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Abstract—With the rapid growth on data traffic, spectrum
shortage becomes increasingly serious, leading to the paradigm
shift in spectrum usage from an exclusive mode to a sharing
mode. However, how to utilize shared spectrums effectively for
service provisioning is not straightforward due to its uncertain
availability, known as spectrum uncertainty. In this paper, we
propose a new metric to evaluate the achievable rate of a link
on a share band under a confidence level, called probabilistic
link capacity, which offers us an effective way to guarantee the
quality of service statistically when using the shared spectrum
for service delivery. Different from most existing works where
the distributional information is explicitly given based on certain
structural assumption, we develop a data-driven distributionally
robust approach by using the first and second order statistical
information. To achieve the result, we formulate it into a tractable
semidefinite programming problem based on the worst-case of
conditional-value-at-risk. Finally, as a use case, we design a
service-based spectrum-aware transmission scheme, so that dif-
ferent kinds of spectrums (licensed and shared) can be efficiently
utilized to satisfy the diverse service requirements.

Index Terms—Spectrum sharing, spectrum uncertainty, service
provisioning, distributionally robust optimization, data-driven.

I. INTRODUCTION

Recently, wireless data traffic has shown an explosive
growth, calling for more spectrums. Unfortunately, spectrum
is an extremely scare resource, especially for the golden
bands spanning 100MHz to 6GHz with desired propagation
characteristics. Although most sub-6GHz spectrums have been
occupied, many measurement campaigns have shown that lots
of licensed bands are significantly underutilized [1]. Facing
such a dilemma, as a promising solution, spectrum sharing
has received increasing attentions in recent years [2]. During
the sharing, users can be divided into two groups. One is
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primary users (PUs) who own the license and have the highest
accessing right. The other is secondary users (SUs) who
opportunistically use the spectrum when PUs are inactive
(interweave mode) [3] or the interference on PUs can be
limited (underlay mode) [4]. Such a hierarchical sharing,
especially for the interweave mode, can well comply with the
current spectrum assignment situation, and has promoted many
governmental initiatives [5].

Cognitive radio (CR) has been regarded as an effective
technology to enable such the spectrum sharing [6], [7]. How-
ever, service provisioning based on shared spectrums is very
challenging, because the shared spectrums have to be vacated
when PUs return to use them, which makes the availability of
them uncertain, a.k.a., spectrum uncertainty. Such an unique
feature brings some new problems when providing services
accordingly, such as which bands should be employed when
multiple idle bands are captured, how to guarantee the quality
of service (QoS) under the uncertainty, etc., which needs to
thoroughly study the impact of spectrum uncertainty from the
view on the whole service and find an effective way to evaluate
the achievable QoS based on the shared band.

Spectrum uncertainty issue has been considered in many
research works from different perspectives on spectrum shar-
ing. Most of them are based on certain specific probability or
distribution models [8]–[11]. Nevertheless, in practice, such
information is usually difficult to obtain precisely, and using
an inaccurate probability or distribution model might lead to an
over-optimistic solution. Besides the modeling based method,
some data-driven spectrum prediction algorithms have been
proposed recently for capturing the spectrum state, such as
linear prediction methods, Markov model based methods, arti-
ficial neural network based methods, and so on [12]. However,
most of them mainly focus on the prediction method itself and
generally use it as the guideline for spectrum sensing before
each time slot, not aiming at solving the spectrum uncertainty
problem from the perspective on QoS. Furthermore, since
the predicted result is usually inaccurate, the prediction with
estimation errors might overestimate the achievable QoS of a
shared band, making the spectrum management solution fail
to satisfy the service requirement.

In this paper, to facilitate the shared spectrum based service
provisioning under spectrum uncertainty, by modelling the
average available bandwidth of a shared band within a service
period as a random variable, we propose a new metric to evalu-
ate the achievable rate of a link on a shared band under certain
confidence level, called probabilistic link capacity (PLC). Such
a metric can be used to guarantee the QoS statistically. Instead
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of assuming a specific distribution function, we adopt the
first and second order statistical information and develop a
distributionally robust (DR) data-driven approach [13]. To
obtain the solution, we make a conservative approximation
based on the concept of conditional-value-at-risk (CVaR) [14],
and formulate it into a tractable semidefinite programming
(SDP) problem. Finally, as a use case, by considering differ-
ent types of services (delay-sensitive and delay-tolerant) and
different kinds of spectrums (licensed and shared), we design
a service-based spectrum-aware (S2) transmission scheme to
utilize both licensed and shared spectrums efficiently. Our
main contributions are listed as follows.

• We propose a new metric to evaluate the achievable rate
of a link on a shared band under uncertainty, named PLC.
Such a metric offers us an effective way to make the
QoS guaranteed statistically when using a shared band
for service provisioning.

• Unlike most existing works where certain specific distri-
bution is assumed for the random variable, we adopt its
first and second order statistical information, and develop
a distributionally robust data-driven approach to make the
obtained PLC achievable under all possible distributions
subject to the same statistics.

• Based on the newly proposed metric, we design a S2

transmission scheme to use different kinds of spectrums
efficiently, which is formulated into a two-step optimiza-
tion problem, including an admission control step and a
spectrum re-allocation step.

II. NETWORK MODEL

A. Cognitive Capacity Harvesting Network Architecture

In general, most light-weighted mobile devices have no ca-
pability to implement spectrum sensing, even hardly work on
those non-contiguous shared bands. Thus, before introducing
the proposed PLC, as the network scenario considered in this
paper, we first present a cognitive capacity harvesting network
(CCHN) architecture as shown in Fig. 1 [6]. The macro-cell
base station (MBS) provides a basic coverage and is mainly in
charge of the control signalling. The femto-cell base stations
(FBSs) connect to the Internet, acting as data aggregation
points for CR routers (CRRs). The CRRs are equipped with
multiple radio interfaces and deployed at the edge of the
network. On the one hand, they serve as gateways for end-
users with the support for various accessing technologies.
On the other hand, CRRs construct a bridge between end-
users and FBSs, or directly between two end-users to enable
an extended device-to-device communication, which have the
capability to work on the shared bands.

Each user can select a nearby CRR to connect and submit
the service request, which will be forwarded to the MBS
for scheduling. We consider two service types, i.e., delay-
sensitive (DS) and delay-tolerant (DT), denoted by LDS and
LDT, respectively. For any l ∈ LDS, the request information
includes the rate requirement rDS (l), the source node sDS (l)
and the destination node dDS (l). Such a DS request can

Fig. 1. Cognitive capacity harvesting network architecture for service delivery
by using both licensed and shared spectrums.

only be satisfied by the stable licensed bands, denoted as
Ml, to guarantee its QoS. For any l ∈ LDT, that includes
the amount of data zDT (l), the source node sDT (l) and the
destination node dDT (l). Assuming that the maximal delay
insured by the operator is Tmax

1, then it corresponds to have
a rate requirement as rDT (l) =

zDT(l)
Tmax

. Such a DT request can
be achieved by either licensed bands or shared bands Ms.
Assume that there are N nodes (including CRRs and FBSs)
deployed in the network. For any node i ∈ N , all licensed
bands are available, whereas, only part of the shared bands
is available, represented by Mi

s ⊆ Ms. Then, all available
bands at this node is denoted as Mi = Mi

s ∪ Ml, and the
common band set for two different nodes i and j is expressed
by Mij = Mi ∩Mj .

B. Related Models for Data Transmission

Transmission Neighbor and Interfering Neighbor: We
consider a transmission successful only if the received power
can exceed certain power threshold P T

th. We adopt a widely
used model [15] to represent the power propagation gain from
node i to node j described as gij = τ ·d−α

ij , in which τ is an an-
tenna related parameter, α is the path loss factor, and dij is the
distance between these two nodes. Supposing the transmission
power at node i on band m ∈ Mi is pmi , then the transmission
range can be expressed as RT

i,m =
(
τ · pmi /P T

th

)1/α. For any
node j that m ∈ Mj , if dij ≤ RT

i,m, then we define it
as the transmission neighbor of node i on band m, and the
corresponding neighbor set is described as

Ti,m =
{
j ∈ N|dij ≤ RT

i,m, j �= i,m ∈ Mij
}
. (1)

Similarly, we consider the received interference power at
each node from an unexpected transmitter ignored only if it
is below certain power threshold P I

th. Thus, there exists an
interference range for any node i on band m as well denoted
as RI

i,m =
(
τ · pmi /P I

th

)1/α. All nodes receiving data on band
m located within this range will be interfered by it, and similar
to (1), the interfering neighbor set of node i on band m can
be defined as

Ii,m =
{
j ∈ N|dij ≤ RI

i,m, j �= i,m ∈ Mij
}
. (2)

1If a DT service request is not completed within the period, it will turn to
be a DS service and carried over licensed spectrums
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Link Capacity: The capacity of the link from node i to
node j on band m, j ∈ Ti,m, can be expressed as cm,ij =

Wm ·log2
(
1 +

p̂i·gij
γ

)
, where γ is the ambient Gaussian noise

density at node j, Wm is the bandwidth of band m, and p̂i is
the transmission power density at node i2.

C. Probabilistic Link Capacity

Since the shared band m might not be always available
during the service period, the average available bandwidth
within the period Tmax is actually less than Wm. We model
it as a random variable W̃m, and define a probabilistic link
capacity (PLC) accordingly as

c̃m,ij=max

{
c :Pr

{
W̃m ·log2

(
1 +

p̂i · gij
γ

)
≥c

}
≥α

}
(3)

where 0 < α < 1 represents the confidence level. Taking
α = 0.9 as an example, the link can achieve the capacity
c̃m,ij as in (3) on band m with probability 90%.

Remark: Based on the metric PLC, operators can provide
a statistical guarantee on QoS for DT services with certain
confidence level. Furthermore, frequency switching is avoided
when the selected available bands become unavailable during
the transmission, where waiting until they are available again
turns to be a better decision, because it is with a high
probability that the task can be accomplished over these bands.

III. A DISTRIBUTIONALLY ROBUST DATA-DRIVEN
APPROACH FOR PROBABILISTIC LINK CAPACITY

In practice, the precise distributional information of the
random variable W̃m is usually hardly to obtain. Therefore, in
this section, to make the PLC robust against the uncertainty in
the distribution of W̃m, we will develop a data-driven approach
by using the first and second order statistical information to
achieve a distributionally robust (DR) result3.

A. Worst-Case for Distributionally Robustness

We rewrite the stochastic constraint in (3) as

Pr (ϕ (c, δm) ≤ 0) ≥ α, (4)

where ϕ (c, δm) = c− δm = c− W̃m · log2
(
1 +

p̂i · gij
γ

)
.

As aforementioned, the accurate distribution of the random
variable δm associated with W̃m, denoted as f (δm), is hardly
to obtain in practice. Therefore, we consider the worst-case of
it, regarded as the DR counterpart of (4), described as

min
fδ∈Uf

{Pr (ϕ (c, δm) ≤ 0)} ≥ α. (5)

Uf represents all possible distributions that are consistent with
the statistics of δm. Then, using (5) to replace the stochastic

2Interference is not considered here because it can be eliminated by the
transmission scheduling as introduced in Section IV.

3The first and second order statistical information can be derived from
the historical observations, such as the usage data within the same period in
several previous days.

constraint in (3), we can get a DR solution to PLC, i.e., DR-
PLC, formulated as

P1 : ĉm,ij=max

{
c : min

fδ∈Uf

{Pr (ϕ (c, δm) ≤ 0)}≥α

}
. (6)

We employ the expectation and the variance of δm as the
statistics to define the distributional ambiguity, denoted as
μ and σ2, respectively. Then, the ambiguity set Uf can be
expressed as

Uf=
{
f(δm)≥0|E (δm)=μ,E

(
(δm−μ)

2
)
=σ2,E (1)=1

}
. (7)

B. Approximation Based on Conditional-Value-at-Risk

To solve P1, we will adopt the concept of conditional-
value-at-risk (CVaR), a well-known metric for portfolio op-
timization problems, and focus on its worst-case. Based
on the definition of CVaR in [14], we can derive that
Pr (ϕ (c, δm) ≤ CVaRα (ϕm)) ≥ α, where ϕm is the simpli-
fication for ϕ (c, δm). Thus, CVaRα (ϕm) ≤ 0 is sufficient to
imply the original stochastic constraint in (3). Considering the
worst-case, we have

max
fδ∈Uf

{CVaRα(ϕm)}≤0⇒min
fδ∈Uf

{Pr (ϕ (c, δm)≤0)}≥α. (8)

Hence, the DR-PLC solved by P1 can be approximated by
solving the following problem

P2 : ĉm,ij = max

{
c : max

fδ∈Uf

{CVaRα (ϕm)} ≤ 0

}
. (9)

Based on Theorem 1 in [14], CVaRα (ϕm) can be achieved
from the following formula as

CVaRα(ϕm)=min
β

{
β+

1

1− α
E

(
[ϕ (c, δm)− β]

+
)}

, (10)

in which [x]
+
= max {x, 0}. Then, we can rewrite P2 as

ĉm,ij=max

{
c : (1−α)β+max

fδ∈Uf

E

(
[c−δm−β]

+
)
≤0

}
, (11)

which is denoted as P3, representing the worst-case CVaR
based approximation for DR-PLC formulated as P1.

C. Semidefinite Programming Based Reformulation

To solve P3, we first give the following proposition, and
then, reformulate P3 into a SDP problem accordingly.

Proposition 1: For the following optimization problem as

min
fδ≥0

E

(
−[c− δm − β]

+
)

s.t. E (δm) = μ,E
(
(δm − μ)

2
)
= σ2,E (1) = 1 (12)

it is equivalent to solving the SDP problem below

max
λ,η,k

−λμ− k −
(
σ2 + μ2

)
η

s.t.
[

η λ
2

λ
2 k

]

 0,

[
η λ+1

2
λ+1
2 k − c+ β

]
� 0, (13)

in which λ, η, and k are Lagrangian multipliers associated
with the three statistic constraints in (12). Detailed proof can
be found in the journal version [16].
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Based on Proposition 1, we can find that the constraint in
P3 is equivalent to a feasibility check as follows:

∃ (β, λ, η, k)
s.t. (1− α)β + λμ+ k +

(
σ2 + μ2

)
η ≤ 0,[

η λ
2

λ
2 k

]

 0,

[
η λ+1

2
λ+1
2 k − c+ β

]
� 0. (14)

Consequently, P3 can be reformulated into a tractable SDP
problem as

ĉm,ij = max
β,λ,η,k

c , (15)

subject to the constraints as in (14), and DR-PLC can be
obtained accordingly.

IV. SERVICE-BASED SPECTRUM-AWARE DATA
TRANSMISSION SCHEME

Taking the CCHN as the network scenario, next, we will
develop a service-based spectrum-aware (S2) data transmission
scheme to satisfy different service requirements by efficiently
using different spectrums, where two types of services (DS
and DT) and two kinds of spectrums (licensed and shared) are
considered. We formulate it into a two-step optimization prob-
lem. Step-1 is an admission control to maximize the number
of admitted services with the consideration on their different
importance levels and rate requirements. Step-2 focuses on the
spectrum efficiency to minimize the occupied bandwidth of the
licensed bands. During the scheduling, we only consider the
links transmitting the aggregated data, i.e., CRR ↔ FBS and
CRR ↔ CRR.

A. Step-1: Admission Control

We exploit a binary variable k (l) to describe whether or
not the service request l ∈ {LDT ∪ LDS} can be admitted as

k (l) =

{
1, if service request l is admitted,
0, otherwise.

(16)

Denote w (l) as the weight attributed to the service request l
corresponding to its importance level. Then, the objective of
the step-1 can be expressed as

max
∑

l∈{LDT∪LDS}
w (l) k (l). (17)

Next, we will show the constraints for the spectrum alloca-
tion. We employ a binary variable xm

ij to denote whether or
not band m ∈ Mij is allocated on the link from i to j as

xm
ij =

{
1, if band m is allocated on the link i → j,
0, otherwise.

(18)

First, we need to avoid the mutual interference among
different links. For any node i ∈ N , it cannot transmit to
or receive from other nodes on the same band, which can be
described as∑

j∈Ti,m

xm
ij ≤ 1,

∑
{h|i∈Th,m}

xm
hi ≤ 1, ∀i ∈ N . (19)

Furthermore, any node cannot transmit and receive on the
same band simultaneously due to the self-interference, which
can be expressed as

xm
ij +

∑
q∈Tj,m

xm
jq ≤ 1, ∀i ∈ N , ∀j ∈ Ti,m. (20)

Moreover, if xm
ij = 1, all interfering neighbors of node i cannot

receive data on band m, and we can obtain the constraint as

xm
ij +

∑
{k|g∈Tk,m,k �=i}

xm
kg ≤ 1, ∀i ∈ N , ∀g ∈ Ii,m. (21)

Second, for the admitted services, we need to guarantee: 1)
the admitted DS services should be carried by the licensed
bands; 2) the achievable rate of the link transmitting admitted
services’ data should reach the rate requirement. Then, we can
get the following two constraints as∑

{l∈LDS|sDS(l)=i,dDS(l)=j}
rDS (l) k (l) ≤

∑
m∈Ml

xm
ij cm,ij , (22)

and ∑
{l∈LDS|sDS(l)=i,dDS(l)=j}

rDS (l) k (l) +
∑

{l∈LDT|sDT(l)=i,dDT(l)=j}
rDT (l) k (l)

≤
∑

m∈Ml

xm
ij cm,ij +

∑
m∈Mi

s

xm
ij ĉm,ij . (23)

By solving the integer linear programming (ILP) problem
with the objective as (17), subject to the constraints from (19)
to (23), we can achieve the optimal admission control result
k∗ (l) for any service request l ∈ {LDT ∪ LDS}.

B. Step-2: Spectrum Re-allocation

The objective of step-2 is minimizing the total occupied
bandwidth of the licensed bands. On the one hand, some
links with low rate requirements may be assigned with a wide
bandwidth. On the other hand, some DT services may be
carried by the licensed bands, leaving the relatively sufficient
shared bands under-utilized. By using the same notations as
those in step-1, we can formulate the objective as

min
∑
i∈N

∑
j∈Ti,m

∑
m∈Ml

xm
ijWm. (24)

Similar to step-1, the constraints for step-2 also involve two
aspects. One is to avoid the co-channel interference, which
can be described by (19), (20) and (21) as well. The other
is to guarantee the QoS for the admitted services scheduled
in step-1, which can be formulated by substituting k (l) with
k∗ (l) in (22) and (23).

V. NUMERICAL RESULTS

A. Evaluation for the Distributionally Robust Approach

In this subsection, by directly assuming that δm follows
certain distribution, we evaluate the performance of the pro-
posed distributionally robust approach through comparing the
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Fig. 2. PLC and DR-PLC under different probability distributions.

PLC4 as (3) and the DR-PLC as (15). Three common distri-
butions are employed, including normal distribution, uniform
distribution and Gamma distribution. We present DR-PLC and
PLC under the three distributions with different confidence
levels in Fig. 2. To be specific, we set the same statistics
for each distribution in each experiment, where μ = 10 and
σ2 is 0.1, 1, and 2 in (a), (b), and (c), respectively. Three
confidence levels are considered, i.e., α = 0.7, α = 0.8, and
α = 0.9. From Fig. 2, we can find that DR-PLC is lower
than PLC under any distribution because it is in fact a lower
bound of PLC, robust to any possible distributions with the
same statistics. When the variance is small, the difference
between DR-PLC and PLC is little. As the variance increases,
the gap becomes more obvious, because it is more difficult to
achieve the distributional robustness when the random variable
fluctuates more dramatically. Furthermore, considering the
different confidence levels, we can observe that the higher
confidence level employed, the lower PLC and DR-PLC can
be achieved, because it has to make the result achievable with
a higher probability. Moreover, the gap between DR-PLC and
PLC increases as the adopted confidence level increases.

B. A Case Study For S2 Transmission Scheme

We consider a grid network with nine nodes as shown
in Fig. 3. The transmission power of each node on each
band is assumed to be equal to 2W with a transmission
and interference range as 210m and 260m, respectively. The
transmission related parameters are set as follows: τ = 4,
α = 4. The noise density power at each receiver is set as
γ = 10−16 W/Hz. Suppose that there are three DS requests
and five DT requests as shown in Fig. 3. The weights of
the three DS ones are set the same as 6, and those of the
five DT ones are set as 5, 4, 3, 1, 2, respectively. Assume
that there are two licensed bands, Ml = {1, 2}, and three
shared bands, Ms = {3, 4, 5}, available in the network, and
all nodes can use any of them. The bandwidth of the two
licensed ones are W1 = 3MHz, and W2 = 4MHz, and that
of the three shared ones are W3 = 3MHz, W4 = 4MHz, and
W5 = 5MHz, respectively. Due to the spectrum uncertainty,
the actual available bandwidth of each shared band is a random

4As conducted in [1], [11], Monte Carlo experiment as an effective method
is adopted to calculate the PLC under different distributions.

Fig. 3. A grid network with 9 nodes, 3 DS requests and 5 DT requests.

variable as W̃m ≤ Wm, m=3, 4, 5. Suppose that they follow
the uniform distribution with the expectation as 1.5, 2.5, 3.5,
respectively, and with the same variance as 0.2. The confidence
level for PLC is set as 0.7.

We take the modelling based method for comparison, where
an inaccurate distribution is adopted, e.g., by an incorrect
modelling assumption or a noisy estimation with limited his-
torical data, and the obtained PLC under the false distribution
is denoted as PLC-F. We assume that the adopted inaccurate
distribution is normal distribution with the same statistics as
the real one. By adopting PLC-F and DR-PLC to evaluate the
performance of each shared band, the scheduling result of the
S2 scheme is shown in Fig. 4. We can see that for the three
DS requests which can only be carried by the licensed bands,
DS1 and DS3 are admitted, working on {m1} and {m1,m2},
respectively. DS2 is rejected because the scheduling objective
is maximizing the total weight of the admitted services and
if it is admitted, both DS1 and DS3 with the same weight as
DS2 would be rejected. For the five DT requests, when DR-
PLC is adopted, DT1, DT2, DT3 and DT4 will be admitted
as depicted in Fig. 4(a). Note that since the capacity provided
by the licensed bands m1 and m2 exceeds the demand of
DS3, some data of DT1 is actually carried by the licensed
bands. If the operator mistakenly takes the PLC-F for the
evaluation, DT5, which has a higher weight than DT4, will
become the admitted one as shown in Fig. 4(b) because of
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(a) Evaluation based on DR-PLC

(b) Evaluation based on PLC-F

Fig. 4. Scheduling result of the S2 scheme.

TABLE I
GUARANTEE PROBABILITY OF THE QOS FOR EACH ADMITTED SERVICE

DT1 DT2 DT3 DT4 DT5
DR-PLC 1 99.7% 1 91.6%
PLC-F 1 59.0% 59.4% 63.0%

the overestimation of the achievable rate for each shared
band. In Table. I, we present the guarantee probability of
the QoS for each admitted DT service based on DR-PLC
and PLC-F respectively by taking 1000 experiments. In each
experiment, the available bandwidth of each shared band is
generated randomly, following the uniform distribution with
the aforementioned settings on statistics. We can see that if
we directly use a specific distribution, which is probably an
inaccurate one, to model the spectrum uncertainty, QoS can
be hardly guaranteed. Whereas, when the metric DR-PLC is
adopted, the QoS can be guaranteed with the probability higher
than 90%, even though the confidence level is only set as 0.7
because we make the rate requirement less the DR-PLC during
the scheduling, and such a DR-PLC is more conservative than
PLC for the performance evaluation on each shared band.

VI. CONCLUSIONS

In this paper, we have studied the shared spectrum enabled
service provisioning issue. Facing the spectrum uncertainty
problem, by modeling the average available bandwidth within
a service period as a random variable, we have proposed a
new metric named PLC to evaluate the achievable rate of a

link on a shared band, which offers us a way to guarantee the
QoS statistically. Considering that the precise distributional
information is usually hardly to obtain in practice, we have
designed a distributionally robust data-driven approach by
using the first and second order statistics, which is solved
by a SDP-based reformulation according to the worst-case of
CVaR. Finally, with the proposed metric, we have developed a
S2 transmission scheme to efficiently utilize the licensed and
shared spectrums to fulfill diverse service requirements.
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