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Abstract—With the soaring wireless traffic for Internet of
Things (IoT), spectrum shortage becomes an extremely serious
problem, leading to the paradigm shift in spectrum usage from
an exclusive mode to a sharing mode. However, how to guarantee
the quality of service (QoS) when using the shared spectrum is
not straightforward due to its uncertain availability. In this paper,
from a session-based view, we propose a metric to evaluate how
much data can be delivered via a shared band during a session
period, named probabilistic link capacity (PLC), which offers
us an effective way to guarantee the QoS statistically. Different
from most existing works where the distributional information is
assumed exactly known, we develop a distributionally robust (DR)
data-driven approach to estimate the value of the PLC based on
the first and second order statistics. Two cases are considered
that the statistics are exact or uncertain with estimation errors.
For each case, to calculate the DR-PLC, we formulate it into a
semidefinite programming problem based on the worst-case of
conditional-value-at-risk. With the proposed metric, we further
design a service-based spectrum-aware data transmission scheme,
which allows us to efficiently use different kinds of spectrums to
satisfy the diverse IoT service requirements.

Index Terms—Spectrum sharing, spectrum uncertainty, distri-
butionally robust optimization, data-driven approach, IoT.
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I. INTRODUCTION

A. Backgrounds

RECENTLY, with the rapid development of Internet of
Things (IoT) services, a tremendous number of devices

are being connected to the Internet [2]. As the connections
increase dramatically, wireless data traffic has shown an ex-
plosive growth. According to the forecast of Cisco Visual
Networking Index, by 2021, the number of mobile-connected
devices will reach 11.6 billion globally, and the data traffic
will grow sevenfold between 2016 and 2021 [3]. Such an
unprecedent growth on traffic load will soon surpass the
capacity of our telecommunications networks, calling for more
spectrums as support [4].

High frequency spectrums can provide substantial band-
width and mitigate the spectrum shortage problem. However,
the notorious propagation characteristics over high frequency
bands make them only applicable to some specific cases with
limited coverage. Therefore, more spectrum in medium and
low frequency ranges is also needed to help support IoT
services [4]. Although most of the sub-6GHz spectrum has
been occupied, many measurement campaigns have shown that
under the current static spectrum assignment policy, lots of
licensed spectrums are in fact significantly under-utilized in
both spatial and temporal domains, leading to a low spectrum
efficiency [5]–[7].

As a promising solution, spectrum sharing has received
increasing attention recently [8]–[10]. During the sharing,
users can be divided into two groups. One is primary users
(PUs) who own the spectrum license and have the highest
accessing right. The other is secondary users (SUs) who are
allowed to opportunistically use the spectrum when PUs are
inactive. Such a hierarchical sharing can well comply with
the current spectrum assignment situation and improve the
spectrum utilization effectively.

To enable such a hierarchical spectrum sharing, cognitive
radio (CR) has been regarded as an effective technology,
and many CR-based IoT (CR-IoT) frameworks have been
proposed recently to support the huge number of IoT devices
considering the insufficient spectrum resource [11], [12]. By
employing the CR technology, some IoT services could be
offloaded to the shared spectrums, i.e., the under-utilized
spectrums shared by other parties, and the spectrum shortage
problem in IoT networks would be mitigated accordingly [13].
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B. Motivations
Although the CR-IoT framework could create much more

transmission opportunities, providing services over shared
spectrums is very challenging for operators. Since the shared
spectrum has to be vacated when the corresponding PUs
reclaim it, the availability of each shared band is actually
uncertain, which is different from the traditional licensed
one. Such an unique feature causes many new problems for
service provisioning, for example, what kind of services can
be provided by using the uncertain bands, which bands should
be employed to fulfill the transmission task, how to guarantee
the quality of service (QoS) considering the uncertainty, etc.
Although the spectrum access opportunities might be identified
accurately through some advanced sensing or database-based
approaches, if the aforementioned problems cannot be well
addressed, we might not be able to efficiently utilize these
spectrum resources for service delivery. Hence, it is extremely
important to study the impact of uncertain availability of
shared spectrums on service provisioning.

C. Contributions
In this paper, to facilitate the shared spectrum based service

provisioning, from a session-based view, we propose a metric
called probabilistic link capacity (PLC), which can be used
to evaluate how much data can be delivered via a shared
band during a session period and thus provide us with an
effective way to guarantee the session accomplished statis-
tically. Although how the PLC is mathematically defined is
similar to the outage capacity (OC) and the effective capacity
(EC) in [14], where a probability is introduced to quantify
the uncertain achievable rate, they are actually conceptually
different. The PLC proposed in this paper corresponds to
an equivalent achievable rate from the view on time average
for a session period, not represents the actual instantaneous
achievable rate. It is developed based on a different uncertainty
model from that considered in OC and EC, and is especially
suitable for the CR based spectrum sharing system, where the
uncertainty comes from the hierarchical sharing rule, reflected
in the available duration of a shared band within a session
period which is modeled as a random variable.

To describe PLC, we formulate it as a stochastic opti-
mization problem. Instead of assuming an exact distribution
function for the random variable as what has been widely
adopted in existing works, which, however, might be hardly
obtained in practice, we use the first and second order sta-
tistical information to construct an ambiguity set, represent-
ing all possible distributions, and develop a distributionally
robust solution. Specifically, we model the random variable
with an ambiguous distribution subject to the statistics [15],
[16]. We focus on the worst-case regarding to all possible
distributions with the same statistics and make the PLC a
distributionally robust one (DR-PLC). Such a lower bound
corresponds to a conservative measurement and can make the
QoS guaranteed in fact with a higher probability than the
pre-defined confidence level. Since the formulated DR-PLC
optimization problem is intractable, we first make a conserva-
tive approximation by employing the concept of conditional-
value-at-risk (CVaR) [17] and take its worst-case to get an

approximated DR-PLC. Then, we reformulate the problem into
a tractable semidefinite programming (SDP) problem, so that
the DR-PLC can be achieved. With the proposed metric, by
considering different types of IoT services (delay-sensitive and
delay-tolerant) and different features of spectrums (licensed
and shared), we design a service-based spectrum-aware data
transmission scheme to utilize the spectrums efficiently for
service provisioning. Compared with our preliminary work
[18], in this paper, an additional case that the statistical
information is uncertain with estimation errors has been further
studied, which is more common in practice, and a concrete
theoretical proof has been included to show that the developed
worst-case CVaR based approximation is in fact exact. Our
major contributions are listed as follows.
• By modeling the available duration of a shared band

during a service period as a random variable, we propose
a metric, PLC, to evaluate the equivalent achievable rate
of a link within the period under certain confidence level.
Such a metric brings us a way to offer a statistical
QoS guarantee when using a shared band for service
provisioning, and frequency switching can be avoided
during the service provisioning if a high confidence level
is adopted for the performance measurement.

• Unlike most existing works where certain specific prob-
ability distribution is assumed for the random variable to
make the stochastical constraint tractable, which, how-
ever, might be difficult to obtain in practice, we adopt its
first and second order statistical information, and design
a distributionally robust data-driven approach to make the
obtained PLC achievable under all possible distributions
subject to the statistics. We studied it under both accurate
and inaccurate statistical information. For each case, to
solve the DR-PLC, we leverage the worst-case of CVaR
with the analysis for the accuracy on approximation, and
develop a SDP-based reformulation.

• Based on the newly proposed metric, we design a
service-based spectrum-aware data transmission scheme
by considering both delay-sensitive and delay-tolerant
IoT services and both licensed and shared spectrums,
where different kinds of spectrums can be used efficiently
to meet as many service requirements as possible. For
such a schematic design, we formulate it as a two-step
optimization problem, including an admission control
step and a spectrum re-allocation step.

The rest of paper is organized as follows. Related works are
reviewed in Section II. In Section III, the network model is
presented, including the new metric PLC. Then, we develop a
distributionally robust data-driven approach to calculate the
PLC based on the statistical information in Section IV. In
Section V, by leveraging the new metric, we design a service-
based spectrum-aware transmission scheme. Finally, numerical
results are discussed in Section VI and conclusions are drawn
in Section VII.

II. RELATED WORKS

Spectrum allocation is an important issue for wireless net-
works, especially for the IoT network considering the massive
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and heterogeneous data traffic. Taking the software defined
networking as the solution for IoT, in [19] and [20], Tang
et. al. investigated the channel assignment issue and proposed
different novel deep-learning-based intelligent assignment ap-
proaches, where future traffic loads of switches are predicted
based on the historical data and the channel resources are
allocated intelligently. Facing the spectrum shortage problem
in IoT networks, many research efforts have been dedicated
to investigating how to embrace the CR technology for IoT
networks, where the CR enabled devices could dynamically
access the vacant spectrums by perceiving the radio envi-
ronment [12]. In [21], Ejaz et. al. designed a multiband
cooperative sensing scheme for CR-IoT networks with reduced
energy consumption, and a cross-layer reconfiguration scheme
was further developed for dynamic resource allocation. In
[22], Zhang et. al. proposed a blind joint sub-Nyquist sensing
scheme by employing the surround IoT devices to jointly sam-
ple the spectrum. Based on these advanced spectrum sensing
methods, a new kind of spectrum would be brought to the
CR-IoT network, that is the shared spectrum, i.e., the captured
under-utilized spectrum shared by other parties. However, how
to effectively use these spectrums to provide services is not
straightforward because of their uncertain availability, making
the QoS difficult to guarantee.

Actually, regarding the channel fading or the imperfect
channel estimation as the spectrum uncertainty, many works
have been proposed to guarantee the transmission performance
against such an uncertainty issue, which can trace back to the
classic concept of outage capacity. In [14], Wu et. al. consid-
ered the impact of small-scale channel fading and proposed a
link-layer channel model called effective capacity, which could
be utilized for QoS guarantee, such as delay bounds. Similarly,
in [23], Zhang et. al. studied the QoS provisioning issue for
IoT in LTE-A heterogeneous networks, where the concept
of effective bandwidth was leveraged to provide users with
probabilistic QoS guarantee under the fast fading channel gain.
In [24], Li et. al. designed a probabilistic robust beamforming
scheme for MISO-SWIPT systems, where the obtained chan-
nel vectors are described based on the Gaussian uncertainty
model considering the imperfect channel estimation. Also
considering the imperfect CSI problem, in [25], Sun et. al.
developed a novel robust beamforming scheme for the NOMA-
based CR system from the perspective on energy efficiency,
where both bounded and Gaussian error models are employed.
In [26], Zhou et. al. proposed an artificial-noise-aided coop-
erative scheme for the CR system, where the uncertainty on
the jamming signal is well utilized to improve the security
of the primary network. In [27], Zhang et. al. investigated
the resource allocation problem in a two-tier OFDM-based
cognitive heterogeneous cellular network, where the channel
gain is considered uncertain and the interference is limited
in the sense of probability. Although these works have well
addressed the spectrum uncertainty issue, it is noteworthy that
the uncertainty is actually different from the one considered
in this paper. Theirs are from the channel fading or the
imperfect channel estimation, whereas, ours is caused by the
hierarchical sharing rule, i.e., the uncertain availability, which
is a particular issue for the CR-IoT system. However, these

excellent research works really inspire us a lot for the design
on PLC, where a similar approach is adopted that introduce a
probability to quantify the uncertain achievable rate.

As for the uncertain availability of shared spectrums, many
research works have considered it when designing spec-
trum sharing schemes. In [28], Zhang et. al. jointly investi-
gated spectrum access, power allocation and user scheduling
schemes when both licensed and harvested channels exist,
where the harvested ones are assumed to be available with
certain specific probabilities. Similarly, the uncertain avail-
ability is characterized by a probability in [29], where PU
activities on the shared channels are assumed to follow an
i.i.d. Bernoulli distribution in each time slot, and a spectrum
allocation framework was proposed accordingly. Based on the
probability assumption, Markov chain has been used to model
the spectrum state transition, such as the spectrum sensing and
access protocol developed in [30], and the channel allocation
scheme designed in [31]. In [32], Cheng et. al. studied
an opportunistic spectrum access scheme for CR vehicular
ad hoc networks, where the length of an idle period of a
shared channel is modeled as an exponential random variable.
Similarly, considering the idle time distribution, Sharma et. al.
designed a stochastic model-based opportunistic transmission
scheme in [33]. In [34], Yu et. al. developed an optimal
spectrum investment strategy, including spectrum sensing and
leasing decisions, where the amount of available spectrum is
modeled as a random variable with a given distribution. Also
by modeling the available bandwidth as a random variable, Pan
et. al. investigated the joint routing and frequency scheduling
problem in multi-hop CR networks under uncertain spectrum
supply [35]. All above works characterize the uncertain avail-
ability of the shared spectrum through specific probabilities
or distribution functions. Unfortunately, in practice, such in-
formation is usually difficult to be precisely obtained. Even if
it might be derived from the historical data, the distribution
is more likely to follow a complex expression, rather than the
simplified theoretical modeling assumptions adopted in most
existing works. Moreover, estimation errors of the distribution
might lead to an over-optimistic solution. Hence, we develop
a distributionally robust approach to deal with the ambiguity
on distribution.

Besides the statistics based approach, as one of the most
popular data-driven approaches, machine learning (ML) plays
an important role for spectrum prediction and has been em-
ployed for CR systems. As described in [36], the ML approach
can learn the PUs’ behavioral patterns by invoking a set
of spectrum data and rely on it for making forecasts. In
[37], Xing et. al. employed a popular feedforward artificial
neural network model, called multilayer perceptron (MLP),
for spectrum prediction, which was also adopted in [38],
where each CR user predicts the future channel states by
using an MLP based predictor and senses only those channels
that are predicted to be idle. In [39], Zhang et. al. utilized
an online support vector regression (SVR) based method
to predict the channels’ statuses of PUs to help CR users
make the channel selection decision. Although many existing
works have embraced the ML approach to help CR users
make a better strategic decision, like spectrum sensing and
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Fig. 1. Cognitive capacity harvesting network architecture for IoT service
delivery by using both licensed and shared spectrums.

spectrum accessing, most of them focus on how to predict
the spectrum state for the next time slot, instead of solving
the uncertain availability problem from the perspective of
service provisioning. With regard to service provisioning, we
are interested in the spectrum availability within the whole
service period, rather than a time slot. Thus, it is necessary
to find a way to evaluate how much data can be carried over
a shared band within a period, which depends on not only
the current available bandwidth but also the future available
duration during the period. In fact, for the uncertain available
duration, the ML approach might be used to predict how long
it is, which, however, needs to feed in massive spectrum data
and causes high computation complexity. According to the
existing spectrum measurement works [5]–[7], we find that for
some bands, the available duration within a period can be well
modeled by a random variable, which inspires us to adopt the
statistics based modelling to develop the PLC concept and the
study on ML based approach for QoS provisioning in CR-IoT
systems will be one of our future works.

III. NETWORK MODEL

A. Architectural Enhancement for IoT Data Transmissions
based on the Shared Spectrum

In general, most light-weighted IoT devices have no ca-
pability to implement spectrum sensing to determine the
availability of the shared spectrum, even hardly directly work
on those non-contiguous under-utilized bands belonging to
other parties. Thus, before introducing the proposed PLC, we
first present a cognitive capacity harvesting network (CCHN)
architecture as shown in Fig. 1 [11], which can facilitate the
IoT data transmissions over shared spectrums and is taken as
the network scenario in this paper.

To be specific, the CCHN can be regarded as an architectural
enhancement on the existing cellular network, making it an
ultra-dense network as advocated in the 5G vision. Three
kinds of entities are included, namely, macro-cell base station
(MBS), femto-cell base station (FBS), and cognitive radio
router (CRR). a) MBS. The MBS provides a basic coverage
and is mainly in charge of the control signalling. b) FBS. The
FBSs are connected to the Internet, acting as data aggregation
points for CRRs to deliver data to IoT service providers. c)
CRR. The CRRs are equipped with multiple radio interfaces
and deployed at the edge of the network. On the one hand,

they serve as gateways for IoT devices with the support for
various accessing technologies, such as 3G/4G/NxtG, NB-
IoT, eMTC, etc., so that any IoT device type can access
the network. On the other hand, CRRs can connect IoT
devices to FBSs, or directly connect two IoT devices to
enable an extended device-to-device (D2D) communication,
using the non-contiguous shared bands. Thus, the IoT data
can be delivered through the shared bands even though the
IoT devices cannot directly use them. Two modes of data
transmission exist in the network. One is Device ↔ CRR ↔
FBS, such as the pollution monitoring data transmissions from
sensors to a data center for analysis, and the other is Device
↔ CRR ↔ CRR ↔ Device, such as the surveillance video
data transmissions from a house to a user’s device for home
security systems.

We consider two types of services in the network. One is
the delay-sensitive (DS) service, e.g., online video conference,
and the other is the delay-tolerant (DT) service, e.g., movie
downloading, which are denoted by LDS and LDT, respectively.
Note that the shared spectrum can only support the DT services
because its availability is uncertain and thus cannot guarantee
the maximum delay on each packet for DS services. For a DS
service l ∈ LDS, assume that its service request includes a rate
requirement rDS (l), a source node sDS (l), and a destination
node dDS (l). Such a DS service can only be served by the
licensed bands with stable availability, denoted as Ml. For
a DT service l ∈ LDT, assume that its service request is
transmitting certain amount of data, denoted as zDT (l), from
a source node sDT (l) to a destination node dDT (l) within a
period T (l). Then, each DT service l actually corresponds to
have an equivalent rate requirement as rDT (l) = zDT(l)

T (l) . For
example, if the request is transmitting 6Gbits monitoring data
from a collecting CRR to an FBS within 10 minuets, then it is
equivalent to having a requirement on average rate as 10Mbps.
Such a DT request can be achieved by either licensed bands or
shared bandsMs. When using the shared bands, how to satisfy
the rate requirement is a problem because of the uncertain
availability of the bands during the session period, which is
what we intend to address in this paper.

Suppose that there are N nodes (including CRRs and FBSs)
in the network. For any node i ∈ N , all licensed bands are
available, whereas, only part of shared bands can be used
depending on the sensing result, denoted as Mi

s ⊆ Ms.
Then, all available bands at this node can be represented by
Mi =Mi

s ∪Ml, and the common band set for two different
nodes i and j is expressed as Mij = Mi ∩Mj . Upon re-
ceiving service requests, MBS will check which shared bands
can be used, which can be sensed and submitted by CRRs
along with the service request information. Then, according
to the aggregated information, by evaluating the link capacity
over different bands, MBS will make the data transmission
scheduling to satisfy the diverse service requirements by using
the different kinds of spectrums1.

1In our scheme, the links will stay on the allocated bands instead of
implementing spectrum switching, i.e., keep silence when PUs reclaim them
and wait for them available again, because the data volume that can be
transmitted during the session period has been well evaluated based on the
proposed PLC model, which will be introduced later.
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B. Related Models for Data Transmissions

Transmission Range and Interference Range: For the
data transmission from node i to node j, it is considered to
be successful only if the received power at node j exceeds
certain threshold P T

th. Therefore, each node in the network
has a transmission range. To be specific, we adopt a widely
used model to represent the power propagation gain from
node i to node j, described as gij = τ · d−αij , in which τ
is an antenna related parameter, α is the path loss factor,
and dij is the distance between these two nodes. Suppose the
transmission power at node i on band m ∈ Mi is pmi . Then
the received power at node j can be calculated as pmi ·gij , and
the transmission range of node i on band m can be obtained by
RT
i,m =

(
τ · pmi /P T

th

)1/α
. Accordingly, for any node j which

can use band m, i.e., m ∈ Mj , if it is located within the
transmission range of node i, i.e., dij ≤ RT

i,m, we define it
as the transmission neighbor of node i on band m, and the
corresponding neighbor set is described as

Ti,m =
{
j ∈ N|dij ≤ RT

i,m, j 6= i,m ∈Mij
}
. (1)

Similarly, for the received interference power at each node
from an unintended transmitter, it can be ignored only if it
is below certain threshold P I

th (P I
th < P T

th). Hence, for any
node i ∈ N transmitting data on band m with transmission
power pmi , there exists an interference range as well denoted
as RI

i,m =
(
τ · pmi /P I

th

)1/α
. Then, all nodes receiving data on

band m located within this area will be interfered by the node
i, and similar to (1), the interfering neighbor set of node i on
band m can be defined as

Ii,m =
{
j ∈ N|dij ≤ RI

i,m, j 6= i,m ∈Mij
}
. (2)

Link Capacity: Considering a link from node i to node j
on band m, j ∈ Ti,m, the link capacity can be expressed as

cm,ij = Wm · log2

(
1 +

p̂i · gij
γ

)
, (3)

where γ is the ambient Gaussian noise density at node j, Wm

is the bandwidth of band m, and p̂i is the transmission power
density at node i. Interference is not considered here because it
can be eliminated by the transmission scheduling as introduced
in Section IV.

C. Probabilistic Link Capacity

Considering a DT service l which intends to transmit z (l)
data within a period T (l), if we want to use shared bands to
fulfill this transmission task, we need to evaluate how much
data that can be supported by a shared band within the period
and then determine which bands should be selected to guaran-
tee the session accomplished. Nevertheless, as aforementioned,
due to the uncertain PUs’ activities, the available duration
of a shared band m within the period, denoted as T̃m (l),
is uncertain and might be less than T (l), so that the actual
data volume that can be transmitted over this band during this
period is also uncertain calculated as

z̃ (l) = T̃m (l) ·Wm · log2

(
1 +

p̂i · gij
γ

)
. (4)

To capture the uncertain availability of the shared band,
inspired by the findings in some existing spectrum measure-
ment works [5]–[7], we model the available duration T̃m (l)
as a random variable, making z̃ (l) also a random variable
associated with it. Divided by T (l), we can get an equivalent
link capacity with regard to this session. By introducing a
probability, we can quantify this capacity under a confidence
level, which is defined as the probabilistic link capacity of the
link from i to j on this band for this session as

c̃m,ij=max

{
c :Pr

{
W̃ l
m ·log2

(
1 +

p̂i · gij
γ

)
≥c
}
≥α
}
, (5)

i.e., the maximal value of c satisfying the stochastical con-
straint in (5), where W̃ l

m = Wm · T̃m(l)
T (l) represents the average

available bandwidth in terms of the session, and 0 < α < 1
is the confidence level.

Remark 1: By employing such a metric PLC, the operator
can measure the impact of uncertain availability on the shared
band effectively when scheduling transmissions, and offer a
statistical QoS guarantee for the requested DT services with
certain confidence level. Note that when a high confidence
level is adopted, it would not be necessary to implement spec-
trum switching when the current band turns to be unavailable
during the transmission, where waiting until it is available
again might be a better decision, because it is with a high
probability that the transmission task could be completed via
this band within the period. Thus, the considerable overhead
brought by the spectrum handoff could be avoided.

Remark 2: Note that the PLC proposed here is different from
the classic concept of effective capacity (EC) developed in
[14]. First, they are targeted to different scenarios. EC offers a
characterization of the link where source continuously sending
delay constrained packets, and it is especially suitable for
delay-sensitive applications. In contrast, the PLC is designed
for a scenario where certain amount of delay-tolerant data is
to be delivered in a specific period, and it is proposed mainly
for the delay-tolerant services. Second, the EC is developed
from a per packet based point of view, which can be used
to facilitate the determination of the source rate at which
the violation probability of packet delay can be constrained
below certain threshold. Whereas, the PLC is developed from a
session-based point of view, which is used to evaluate whether
or not a session could be accomplished via certain bands
at the end of the session period considering the uncertain
transmission duration. Third, the uncertainty issues addressed
in both works are different, which are the spectrum reliability
under the small-scale fading and the spectrum availability
under the hierarchical sharing rule, respectively. Actually, the
PLC corresponds to an equivalent achievable rate from the
view on time average for a session period, not reflects the
actual instantaneous achievable rate, and is tailored to CR
based spectrum sharing systems.

IV. A DISTRIBUTIONALLY ROBUST DATA-DRIVEN
APPROACH FOR PROBABILISTIC LINK CAPACITY

Considering a link on a shared band m ∈ Ms, to obtain
its PLC defined as (5), obviously, the key is to evaluate the



0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2946834, IEEE
Transactions on Vehicular Technology

6

stochastical constraint as

Pr

{
W̃ l
m · log2

(
1 +

p̂i · gij
γ

)
≥c
}
≥ α. (6)

Generally speaking, the widely adopted approach in the current
literature is to utilize the probability distribution of the random
variable W̃ l

m based on certain structural assumption [34], [35].
However, whether such an assumed distribution really fits for
the variable is questionable. In practice, the full and accurate
information about the distribution is hardly obtainable. Even if
it could be approximated based on the historical data, replacing
the unknown distribution with an estimated one to evaluate
the stochastical constraint (6) may lead to an over-optimistic
solution to (5). Thus, the obtained PLC may fail to satisfy
the constraint under the true distribution. Furthermore, the
expression of the estimated distribution might be complicated,
making the stochastically constrained optimization problem
(5) intractable. To address these challenges, we will develop
a data-driven approach by using the first and second order
statistical information and achieve a distributionally robust
solution.

A. Worst-Case for Distributional Robustness

Recalling the stochastical constraint (6), we rewrite it as

Pr (ϕ (c, δm) ≤ 0) ≥ α, (7)

where

ϕ (c, δm) = c− δm = c− W̃ l
m · log2

(
1 +

p̂i · gij
γ

)
. (8)

As aforementioned, the accurate probability distribution func-
tion of the random variable δm associated with W̃ l

m, denoted
as fδm , is hardly obtainable in practice, which makes it
difficult to deal with such a stochastical constraint. Thus,
we consider the worst-case, which can be regarded as its
distributionally robust counterpart, and describe it as

min
fδm∈Uf

{Pr (ϕ (c, δm) ≤ 0)} ≥ α. (9)

Uf represents all possible probability distributions that are
consistent with certain known statistical characteristics of the
random variable δm. By replacing the original constraint (6)
with its worst-case (9), we can obtain a conservative estimation
and achieve a distributionally robust solution.

We employ the expectation and the variance of δm as the
known statistics to characterize the probability distribution
function set Uf , which can be easily extracted from historical
observations and are denoted as µ and σ2, respectively. We
consider two cases. One is that the estimates of statistics are
derived from sufficient data and close to the real ones. Then
the distribution function set can be expressed as

U1
f =

{
fδm ≥ 0

∣∣∣∣∣ Ef (δm) = µ,Ef (1) = 1

Ef
(

(δm − µ)
2
)

= σ2

}
, (10)

where the constraints are used to make the functions in the
set U1

f subject to the known statistical information, i.e., µ and
σ2, with the integral sum as 1. In other words, U1

f represents
a set of all possible distribution functions exhibiting the same

statistics, and the actual distribution fδm might be in any shape
belonging to this family.

The other case is to treat the estimates as uncertain ones
due to the limited data or measurement noise, and the set can
be re-presented as

U2
f =

{
fδm≥0

∣∣∣∣∣ (Ef (δm)− µ)
2 ≤ θµσ2,Ef (1)=1∣∣∣Ef ((δm − µ)

2
)
− σ2

∣∣∣ ≤ θσσ2

}
, (11)

where θµ and θσ are the parameters to quantify the confidence
in µ and σ, respectively.

Hence, based on (5) and (9), we can obtain the distribution-
ally robust PLC (DR-PLC) by solving the following problem

ĉm,ij = max

{
c : min

fδm
{Pr (ϕ (c, δm) ≤ 0)} ≥ α

}
, (12)

subject to the constraint (10) or (11). In this problem, the deter-
mination on fδm actually corresponds to a density allocation
on each possible point δm, and the distribution uncertainty
constraint (10) and (11) can be regarded as a set of linear
constraints with infinite number of decision variables.

B. Approximation Based on Conditional Value at Risk

From the definition of PLC, we observe that it is similar to
the risk measurement for a portfolio to keep the loss below
certain level with certain probability. This motivates us to
adopt a metric for risk measurement in portfolio optimizing
problems, namely, conditional-value-at-risk (CVaR), and focus
on its worst-case to solve the distributionally robust stochas-
tically constrained problem as in (12).

Before introducing CVaR, we first present a fundamental
definition called value-at-risk (VaR).

Definition 1: with respect to certain probability level α,
the α-value-at-risk (VaRα) of a portfolio is defined as the
lowest amount ξ such that the loss is no more than ξ with
at least α probability. Mathematically, let h (x,y) be the loss
function, where x is a decision vector representing a portfolio
and y is a random vector standing for the uncertainties in the
market influencing the loss. Then, the VaRα can be described
as follows

VaRα (h (x,y)) = min

ξ :

∫
h(x,y)≤ξ

f (y) dy ≥ α

 , (13)

where f (·) represents the probability distribution function.
Although the VaR defined as (13) is a very popular measure-

ment method for the portfolio risk, it has been proved that it
has undesirable mathematical characteristics and is ill-behaved
as a function for portfolio optimizations [17]. Thus, CVaR is
introduced based on the VaR concept as follows.

Definition 2: CVaR, also known as mean excess loss or
tail VaR, is the conditional expectation of the loss above the
amount of VaR ξ. Mathematically, based on (13), the CVaRα
can be expressed as

CVaRα (h (x,y)) =
1

1− α

∫
h(x,y)≥VaRα(h(x,y))

h (x,y) f (y) dy. (14)
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To better understand these two definitions, we present a toy
example as in Fig. 2, where α = 0.9. Obviously, for a loss
function h(x,y), CVaRα (h(x,y))≥VaRα (h(x,y)), and min-
imizing CVaRα is closely related to minimizing VaRα [40].

Fig. 2. A toy example for VaR and CVaR.

As a result, according to Definition 2, we can obtain

Pr (ϕ (c, δm) ≤ CVaRα (ϕm)) ≥ α, (15)

where ϕm is the simplified notation of ϕ (c, δm). Therefore,
CVaRα (ϕm) ≤ 0 is sufficient to imply the original stochasti-
cal constraint (6), also described as (7). Then, considering the
worst-case, we have

max
fδm∈Uf

{CVaRα(ϕm)}≤0⇒min
fδm∈Uf

{Pr (ϕ (c, δm)≤0)}≥α. (16)

Thus, the DR-PLC as (12) can be approximated by solving
the following problem

c̄m,ij = max

{
c : max

fδm
{CVaRα (ϕm)} ≤ 0

}
, (17)

subject to the distribution uncertainty constraint (9) or (10).
Based on the Theorem 1 in [17], CVaRα (ϕm) can be

achieved from the following formula as

CVaRα (ϕm) = min
β
Fα (β, c)

= min
β

β +
1

1− α

∫
δm∈R

[ϕ (c, δm)− β]
+
fδmdδm


= min

β

{
β +

1

1− α
Ef
(

[ϕ (c, δm)− β]
+
)}

, (18)

in which [x]
+

= max {x, 0}. Then, according to (17), we
can obtain the worst-case CVaR based approximation for the
distributionally robust stochastical constraint (9) as

min
β

{
(1− α)β + max

fδm∈Uf
Ef
(

[c− δm − β]
+
)}
≤0. (19)

So, determining the approximated DR-PLC (ADR-PLC) de-
scribed as (17) is equivalent to finding the maximal value
of c satisfying the constraint (19), subject to one of the two
distribution uncertainty constraints, re-presented as

max c

s.t. {(18), (9)} or {(18), (10)} (20)

C. Tractable Data-Driven Reformulation Based on Semidefi-
nite Programming

To obtain the ADR-PLC under the two cases with exact and
uncertain statistics, constrained by (10) and (11), respectively,
in this subsection, we will reformulate the two optimization
problems as in (20) into two tractable SDP problems. Since
the adopted statistical characteristics, µ and σ2, are derived
from the historical data, we call them tractable data-driven
reformulations.

1) Distribution Uncertainty with Exact Statistics: Consid-
ering the ADR-PLC solving problem with exact statistical
information, i.e.,

c̄1m,ij = max {c : (19) and (10)} , (21)

we first give the following proposition, which shows the
problem (21) can be reformulated as a tractable SDP problem.

Proposition 1: For the following optimization problem as

π1 = min
fδm≥0

Ef
(
−[c− δm − β]

+
)

s.t. Ef (δm)=µ,Ef
(

(δm − µ)
2
)

=σ2,Ef (1)=1. (22)

it is equivalent to solving the SDP problem below

π1 = max
λ,η,k

−λµ− k −
(
σ2 + µ2

)
η

s.t.
[
η λ

2
λ
2 k

]
� 0,

[
η λ+1

2
λ+1
2 k − c+ β

]
� 0, (23)

in which λ, η, and k are Lagrangian multipliers associated
with the three statistic constraints in (22).

Proof: By introducing three Lagrangian multipliers, λ, η
and k, we can get the Lagrangian function as in (24) on the
next page, and the dual problem of (22) can be expressed as

max
λ,η,k

(
min
fδm≥0

Γ (fδm , λ, η, k)

)
. (25)

The feasibility and convexity of the problem (22) can ensure
the strong duality [16], [41]. Considering the expectation
component in (24), if it is negative, since there is no constraint
on the shape of the distribution function fδm ≥ 0, it is
possible that fδm allocates very large mass on a single point so
that min

fδm≥0
Γ (fδm , λ, η, k) is unsolvable. Thus, the following

condition needs to be satisfied for any possible δm

[c− δm − β]
+ ≤ ηδm2 + λδm + k. (26)

Then, the dual problem as (25) turns to be the following
constrained optimization problem

π1 = max
λ,η,k

−λµ− k −
(
σ2 + µ2

)
η

s.t. ηδm
2 + λδm + k ≥ 0, ∀δm ∈ R,

ηδm
2 + λδm + k ≥ c− δm − β, ∀δm ∈ R. (27)

For the first constraint in (27), it can be rewritten as[
δm 1

] [ η λ
2

λ
2 k

] [
δm 1

]T ≥ 0, ∀δm ∈ R, (28)
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Γ (fδm , λ, η, k) = Ef
(
− [c− δm − β]

+
+ ηδm

2 + λδm + k
)
− λµ− k −

(
σ2 + µ2

)
η. (24)

Γ̃ (fδm , ν,Z, ς) = Ef
(
−[c−δm−β]

+
)

+ν
(
Ef
(
δm

2
)
−2µEf (δm)+µ2−(1+θσ)σ2

)
−Ef

[
σ2 δm−µ

δm−µ θµ

]
⊗Z+Ef (ς)−ς

= Ef
(
−[c− δm − β]

+
+νδm

2−2 (µν + ω) δm+ς
)

+
(
µ2 − (1 + θσ)σ2

)
ν − ξσ2 + 2µω − sθµ − ς, (35)

which is equivalent to the first constraint in (23). Similarly,
for the second constraint in (27), it can be reformulated as[
δm 1

] [ η λ+1
2

λ+1
2 k − c+ β

] [
δm 1

]T ≥ 0,∀δm∈R, (29)

corresponding to the second constraint in (23). Then, we can
achieve the SDP problem as (23) which is equivalent to the
optimization problem as (22).

Since max
fδm∈U1

f

Ef
(

[c− δm − β]
+
)

=−π1, based on Propo-

sition 1, we find that the constraint (19) with the exact
statistical information is equivalent to a feasibility check:

∃ (β, λ, η, k)

s.t. (1− α)β + λµ+ k +
(
σ2 + µ2

)
η ≤ 0,[

η λ
2

λ
2 k

]
� 0,

[
η λ+1

2
λ+1
2 k − c+ β

]
� 0. (30)

Consequently, the ADR-PLC solving problem (21) can be
reformulated into a tractable SDP problem as

c̄1m,ij = max
β,λ,η,k

c , (31)

subject to the constraints as in (30).
2) Distribution Uncertainty with Uncertain Statistics: As a

more general case, the statistical information extracted from
the historical data is usually with errors due to the limited
observations, and the ADR-PLC solving problem in this case
can be formulated as

c̄2m,ij = max {c : (19) and (11)} . (32)

Similarly, we first present a proposition, and then reformulate
the problem (32) into an SDP problem accordingly.

Proposition 2: For the following optimization problem as

π2 = min
fδm≥0

Ef
(
−[c− δm − β]

+
)

s.t. (Ef (δm)− µ)
2 ≤ θµσ2,

Ef
(

(δm − µ)
2
)
≤ (1 + θσ)σ2,Ef (1) = 1, (33)

it is equivalent to solving the SDP problem below

π2 = max
ν,ξ,ω,s,ς

(
µ2−(1+θσ)σ2

)
ν−ξσ2+2µω−sθµ−ς

s.t.
[

ν − (µν+ω)
− (µν+ω) ς

]
� 0,[

ν −2(µν+ω)+1
2

−2(µν+ω)+1
2 ς − c+ β

]
� 0,

ν ≥ 0,Z � 0, (34)

where Z =

[
ξ ω
ω s

]
, ν, and ς are the Lagrangian multi-

pliers associated with the three statistical constraints in (33),
respectively.

Proof: Considering the first constraint in (33), we can
rewrite it as

Ef
[

σ2 δm − µ
δm − µ θµ

]
� 0. (35)

Similar to (24), by introducing three Lagrangian multipliers,
Z � 0, ν ≥ 0, and ς , we can obtain the Lagrangian function
shown in (35) where ⊗ denotes the Frobenius product. Then,
the dual problem of (33) can be expressed as

max
ν,Z,ς

(
min
fδm≥0

Γ̃ (fδm , ν,Z, ς)

)
. (36)

Similar to (25), to make min
fδm≥0

Γ̃ (fδm , ν,Z, ς) solvable, we

have

[c− δm − β]
+ ≤ νδm2− 2 (µν + ω) δm + ς,∀δm ∈ R, (37)

and the dual problem as (36) can be rewritten as

π2 = max
ν,ξ,ω,s,ς

(
µ2 − (1+θσ)σ2

)
ν−ξσ2+2µω−sθµ−ς

s.t. νδm
2 − 2 (µν + ω) δm + ς ≥ 0 ∀δm ∈ R,

νδm
2 − 2 (µν + ω) δm + ς ≥ c− δm − β ∀δm ∈ R,

ν ≥ 0,

[
ξ ω
ω s

]
� 0. (38)

Similar to (28) and (29), the first two constraints can be
transformed into two linear matrix inequalities as in (34) and
thus the conclusion can be achieved.

For the ADR-PLC solving problem in (32), the worst-case
distribution is expected to have a larger variance, so that the
distribution uncertainty constraint set (11) turns to be

U2
f =

{
fδm≥0

∣∣∣∣∣ (Ef (δm)− µ)
2 ≤ θµσ2,Ef (1)=1

Ef
(

(δm − µ)
2
)
≤ (1 + θσ)σ2

}
. (39)

Similar to (30), based on Proposition 2, the constraint (19) in
this case is equivalent to the following feasibility check:

∃ (β, ν, ξ, ω, s, ς)

s.t. (1−α)β+
(
(1+θσ)σ2−µ2

)
ν+ξσ2−2µω+sθµ+ς≤0[

ν − (µν + ω)
− (µν + ω) ς

]
� 0,[

ν −2(µν+ω)+1
2

−2(µν+ω)+1
2 ς − c+ β

]
� 0,

ν ≥ 0,

[
ξ ω
ω s

]
� 0. (40)
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Therefore, the ADR-PLC solving problem in this case written
as (32) can be reformulated as a tractable SDP problem with
the objective

c̄2m,ij = max
β,ν,ξ,ω,s,ς

c , (41)

subject to the constraints as in (40).

D. Accuracy of the Worst-Case CVaR Based Approximation

To calculate the DR-PLC formulated as (12), we have made
a conservative approximation for the stochastical constraint
based on the worst-case CVaR and turned it to be an ADR-PLC
formulated as (17). In this subsection, we will demonstrate that
such an approximation is actually accurate, i.e., DR-PLC and
ADR-PLC are equivalent. That is, we will prove that (16) is
in fact an equivalence, i.e.,

max
fδm∈Uf

{CVaRα(ϕm)}≤0⇔ min
fδm∈Uf

{Pr(ϕ(c, δm)≤0)}≥α. (42)

Due to the limited space, we only consider the first case where
the statistical information is treated as an exact one, i.e., Uf =
U1
f , which can be easily extended to the other case.
Based on the definition of VaR in (13), we can express the

worst-case VaR of ϕm as

WC-VaRα(ϕm)=min

{
ρ : min
fδm∈U1

f

{Pr (ϕm≤ρ)}≥α

}
. (43)

To prove the equivalence (42), we will first show that

min
fδm∈U1

f

{Pr (ϕm ≤ 0)} ≥ α⇔WC-VaRα (ϕm) ≤ 0, (44)

and then demonstrate that

WC-VaRα (ϕm) = max
fδm∈U1

f

{CVaRα (ϕm)} . (45)

For the equivalence (44), if the left side is satisfied, obvi-
ously, ρ = 0 is feasible in (43), which means that the right
side of (44) can be satisfied as well. Conversely, if the right
side is met, given that WC-VaRα (ϕm) = ρ̂ ≤ 0, then we can
derive that for any fixed fδ ∈ U1

f ,

Pr (ϕm ≤ 0) ≥ Pr (ϕm ≤ ρ̂) ≥ α, (46)

which means the left side is also met. Therefore, the equiva-
lence (44) follows.

Next, we will show that the equivalence (45) holds so that
(42) can be proved to be true. Firstly, We present two Lemmas
as follows.

Lemma 1 (Farkas Lemma) Let f, g1, . . . , gm be convex
functions. Assume that there exists a feasible point x̄ satisfying
gi (x̄) < 0, i = 1, . . . ,m. Then, f (x) ≥ 0 for all x
with gi (x) ≤ 0, i = 1, . . . ,m, if and only if there are
y1, . . . , ym ≥ 0 such that

f (x) +
m∑
i=1

yigi (x) ≥ 0,∀x ∈ R. (47)

Proof: Refer to Theorem 2.1 in [42].

Lemma 2 Denote π = max
fδ∈U1

f

{Pr (ϕm ≥ ρ)}. Then,

π = min
λ,η,k

λµ+ k +
(
σ2 + µ2

)
η

s.t. ηδm
2 + λδm + k ≥ 0, ∀δm ∈ R,

ηδm
2 + λδm + k ≥ 1, ∀δm : ϕm ≥ ρ. (48)

Proof: Define an indicator function as

I (δm) =

{
1 ϕm ≥ ρ
0 ϕm < ρ

. (49)

We can find that π = max
fδ∈U1

f

E (I (δm)). Then, by applying the

similar manipulations as in the proof of Proposition 1, we can
achieve the conclusion.

Rewrite (43) as

WC-VaRα(ϕm)=min

{
ρ : max

fδ∈U1
f

{Pr (ϕm≥ρ)}≤θ

}
, (50)

where θ = 1 − α. According to Lemma 1 and Lemma 2, we
can find that (50) can be reformulated as

WC-VaRα(ϕm)=min ρ

s.t. λµ+ k +
(
σ2 + µ2

)
η ≤ θ,

ηδm
2 + λδm + k ≥ 0, ∀δm ∈ R,

ηδm
2+λδm+k−1+y (ρ−ϕm)≥0, ∀δm∈R, y ≥ 0.(51)

If y = 0, then ηδm
2 + λδm + k ≥ 1. Let δm = µ and we

can find that λµ + k +
(
σ2 + µ2

)
η ≥ 1 which is in conflict

with the first constraint in (51). Thus, we have y 6= 0. Dividing
both sides of the third constraint by y and performing variable
substitutions, we can rewrite (51) as

WC-VaRα(ϕm)=min ρ̃+ ỹ

s.t. 1
θ

(
λ̃µ+ k̃ +

(
σ2 + µ2

)
η̃
)
≤ ỹ,

η̃δm
2 + λ̃δm + k̃ ≥ 0, ∀δm ∈ R,

η̃δm
2 + λ̃δm + k̃ + ρ̃− ϕm ≥ 0, ∀δm∈R, ỹ > 0, (52)

where ỹ = 1
y , η̃ = η

y , k̃ = k
y , λ̃ = λ

y , and ρ̃ = ρ − ỹ.
Substituting δm = µ into the second constraint, we can find
that λ̃µ+k̃+

(
σ2 + µ2

)
η̃ ≥ 0, which means that the constraint

ỹ > 0 is redundant and can be removed. Furthermore, for the
first constraint, to achieve the optimality, it should satisfy that
ỹ = 1

θ

(
λ̃µ+ k̃ +

(
σ2 + µ2

)
η̃
)

. Consequently, (52) can be
further rewritten as

WC-VaRα(ϕm)=min ρ̃+ 1
θ

(
λ̃µ+ k̃ +

(
σ2 + µ2

)
η̃
)

s.t. η̃δm
2 + λ̃δm + k̃ ≥ 0, ∀δm ∈ R,

η̃δm
2 + λ̃δm + k̃ + ρ̃− ϕm ≥ 0, ∀δm∈R. (53)

Based on (18) and Proposition 1, we can achieve that

max
fδm∈U1

f

{CVaRα (ϕm)}=minβ+ 1
θ

(
λµ+k+

(
σ2+µ2

)
η
)

s.t. ηδm
2 + λδm + k ≥ 0, ∀δm ∈ R,

ηδm
2 + λδm + k ≥ c− δm − β, ∀δm ∈ R. (54)

Obviously, (53) and (54) are equivalent. Hence, we can obtain
the conclusion (45).
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So far, we have demonstrated that both (44) and (45) are
satisfied. As a result, we achieve the equivalence (42), so
that the worst-case CVaR based approximation for DR-PLC
is actually accurate, i.e., c̄m,ij = ĉm,ij .

V. SERVICE-BASED SPECTRUM-AWARE DATA
TRANSMISSION SCHEME IN THE CCHN

In this section, by adopting the proposed metric, i.e., DR-
PLC, to evaluate the achievable rate of a link on a shared
band with uncertain availability, we will develop a service-
based spectrum-aware (S2) transmission scheme in the CCHN
to meet as many service requests as possible by using the
least licensed bands. To be specific, we consider two kinds
of services in the network, i.e., DS services LDS and DT
services LDT. Only the DT ones can be carried by the shared
bands Ms with uncertain availability. Their QoS can be
statistically guaranteed by using the proposed metric DR-PLC
when making resource allocation decisions.

For such an S2 transmission scheme, it has two steps. Step-1
corresponds to an admission control, aiming at maximizing the
number of admitted services with the consideration of their dif-
ferent importance levels and rate requirements, subject to the
available resources. Step-2 focuses on the spectrum efficiency
with the objective of minimizing the used bandwidth of the
licensed band, i.e., offloading the transmission of DT services
to the shared bands which are relatively sufficient compared
with the licensed ones. For the transmission scheduling, we
only consider the links transmitting the aggregated data, i.e.,
CRR ↔ FBS and CRR ↔ CRR, and ignore the accessing
link, Device ↔ CRR, which can work on various accessing
technologies and be managed by the CRRs in a distributed
way instead of being controlled by the MBS in a centralized
manner. The end-to-end hybrid transmission scheduling will
be investigated in our future works.

A. Step-1: Admission Control

We exploit a binary variable k (l) to describe whether or
not the service request l ∈ {LDT ∪ LDS} can be admitted as

k (l) =

{
1, if service request l is admitted,
0, otherwise.

(55)

Denote w (l) as the weight attributed to the service request l
corresponding to its importance level. Then, the objective of
the step-1 can be expressed as

max
∑

l∈{LDT∪LDS}

w (l) k (l). (56)

Next, we will formulate the constraints for the spectrum
allocation, satisfying the admitted services’ requirements. We
employ a binary variable xmij to denote whether or not band
m ∈Mij is allocated on the link from i to j, i 6= j ∈ N , as

xmij =

{
1, if band m is allocated on the link i→ j,
0, otherwise.

(57)

First, we need to avoid the mutual interference among
different links. To be specific, for any node i ∈ N , it cannot

transmit to or receive from other nodes on the same band,
which can be described as∑

j∈Ti,m

xmij ≤ 1,
∑

{h|i∈Th,m}

xmhi ≤ 1,∀i ∈ N . (58)

Furthermore, any node cannot transmit and receive on the
same band simultaneously due to the self-interference, which
can be expressed as

xmij +
∑

q∈Tj,m

xmjq ≤ 1,∀i ∈ N ,∀j ∈ Ti,m. (59)

Moreover, if xmij = 1, all interfering neighbors of node i cannot
receive data on band m, and we can obtain the constraint as

xmij +
∑

{k|g∈Tk,m,k 6=i}

xmkg ≤ 1, ∀i ∈ N ,∀g ∈ Ii,m. (60)

Second, considering the rate requirements and different
types of the admitted services, we need to guarantee: 1) the
admitted DS services’ data should be carried by the licensed
bands; 2) the achievable rate of the link should be able to
support the data traffic generated by the admitted services.
To quantify the achievable rate of a link on a shared band
with uncertain availability, we use DR-PLC to make the
requirement statistically satisfied with a high probability. Then,
we can get the following two constraints as∑
{l∈LDS|sDS(l)=i,dDS(l)=j}

rDS (l) k (l) ≤
∑
m∈Ml

xmij cm,ij , (61)

and ∑
{l∈LDS|sDS(l)=i,dDS(l)=j}

rDS (l) k (l) +
∑

{l∈LDT|sDT(l)=i,dDT(l)=j}

rDT (l) k (l)

≤
∑
m∈Ml

xmij cm,ij +
∑

m∈Mi
s

xmij ĉm,ij , (62)

where cm,ij and ĉm,ij are the capacity and the DR-PLC of the
link from i to j on band m ∈ Ml and m ∈ Mi

s, calculated
by (3) and (12), respectively.

By solving the integer linear programming (ILP) problem
with the objective as (56), subject to the constraints from (58)
to (62), we can obtain the optimal admission control result
k∗ (l) for any service request l ∈ {LDT ∪ LDS}, which can
support as many service requests as possible based on their
importance levels and the available resources in the network.

B. Step-2: Spectrum Re-allocation

Although the step-1 has optimally determined which service
requests are admitted by the network, it is noteworthy that the
spectrum allocation result, i.e., the xmij obtained by solving
the aforementioned optimization problem, may not be the
best decision, leading to a low spectrum efficiency. On the
one hand, some links with low rate requirements may be
assigned with a wide bandwidth. On the other hand, some DT
services may be carried by the scare licensed bands, leaving
the relative sufficient shared bands underutilized. Hence, to
improve the spectrum efficiency, we introduce the step-2 for
S2 transmission scheme to re-allocate bands on the links which
will undertake the data transmissions for the admitted services.
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Fig. 3. PLC and DR-PLC under different probability distributions, where exact statistical information is considered.

The objective of the step-2 is minimizing the total occupied
bandwidth of the licensed bands. By using the same notations
as those in step-1, we can formulate the objective as

min
∑
i∈N

∑
j∈Ti,m

∑
m∈Ml

xmijWm. (63)

Similar to step-1, the constraints for step-2 also involve two
aspects. One is to avoid the co-channel interference, which
can be described by (58), (59) and (60) as well. The other is
to guarantee the QoS for the admitted services that scheduled
in step-1, which can be formulated by substituting k (l) with
k∗ (l) in (61) and (62). Then, by solving such an ILP problem,
we can get the optimal spectrum allocation solution.

VI. NUMERICAL RESULTS

A. Evaluation for the Distributionally Robust Data-Driven
Approach With Exact or Uncertain Statistics

In this subsection, by directly assuming that δm follows
certain probability distribution, we evaluate the performance of
the proposed DR approach through comparing the PLC as (5)
and the DR-PLC as (31) or (41) under exact or uncertain data-
driven statistics, respectively2. Three common distributions
are employed: normal distribution, uniform distribution, and
Gamma distribution. First, we consider the case that the
statistical information is accurate, i.e., the DR-PLC is obtained
based on (31), and present the DR-PLC and the PLC under the
three distributions with different confidence levels in Fig. 3.
To be specific, we set the same statistics for each distribution
in each experiment, where the expectation is 10 and the
variance is 0.1, 1, and 2 in (a), (b), and (c), respectively.
Three confidence levels are considered, i.e., α = 0.7, α = 0.8,
and α = 0.9. From Fig. 3, we observe that the DR-PLC
is lower than the PLC under any distribution because it
is in fact a lower bound of PLC, robust to any possible
distributions with the same statistics. When the variance is
small, the difference between DR-PLC and PLC is small.
With the variance increases, the gap becomes more obvious, as
showing in Fig. 3(a) and Fig. 3(c), because it is more difficult
to achieve the distributional robustness when the random
variable fluctuates more dramatically with a larger variance.

2As conducted in [6], [35], Monte Carlo experiment as an effective method
is adopted to calculate the PLC under different distributions.
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Fig. 4. PLC and DR-PLC under different probability distributions, where
uncertain statistical information is considered.

Furthermore, for the different confidence levels, the higher it
is, the lower PLC and DR-PLC can be achieved, because it
has to make the result achievable with a higher probability.
Moreover, the gap between DR-PLC and PLC increases when
the adopted confidence level increases.

Next, we consider the case that the statistical information
of δm is uncertain, i.e., the real expectation and variance
are not equal to the one extracted from the sampled data,
and compare PLC and DR-PLC in Fig. 4. In each subfigure,
we have conducted 50 experiments. In each experiment, the
confidence level is set to 0.8, and the real statistics are
generated randomly within an uncertainty interval as shown in
(11), where µ = 10 and σ2 = 1 with uncertainty parameters as
{θµ = 1, θσ = 0.2} and {θµ = 2, θσ = 0.3} in Fig. 4(a) and
Fig. 4(b), respectively. The DR-PLC-E represents the DR-PLC
obtained based on (31) by treating the sampled statistics exact,
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and the DR-PLC-U is achieved based on (41) considering the
estimation errors. From Fig. 4, we observe that if we directly
use the inaccurate data-driven statistics to calculate DR-PLC,
i.e., the DR-PLC-E, it will result in an overestimated solution
in some cases due to the errors in the statistics, especially
when the estimation errors are high as shown in Fig. 4(b)
where many results are larger than the corresponding PLC.
Such an overestimation on the achievable performance might
lead to the violation of the QoS. By taking the estimation
errors into account, DR-PLC-U can be regarded as the lower
bound of PLC, robust to any possible distributions subject to
the same uncertain statistics3.

B. Case Study 1: PLC and DR-PLC of a Link on a Shared
Band With Uncertain Availability

As a case study, we consider a specific transmission link
with the distance as 200m. The transmission related parameters
are set as follows: τ = 4 and α = 4. The noise density power
at the receiver is set to γ = 10−16 W/Hz. Assume that the
link is using a shared band m with bandwidth Wm = 5MHz,
whose actual available bandwidth W̃ l

m follows a uniform or
truncated normal distribution within [0, 5], two widely adopted
theoretical models in the literature [35], [43]. Fig. 5 shows
PLC and DR-PLC of this link under 0.8 confidence level
with different transmission power, which is assumed to be
allocated uniformly on this band. The expectation of W̃ l

m is
set to µm = 3, and its variance is set to σ2

m = 0.1 and
σ2
m = 0.6 in Fig. 5(a) and Fig. 5(b), respectively, in terms of

MHz. The DR-PLC-E and DR-PLC-U have the same meaning
as those in Fig. 4, and for the DR-PLC-U, the parameters
for the statistics of δm are set to θµ = 4, θσ = 0.2. From
Fig. 5, we can get some similar conclusions as what we
have observed from Fig. 4. As the lower bound, both DR-
PLC-E and DR-PLC-U are smaller than the corresponding
PLC under both distributions. Compared with DR-PLC-E, DR-
PLC-U corresponds to a more conservative evaluation because
the estimation errors of statistics are considered. Furthermore,
under the two different variances, we can see that when the
available bandwidth has a larger variance, i.e., the historical
data fluctuates more seriously, both PLC and DR-PLC will
become smaller to achieve the same confidence level, and the
gap between PLC and DR-PLC becomes larger.

C. Case Study 2: Service-Based Spectrum-Aware Transmis-
sion Scheme

We consider a grid network with N = 9 nodes as shown
in Fig. 6. The transmission power of each node on each
band is assumed to be 2W, which is allocated on the band
uniformly, and the transmission and interference range is 210m
and 260m, respectively. The transmission related parameters
are set the same as those in Fig. 5. Suppose that there
are three DS requests and five DT requests as exhibited in
Fig. 6. The weights of the three DS ones are set the same

3Noticing that we do not aim at comparing the PLC under the different
distributions, but try to show the distributional robustness of the proposed
DR-PLC. Since we cannot present all possible distributions, we only take
these three common ones as examples.
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Fig. 5. PLC and DR-PLC of a link on the shared band m, whose available
bandwidth follows normal or uniform distribution.

Fig. 6. Case study: a grid network with 9 nodes, 3 DS service requests and
5 DT service requests.

as 6, and those of the five DT ones are set to 5, 4, 3, 1,
2, respectively4. Assume that there are two licensed bands,
Ml = {1, 2}, and three shared bands, Ms = {3, 4, 5}, and
all nodes can use any of them. The bandwidth of the two
licensed ones are W1 = 3MHz and W2 = 4MHz, and that
of the three shared ones are W3 = 3MHz, W4 = 4MHz and
W5 = 5MHz, respectively. Due to the spectrum uncertainty,
the actual available bandwidth of each shared band is a random
variable as W̃m ≤Wm, m=3, 4, 5. Suppose that they follow
the uniform distribution with the expectation as 1.5, 2.5, 3.5,

4The weight of a service request corresponds to its importance level, which
depends on the payment or the application.
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respectively, and the same variance as 0.2. Since the distance
and the transmission related parameters of each transmission
link have been set the same, we can calculate the link capacity
(LC) and the DR-PLC of a link on a band as shown in Table
I, where the confidence level is set to 0.7 and the statistics
used to determine the DR-PLC are considered exact. The

TABLE I
DIFFERENT KINDS OF CAPACITY OF A LINK ON DIFFERENT BANDS

capacity
band

m1 m2 m3 m4 m5

LC (Mbps) 12.4 15.0
PLC-F (Mbps) 5.3 8.5 11.3
DR-PLC (Mbps) 3.4 6.9 9.8

PLC-F in Table I represents the PLC calculated under a false
distribution, e.g., by learning from insufficient observations or
employing a wrong theoretical model for analysis. We assume
that the false distribution is normal distribution with the same
statistics as the real one. By adopting PLC-F and DR-PLC to
evaluate the achievable rate of a link on a shared band, the
scheduling result of the S2 scheme is shown in Fig. 7. We can

(a) Evaluation based on DR-PLC

(b) Evaluation based on PLC-F

Fig. 7. Scheduling result of the S2 scheme.

see that for the three DS requests which can only be carried
by the licensed bands, DS1 and DS3 are admitted, working
on {m1} and {m1,m2}, respectively. No mutual interference
exists between them because the transmitter of DS1/DS3 is far
enough away from the receiver of DS3/DS1. DS2 is rejected
for the total weight maximization because it has conflicting
relationship with both DS1 and DS3. Considering the five DT
requests, when DR-PLC is adopted to evaluate the link capac-
ity achieved by the shared band, DT1, DT2, DT3 and DT4

will be admitted as depicted in Fig. 7(a). Notice that since the
capacity provided by the licensed bands m1 and m2 exceeds
the demand of DS3, some data of DT1 is actually carried by
the licensed bands. If the operator takes the PLC-F to evaluate
the link capacity, DT5, which has a higher weight than DT4,
will become the admitted one as shown in Fig. 7(b) because
of the overestimation of the achievable rate of each shared
band. In Table II, we present the probability that the QoS
for each admitted DT service is satisfied under the two cases
based on DR-PLC and PLC-F, respectively, by taking 1000
experiments. In each experiment, the available bandwidth of

TABLE II
PROBABILITY THAT THE QOS OF EACH ADMITTED SERVICE IS SATISFIED

DT1 DT2 DT3 DT4 DT5
DR-PLC 1 99.3% 1 93.7%
PLC-F 1 80.4% 63.7% 62.7%

each shared band is generated randomly, following the uniform
distribution with the aforementioned settings on statistics. We
can see that if we use a specific distribution to handle the
spectrum uncertainty, due to the possible false estimation as
in this case study, the QoS might be hardly guaranteed. When
the DR-PLC metric is adopted, the QoS can be satisfied with
a high probability. Thus, DR-PLC offers us an effective way
to guarantee the QoS when using the shared spectrum, even if
the specific probability distribution of the available bandwidth
is unknown. Noticing that although the confidence level is set
to 0.7, the probability that the QoS is satisfied is higher than
90%. The reason is that such a DR-PLC corresponds to a
conservative evaluation, as a lower bound of PLC under any
possible distributions, so that the probability that DR-PLC is
achievable should be higher than the confidence level, which
could achieve a higher QoS guarantee level.

VII. CONCLUSIONS

In this paper, we have investigated how to support the in-
creasing IoT services based on shared spectrums. Considering
the uncertain availability of the shared spectrum, we have
modeled the average available bandwidth of a shared band
within a service period as a random variable, and proposed a
new metric, PLC, to evaluate the achievable rate of a link
with certain confidence level, which offers us an effective
way to guarantee the QoS statistically when using the shared
spectrum for service delivery. Considering that the accurate
distributional information is hardly obtainable in practice, we
have designed a distributionally robust data-driven approach
by using the first and second order statistics and achieved a
conservative evaluation on PLC. With the proposed metric, we
have developed a service-based spectrum-aware data transmis-
sion scheme, so that licensed and shared spectrums can be
efficiently used to fulfill diverse service requirements.
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