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Abstract—Due to the emerging Internet of Things (IoT) ser-
vices, the spectrum shortage problem becomes more and more
serious. To tackle this challenge, many research works have been
conducted to employ the cognitive radio technology to exploit
under-utilized spectrums for IoT services. However, the operation
of a cognitive radio transmission system is usually time-energy-
consuming due to the requirement on the wideband sensing and
spectrum switching, which might be hardly supportable by the
light-weighted IoT devices. In this paper, we propose a data-
driven cost-effective session-oriented cognitive radio transmission
scheme, where the bands are directly selected based on the
historical data and a “transmit-wait-transmit” mode is employed
to reduce the cost. For the spectrum selection, we first attempt
to determine the bands with minimal total bandwidth that could
make the session accomplished with certain confidence level by
modeling the available duration of a band within the session
period as a random variable. Then, from the historical data,
we develop a distributionally robust approach, where Kullback-
Leibler divergence is used to capture the distributional ambiguity.
Finally, based on the real data we collected using USRP-2922,
we evaluate the effectiveness of our proposed scheme.

Index Terms—Cognitive radio, spectrum uncertainty, distribu-
tional ambiguity, robust optimization, data-driven.

I. INTRODUCTION

W ITH the popularity of Internet of Things (IoT), nu-
merous devices are expected to connect with existing

telecommunications networks, which poses a great challenge
to the already crowded spectrum resource. To support the
exponentially increasing wireless data traffic, high frequency
spectrums are exploited. Unfortunately, due to the undesired
propagation characteristics, the applicable scenario for such
high frequency spectrums is limited [1]. Considering the
current status of spectrum under-utilization, how to improve
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the spectrum efficiency for the sub-6GHz golden bands has
attracted intensive interests [2], [3].

Cognitive radio (CR) is a promising technology that can
enable IoT devices, regarded as secondary users (SUs), to
opportunistically access the unused spectrums belonging to the
licensed users or primary users (PUs), and thus alleviate the
spectrum scarcity problem [4], [5]. As a result, many research
efforts have been dedicated to investigating the adoption of
CR on IoT devices to enable the ubiquitous connectivity, such
as the RERUM project in Europe [6].

In general, to enable opportunistic spectrum access, a CR
device needs to implement a wideband spectrum sensing first
and then make spectrum access decisions accordingly. Then, it
needs to monitor the selected bands and vacate them whenever
PUs reclaim them, where another wideband sensing phase will
be started to find other available bands and the CR device
will tune to them to continue the transmission [2], [7]. Such a
procedure will be repeated until the session accomplished. Un-
fortunately, this kind of CR transmission is hardly practical for
light-weighted IoT devices. First, implementing a wideband
spectrum sensing is usually time-energy-consuming (sens-
ing cost). Second, frequent RF-reconfiguration for spectrum
switching will also bring considerable overhead (switching
cost). Third, considering the uncertain spectrum supply, how
to guarantee the quality of service (QoS) is challenging.

In parallel with that, we note that many IoT services are
delay-tolerant, e.g., uploading 10Gbs surveillance video data
within 10mins for cloud storage. Intuitively, if we could know
the data volume that can be delivered by different bands within
the period, we only need to sense these bands instead of
employing wideband sensing, and stay on these bands during
the session period instead of frequently switching among
different ones, i.e., keep silence and wait for the release when
PUs reclaim the bands. As a result, both sensing cost and
switching cost could be reduced effectively. Following this
idea, we develop a data-driven cost-effective session-oriented
cognitive radio transmission (CSCT) scheme. By monitoring
the spectrum from 2579.5MHz to 2580.5MHz, as well as from
many existing spectrum measurement works [8], we find that
the statistics of spectrum occupancy can be inferred from the
historical data, which can be adopted to predict the usability of
different bands. Considering a session that intends to transmit
certain amount of data within a period, we model the available
duration of a band within the period as a random variable and
formulate the spectrum selection of the CSCT scheme into
a chance constrained programming (CCP). Based on such a
cost-effective session-oriented scheme, we attempt to fulfill the
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session statistically by sensing the least bandwidth without the
requirement on spectrum switching.

In fact, such a stochastic modeling for spectrum uncertainty
has been used in many existing works [9]–[11]. Most of
them study the uncertainty issue based on certain specific
distribution. However, the exact distribution is usually hardly
known in practice, making the solution under such an assump-
tion suboptimal or even infeasible in practice. Hence, instead
of directly applying the distribution estimated by fitting the
historical data, we regard it as a reference and construct an
ambiguity set based on the Kullback-Leibler (KL) divergence,
to account for the ambiguous spectrum uncertainty, and de-
velop a distributionally robust (DR) solution accordingly [12].
Compared with our previous work [13], where a moment-
based model is adopted to characterize the ambiguity set, such
a KL divergence based method is more accurate and especially
suitable for the case where sufficient data could be used to
derive the referential distribution. Our main contributions are
summarized as follows:
• To reduce both sensing and switching costs in traditional

CR transmissions, we propose a CSCT scheme, where
the used bands are determined in advance based on the
statistical information of spectrum availability in the past
and a “transmit-wait-transmit” mode is adopted with a
probabilistic guarantee on the session.

• Unlike most existing works which assume the perfect
knowledge on probability distribution, we take the dis-
tribution fitted from data as the reference and construct
an ambiguity set to represent all possible distributions
based on the KL divergence, and develop a DR solution
so that the session can be guaranteed even though the
exact true distribution is unknown.

• Real data on spectrum occupancy is collected by us-
ing USRP-2922 on the campus of Dalian University of
Technology to verify the effectiveness of our proposed
scheme.

II. PROBLEM FORMULATION

Consider a CR transmission session, which intends to
transmit z bits over a link by using spectrum holes within
a duration of T time units. For the CSCT scheme, to reduce
the sensing cost, instead of making decisions after a wideband
sensing, we directly select some bands and adopt a “transmit-
wait-transmit” mode to further cut the switching cost, while
ensuring the session completion with a confidence level.

Denote all candidate bands asM and the bandwidth of band
m ∈M is Wm. The achievable rate of the link over band m
is expressed as cm = Wm log (1 + η), where η is the signal-
to-noise-ratio (SNR) at the receiver. Considering the uncertain
activities of PUs, we model the available duration of band m
within the period T as a random variable Tm, and formulate
the spectrum selection of the CSCT scheme into the following
CCP problem:

P1 : min
∑

m∈M
Wmxm

s.t. Pr

{ ∑
m∈M

Tmcmxm ≥ z
}
≥ β, (1)

where xm ∈ {0, 1} is the decision variable, representing
whether or not band m is selected, and β ∈ (0, 1) is the
confidence level.

Remark: Note that the problem P1 might have no feasible
solution, indicating that the candidate bands for sensing cannot
support the session with the confidence level even if all of them
are employed. If that is the case, part of session will be carried
by the operators’ own licensed bands.

As shown in many spectrum measurement works, by us-
ing sufficient historical data, the probability distribution of
t = [T1, T2, · · · , TM ]

T can be estimated, which can be used
to make the chance constraint in P1 a tractable deterministic
one. However, such an estimation is usually inaccurate, and
thus the solution based on it might be suboptimal or even
infeasible in practice. To account for this inaccuracy, we model
the distribution within an ambiguity set and develop a DR
approach to satisfy the chance constraint.

III. DISTRIBUTIONALLY ROBUST SOLUTION UNDER
KULLBACK-LEIBLER DIVERGENCE BASED AMBIGUITY

We denote the distribution obtained from data-driven fitting
as f0 (t), i.e., the empirical distribution, and take it as the
reference1. KL divergence is adopted to describe the distribu-
tion ambiguity by considering that the true distribution f (t) is
within certain distance from f0 (t). For simplicity, we denote
f0 (t) and f (t) as f0 and f , respectively, and the ambiguity
set can be expressed as

U = {f ≥ 0 : DKL (f, f0) ≤ d,Ef (1) = 1} , (2)

where DKL (f, f0) = Ef (ln f − ln f0). We define
x ln (x/0) = +∞ for any x > 0 and 0 ln (0/0) = 0.
Then, for any t, f0 (t) = 0 implies f (t) = 0. d is a
positive value, representing the risk-aversion on the empirical
approximation. Accordingly, we can formulate the DR
counterpart of the chance constraint in P1 as

min
f∈U

Ef
(
1
(
tTs ≥ z

))
≥ β, (3)

where s = [c1x1, · · · , cMxM ]
T and 1 (·) is the indicator

function. Replacing (1) by (3) in P1, we can achieve a DR-
CSCT scheme and get a DR solution, where the chance
constraint can be satisfied under all possible distributions
around the empirical distribution within the KL divergence
based ambiguity set expressed as (2).

Next, we will demonstrate that such a DR constraint (3) is
equivalent to (1) under the empirical distribution f0 but with
a more conservative confidence level.

To be specific, let F = f/f0. According to the change-of-
measure technique [15], we have

DKL(f, f0)=Ef
(

ln
f

f0

)
=

∫
T

f

f0
ln
f

f0
f0dt=Ef0(F lnF ) . (4)

Similarly, using 1 (t, s) to denote 1
(
tTs ≥ z

)
, we can derive

that Ef (1 (t, s)) = Ef0 (1 (t, s)F ). Thus, for the DR con-

1As studied in [8], different distribution models can be used to describe the
idle periods of different bands in different cases. Many metrics can be used
to evaluate the goodness of the fitting, such as the KL divergence [14].
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straint (3), the left side of it can be reformulated as

P2 : π = min
F∈F

Ef0 (1 (t, s)F ) , s.t. Ef0 (F lnF ) ≤ d, (5)

where F = {F ≥ 0 : Ef0 (F ) = 1}. Then, by denoting P =
Prf0

(
tTs < z

)
, we present two theorems as follows.

Theorem 1: The optimal objective value of P2, π, can be
obtained by solving the following optimization problem as

P3 : π = max
γ≥0
−γ lnEf0

(
e−1(t,s)/γ

)
− γd. (6)

Proof: For P2, we can construct the Lagrangian function
as

Γ (γ, F ) = Ef0 (1 (t, s)F + γF lnF )− γd, (7)

where γ ≥ 0 is the Lagrangian multiplier. Then, the La-
grangian dual problem of P2 can be expressed as

P4 : max
γ≥0

min
F∈F

Γ (γ, F ) . (8)

Due to the convexity of P2, the strong duality should hold for
P4. Next, we discuss the inner minimization problem in P4
denoted as π̃ by considering the following two cases.

1) γ = 0: For this case, π̃ = min
F∈F

Ef0 (1 (t, s)F ). If P = 0,

obviously, π̃ = 1. If P 6= 0, we have π̃ = min
f∈Ũ

∫
T 1 (t, s) fdt,

where Ũ = {f ≥ 0 : Ef (1) = 1}. It corresponds to a proba-
bility density allocation. P > 0 means that there exists points
that 1 (t, s) = 0. Then by allocating densities only on these
zero points, we can obtain π̃ = 0 under this situation.

2) γ 6= 0: Considering the definition of F , we can rewrite
the inner minimization problem as

P5 : π̃ = min
F≥0

Ef0 (1 (t, s)F + γF lnF )− γd

s.t. Ef0 (F ) = 1. (9)

We construct the Lagrangian function associated with P5 as

Γ̃ (F, α) = Ef0 (1 (t, s)F + γF lnF + αF )− γd− α, (10)

where α is the Lagrangian multiplier. It can be easily proved
that P5 is a convex optimization problem2. Thus, we observe
that if there exists a pair (F ∗, α∗) satisfying F ∗ ≥ 0,

∇F Γ̃ (F ∗, α∗)=Ef0 (1 (t, s)+γ (lnF ∗+1) + α∗)=0, (11)

∇αΓ̃ (F ∗, α∗) = Ef0 (F ∗)− 1 = 0, (12)

then F ∗ is the optimal solution of P5 [12]. Since γ 6= 0, by
jointly solving (11) and (12), we can obtain

F ∗ =
e−1(t,s)/γ

Ef0
(
e−1(t,s)/γ

) . (13)

Then, by substituting F ∗ into π̃, we can achieve the optimal
objective value of P5 as π̃ = −γ lnEf0

(
e−1(t,s)/γ

)
− γd,

which can be further represented as

π̃ = −γ ln
(

(1− P ) e−1/γ + P
)
− γd. (14)

Similarly, consider two situations. If P = 0, we can obtain

2The decision variables of P5 can be regarded as all points of F (t) for
each possible t. If we consider the discrete case, then it corresponds to the
probability mass for each possible value.

π̃ = 1 − γd and lim
γ→0

π̃ = 1. If P 6= 0, since γ > 0, we can

derive that −γd < π̃ < −γ ln (P )− γd and lim
γ→0

π̃ = 0.

Obviously, the first case can be incorporated into the second
case, and thus the conclusion can be achieved.

Theorem 2: The KL divergence based DR counterpart of
the chance constraint in P1, presented as (3), is equivalent to

Prf0

( ∑
m∈M

Tmcmxm ≥ z

)
≥ β̃, (15)

where

β̃ = min
0<δ<1

e−dδβ − 1

δ − 1
. (16)

Proof: From Theorem 1, we can rewrite (3) into a
feasibility check problem under the empirical distribution f0
as

∃ γ > 0, s.t. − γ lnEf0
(
e−1(t,s)/γ

)
− γd ≥ β, (17)

where the case γ = 0 is removed because 0 < β < 1. Let
P̄ = Prf0

(
tTs ≥ z

)
. Then, (17) can be rewritten as

∃ γ > 0, s.t. P̄ ≥ e(β+γd)/−γ − 1

e−1/γ − 1
. (18)

Using δ to denote e−1/γ , we can achieve the conclusion.
To calculate β̃, let g (δ) = e−dδβ−1

δ−1 . Since δ ∈ (0, 1) and

d > 0, it can be derived that d2g(δ)
dδ2 > 0, lim

δ→0+

dg(δ)
dδ = −∞,

and lim
δ→1−

dg(δ)
dδ = +∞. Then, the optimal solution of (16)

can be achieved by forcing dg(δ∗)
dδ∗ = 0, where the bisec-

tion line search algorithm can be adopted. Furthermore, let
h (δ) = g (δ) − β. It can be found that h (δ) > 0 for any
δ ∈ (0, 1), which indicates β̃ > β, representing a more
conservative confidence level, and β̃ → β when d→ 0.

IV. PROBLEM REFORMULATION BASED ON
VALUE-AT-RISK

Although the DR constraint has been reformulated as a
traditional one under a specific distribution f0 expressed as
(15), it is still intractable. Next, based on the concept of value-
at-risk (VaR) [16], we will further reformulate (15) into a set
of linear constraints. First, we recall the definition of VaR as
follows [16].

Definition 1: Use q (x,y) to denote the loss function of
a portfolio, where x is the decision vector and y is a ran-
dom vector representing the uncertainties in the market. Use
f (y) to denote the probability density function. Then, with
respect to a probability level λ, VaRλ can be expressed as

VaRλ (q (x,y)) = min

{
ς :

∫
q(x,y)≤ς

f (y) dy ≥ λ

}
, i.e., the

lowest value such that the loss is no more than it with at least
λ probability. Accordingly, we can reformulate (15) as

z ≤ VaR1−β̃

( ∑
m∈M

Tmcmxm

)
. (19)

Assume that the candidate bands have equal bandwidth de-
noted as W , and the empirical distribution of the available du-
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ration of each band is an independent and identical distributed

one. Let Bτ =
τ∑

m=1
Tmcm, 1 ≤ τ ≤M . Using an indicator

ωτ ∈{0, 1} to represent whether or not
∑

m∈M
xm=τ , we can

rewrite (19) as

z ≤
M∑
τ=1

ωτVaR1−β̃ (Bτ ), (20)

where ωτ ’s should satisfy the following two linear constrains
M∑
τ=1

τωτ =
∑
m∈M

xm,
M∑
τ=1

ωτ ≤ 1. (21)

Therefore, the VaR based reformulation for the spectrum
selection of DR-CSCT scheme can be expressed as

P6 : min
M∑
τ=1

Wτωτ

z ≤
M∑
τ=1

ωτVaR1−β̃ (Bτ ),
M∑
τ=1

ωτ ≤ 1,

where β̃ is computed by (16). Since the statistics of the
candidate bands are assumed to be the same, the spectrum
selection strategy for DR-CSCT scheme turns to be a decision
making problem of the needed number of bands, and ωτ = 1
indicates that τ bands are needed to fulfill the session.

According to the definition of VaR, it can be found that
VaR1−β̃ (Bτ ) in (22) can be approximated based on the
sampling approach. Specifically, for each Bτ , τ = 1, · · · ,M ,
according to the empirical distribution of Tm, we can generate
L samples, denoted as

{
B1
τ , · · · , BLτ

}
. Then, VaR1−β̃ (Bτ )

can be approximated by the (1 − β̃)-quantile of the sample
set, i.e.,

VaR1−β̃ (Bτ ) ≈ minb(1−β̃)Lc+1
{
B1
τ , · · · , BLτ

}
, (22)

where mink {·} represents the k-th smallest one among the
set, and bkc is the largest integer not exceeding k. Then,
the spectrum selection of DR-CSCT scheme formulated as P6
turns to be a standard integer linear programming problem.

V. NUMERICAL RESULTS

A. Spectrum Measurement

By using a software defined radio USRP-2922, we imple-
ment spectrum measurements on the campus of Dalian Univer-
sity of Technology, located at (N: 38◦53′14′′; E: 121◦32′3′′),
for two days. Based on the collected data, we try to demon-
strate that the idle duration of a band within certain period
can be well modeled by a random variable, and find the
empirical distribution by fitting the real data. To be specific,
we monitor a band with 1MHz bandwidth allocated to China
Mobile centering at 2580MHz under the sampling frequency
as 100Hz, and get 360000 samples of the signal power per
hour, which are further processed by the classical energy
detection method [17] to capture the idle/busy states, i.e., each
data is transformed to 0 or 1 representing the band is idle
or busy. We consider the session period as T = 2s. Then,
to determine the idle duration during every 2 seconds, we

fuse every 200 data collected within 2 seconds into one by
counting the total number of 0, leading to 1800 data per hour.
By counting the frequency of each value in the data set, we can
get the probability density function (pdf) of the idle duration
within 2 seconds during each hour.

Fig. 1 presents the results for two different periods in each
day, i.e., 10AM∼11AM and 3PM∼4PM. From Fig. 1, we can
see that the idle duration of the band within 2 seconds can
be modeled by the normal distribution. In different periods in
each day, the fitted distribution has different parameters, where
the mean and the standard deviation are (58.8, 10.6), (62.1,
12.8), (62.3, 12.1), and (48.4, 8.1), respectively. According
to the observation, we will adopt normal distribution as the
empirical distribution to model the available duration, where
the true distribution is regarded away from the empirical
distribution within certain KL divergence.

B. Performance Evaluation

In this subsection, we verify the effectiveness of the pro-
posed DR-CSCT scheme by comparing its performance with
that of three other schemes: 1) ED-CSCT: solve the problem
P1 directly based on the Empirical Distribution extracted from
the historical data without the consideration on distributional
ambiguity. 2) S-CSCT: leverage the Statistics, e.g., expecta-
tion, of the available duration of each band to evaluate the
data volume it can transmit, making the stochastic constraint
in problem P1 a deterministic one. 3) TD-CSCT: solve the
problem P1 based on the assumption that the True Distribution
is known. Among them, ED-CSCT and S-CSCT are two
general approaches to deal with the stochastic modeling, and
TD-CSCT can be treated as the benchmark, which is actually
unachievable in practice.

We consider three candidate bands with the same bandwidth
as 1MHz. Assume the session period is 2s and the idle duration
of each band within 2s is an i.i.d. random variable. The
empirical distribution is set to normal distribution based on
the observations in Fig. 1, where the mean and the standard
deviation are set to 60 and 12, respectively, with the unit as
10ms. To calculate the VaR as in (24), we generate 10,000
samples for each band and set the true value around the
generated samples. We consider a worse case that the true
available duration is less than the empirical one, which will
lead to an overestimation on each band when the empirical
distribution is employed.

Note that the decision on the needed number of bands
closely depends on the data volume of the session. To make an
effective evaluation, instead of running different schemes by
setting certain specific data volume to transmit, we fix the band
selection and calculate the boundary data volume (BDV) under
each scheme, i.e., the maximum amount of data that can be
delivered by each scheme. In our experiment, the confidence
level β is set to 0.7 and the received SNR is set to 30dB.

In Table I, we present the BDV under the case with one
band (ω1 = 1) and two bands (ω2 = 1), respectively, and
calculate the session completion probability when the data
volume is equal to BDV, denoted as pc. Based on the BDV,
the needed number of bands under certain data volume can be
easily determined. For example, if z ∈ [4.88, 9.97], then based
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Fig. 1. The fitted probability density function of the idle duration within 2 seconds.

on the proposed DR-CSCT scheme, only two bands are needed
without the requirement on spectrum switching and the session
can be fulfilled in an acceptable probability. Comparing with
the traditional scheme where frequent wideband sensing and
spectrum switching is required, obviously, the cost of DR-
CSCT scheme is much less.

TABLE I
PERFORMANCE EVALUATION ON DIFFERENT SCHEMES

ω1 = 1 (one band) ω2 = 1 (two bands)
KL: 0.126, β̃ : 0.886 KL: 0.248, β̃ : 0.933
BDV(Mbs) pc BDV(Mbs) pc

S-CSCT 6.03 34.4% 12.07 29.2%
ED-CSCT 5.48 57.1% 11.4 49.2%
TD-CSCT 5.08 69.6% 10.56 70.5%
DR-CSCT 4.88 78.2% 9.97 82.8%

From Table I, comparing with the TD-CSCT scheme, we
can see that under both S-CSCT and ED-CSCT schemes, the
session cannot be accomplished with an acceptable probability
due to the overestimation on the available duration of each
band. Whereas, DR-CSCT scheme can guarantee the QoS
effectively, where the completion probability is close to that
under the true distribution, indicating that the distribution
ambiguity problem has been well addressed.

VI. CONCLUSIONS

In this paper, we have developed a cost-effective session-
oriented cognitive radio transmission (CSCT) scheme to facil-
itate the dynamic opportunstic spectrum access, where wide-
band sensing and spectrum switching required in traditional
cognitive transmissions could be avoided. By considering the
ambiguity on the probability distribution extracted from the
historical data, we have designed a distributionally robust (DR)
approach by constructing a KL divergence based ambiguity
set. According to the real spectrum usage data, we have
verified the rationality of the modeling and demonstrated that
our proposed DR-CSCT scheme could guarantee the session
completion with certain confidence level even if the exact
distribution is unknown.
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