the same as that in Scenario I.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
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TABLE 2
Analysis vs. simulation

j 3 4 5 6 7
Vj (analysis) 0.331 0.731 1.244 1.873 2.762

V j (simulation) 0.330 0.728 1.241 1.863 2.753
Error 0.324% 0.428% 0.217% 0.534% 0.326%

U∗
j (analysis) 0.317 0.689 1.152 1.708 2.480

U
∗
j (simulation) 0.318 0.683 1.151 1.706 2.470

Error 0.32% 0.76% 0.10% 0.12% 0.42%

Fig. 3. The shape of a threshold surface

5.1 Simulation Validation

In this paper, we conduct simulation experiments to investigate the performance of the two

policies. We implement the OTT obtained in Algorithm 1 in our simulation model for the threshold

policy.

To ensure the stability, we run 100,000 simulation experiments to obtain the result. In the ith

experiment (1 ≤ i ≤ 100, 000), we calculate the electricity cost from time t0 to tj , which is denoted

by V̂j,i (for the default policy) and Û∗
j,i (for the threshold policy). Then we obtain the expected cost

V j and U
∗
j from the 100,000 simulation experiments by

V̄j =
1

105

105∑
i=1

V̂j,i and Ū∗
j =

1

105

105∑
i=1

Û∗
j,i.

As shown in Table 2 (where we apply the parameter setup in Scenario I), the errors between

the analytical and simulation results fall within one percent, demonstrating consistent findings

from both our analytical models and simulation experiments.

5.2 Optimal Threshold Table

In this section, we discuss the application of the OTT in the threshold policy. In Fig. 3, we set a =

1, j = 3, N = 8 and plot g∗k=1(j = 3, ·) by (42) to obtain the optimal policy τ ∗N−j=5 = (τ ∗N−j=5,k=1) at

tN−j=5. Here, we suppose that the power demand has the arrival rate λJ = 1/3 1/hr, the power

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
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Fig. 4. Optimal threshold function (g1(j, ·)) for different remaining time steps (j = 7, 5, 3, 1)
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Fig. 5. Effects of w1 and λJ on g∗(3, ·) and α10

requirement w1 = 2 kW and the mean service time 2/3 hrs. The charging process on the RPS

has rate λB = 2 1/hr, and the amount of electricity for each charge is fixed to X = 1 kWh.

Consider that the power demand arrives at t5 with the system state (SC,1, SR,1, SL). If (SR,1, SL, SC,1)

falls above the surface in Fig. 3, then this power demand will be served by the RPS (i.e., τ ∗5 = 1).

Otherwise (i.e., (SR,1, SL, SC,1) falls below the surface), this power demand will be served by the

CPS (i.e., τ ∗5 = 0).

Using the same parameter setups for Fig. 3, in Fig. 4, we plot the surfaces for g∗1(j, ·), where

j = 7, 5, 3, 1. Fig. 4 shows that for different j, the surface for g∗1(j, ·) has different shapes, which

indicates that the threshold policy varies along with j.

In Fig. 5(a), we use the same parameter setups for Fig. 3, except that we change the power

requirement for a power demand (i.e., w1 = 1, 2, ..., 7). Fig. 5(a) shows that g∗1(j, ·) increases along

with w1. It implies that for a power demand with larger power requirement, the threshold policy

tends to dispatch it to the CPS.
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Fig. 6. Effects of j, variance vJ , vu and vB on α

5.3 Performance Evaluation

Considering Scenarios I and II, we investigate the performance αj of the threshold policy w.r.t.

the default policy:

Effects of Arrival Rate λJ : In Fig. 5(b), we study the effects of λJ by considering Scenario

II, where we observe the system by fixing λ1w1/µ1 = 5 kW As shown in this figure, when λJ

increases from 0.1 to 0.5, αj increases significantly. This phenomenon indicates that the threshold

policy can save more costs when we use the same amount of electricity (from both the RPS

and the CPS) to serve more power demands (i.e., power demands arrive more frequently). For

example, when λJ = 0.5, αj is around 10%.

Effects of Observed Time Length j: In Fig. 6(a), we consider Scenario I and vJ = 1/λ2
J , i.e.,

inter-arrival time of the power demands has the exponential distribution. Fig. 6(a) shows that

αj is an increasing function of j, which implies that the more power demands served by the

in-home SG, the more electricity cost can be saved by the threshold policy. For example, when

j = 7, αj is around 10%.

Effects of Variance vJ , vu and vB: In the real world, the inter-arrival times and service times of

power demands and the inter-arrival times of charges may not be exponentially distributed. If

we can obtain the data measured from utility companies, it can be more helpful to demonstrate

the performance of the threshold policy. However, real data on power demands are often security

sensitive and very hard to obtain from utility companies. As pointed out in [18], the gamma

distribution has been widely used to approximate many other distributions. In Figs. 6(a)-6(c),
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TABLE 3
Load shifting capability

j 2 4 6 8 10
L

(j)
C (default) 0.248 0.395 0.496 0.541 0.566

L
(j)
C (threshold) 0.241 0.417 0.478 0.501 0.517

we assume that the inter-arrival times and service times of power demands and the inter-arrival

times of charges have gamma distributions with means 1/λJ , (1/µ1, 1/µ2, 1/µ3), and 1/λB and

variances vJ = α/λ2
J , vu = α(1/µ2

1, 1/µ
2
2, 1/µ

2
3) and vB = α/λ2

B, respectively, where α =0.1, 1, 10.

Figs. 6(a) and 6(b) indicate that the threshold policy has better performance for larger variances

vJ and vu. Fig. 6(c) shows that the effects of the variance vB on the tendency of αj are minor.

Load Shifting Capability: In a classical study [19] about power systems, Berger et al. claimed

that the RTP can effectively help the CPS shift the service load to the RPS. We study the load

shifting capability L
(j)
C of the threshold policy and the default policy under Scenario I, where L

(j)
C =

S
(j)
C wT

(S
(j)
C +S

(j)
R )wT

. A smaller L
(j)
C indicates that more service loads of the CPS is shifted to the RPS.

Table 3 shows that the threshold policy has a smaller L
(j)
C than the default policy when j ≥ 6. In

other words, if the system serves enough number of power demands, compared to the default

policy, the threshold policy can manage the in-home SG more effectively.

6 CONCLUSION

We studied how to reduce the electricity cost for the in-home SG by jointly considering the

RPS and CPS. We first proposed analytical models for the electricity cost in which the default

policy was applied to the in-home SG. In our model, the charging process on the RPS and

multiple types of household appliances are taken into consideration. Based on the analytical

model, we proposed the threshold policy to reduce the electricity cost by applying the finite-

horizon CTMDP. It is easy to implement the threshold policy in the in-home SG once the OTT is

established. Simulation experiments were conducted to validate the correctness of the analytical

models and to study the performance of both two policies.

Our performance study showed that

• The threshold policy can dynamically adjust the threshold according to the system status in

the in-home SG.
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• When more power demands are served by the in-home SG, the threshold policy can save

more electricity cost than the default policy.

• The threshold policy can save more cost when we use the same amount of electricity to serve

more power demands.

• The threshold policy has better load shifting capability than the default policy.

To conclude, compared to the default policy, the threshold policy can manage the in-home SG more

effectively and more economically.
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