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Abstract—Due to the emerging various data services, current
cellular networks have been experiencing a surge of data tfic
and already overloaded, thus not able to meet the ever explatly
traffic demand. In this study, we first introduce a Multi-radi o
Multi-channel Multi-hop Cognitive Cellular Network (M 3CZ2N)
architecture to enhance network throughput. Under the proposed
architecture, we then investigate the minimum length scheding
problem by exploring joint frequency allocation, link schedul-
ing, and routing. In particular, we first formulate a maximal
independent set based joint scheduling and routing optimiation
problem called Original Optimization Problem (OOP). It is a
Mixed Integer Non-Linear Programming (MINLP) and generall y
NP-hard problem. Then, employing a column generation based
approach, we develop ane-bounded approximation algorithm
which can obtain an e-bounded approximate result of OOP.
Noticeably, in fact we do not need to find all the maximal
independent sets in the proposed algorithm, which are usubl
assumed to be given in previous works although finding all
of them is NP-complete. We also revisit the minimum length
scheduling problem by considering uncertain channel avadbility.
Simulation results show that we can efficiently find the=-bounded
approximate results and the optimal result as well, i.e., wan
e = 0% in the algorithm.

Index Terms—Cognitive cellular networks; multi-radio multi-
channel; cross-layer optimization; minimum length schedling.

I. INTRODUCTION

get overcrowded. Second, citywide Wi-Fi networks like mesh
networks have not been widely deployed yet, thus requiring
additional deployment cost, and may interfere with exgptin
WLANS, hot spots, and other ISM (Industrial, Scientific and
Medical) band users (e.g., cordless phones, RFID systems,
wireless telemetric systems like smart meter networks).

In this paper, we first introduce a Multi-radio Multi-charthne
Multi-hop Cognitive Cellular Network (MC2N) architecture
to meet the fast-growing traffic demand in cellular networks
In particular, both cellular base stations and network siser
are equipped with multiple cognitive radios. Thus, we can
exploit the greatly under-utilized licensed spectrums,, i.
white spaces/spectrum holes, for communications, andehenc
enhance network throughput. Moreover, instead of deliggeri
all the traffic between base stations and users in one hop like
that in traditional cellular networks, we propose to camgls
traffic in hybrid mode, i.e., either in one-hop or via mulépl
hops depending on the local available frequency channéls an
the corresponding channel conditions. In so doing, we can
further take advantage of local available channels, fraque
reuse, and link rate adaptivity to provide higher network
throughput. Note that a couple of works such as [1], [2]
investigate the capacity of such multihop cellular netvgork
and have shown that such hybrid mode communications can
improve the network capacity a lot compared to one-hop

Due to the emerging various data services, current celluggmmunications. However, these works only consider the cas
networks have been experiencing a surge of data traffic 3jflere nodes share the cellular frequency channels and have
already overloaded, thus not able to meet the ever explodifg exploited the local available channels or multi-radion

traffic demand. Even the new generation LTE or WiMAX,:qhnse in this study. Besides, although asymptotic capaci

cellular networks may still suffer from low per-user thrdwpgit

bounds have been studied, the exact optimal throughpu¢ valu

because of a large number of network users sharing limitggdyains unknown. Generally, the proposed@N architec-
frequency bandwidth as well as poor cellular signals in C8fiire can enhance network performance and adapt to dynamic

tain areas like obstructed or suburban areas. Although Wiagfic distribution, yet relieving service providers froamy
Fi networks may provide high data rates, they have Serioys nificant additional infrastructure costs.

shortcomings as well. First, wireless local area networksjndger the MC2N architecture. we investigate the mini-
(WLANS) or hot spots have poor coverage and can easilyym ength scheduling problem by exploring joint frequency
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channel allocation, link scheduling, and routing. Speaific

by constructing a two-layer conflict graph, we first formu-
late a maximal independent set based joint scheduling and
routing optimization problem called Original Optimizatio
Problem (OOP). It is a Mixed Integer Non-Linear Program-
ming (MINLP) and generally NP-hard problem. We notice
that finding all the maximal independent sets in a conflict
graph is NP-complete, and most previous research just as-
sumes that they are given [3]-[5]. In this study, we do not
make such assumptions. Instead, we decompose OOP into
a sequence of Linear Programming (LP) problems, which
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we name Master Problems (MPs). After that, employing
column generation based approach, we further decompi
each MP into a Restricted Master problem (RMP) and
Pricing Problem (PP), which are a small-scale LP problem a
a Binary Integer Programming (BIP) problem, respectivel
The basic idea is that RMP starts with some initial independe
sets, while PP updates the set of independent sets in e A \E/ 7 -
iteration. Notice that RMP can be solved in polynomial time g 0 (&)
but PP is still a problem with high complexity. Therefore
we design a sequential-fix (SF) algorithm which can find
suboptimal solution to PP in polynomial time. Although SI
is suboptimal, we can still f_md_ th_e th'm_al solution to Mpws-ig. 1. The architecture of a multi-radio multi-channel tibbp cognitive
and hence OOP due to the intrinsic iterative nature of colungéliular network (M C2N).

generation. Besides, it has been observed in the context of ) ) ) )

column generation algorithms [6], [7] that one can usual§°Me related wprk in Secnon VII and briefly mtrodupg our
determine solutions that are at le@sts — 99% of the global SYStem models in Section II. We 2then_ formulate a minimum
optimality fairly quickly. Subsequently, we develop an length scheduling problem for AC?Ns in Section Ill. After

bounded approximation algorithm, which can obtain upper aff'@l We propose in Section IV a column generation based
lower bounds that are less théht-e) and larger tharfl —e) of bounded approx!matlon algprlthm which can efﬂmently find
the optimal result of each MP, respectively, andegzounded bounded approximate solutions and the optimal solutionnvhe

approximate result of the OOP. Simulation results show thiaf= 0- Subsequently, we revisit the minimum length schedul-
upper and lower bounds converge quickly and thus we ci}¢ Problem by considering uncertain channel availability
efficiently find the optimal result as well, i.e., when= 0% Section V. Simulations results are presented in Sect|0rn_\/l t
in the algorithm. In other words, we are able to solve OOP vefy2luate the performance of the proposed algorithm. Welfinal
efficiently without having to find all the maximal independenconclude this paper in Section VIil.
sets. Furthermore, although most previous research ororletw
optimization assumes constant channel bandwidth, inipeact Il. SYSTEM MODELS
the vacancy/occupancy of licensed channels can be untertai
and dynamic at different times, due to the unpredictable
activities of the primary users. In this study, we also rigvis As shown in Fig. 1, we propose a novel Multi-radio Multi-
the minimum length scheduling problem by taking uncertaithannel Multi-hop Cognitive Cellular Network (M2N) ar-
channel availability into consideration. chitecture. Specifically, an RC2N is a cellular network in
Our main contributions can be summarized as follows. Which both the service provider and network users can access
. _ . . . multiple channels with multiple cognitive radios. For exzen
. We 'T‘F“’duce a Multi-radio Ml;lu-chann_el Multi-hop basepstations and more poSverfngterminals (e.g., Iar;?ms an
Cognitive C_ellular Network (MC_N) architecture and tablets) can have higher cognitive capabilities and span a
a new hybrid mode communication scheme to enhan&qger range of frequency spectrum (e.g., from MHz spectrum
network throughpgt._ . to GHz spectrum), while less powerful devices (e.g., smart
° We explore the minimum Iengt_h sch_eduhng pro_blem b hones and cellular phones) may just access only several
Jomt_ frequency cha_nnel allocation, link sqhedullng,_an pical frequency spectrum, such as the cellular spectrum,
routing. Most previous works only Obta!'” suboptim he 2.4 GHz ISM spectrum, and the TV spectrum which
resylts that are either unbounded or still far from th as large bandwidth and good penetration and propagation
optimal results, and many work§ bas_ed on conflict grap Brformances. We call cellular spectrum “the basic channel
also assume that all the maximal independent sets Ifd other spectrums “the secondary channels”. The service

gwenae lg th'z p()japer, we de_veIoF a_%olumr;]_gﬁn(alratlog}ovider uses the basic channel for signaling, controlling
asede-bounded approximation algorithm, which relaxe andling handoffs, accommodating users’ voice traffic,, etc

this agsumptlon famd is able to .fmd t|glat.bounded nd uses all the available channels to support users’ dfia tr
approximate solutlon§ and the optimal solut!ons as Wei's a central coordinator, the service provider performs net
The devt_alo_peq algorithm can also be applied to CrOSFork optimization to find out the optimal radio and frequency
layer opt_lmlzanon problems in other networks. allocation, link scheduling, and routing schemes for §atig

.« We con3|der_ he_tgro_geneous networks and t_ake unce_rtagérs, traffic demand based on the the observed, colleated, a
channel availability into account when studying the m'%')redicted channel information [8]-[10] in the coveragesare

imum length scheduling problem, which is an intrinsi Besides,instead of delivering all data traffic in one hop lik

feature of cognitive radio networks but has rarely beetﬂat in traditional cellular networks, we propose to camgts

\S/\t/Ud'ed gefcgre. tensi imulati ; lidate th ﬁtraffic either in one-hop or via multiple hops, dependinglos t
° _e Confl:;i ex enswea s:mu_zt;\hlons 0 validate he €l ailable channels and the corresponding channel conditio
clency of the proposed aigorthms. In addition, since downlink transmissions from base stetio

The rest of this paper is organized as follows. We discusis users will likely outweigh uplink transmissions, we fecu

I oo [ m ]
Spectrum Harvesting

Service provider Coverage area

Network Architecture
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on downlink transmissions in this study. The analysis for upvherei andj also denote the positions of nodand nodey,
link transmissions simply follows the same process presentespectivelyd(i, j) refers to the Euclidean distance between

herein. ¢ and j, v is the path loss factor, and’ is a constant
related to the antenna profiles of the transmitter and the
B. Network Model receiver, wavelength, and so on. We assume that the data

transmission is successful only if the received power spkct
r\dxensity at the receiver exceeds a threshBfd Meanwhile,
e assume interference becomes non-negligible only if it

produces a power spectral density over a thresholdPpf

at the receiveér Thus, the transmission range for a noie
on channelb is R;” = (CP?/P2)'/7, which comes from
C(RL')~7 . P? = Pb. Similarly, based on the interference
thresholdP} (P} < P?), the interference range for a node is
R = (CPP/PY)'/7, which is larger tharR}". Thus, differ-

Consider a cell in an FC?N consisting of N =
{1,2,---,4,---,N} users and a set of available seconda
channelsM = {1,2,---,b---, M} with different band-
widthst. We denote the base station Byand the basic channel
by 0, and consequently le¥ = N U{B} and M = MU{0}.
The bandwidth of channélis denoted byW*. Moreover, we
denote the set of radios at nodle A" by R; = {1,2, ..., R;}
where R; is the number of radios that nodehas. Suppose

there are a set of = {1,2,...,1,...L} downlink sessions i el )
from the base station to network users. We dé and d({) ent nodes may have different transmission ranges/inearéer

denote the source node and the destination node of seséf@Jges on different channels with different transmissiower.
| € L, respectively. Thuss(l) = B andd(l,) # d(l») for any In gddltlon, according .to th_e Shapnon_-HartIey theorem, if
I,11,15 € L. We also denote by(l) the throughput demand of "0de? sends data to nodgeon link ,(Zéj) using channeb, the
sessiorl. Besides, due to their different geographical location§aPacity of link (i, j) on channeb is

users in the network may have different available channels. ) . gi; PP

Let M; C M represent the set of available channels at node cij = W7 logy (1 + Tl)a 1)

i € N. Then M; might be different fromM,, wherej is ) ) )

not equal toi, i.e., possiblyM; # M,. Note that the local Where7_7 is th_e t_hermal noise at_the receiver. Note _tha_lt the
available channels can be determined by spectrum sensifignominator inside the log function only containsThis is
which can be performed in several different ways, such ggcause (.)f.one of our!nterference constraints, |.e.,vybdem
centralized sensing, distributed sensing, and extermalisg 'S transmitting to nodg on channeb, all the other neighbors

[16], [17]. There has been a lot of work in the Iiteratur@f_”Odej within its interference range are prohibited from

studying this problem and is out of the scope of this paper!Sing this channel. We will address the interference camgs

Some important notations are summarized in Table |. N detail in the following section.

TABLE | [1l. MINIMUM LENGTH SCHEDULING FORM3C?Ns
IMPORTANT NOTATIONS

In this section, we investigate the minimum length schedul-

Symbol Definition ; 2 i : :
N Set of Users and The BS T ihe network ing proplem for M*C.Ns by Jq|nt frequency allocation, link
M Set of the secondary channels and the basic chanhel SCheduling, and _rogtmg. Traditional cellular n_etWOFKSICﬂ!DU
L Set of downlink sessions _ one-hop transmissions to support the traffic between base
A1/Az/A3 | Infrastructure/Proxy/Ad hoc region stations and network users, which we call thiefrastructure
KIK Set of all maximal independent Sets/Independent S$ets de icati This desi Its i
g Time share of ISZ, being active modé& communications. is design results in very poor
et n(Zq) | Data rate on the LRC tuplé(i, 5), (m, n), b) throughput performance due to limited frequency channel
fii () Flow rate of sessiom over link (i, j) bandwidth. In this study, we propose aybrid modé com-
v gggﬁl’t’(g‘;'aot'g’;fa‘:tor munication paradigm to enhance the performance $€\Ns
bolthy Result of MP/RMP when the proxy region &, by taking advantage of local available channels and lin& rat
w;/wé/w; Optimal/Low bound/Upper bound result of MP adaptivity.

when the proxy region i
Vg Result of PP when the proxy region

A. Hybrid Mode Communications

o ) ] In hybrid mode communications, we only let a fraction
C. Transmission/Interference Range and Link Capacity 4 nodes close to a base station communicate with the base
Suppose the power spectral density of neas channeb
is P?. A widely used model [18], [19] for power propagation,\/I

2Note that the interference model we adopt in this study isRhatocol
odel introduced in [20], which considers one interferirigkl at a time.

gain between nodéand nodej, denoted byg;;, is [20] also introduces the Physical Model, according to whictransmission
ey is successful if its signal-to-interference plus noisgordSINR) is above
gij = C- [d(laj)] s a threshold. It has been shown in [20] that these two intenfez models

can be equivalent in terms of network capacity by setting ittierference
INote that in this study we only consider the minimum lengthestuling in  range in Protocol Model appropriately. [21] also studiesvhio set the
one cell to focus on the optimization problem and make ite¥dsi understand. optimal interference range in Protocol Model to bridge tlep dpetween it
The interference from other cells can be addressed by fregualanning and and Physical Model in analyzing throughput of multi-hop eiésss networks.
our interference model that will be introduced later. Maejated works on Protocol Model has been widely adopted in works on crossrlayireless
cross-layer optimization for cognitive cellular networkdso focus on one cell network optimization and design [3], [22], [23].
only [11]-[15]. Besides, the presented study here can bily eagended to SNote that this link capacity is the same no matter which mdioe
multi-cell scenarios with minor changes. transmitter and the receiver use.
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bandwidths. Therefore, we need to find out an optimal proxy
region in the network.

In addition, although only the nodes in the infrastructure
region communicate with the base station in one hop, the base
station still needs to maintain the transmission powerllave
cover the whole cell in order to guarantee voice serviced, an
controlling and signalling. So we assume the base station’s
transmission range is the same on all the channels, i.e., to
cover the whole cell.

B. Construction of Conflict Graph and Independent Sets

Taking into account the local channel availability and the
existence of a powerful base station, we construct a two-
Fig. 2. Hybrid mode communications. layer conflict graph as follows to characterize the intenfee
among the communication links in a cell.

station directly in one hop. The other nodes farther awaginee !N Particular, we denote the conflict graph BV, ),
communicate via multiple hops, i.e., in ad hoc mode, witiyhereV is the vertex set and’ is the edge set. Each vertex

some of the above nodes in order to communicate with tG@rresponds to a link-radio-channel (LRC) tuple defined as
base station. ((4,7), (m,n),b), wherei,j € N, j € TX,m € Ry, n € Ry,
We further illustrate the hybrid mode communicatior"i}ndb < Mi ﬂMJ Here, 7 is the set of nodes W'.thlr.] node
paradigm in Fig. 2. Consider a regular céll at the center N transmlssmn range on c_hannbeIThe LRC tgple lr_1d|c_ates
of which there is a base station denoted By We denote thaF nodei transr_mts to nodg_on channeb W'Fh 7 andj using
the minimum transmission range of all the users on all tf} diom and _ralen, respectlvgly. The confhc_t gra_ph has two
channels byRz", i.e., Rp" = minieN,beM{Rép’b}, and layers: thg h|gher layer contains all the vgrt|ces invajvine
define an ared, (1 < p < P) as follows: ’ basg statilon, while the lower Ia_lyer consists of all the other
-0 vertices, i.e., the LRC tuples with respect to the users.only
S, ={pl(p—1)- R < d(p,B) < p- R} Besides, we say that two LRC tuples interfere with each other
if 1) the receiving node in one tuple is within the interfecen
where p denotes a point in the network and its position amnge of the transmitting node in the other tuple given that t
well, and B denotes the position of the base station. Lettingvo tuples are using the same channel, or 2) the two tuples use
the largest distance between the BS and a point in the cellthe same radio at one or two nodes. We connect two vertices
D, we can haveP = [D/R;“’"] Then, we choose one ofin V' with an undirected edge if the corresponding LRC tuples
the above areas, say, (1 < g < P), asthe proxy region interfere with each other.
In particular, define byi(p) (1 < p < P) a binary function,  In the two-layer conflict grapt¥(V, E'), we define a variable
which is equal to 1 when are§, is selected as the proxyw,,, wherez,y € V, as follows:

region and) otherwise. Consequently, we have [ 1, if there is an edge between vertexand y
P Way = 0, otherwise ‘
— _ 51
25@) =1, andg =o7(1). Thus, if there is a vertex (i.e., LRC tuple) sEtC V and a
=

vertexz € 7 satisfying>_ .7 ., .y < 1, the transmission
Let A, = S,. Then, the nodes iM; = Uzzlgp, which on the LRC tupler can be carried out successfully even if all

we call the infrastructure regioncommunicate with the basethe other LRC tuples belonging to the sttransmit at the
station directly in one hop. The nodes ity = C\A4;, which same time. If everyr € 7 satisfies the above condition, we
we call the ad hoc regioncommunicate via multiple hops ¢an schedule the transmissions over all these LRC tuples in

with the nodes ind, in order to communicate with the basel to be active simultaneously. Such a vertex Feis called

station. an independent setf adding any more LRC tuples into an
Note that the hybrid mode communication paradigifdependent sef results in a non-independent ong, is

changes into the traditional infrastructure mode when P, defined asa maximal independent set

and becomes the pure ad hoc mode wher 1. Although

ad hoc mode transmissions lead to higher frequency reuge,Link Scheduling and Routing Constraints

;noofo??lg(?:s?;ﬁ; It;aar(]jsglsrﬁgr?esrIrp]):firrr]r?;vr\:ggk’Ililc?r',ilr?)sltyaer:ﬁ?l) Link Scheduling Constraintssiven the constructed con-
. . ' ct graphG = (V, E), suppose we can list all the maximal
when g = 1, all the traffic burden will be put on the nodes grap (V, E), supp

in S1, which may not be the optimal strategy resulting ir|]ndependent setas £ = {11, I, ... Io}, whereQ = |K],

ndZ, C V for 1 < ¢ < Q. Then, in the conflict grapld,
the best performance when all the network users have t%e 1= sa=Q grap
.Same available channels, not to m_ent'on the fact tha_t thes US€ 4we will show in the next section that we do not really need td fifl the
in S; may even have fewer available channels with loweiriaximal independent sets.
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at any time instance, there should be only one active maximak For any;j € A, |J As, d(l) € As, andj # d(l), we have
independent set to ensure the success of all the transmgssio

We denote the maximal independent g% time share (out ST fi =" £l (7)
of unit time 1) to be active byy,. Therefore, we have {plieTp} i€T;
Z we <1, wg>0(1<¢g<Q). which indicates that each node in the proxy regidn
1<q<Q and in the ad hoc regioA; can act as a relay node for
Let Clz?j.mn(zq) be the data rate on the LRC tuple the destination nodes in the ad hoc region, and hence its

total incoming data rate is equal to its total outgoing data
rate.
e FOr any j € As; and ;5 € D(L), we have

> gijery fii(l) = r(l), which means that the total
incoming data rate to each destination node in the ad
hoc region is equal to its throughput demand. Note that
this constraint holds whenever the constraints (5) and (7)
hold.

((i,7), (m,n),b) when the maximal independent s&} is
active. Then,c; . (Z,) is equal to 0 if the LRC tuple
((4,7), (m,n),b) is not inZ,, and equal to the link capacity
calculated according to (1) otherwise. Thus, lettifig(l)
denote the flow rate of sessidnover link (i,5) (over all
the channels), wheré € N, I € £, andj € Uyer, T
the traffic rate on link(i, j), i.e., >, fi;(1), should not
exceed the capacity of the link. Consequently, the schedule
of the maximal independent sets should satisfy the follgwin
constraint: D. Scheduling Length Optimization for3(2Ns

Q@ — . . .
() < w NG AY 2 The objective of this study is to exploit both the celluladan
; Jull) < ; ! be/\;/\/l , m%;i n; gmn(Zo)- - (2) the local available channels to minimize the schedulingtien

) ) , o de, U= 37 _owg, required to support certain traffic
2) Routing ConstraintsRecall that we consider downl'nksdemands in MC2Ns. Gathering information about channel

in ;hisfstudh/, \r’]"hi(]flh mealns thaththl;e _Zase jtation Is th? Squﬁﬁfailability in the network, the service provider can aghbie
no ed_or all the O(\;VS.' rslou_r yIIIrIA mo eh com:jnuf_mcz:\jtlori\ms goal by optimally selecting proxy region, determinérgl-
paradigm presented in Section IlI-A, we have define tI'fS-end paths, and scheduling the transmissions. Note that a

mfrgstructure reglopéll,.the proxy _reglonAQ, and th&f ad hoc_ minimum value of¥ greater than 1 indicates that the current
region As. The destinations in the infrastructure region receive

ffic d d d th t it d thb
packets from the base station in one hop and hence on a Sir@ﬁ;edeman S excee © system capactly and cannot be
path, while packets intended for the destinations in thead h '

; h th ion first. which h hConsidering the hybrid communication paradigm, the
ﬁg;ggler?oa;hs € proxy region first, which may go rOUQSCheduIing length optimization problem under the aforemen

. . . tioned link scheduling and routing constraints can be fermu
Thus, at the base station, we have the following constr.alnﬁgted as follows: g 9

J%fJB(Z) 0 ) OOP: Minimize &= " w,
_ 1<q<Q
faw(®) = 1) vdl) € Ay, “) s.t. Equations(2) and(3)

S fei) = r(l) vd(l) € As. (5

jedz > 6(p) = 1,6(p) € {0,13(1 <p< P),g=5'(1) ®)
The first constraint means that the incoming data rate at1
the base station is 0. The second constraint indicates that g
the traffic intended for any destination in the infrastruetu A1(9) = | Sp, 42(9) = Sy, As(g) = C\Ai(g) 9)
region is delivered in one hop on a single path. The third p=1
constraint means that the traffic for any destination in tthe dpa@)(){d(l) € Ai(g9)} =r() (€ L) (10)
hoc region goes through the proxy region and may be deliverti F5;(D1{d(1) € As(g)} =r(l) (1€ L) (11)
on multiple paths. jea

Remember that we define h¥l) (I € £) the destination ) _
node of sessioh We then define by~ () the session whose Z foi (U (D) € As(9), 5 € A2(9) U As(g),j # d(l)} =
destination isj. We further letD(£) be the set of all the {Pl7€7»}
destination nodes in the network, i.&(L£) = {d(I)|l € L}, Z fi(D{d(l) € Az, j € Aa(g) U As(g), 7 # d(1)}(l € £]12)
and7; = Uper, 7. Then, we can have the constraints belowe7,
o Foranyj € A; andj € D(L), we have wg >0 (1<¢g<Q) (13)
Fei(l) =r(l), (6) fiij(h)>0(eLlieN,jeT) (14)
i.e., the destination nodes in the infrastructure regign where (2) indicate that the flow rate over lirfk j) cannot
receive their packets from the base station directly ixceed the link capacity, (8)—(9) characterize the hyboich-c

one hop on a single path. Note that this constraint holdsunication paradigm and define the infrastructure regioa, t
whenever the constraint (4) holds. proxy region, and the ad hoc region, and (3), (10)—(12) aze th

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.ol



This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available &ttp://dx.doi.org/10.1109/TMC.2014.2314107

routing constraints. Here, we define an indicator funclipA} Specifically, we decompose the OOP idtdinear program-

which is equal to 1 if the evend is true, and 0 otherwiS8e  ming problems, each of which we call a Master Problem (MP).
Given all the maximal independent sets in the network, wkéotice that the optimal result of OOP remains the same when

can find that the formulated optimization problem above iswae consider all the independent s@&fswhich include all the

Mixed Integer Non-Linear Programming problem, which is imaximal independent sefS. Thus, when the proxy region is

general NP-hard to solve [24], [25]. In the rest of this papef, (1 < g < P), the MP is formulated as follows:

we call this optimization problem the original optimizatio

problem (OOP), and denote the minimum scheduling length MP: Minimize 1, = Z Wy
by W 1<¢<[K|

Note that the solution to the OOP consists of the following g . Equations(2), (3), (13), and (14)
four parts:d(p)’s, fi;(1)'s, s%; ,,,'s andw,’s, which determine N=r) (I di) e A 15
the proxy region, routing, Jfrequency-domain schedulingd a Fpa(@) =r(l) (L€ £,d(l) € Ai(g) (15)
time-domain scheduling, respectively. Particularly,’s rep- > fei)=r() (1€ L,d(l) € As(g)) (16)
resent the time share (out of unit time 1) for the maximal Jj€A2(9)
independent sef, to be active. The service provider can pre- £i(1) = Fiill
assign an index number to each of the maximal independent {pljze:%} (1) 1627% sild)
sets, and schedule all the independent sets (i.e., thedutik- (L€ L,j e As(g) U As(g),d(l) € As(g),j # d(1)) (17)

channel tuples) to be active following a certain order inheac

time slot, e.g., from the lowest index number to the highest. However, after the decomposition, there are still two dif-
In so doing, a detailed schedule can be obtained and egglities in solving this linear programming problem. First
LRC tuple knows when and how long it needs to be activch MP is a linear programming problem if we can find all
in each time slot. Besides, if the traffic demand changes @ independent sets, which is nonetheless an NP-complete
some users join/leave the network, the OOP problem will Bgoplem itself [26], [27]. Second, even if we can find all the
computed again to find a new solution. Otherwise, the safigiependent sets, the number of such sets increases exponen

solution will be adopted. tially as the number of LRC tuples and hence can be huge. In
the following, we propose a column generation based approac
IV. A COLUMN GENERATION BASED EFFICIENT to circumvent these difficulties and efficiently solve eacR.M

¢-BOUNDED APPROXIMATION ALGORITHM

In this section, we propose a column generation based )
bounded approximation algorithm, which can efficiently fin®- Column Generation

the e-bounded approximate results and the optimal result asColumn generation (CG) is an iterative approach for solving
well, i.e., whene = 0 in the algorithm, without finding all huge linear or nonlinear programming problems, in which the
the maximal independent sets. The definitionedfounded number of variables (columns) is too large to be considered
approximate solution will be given later. completely [6]. Generally, only a small subset of these-vari
ables are positive values in an optimization solution, e/klile
A. Decomposition of the Original Optimization Problem  rest of the variables (calletbnbasi} are zeros. Therefore, CG
The OOP is a mixed integer non-linear programming proﬂ)e_verages this idea -by ggnerating only Fhos.e critica_l leia
lem because ofi(p)'s in constraint (8) and the non-linearthat have the po_tentlal to improve the opject|ve func_tunrmhr
constraints (10)—(12). Notice that when the proxy regib case, each MP is further (_jqcomposed into a Restricted Master
i.e., d(p)'s, is fixed, the infrastructure regiod; and the ad Problem (RMP) and a Pricing Problem (PP). The strategy of
hoc regionA; will both be determined, which can turn thethis further decomposition procedure is to operate iteedti
OOP into a linear programming problem. Therefore, we c&l WO Separate, but easier, problems. During each iteratio
solve the OOP as follows: we first solve the scheduling PP tries .to determme Whethgr any columns (i.e., !ndepetnden
length optimization problems separately considering tet sets) uninvolved in RMP exist that have a negative reduced

of the P subareas (as shown in Fig. 2) is selected as the pro‘}&sﬁ and adds the column with the most negative reduced
region, and then compare ttie results and find the minimum cost to the corresponding RMP, until the algorithm termesat

scheduling length among them as the global optimizati@ OF Satisfyingly close to, the optimal solution. ,
result for the OOP. Notice that when the user density is Notice that the formulation of MP considers the entire set

sparse, it is possible that there are no users in one or saffidndependent set&, while RMP only starts with a set of

(but obviously not all) of theP subareas. Thus, when arinitial feasible independent sets, sy, which can be easily

empty subarea is selected as the proxy region, the traffic fgfmed by placing just one LRC tuple in each of them. Thus,
destinations in the ad hoc region cannot be supported, and

hence we set the minimum scheduling length in that case tSReduced cost [6] refers to the amount by which the objectivection
would have to improve before the corresponding column isirassl to be

be infinity. part of optimal solution. In the case of a minimization peshl like in this

paper, improvement in the objective function means a deered its value,

5Note that each maximal independent set's time share to bieeaista i.e., a negative reduced cost. In finding the column with thestmegative

real number. OOP is formulated based on the maximal indegmerekts as in  reduced cost, the objective is to find the column that has é&st¢ ¢hance to
[3]-[5]. improve the objective function.
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an RMP can be formulated as follows: D. Solving PP
RMP: Minimize 9, = Z " Next, we study h.ow to solve PP, i_.e.,_the qptimization
‘ problem formulated in (21). Our objective is to find out the
tsasI] independent set, i.e., all the LRC tuples that can be active a
st Equatlt‘)}gs‘(is), (13), (14), and(15) — (17) the same time, which can maximize
We define a variable?;  as follows:s?,  is equal to 1
.. b ij,mmn ij,mn
Zf” () < qu Z Z Z Cijmn(Zq) if node 4, using radiom, transmits to nodg, using radion,
leL q=1 beM;NM; mER; n€ER;

on channeb, and equal to O otherwise. Then, the independent
(i€ N,jeTi, andZ, € K') (18)  set we need to find out i§((4, ), (m, n), b)|st; ., = 1} that
) ) ) can maximizev, in (21).

RMP is a small-scale linear programming problem that can Recall that we le;” denote the set of nodes that can access
be easily solved in polynomial time by the simplex algorithtgnannel, and are within the transmission range of nédand
[28]. We can thus obtain its primal optimal solution and & he set of radios at nodeWe can prove that a node cannot
Lagrangian dual optimal solution. Since RMP uses only @ngmit to or receive from multiple nodes on the same cHanne

subset of all the independent sets (i.e., columns) used by Mg tg interference, even if it has multiple radios with efiéint
i.e., X' C K, the optimal result for RMP serves as an UPP8Fansmission power. Thus, we have

bound on the optimal result for MP. By introducing more
independent sets to the RMP, column generation may be abz: b b

' S <1, S <1
to decrease the upper bound. Therefore, we need to determi,eTb m;z n; = {,;b} m;z‘ n; =
which column can potentially improve the optimization fésu ’~ B T B
the most and when the optimal result of RMP is exactly the
same as or satisfyingly close to the optimal result of MP.

(22)

Besides, a nodeg cannot use the same channel or radio for
transmission and reception at the same time. Therefore, we
. et

C. Introducing More Columns to RMP 9

During every iteration, when RMP is solved, we need to ver- Z Z Z sgj,mn + Z Z Z s§q7yz <1.(23)
ify whether any new independent set can improve the currenf|je7t} meR: neRr; qE€T? YER; 2€R,
solution. In particular, for each independent $gte K \ K, b p
we need to examine if any of them has a negative reducbeEM‘ ‘Zb 27; Sijamn ZA:A Zb 27; Sjgnz < 1. (24)
cost. The reduced cost,(Z,) for a columnZ, € K\ K’ can =" Uli€TymeR: PEMy €Ty #€Ra

be calculated as [28]: Moreover, the total number of communication links, trartsmi

ting or receiving, at any nodg should be no larger than the
T)=1-— i b (T, . ) e
ug(Zq) , Z Aij Z Z Z Cijmn(Za); number of radios nodg has, which means

i€EN,FET; bEM;NM; mER; n€ER;

(19) , b
where \;;’s are the Lagrangian dual optimal solution corre-z Z Z Z Sigomn T Z Z Z Z Sjayz
sponding to (18). Since there are totall}/| x (JN] — 1) VEM; {iljeT)} mERin€R; bEM; g€ T} VER; 2€Rq
constraints generated from (18), the total numbengfs is < |R,| = R;. (25)

also |N| x (JN] = 1).
Notice that we need to find the column which can produce In addition to the above constraints at the same node, there
the most negative reduced cost. Consequently, this colomnate also scheduling constraints due to potential intemfage

be added to RMP can be obtained by solving among the nodes in the network. In particular, if nadeses
channeb to transmit data to nodge 7., then any other node

Minimize ug = ug(Zy), (20) that may interfere with the reception at noflehould not use

Ta€R/K! this channel. To model this constraint, we [E} represent

the set of nodes that can produce interference at node

channelb, i.e.,l? ={p|dy < Rﬁ”b,p #* j,Tli’ # (}. The

Maximize v, = Z \ij Z Z Z C?j (T, interpretation ofT.? ;é 0 in the abqve def|n!t|on is that noge
T,eR\K/ (ENTET,  bEMIOM, meRineR, ' may mterferen_ce _W|th the re_cep'uon at nodenly if there are

(21) some nodes withip's transmission range on chanrelhich

which is called a Pricing Problem (PP). Denoteijyandv; P can transmit to. Based on the definition Tf, we have

the optimal solutions to the above two problems, respdgtive

Then, ifu} > 0 or v} < 1, it means that there is no negative > >~ > b+ > Y Y b <1 (26)

reduced cost and hence the current solution to RMP optimallyjc 7} meRr; ner; q€TP YER Y 2€R,

solves MP as well. Otherwise, we add to RMP the column

derived from (21), and repeat re-optimizing RMP. We leave Consequently, considering the above constraints, thégric

how to solve PP in Section IV-D. problem (PP) (21) of finding the optimal column can be

or equivalently
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formulated as follows: in some classes of problems. Here, we propose-bounded
. approximation algorithm to find-bounded approximate solu-
. b b
PP: MaX|m|ze. Z Aij Z Z Z Cij,mnSij,mn  tions more efficiently.
iEN JET,  bEM;NM; mER; neR, We first give the definition ot-bounded solutions as fol-

s.t. Equations(22) — (26) lows.
S?j,mn =0 or 1 Definition 1: Let0 < e < 1 be a predefined parameter and
o . ¢, be the optimal result of the MP when the proxy region
wheres?; . are the optimization variables. Recall that’s

is S; (1 < g < P). Then, a solution is called astbounded

are the Lagrangian dual optimal solutions to RMP, &d,,,’s approximate solution if its corresponding resylf satisfies

are calculated according to (1). Sine%ymn can only take

value of 0 or 1, PP is a Binary Integer Programming (BIP) (I =), <ty < (1+€)yy.

problem and thus NP-complete [25]. Instead of using the tra- )

ditional branch-and-boundr branch-and-cuf24] approach, ~ Then, we can have the following lemma.

we follow a similar idea to that in [5], [29] to develop a grged Lemmal: Denote byy and v} the upper bound and

algorithm to find a suboptimal solution to PP, which is callelpwer bound on the optimal result; of the MP when the

the sequential-fix (SF) algorithm. proxy regionisS, (1 < g < P). Then,e-bounded approximate
The main idea of SF is to fix the values af;,,,’s solutions () < € < 1) can be obtained when the iteration stops

sequentially through a series of relaxed linear progrargmit vy <1 or

problems. Specifically, in each iteration, we first relaxta# wlg - 1 27
0-1 integer constraints ow?;,,,'s to 0 < s% . < 1to gy T Tte (27)

transform the problem to a linear programming (LP) problem.
Then, we solve this LP to obtain an optimal solution with  pyoof When %2 > -1 we can get thay < (1 +
: g =

eachs’.  being between 0 and 1. Among all the values, JYi e N
we set the largest?; ., to 1. After that, by (25), among all Vg < £1 +h€)¢9 and g’q = éz’g/(l I+b€) > (1 —hﬁ)% > |
the st . andst foranye.d e M, {plj € T¢.p 2 i), (1—ey;. T us, an;l/ obtained result between the upper an
phk jayz J P lower bounds, i.e.b, < 1, < vy, satisfiesy, < it <
¢ €T h € Ry, koy € Ry, 2 € Ry, we randpmly choose 14€)y; andy, > ¥} > (1—€)y;, and hence is arrbounded
R; — 1 of them and set them tbo 1, while ha\gng the rest Sétpproximate solution by definition. Besides, when< 1, as
0. Then, bZ/ (26)’,We can fl')XPJ'»hk :bO andsy, . =0 for mentioned before, the obtained solution is the optimaltsmiu
any {plj € T),p # i}, t € Plya € T/, h € Ry, k € Rjs and hence ar-bounded approximate solution as well. m
Y ERe, 2 € Ry. b o Notice that in (27)¢ is predetermined, e.g3%. As men-
Having fixed SOM&ij S 1N the first iteration, we rem’ove tioned before, the optimal result of RMP in each iteration is
all the terms associated with those already fixgd, s, 5, upper bound on the optimal result of MP, i%. A lower
eliminate the related constraints in (25) gnd (_26), a}nc_i _t‘pd"’bound can be obtained by [28]
the problem to a new one for the second iteration. Similamly,
the second iteration, we solve an LP with reduced number of L= Pu 4+ Yul < Y, (28)
variables, and then determine the values of some other anfixe _ _ _ _
s¥. .'S based on the same process. The iteration continuigere u; is obtained by solving (20) optimally, ang? >
until we fix all s?,,..’s to be either 0 and 1. > 1<q<) Wq holds for the optimal solution to RMP [28]. We
Recall that when the optimal result of PP is less thatft)y = 1. Then, if a traffic demand can be supported, the
1, i.e,v; < 1, it means that there is no negative reduce@Ptimal solution must satisfy , < wy < Y = 1. Thus,
cost and RMP can be optimally solved. Unfortunately, the 9fFan optimal solution leads t3_, . w, > 1, then the
algorithm developed above does not find the optimal soluti&@rresponding traffic demand cannot be supported. However,
to PP. Nevertheless, when the optimal result of the relaxgiice we actually do not obtai; with the SF algorithm, the
PP (formulated by relaxing binary variables in PP to vagabl lower bound can be set ) = ¢y + Yu;, which is less than
between 0 and 1), denoted hy, is less than 1, we havey + Yu; and hence);. Here,uj is obtained by the optimal
vy < vy <1 and hence RMP can still be optimally solved. result of the relaxed PP, ey = 1—@. In addition, since:;
is negativeg/)é may be negative as well. Therefore, we finally
E. e-Bounded Approximate Solutions calculatey, by
Since the number of independent setsCrincreases expo- Wq = max{yY + Yu,0}. (29)
nentially as the number of links in the network, the number ' ' -

of iterations (of PP) needed to find all the independent setswWe finally detail ane-bounded approximation algorithm
producing negative reduced cost might be very large, esper the scheduling length optimization problem in Algonth
cially in large-size networks. However, it has been obs#rvé. Note that in the algorithm we choose the solution of an
in the context of column generation algorithms [6], [7] tbae  RMP, whose resulty)y, serves as an upper bound on the
can usually determine solutions that are at le88t — 99% optimal result of the corresponding MP, as thdounded

of the global optimality fairly quickly, although the taélhd approximate solution of the MP since we have found the
convergence rate in obtaining the optimal solution can b sl corresponding scheduling and routing solutions. It is gasy
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prove thatmin; <,<p{1; } among all the MPs is anbounded F. Computational Complexity Analysis

approximate solution to the OGP As we mentioned before, although each MP is an LP

problem, solving it directly still requires a high compudbatal
Algorithm 1 e-Bounded Approximation Algorithm complexity since finding all the independent sets is an NP-
Input: Approximation factore, traffic demandr (1), initial complete problem. Note that each node needs to Bdugz n)
independent sek’, P = W LYY = o0, ¢lg =0, qgigh_bors_ on average in order to achi.eve asymptot_ic connec-
Uy = —0o andvF = +OO for any g € [1, P. tivity in wireless networks as proved in [30]. anslderlng a
Output: ¢*, v, i, (1) connected network, the number of LRC tuples in it, denoted
1 Decompose OOP mtcPU RMPs by considering4, is byG_, will be O(||(log |N|)|R|2|M|) where[R| denotes the
chosen as one of thE subareas in the cell: maximum number of radios a node can have. Thus, the number
' of independent sets is at mat, i.e., O(2V10°eIND)  Since

2. forg=1 to P do ]
9= usually only a small number of independent sets would be use-

8 while w“ < 1+e andv >1do ful in a scheduling problem, the developed column genamatio
4 Solve RMP with current region plap andK’,  pased algorithm finds the useful ones one-by-one iterstivel
and obtain its optimal result; and dual optimal e analyze the computation complexity of our algorithm as
solution )\13’5? follows.
5! while {s?; ., [i,7 € Nym € Ri,n € Rj,b € Theorem1: The computational complexity of our proposed
Mi(\M;} # 0 do column generation based algorithm for MP @&(K* +
Solve PP by relaxing < s; .., < 1; IN|®) when there areK iterations in the algorithm, and
Search for theslz7 .mn With the largest value O(24N11o8 I in the worst case.
and set it to be 1 Proof: In our proposed column generation based algo-
8 Find Sp_] nk andsf, . foranyc,d € M;, rithm, one RMP and one PP are solved in each iteration. In
{pli € Typ# it ae T h€ Ry k,y € RMP, the variables includes,’s and f;;(1)’s. Note that the
Rj, z € Rq, and setk; — 1 of them to 1 jnitial independent sets are formed by placing one LRC in
and the others to 0; each of them. Thus, in theth iteration, the numbers of,’s
9: Fix s), 4, = 0 and sy, . = 0 for any and f;;(1)'s areG + k and |N|(log [N])L, respectively. Since
{plj € Th,p # i}, t € P!, g € T", RMP is an LP problem, it can be solved by the polynomial
h € Ry, ke Rj,y € Ri, z€ Ry interior algorithm introduced in [31], whose computation
10: Remove the fixed?; s from {Sw mnti  complexity isO(n®) wheren is the number of the variables in
1L end while a problem. Therefore, the computation complexity of RMP in
12: Update K' = K’ U Z,, where Z, = thekth iteration isO((G + k + |N|(log |N])L)?), and hence
{((i,), (my 1), D)|8Y; 1y = 115 O((G + k + |[N|>L)?). In PP, we develop an SF algorithm
13: Obtain the current optimal result of the relaxeghat consists of multiple rounds of computation for relakéd
PPv;; o problems with a decreasing number of variables, $f§mn S,
14: uy, =1—wvg; in each round. Note that the number of variables is clearly
15: zpl Yy —i—yug, upper bounded by~. Thus, the computation complexity in
16: end Wh||e each round is no larger thaf(G?). Besides, notice that in
17: end for each round, SF fixes one 933 mn S 10 1 and other interfering
18: Sort the scheduling time under each proxy region plan ¥ariables to 0 according to constraints (22)-(26). Paldity
increasing orden)t < ... < %; from the f|rst inequality in (22), we can know thatsﬁj o =
19: if ¢ <1 then 1, then st 42 = 0 (k# jory# morz# n). Therefore,
20: Current traffic demand can be supported, anid=  all the variabless?; ,.’s in PP can be determined in at most
arg i, i = i, YL = Yi; |INV|| M| rounds. Consequently, the computation complexity of
21: else if i > 1% ¢ or the corresponding lower bound 1 PP in thekth iteration is upper bounded 6y(G3 |\ || M]). We
then can see that the computational complexity in thiee iteration
22: Current traffic demand cannot be supported,; of our algorithm isO((G + k + |N2L)? + G3|N||M]).
23: else Thus, the computational complexity of our column genera-
24: Sete = 0 to see if the traffic demand can betion algorithm when there ar& iterations is
supported. X
25: end if O(Z [(G+ kE+ |N|2L)3 + G3|N||M”
k=1
= O((G+ K+ NPPL)* + KG*|N||M|)
“Denote the optimal result of the OOP by*. Define 1/;;* = _ O(K4 + |N|8).

mln1<{]<p{’¢1 }. Then we hava/;" <y <y (14 ¢) forany g # g*

where 7 is the optimal result of the MP correspondlngmg Smce\I/* . . K 3 2 2
is equal to either one of theg's or +7., we haveyy. < (14 e)v*. The first step is due t@k:l k? = K (K + 1) /2' In the

Besides, sincef’. > vl. > ¢7.(1 - ¢) and v > T* we can get Worst case that all the independent sets need to be found, our
P > (1=e) T, In fact, we also haveyy, > W smcew" >4 > w*.  algorithm needs to have at maxt — G iterations and hence
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its computational complexity i©((2WV1los VN4 L A]8), ie., VI. SIMULATION RESULTS
0(24|N\log |N\) u
Note that the computational complexity of our algorithm

is polynomial if the number of iterations needed in the |, yhis section, we carry out extensive simulations to eval-
algorithm is at most a polynomial function df\|. Our a6 the performance of the proposed algorithms. Simulgtio
later simulations show that usually only a small number Qfe conducted under CPLEX 12.4 and C++ on a computer
iterations are needed. In contrast, if we solve MP directlyiih 4 2.8 GHz CPU and 24 GB RAM. Besides, notice that
the computational complexity i©((2¢ + |N|(log [V)L)®),  previous works obtain suboptimal results that are either un
€., O_(23|M s M), and hence always exponential. Thus, oW, ynded or far away from the optimal results, and many works
algorithm’s computational complexity can be much lower. ha5ed on conflict graphs assume all the maximal independent
sets are given. Since our developedounded approximation
V. UNCERTAIN CHANNEL AVAILABILITY algorithm relaxes this assumption and is able to find tight
So far we have assumed that frequency channels’@Ms bounded approximate solutions and the optimal solution as
have constant bandwidths. However, in practice, the wveell, it is not very fair to compare it with other algorithms.
cancy/occupancy of the secondary channels (or licenseu chsloreover, the new MC?N architecture and the new hybrid
nels) is uncertain and dynamic at different times, due to tkemmunication paradigm make the problem studied in this
unpredictable activities of the primary users. To mode$ thpaper a very unique problem, and hence it is not very ap-
unique feature of MC2Ns, we consider that the bandwidths opropriate to compare with other algorithms. In fact, due to a
secondary channels, i.8%/"’s (1 < b < M), are independent similar reason, most previous papers, e.g., [3], [11], [159],
random variables, which is inspired by the statistical itesof [29], focus on the performance evaluation of their proposed
frequency channels obtained by experiments in [8]-[10lisTh algorithms and do not compare with other ones, either.
from (1), we can know that link capacitie$;’s are random Specifically, we consider a square network of are@)m x
variables as well. ... 1000m. A base station (BS) is located at the center, while
Taking uncertain frequency channel availability into ddns 30 poges are uniformly and randomly distributed in the area.
eration, we can reformulate constraint (2) in OOP as followsags;me that each node has a downlink session from the BS

Q and has a traffic demand of 100Kbps. The number of radio
Pr qu Z Z Z ng,mn(zq) > Z fi; (1) interfaces at the BS and at each user are 5 and 2, respectively

=1  bEM;NM,; mER; nER; lec Some important simulation parameters are listed as follows
>3 (30) The path loss exponent is 4 add= 62.5. The transmission

_ . power spectral density of nodessis x 107n, and the reception
where 3 is a control parameter describing network operatorgreshold and interference threshold are bifih. Thus, the
requirements on link quality. In so doing, the original MIRL ansmission range and the interference range on all channe
becomes a Stochastic Optimization Problem (SOP), with ragye g equal to 150m. Besides, we set the reception power
dom variables involved in its constraints. Obviously, warmat gensity of nodes to be.5 x 107, based on the fact that the
directly apply our previously proposed method to solve thigtio of transmission power to reception power of wireless
problem. adaptors is usually 1:1 to 2:1 [32]. The transmission power

On the other hand, according to Markov inequality, we haV§pectraI density of the BS 1506 x 10'%), and hence the BS’s
transmission range is 750m on all channels, i.e., covetiag t

Q
Pr qu Z Z Z & mn(Tg) = Zfij(l) whole network area. Note that since the location of the BS is
q=1

bEMIM, mER: nER; et (500m, 500m) andR; = 150m, there areP = [501%5] =
0 , 5 proxy region candidates. Moreover, we assume the basic
- E {Zqzl Wq ZbeMmMj Ymer, ZneRj Ci.ﬁmn(zq)] channel, i.e., the cellular channel available at the noddsfze
- e fii (D) BS, has bandwidth of 1IMHz. The available secondary channels
Q b at each user are 4 randomly chosen channels from the channel
2 =1 Wa Dpeminm, B [Zmem 2ner, Cijvmn(zq)] set[10, 20, ..., 100]KHz, all of which are available at the BS.
B Yoier fiz (D) ’ In addition, in the case of uncertain channel availability,

consider all the secondary channels’ bandwidths follow the
same normal distribution' (50KHz, (5KHzY).

Q
In the following, we evaluate the cost of solving RMP in
(1) < E[ct . (Z.)]. _ : _
By fii(1) < Z we Y Y Bl Section VI-A. We evaluate the cost of solving PP, and compare
leL =1 beM;NM; meR; nER;

(31) the performance of the proposed SF algorithm with that of one
traditional algorithm in Section VI-B. Then, we show the min

As a result, the SOP can be transformed back to an MINLBum scheduling length and the maximum network throughput,

which can be efficiently solved using our proposdoounded and compare the performance of our proposed architecture

approximation algorithm. Notice that since (31) is a rethxewith that of pure ad hoc mode and that of traditional cellular

constraint compared to (30), the obtained optimal reseltges networks in Section VI-C. We finally demonstrate the results

as lower bounds on the optimal results of SOP. under uncertain channel availability in Section VI-E.

which can give us a relaxed linear constraint as follows:
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TABLE Il

SOLVING RMP WITH DIFFERENTE’S.

€ Iteration Number| Running Time (s)
5% 102 16.51
3% 113 18.28
1% 131 21.20
0% 151 24.41
TABLE Il

SOLVING RMP WITH DIFFERENTNETWORK SIZES.

Network Size | Iteration Number| Running Time (s)
N =20 55 6.38
N =25 79 11.34
N =30 151 24.41

25f

150

Scheduling length

7[1]' H
- -y

"Tu

50

150

Iteration numbers

200

11

Fig. 3. Convergence property when using the traditionabritlym to solve

A. Cost of Solving RMP

PP.

We first study the cost of solving RMP under different

network settings. Note that in order to well investigatedhst

of solving RMP, we apply a traditional algorithm (provided

by CPLEX), which can solve BIPs, to solve PP in inne

iterations. Table Il shows the iteration numbers and rugnin

time needed to solve RMP in order to obtairfbounded
approximate solutions whegp = 3. We can see that when

N = 30, it takes 102 iterations and 16.51 seconds to obtain

TABLE IV

SOLVING PPUSING SFWITH DIFFERENTE’S.

€ Iter. No. Run. Time (S) | Iter. No. | Run. Time (s)
r (Trad. Alg.) | (Trad. Alg.) (SF) (SF)
5% 102 8.48 115 4.80
3% 113 9.32 129 5.35
1% 131 10.95 151 6.37
0% 151 12.67 173 7.34

5%-bounded results, and 151 iterations and 24.41 seconds to
get the optimal result, i.e., when= 0%. Table Il gives the the traditional algorithm, the running time when using SF is
cost of solving RMP wher = 0% in networks of different much less due to much Iovx_/er complexity. We then gvaluate
sizes. We can observe that it only takes a few iterations alfidTable V the cost of solving PP in networks of different

very little time to obtain the results.

sizes where = 0% and g = 3. Obviously, the proposed SF

Besides, Fig. 3 illustrates the convergence property oeuppPutperforms (in terms of running time) traditional algbrits
and lower bounds on optimal scheduling length when we uBore as network size gets larger.
Moreover, from Table Il and Table IV, we can see that when
¢ = 0% and there are 30 nodes in the network. Specifically) = 30 ande = 0%, the running time for RMP and PP are
we assume the proxy region is @gt= 6~ (1) = 3. At each 24.41 seconds and 7.34 seconds, respectively, resulttogain
iteration, we compute the lower and upper bounds on thénning time of 31.75 seconds. Whevi = 30 ande = 5%,
minimum scheduling length of MP and track their progressee running time for RMP and PP are 16.51 seconds and 4.81
Recall that in each iteration the upper bound, denotedpy seconds, respectively, resulting in total running time df32
for simplicity, is the optimal result for RMP, while the lowe seconds. Note that the number of iterations for solving RMP
bound, denoted by, for simplicity, is calculated accordingis 151 whene = 0% and 102 where = 5%. Thus, we can
to (29). We can find that, even though the gap between tB@e that given the same network size, the total running time
lower and upper bounds is initially high, the gap narrows dows approximately proportional to the number of iteratioos f
quickly in the first 100 iterations. In addition, note thaeté solving RMP (51 : 102 ~ 31.75 : 21.32 ~ 1.48).
is a sharp decrease of, at the beginning. This is because the In order to further illustrate the iteration number (and ¢en
initial set of independent set§’ used for solving RMP is very running time as well) with regard te of our proposec-
small, and can be easily well improved. Thus, it demonstrateounded approximation approach, we show in Fig. 4 the
that the choice of initial independent sets does not havenmuteration ratio under different’s. Here, the iteration ratio is
impact on the convergence performance. Moreover, we fidgfined as the ratio of the iteration number under certain
that the minimum scheduling length achieved is 0.78, whidh that to achieve optimality, i.e¢, = 0. We can see that the
is smaller than 1. This means that with current proxy regidteration ratio decreases very fastamcreases. In particular,
plan, we can find a valid optimal solution to support usergven where is very tight, say 0.01, the iteration ratio is only

traditional algorithms to solve PP in inner iterations,ggithat

traffic demands.

B. Cost of Solving PP

We then evaluate the cost of solving PP by the proposed

SF algorithm under different network settings. Partidylar
Table IV compares the iteration numbers (for solving RMHA
and the total running time of SF with those of a traditiond
algorithm provided by CPLEX wheg = 3. We notice that

although using SF leads to a few more iterations than usi
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about 0.87. When is larger than 0.1, the iteration ratio drops

below 0.62. This reveals similar results observed by [6], [7

TABLE V

SOLVING PPUSING SFWITH DIFFERENTNETWORK SIZES.

)Network Iter. No. Run. Time (S)| Iter. No. | Run. Time (s)
\| Size (Trad. Alg.) (Trad. Alg.) (SF) (SF)

N =20 55 2.66 70 2.15

N =25 79 4.08 99 3.82
Qv = 30 151 12.67 173 7.34
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that column generation approaches can determine solutior 2

that are at leas95% — 99% of the global optimality fairly 15

quickly. _
In addition, Fig. 5 shows the convergence property of uppewg

and lower bounds on optimal scheduling length when we ust s

SF to solve PP in inner iterations, given that 0%, g = 3,

and there are 30 nodes in the network. We can see that tt © &+ =z 3 4 5 o o1 2 s s

minimum scheduling length is also 0.78, which is the same @ (0)

result as that in Fig. 3.

1

Fig. 6. Performance results with different proxy regionnsla(a) Minimum
scheduling length. (b) Maximum end-to-end throughput.

1.5 250
O Hybrid mode ©' Hybrid mode
O Pure ad hoc mode (g=1) @ Pure ad hoc mode (g=1)
< Pure 1-hop mode (g=5) o 200 < Pure 1-hop mode (g=5)
0.8F 1 5
'S 7 150 o
£ . © %100 g ° °
g 0.6 [ R ‘Z o Oy
S 8 2 50
©
o 041 05 ° 0
= 5 10 15 20 25 30 5 10 15 20 25 30
N N
(@) (b)
0.2t
Fig. 7. Performance results in different transmission nsoda) Minimum
0 . . . . scheduling length. (b) Maximum end-to-end throughput.
0 0.2 0.4 0.6 0.8 1

€

saturated throughput when the minimum scheduling length
is 1, for each node under each region allocation plan
assuming that all nodes still have equal traffic demands;hwhi
. ‘ ‘ ‘ is 5 (1) = r(1) /v
ce gy To more clearly compare the performance of our proposed
257 — ¥ hybrid mode communications with that of pure ad hoc mode
Coow transmissionsy = 1) and that of pure one-hop mode transmis-
: | sions ¢ = 5), we show the scheduling length and maximum
150, ] throughput of these three architectures with different bem
of users in Fig. 7. We can easily see that the hybrid mode
77777777777777 i ] architecture has the best performance.
05 /W We further demonstrate the minimum scheduling length
as well as the maximum end-to-end throughput in Fig. 8
‘ ‘ under four different network architectures, i.e., singidio
Iteration numbers single-channel single-hop traditional cellular netwoilkyde
A), single-radio single-channel multi-hop cellular netwo
(Type B), single-radio single-channel multi-hop cogretizel-
lular network, (Type C) and multi-radio multi-channel mult
htop cognitive cellular network (Type D). Note that we still

C. Minimum Scheduling Length and End-to-End ThroughplEI:onsider that each node has a downlink traffic demand of

Next, we study the minimum scheduling length and thggokpps. In particular, Type A architecture represents the
maximum end-to-end throughput with different proxy regiogyrent typical cellular network. Its scheduling lengthe all
allocation plans. larger than 1 wherV ranges from 5 to 30, indicating that it

Fig. 6(a) depicts the minimum scheduling lengthwheng  4nnot fully support all the data traffic demands. Besides, t
ranges from 1 to 5. We can see that the minimum scheduling

length ¢* is equal to 0.61 whery = 2, which means that

Fig. 4. The relationship betweenand iteration ratio.

Scheduling length

Fig. 5. Convergence property when using SF to solve PP.

the second proxy region candidatg is the optimal proxy — o

region. Besides, whep = 1, i.e., in the case of pure ad hoc 25| § e 20 § el

mode transmissiong); is 0.97. Wheng = 5, the M°C°N ol x Tweo o gusol
becomes one-hop cognitive cellular netwolone-hop mode g0 2% o
communications with both cellular and secondary channel: : 8 8 o0 e 8 § a8
available). Obviously, this structure cannot exploit spen 05 o * °
spatial reuse among nodes and resultg)jn= 1.05, which S0 o5 @ s I N
is larger than 1. It indicates that we cannot support users’ (@) (b)

traffic de,mands with .thIS proxy region plan. Accordlngly, w ig. 8. Performance Results under different architectut@g Minimum
can derive the maximum end-to-end tthUgthElU), I.€.,  scheduling length. (b) Maximum end-to-end throughput.
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scheduling length keeps on increasingldsgyrows. For Type 2r :
B architecture, it allows multi-hop transmissions in clkiu 5 e BR0.95, W,
networks and hence can support more traffic than Type A due g B0y,
to increased spectrum spatial reuse and link rate adaptivit <M B=0.9.%, |
Type C architecture can further enhance network throughput - F09. %
because of more available channel resources brought by cog- g ot e ]
nitive radio. Type D architecture, i.e., the proposed onthis g """"""""" U Epe—
paper, has the best performance. 3 0sl
D. Energy Consumption 0 o ‘ ‘

0 50 100 150 200

We also compare the energy consumption, including trans-
mission energy and reception energy, per bit of traffic in our
proposed hybrid mode with that in pure ad hoc mode afft9- 10. Performance comparison under differgis for uncertain channel

Iteration numbers

that in pure one-hop mode. Specifically, it is calculated b%‘/a'lab'"ty'

dividing the total power consumption by the maximum end-to- 1

end throughput achieved. Since energy consumption at mobil <

users is more critical in wireless networks, Fig. 9 shows the gOB’;DQDj;D“EDD,?;iDDDT DgiﬂjnDEEDEDM{EDDWD%
energy consumption per bit of traffic at all mobile users, whe o | LD e T R e
N ranges from 5 to 30. The energy per bit consumed in pure 506

1-hop mode is the lowest since the mobile users’ transnmissio £

energy is 0. Besides, we find that given the sawehe mobile e 047

users consume much more energy per bit in pure ad hoc mode g o B=0.95
than in hybrid mode. This is because first, more nodes may be £02 + p=0.9 ||
involved in the data transmissions in pure ad hoc mode, and - Pp=085
second, hybrid mode can support higher end-to-end thraitghp % 10 20 30 40 50

as illustrated in Fig. 7(b). Note that the results are ola@in
when downlink traffic is considered. Obviously,

saving in the hybrid mode compared with that in the purgailability.

one-hop mode will be more significant for uplink traffic.

Simulation instance index

the energMg. 11. Minimum scheduling length under differesis for uncertain channel

4

result to become stable wheéris smaller. We also show in Fig.

35X10° ‘ 11 the minimum scheduling length under differetis. Note
- ©: Hybrid mode o that we have assumed that all secondary channels have the
L2 3 ::?):: Pure adhhoc mO(;‘e @D same expected bandwidths of 50 KHz. For eA¢clwve conduct
S5 28 Pure 1-hop mode (g=5) e 50 simulations, each with a newly generated topology and
ES | = bandwidths for all the secondary channels according ta thei
g% B distributions. We find that the minimum scheduling length
g% 1.5 = o) achieved whers = 0.85 is the lowest among the three, due to
85 4| o o o g“:: ........ X the same reason as that for Fig. 10. In addition, we show in Fig
we b o 11 the minimum scheduling length under secondary channels
o O o of different expected bandwidth&[IW*]’'s, which indicates
o 1 15 20 > 2 different levels of secondary channel availability. Weusse

N that all secondary channels have the same standard variance
of 5 KHz. For eachE[W?*], we conduct 50 simulations, each

of which uses a newly generated topology. We et 0.9.

As shown in Fig. 12, we find that the minimum scheduling

length achieved whet[IW?] = 60KHz is the lowest since it
E. Minimum Scheduling Length Under Uncertain Channglas the highest level of channel availability.

Availability
We first illustrate the results of minimum scheduling length VII.

under uncertain channel availability with differefis in Fig. In this section, we discuss related work on multihop cetlula

10. Note that we consider a network of 30 nodes, and se8  hanyorks and cross-layer throughput optimization for ¥eise
as the proxy region. We can see that the minimum schedulifgy,orks.

length (when the results are stable) whenr= 0.9 is shorter

than that whens = 0.95. This is intuitively true because a )

smaller 3 indicates a lower requirement on service qualitf Cellular Network Architecture

and hence the minimum scheduling length can be lower.In traditional cellular networks [1], [33]-[35], ad hoc cem
Interestingly, we also notice that it takes more iteratifmnghe munications are introduced to deliver information between

Fig. 9.
mode.

Energy consumption at mobile users under differegmtsmission

RELATED WORK
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ing, channel assignment, and routing optimization problem

1 ‘ :
- 6 s %o . and develop a heuristic algorithm to obtain capacity upper
o o.s—DDDDDDDDDD“Dm oo e ontece® oo © ) bounds. Zhou et al. [42] study the video streaming problem to
= s e T e e | minimize the video distortion by jointly considering chahn
+ L o+ ++ + . . . . . .
£ 06} : ' o assignment, rate allocation, and routing. Link schedubnpt
2 |- considered. Lin and Rasool [43] design distributed algon&
20.4— that jointly solve the channel assignment, scheduling, and
E o E[WPJ=40KHz routing _problem,. and show that the algorithms can achieve
£02 + EWPJ=50KHz |] an efficiency ratio ofl /(K + 2) or 1/K, where K is the
E[WP|=60KHz interference degree of the network.
% 10 20 20 20 50 Cognitive ad hoc networkstang et al. [3] try to maximize
Simulation instance index network throughput considering frequency channel aliocat

and scheduling but not routing, and find suboptimal results.
Feng and Yang [18] study a joint transport, routing, and fre-
guency channel allocation optimization problem to maxaniz

users, but every user still communicates with base statighgwork utility. Ding et al. [44] attempt to maximize networ
directly in one hop, which leads to low frequency spatiaeeu Utility by joint relay selection, routing, and frequencyarh
and hence low throughput. Considering multi-hop commurfé! allocation, and propose both centralized and distithut
cations between nodes and base stations, some works sucRl¢@fithms to obtain suboptimal results. Hou et al. [19B][2
[1], [2] investigate the capacity of multihop cellular netks, Yy to minimize space-bandwidth product by joint frequency
which has been shown to be much higher than that of tragffannel sharing and routing. Heuristic algorithms are pseql
tional cellular networks. However, these works only coesid!© find lower bounds on the optimal results. In such works,
the case where nodes share the cellular channels and Hié-domain link scheduling is not considered.

Fig. 12. Minimum scheduling length under differeB{1¥®]’s for uncertain
channel availability.

not exploited the local available channels or multi-radionse TABLE VI
propose in this study. Besides, although asymptotic cpaci CompARISON OF OUR WORK AND EXISTING WORKS ON CROSSAYER
bounds have been studied, the exact optimal throughpu¢ valu OPTIMIZATION FOR WIRELESS NETWORKS
remains unknown. Multi- | Frequency- Time- Optimal
radio domain domain solution
Lo Iti- heduli heduli
B. Cross-Layer Optimization for Wireless Networks Crr?:nt:]d seheduing | sehecting
There has been some work on joint link scheduling and rout- Efé < \X/ \\; <
ing for throughput optimization in traditional ad hoc netk® 37 ~ ~ V i
[4], [36]—[38], multi-radio multi-channel mesh network2q], 38 x X N N
[39]1-[43], and cognitive ad hoc networks [3], [18], [19]9R 39 v v x x
[44]. E v v x X
Traditional ad hoc networksJain et al. [36] study the 76 \\; \\; \\; i
throughput bounds of one source-destination pair corisigler 42 N N X x
both routing and interference. Zhai and Fang [4] study the Eg]’ v v v X
im_p:_alct pf routing r_netrics on p.ath capagity.by formulating 18] i \\; \\; i
a joint link scheduling and routing optimization problem. A [44] X v v/ X
single traffic flow is considered in the paper. Lin and Shroff ﬁg% \\; \\; X X
i ; X X
[37] employ a joint rate control and scheduling approach to STk 7 7 7 7

maximize the utility of the network subject to the consttain
that the network is stable. The same authors [38] then desig'We summarize the main differences between the above
a distributed algorithm to solve the problem, which is showworks and ours in Table VI. In general, only a few perform a
to achieve a constant factor of the capacity region. Rousingcomplete study on joint link scheduling (both in time domain
not considered in their optimization problem. In these vgorkand in frequency domain) and routing. Besides, previoussvor
they study single-radio single-channel networks. only obtain suboptimal results that are either unbounded or
Multi-radio multi-channel networksAlicherry et al. [39], still far from the optimal results. In this paper, we are able
[40] investigate the throughput optimization problem byo find e-bounded approximate results, which are less than
joint channel assignment and routing, assuming a CSMA/CA + ¢) and larger thari1 — €) of the optimal result and hence
medium access control protocol, and find a suboptimal resoitich tighter. Here) < ¢ < 1 is a system control parameter.
that is within K - ¢(¢q) /I of the optimal result, wher& is the Besides, some conflict graph based works like [3], [4] assume
number of channels;(¢) is a constant greater than 4, ahis all the maximal independent sets are given, while we do not
the number of radios at each node. Kodialam and Nandagopelke this assumption in this study.
[41] study the throughput bounds of multi-radio multi-chah Moreover, a few works [11]-[13] study cognitive cellular
mesh networks following a similar approach. Li et al. [26hetworks, but they focus on resource management rather than
explore the capacity region by formulating a joint schedujein link scheduling and routing optimization, and stillferce
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one-hop direct communications between nodes within thg]
transmission range of base stations and the base stations. |
addition, since each node has only one radio, such networks
can be considered as a special case in the propoS€INg.  [4]
Furthermore, most previous research on the minimum length
scheduling has been conducted on traditional ad hoc neswork
[46]-[48] and only considers link scheduling. In contrasg  [5)
study this problem in cognitive networks by taking into con-
sideration both scheduling and routing. Besides, mostipusv
works only derive an upper bound on the minimum scheduling;
length, while we obtain both upper and lower bounds-n
bounded approximate solutions, which converge quicklg anl”]
can also efficiently find the optimal result when= 0%. (8]
In addition, most previous works study homogeneous net-

15

J. Tang, S. Misra, and G. Xue, “Joint spectrum allocatéom schedul-
ing for fair spectrum sharing in cognitive radio wirelesstwarks,”
Computer Networks (Elsevier) Journafol. 52, no. 11, pp. 2148-2158,
August 2008.

H. Zhai and Y. Fang, “Impact of routing metrics on path aaipy
in multirate and multihop wireless ad hoc networks,” Rnoc. of the
IEEE International Conference on Network Protocols, ICN®& Santa
Barbara, CA, November 2006.

M. Pan, C. Zhang, P. Li, and Y. Fang, “Joint routing anclschedul-
ing for cognitive radio networks under uncertain spectruappdy,”
in Proceeding of the IEEE International Conference on Compute
Communications (INFOCOM'11)Shanghai, China, April 2011.

L. S. Lasdon,Optimization Theory for Large Systems NY: Dover,
2002.

M. S. Bazaraa, J. J. Jarvis, and H. D. Sheraiiear Programming and
Network Flows, 3rd ed. NY: Wiley, 2005.

M. McHenry, “Spectrum white space measurements,” New efina
Foundation Broadband Forum, June 20, 2003.

works, where each node has a fixed set of available channé? M. A. McHenry, P. A. Tenhula, D. McCloskey, D. A. Robersoand

and all nodes have the same transmission range on all the chan
nels. While in MC2Ns, we consider heterogeneous networks
and take uncertain channel availability into account, Wwhi [10]
an intrinsic feature of cognitive radio networks but hashar
been studied before. Besides, although column generatisn h
been adopted in the study of wireless networks [49]-[54i, oli1]
problem formulation and the algorithm design are compjetel
different. We propose as-bounded approximation algorithm

for the first time in the literature. [12]

VIII. CONCLUSIONS

In this paper, we have proposed a novel Multi-radio Multig3]
channel Multi-hop Cognitive Cellular Network (MC2N) ar-
chitecture to enhance the throughput of current celluldas ne
works. We study the minimum length scheduling problem in4
M3C2Ns, and formulate it as a maximal independent set based
joint scheduling and routing optimization problem, which
we call OOP and is a Mixed Integer Linear Programmings]
(MINLP) and hence generally NP-hard problem. Then, we
decompose OOP into a sequence of MPs, each of which
is further decomposed into an RMP and a PP. Noticings
that RMP can be solved in polynomial time but PP is still
an NP-complete problem, we then design a sequential-Lﬁ]
(SF) algorithm which can find a suboptimal solution to P
in polynomial time. After that, ar-bounded approximation
algorithm is developed which can find théoounded approx-
, . : (18]
imate result and the optimal result (when= 0%) quickly.
Consequently, we are able to solve OOP very efficiently, in
terms of bothe-bounded approximate solutions and optimilg]
result as demonstrated by simulations, without having td fi
all the maximal independent sets. Furthermore, althoug$t mo
previous research only assumes constant channel bandwitf#
we take uncertain channel availability into consideration
account for practical issues, e.g., the unpredictableviies
of primary users.

[21]
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