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Abstract—Due to the emerging various data services, current
cellular networks have been experiencing a surge of data traffic
and already overloaded, thus not able to meet the ever exploding
traffic demand. In this study, we first introduce a Multi-radi o
Multi-channel Multi-hop Cognitive Cellular Network (M 3C2N)
architecture to enhance network throughput. Under the proposed
architecture, we then investigate the minimum length scheduling
problem by exploring joint frequency allocation, link schedul-
ing, and routing. In particular, we first formulate a maximal
independent set based joint scheduling and routing optimization
problem called Original Optimization Problem (OOP). It is a
Mixed Integer Non-Linear Programming (MINLP) and generall y
NP-hard problem. Then, employing a column generation based
approach, we develop anǫ-bounded approximation algorithm
which can obtain an ǫ-bounded approximate result of OOP.
Noticeably, in fact we do not need to find all the maximal
independent sets in the proposed algorithm, which are usually
assumed to be given in previous works although finding all
of them is NP-complete. We also revisit the minimum length
scheduling problem by considering uncertain channel availability.
Simulation results show that we can efficiently find theǫ-bounded
approximate results and the optimal result as well, i.e., when
ǫ = 0% in the algorithm.

Index Terms—Cognitive cellular networks; multi-radio multi-
channel; cross-layer optimization; minimum length scheduling.

I. I NTRODUCTION

Due to the emerging various data services, current cellular
networks have been experiencing a surge of data traffic and
already overloaded, thus not able to meet the ever exploding
traffic demand. Even the new generation LTE or WiMAX
cellular networks may still suffer from low per-user throughput
because of a large number of network users sharing limited
frequency bandwidth as well as poor cellular signals in cer-
tain areas like obstructed or suburban areas. Although Wi-
Fi networks may provide high data rates, they have serious
shortcomings as well. First, wireless local area networks
(WLANs) or hot spots have poor coverage and can easily
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get overcrowded. Second, citywide Wi-Fi networks like mesh
networks have not been widely deployed yet, thus requiring
additional deployment cost, and may interfere with existing
WLANs, hot spots, and other ISM (Industrial, Scientific and
Medical) band users (e.g., cordless phones, RFID systems,
wireless telemetric systems like smart meter networks).

In this paper, we first introduce a Multi-radio Multi-channel
Multi-hop Cognitive Cellular Network (M3C2N) architecture
to meet the fast-growing traffic demand in cellular networks.
In particular, both cellular base stations and network users
are equipped with multiple cognitive radios. Thus, we can
exploit the greatly under-utilized licensed spectrums, i.e.,
white spaces/spectrum holes, for communications, and hence
enhance network throughput. Moreover, instead of delivering
all the traffic between base stations and users in one hop like
that in traditional cellular networks, we propose to carry such
traffic in hybrid mode, i.e., either in one-hop or via multiple
hops depending on the local available frequency channels and
the corresponding channel conditions. In so doing, we can
further take advantage of local available channels, frequency
reuse, and link rate adaptivity to provide higher network
throughput. Note that a couple of works such as [1], [2]
investigate the capacity of such multihop cellular networks
and have shown that such hybrid mode communications can
improve the network capacity a lot compared to one-hop
communications. However, these works only consider the case
where nodes share the cellular frequency channels and have
not exploited the local available channels or multi-radio as we
propose in this study. Besides, although asymptotic capacity
bounds have been studied, the exact optimal throughput value
remains unknown. Generally, the proposed M3C2N architec-
ture can enhance network performance and adapt to dynamic
traffic distribution, yet relieving service providers fromany
significant additional infrastructure costs.

Under the M3C2N architecture, we investigate the mini-
mum length scheduling problem by exploring joint frequency
channel allocation, link scheduling, and routing. Specifically,
by constructing a two-layer conflict graph, we first formu-
late a maximal independent set based joint scheduling and
routing optimization problem called Original Optimization
Problem (OOP). It is a Mixed Integer Non-Linear Program-
ming (MINLP) and generally NP-hard problem. We notice
that finding all the maximal independent sets in a conflict
graph is NP-complete, and most previous research just as-
sumes that they are given [3]–[5]. In this study, we do not
make such assumptions. Instead, we decompose OOP into
a sequence of Linear Programming (LP) problems, which
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we name Master Problems (MPs). After that, employing a
column generation based approach, we further decompose
each MP into a Restricted Master problem (RMP) and a
Pricing Problem (PP), which are a small-scale LP problem and
a Binary Integer Programming (BIP) problem, respectively.
The basic idea is that RMP starts with some initial independent
sets, while PP updates the set of independent sets in each
iteration. Notice that RMP can be solved in polynomial time,
but PP is still a problem with high complexity. Therefore,
we design a sequential-fix (SF) algorithm which can find a
suboptimal solution to PP in polynomial time. Although SF
is suboptimal, we can still find the optimal solution to MPs
and hence OOP due to the intrinsic iterative nature of column
generation. Besides, it has been observed in the context of
column generation algorithms [6], [7] that one can usually
determine solutions that are at least95%− 99% of the global
optimality fairly quickly. Subsequently, we develop anǫ-
bounded approximation algorithm, which can obtain upper and
lower bounds that are less than(1+ǫ) and larger than(1−ǫ) of
the optimal result of each MP, respectively, and anǫ-bounded
approximate result of the OOP. Simulation results show that
upper and lower bounds converge quickly and thus we can
efficiently find the optimal result as well, i.e., whenǫ = 0%
in the algorithm. In other words, we are able to solve OOP very
efficiently without having to find all the maximal independent
sets. Furthermore, although most previous research on network
optimization assumes constant channel bandwidth, in practice,
the vacancy/occupancy of licensed channels can be uncertain
and dynamic at different times, due to the unpredictable
activities of the primary users. In this study, we also revisit
the minimum length scheduling problem by taking uncertain
channel availability into consideration.

Our main contributions can be summarized as follows.

• We introduce a Multi-radio Multi-channel Multi-hop
Cognitive Cellular Network (M3C2N) architecture and
a new hybrid mode communication scheme to enhance
network throughput.

• We explore the minimum length scheduling problem by
joint frequency channel allocation, link scheduling, and
routing. Most previous works only obtain suboptimal
results that are either unbounded or still far from the
optimal results, and many works based on conflict graphs
also assume that all the maximal independent sets are
given. In this paper, we develop a column generation
basedǫ-bounded approximation algorithm, which relaxes
this assumption and is able to find tightǫ-bounded
approximate solutions and the optimal solutions as well.
The developed algorithm can also be applied to cross-
layer optimization problems in other networks.

• We consider heterogeneous networks and take uncertain
channel availability into account when studying the min-
imum length scheduling problem, which is an intrinsic
feature of cognitive radio networks but has rarely been
studied before.

• We conduct extensive simulations to validate the effi-
ciency of the proposed algorithms.

The rest of this paper is organized as follows. We discuss

Fig. 1. The architecture of a multi-radio multi-channel multi-hop cognitive
cellular network (M3C2N).

some related work in Section VII and briefly introduce our
system models in Section II. We then formulate a minimum
length scheduling problem for M3C2Ns in Section III. After
that, we propose in Section IV a column generation basedǫ-
bounded approximation algorithm which can efficiently findǫ-
bounded approximate solutions and the optimal solution when
ǫ = 0. Subsequently, we revisit the minimum length schedul-
ing problem by considering uncertain channel availabilityin
Section V. Simulations results are presented in Section VI to
evaluate the performance of the proposed algorithm. We finally
conclude this paper in Section VIII.

II. SYSTEM MODELS

A. Network Architecture

As shown in Fig. 1, we propose a novel Multi-radio Multi-
channel Multi-hop Cognitive Cellular Network (M3C2N) ar-
chitecture. Specifically, an M3C2N is a cellular network in
which both the service provider and network users can access
multiple channels with multiple cognitive radios. For example,
base stations and more powerful terminals (e.g., laptops and
tablets) can have higher cognitive capabilities and span a
larger range of frequency spectrum (e.g., from MHz spectrum
to GHz spectrum), while less powerful devices (e.g., smart
phones and cellular phones) may just access only several
typical frequency spectrum, such as the cellular spectrum,
the 2.4 GHz ISM spectrum, and the TV spectrum which
has large bandwidth and good penetration and propagation
performances. We call cellular spectrum “the basic channel”,
and other spectrums “the secondary channels”. The service
provider uses the basic channel for signaling, controlling,
handling handoffs, accommodating users’ voice traffic, etc.,
and uses all the available channels to support users’ data traffic.
As a central coordinator, the service provider performs net-
work optimization to find out the optimal radio and frequency
allocation, link scheduling, and routing schemes for satisfying
users’ traffic demand based on the the observed, collected, and
predicted channel information [8]–[10] in the coverage area.

Besides,instead of delivering all data traffic in one hop like
that in traditional cellular networks, we propose to carry such
traffic either in one-hop or via multiple hops, depending on the
available channels and the corresponding channel conditions.
In addition, since downlink transmissions from base stations
to users will likely outweigh uplink transmissions, we focus
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on downlink transmissions in this study. The analysis for up-
link transmissions simply follows the same process presented
herein.

B. Network Model

Consider a cell in an M3C2N consisting of N =
{1, 2, · · · , i, · · · , N} users and a set of available secondary
channelsM = {1, 2, · · · , b · · · ,M} with different band-
widths1. We denote the base station byB and the basic channel
by 0, and consequently letN = N ∪{B} andM = M∪{0}.
The bandwidth of channelb is denoted byW b. Moreover, we
denote the set of radios at nodei ∈ N by Ri = {1, 2, ..., Ri}
whereRi is the number of radios that nodei has. Suppose
there are a set ofL = {1, 2, ..., l, ...L} downlink sessions
from the base station to network users. We lets(l) andd(l)
denote the source node and the destination node of session
l ∈ L, respectively. Thus,s(l) = B andd(l1) 6= d(l2) for any
l, l1, l2 ∈ L. We also denote byr(l) the throughput demand of
sessionl. Besides, due to their different geographical locations,
users in the network may have different available channels.
Let Mi ⊆ M represent the set of available channels at node
i ∈ N . ThenMi might be different fromMj , wherej is
not equal toi, i.e., possiblyMi 6= Mj . Note that the local
available channels can be determined by spectrum sensing,
which can be performed in several different ways, such as
centralized sensing, distributed sensing, and external sensing
[16], [17]. There has been a lot of work in the literature
studying this problem and is out of the scope of this paper.

Some important notations are summarized in Table I.

TABLE I
IMPORTANT NOTATIONS

Symbol Definition
N Set of users and the BS in the network
M Set of the secondary channels and the basic channel
L Set of downlink sessions
A1/A2/A3 Infrastructure/Proxy/Ad hoc region
K/K Set of all maximal independent Sets/Independent Sets
wq Time share of ISIq being active
cbij,mn(Iq) Data rate on the LRC tuple((i, j), (m,n), b)
fij(l) Flow rate of sessionl over link (i, j)
ǫ Approximation factor
Ψ Result of OOP
ψg /ψg Result of MP/RMP when the proxy region isSg

ψ∗
g /ψl

g /ψu
g Optimal/Low bound/Upper bound result of MP

when the proxy region isSg

vg Result of PP when the proxy region isSg

C. Transmission/Interference Range and Link Capacity

Suppose the power spectral density of nodei on channelb
is P bi . A widely used model [18], [19] for power propagation
gain between nodei and nodej, denoted bygij , is

gij = C · [d(i, j)]−γ ,

1Note that in this study we only consider the minimum length scheduling in
one cell to focus on the optimization problem and make it easier to understand.
The interference from other cells can be addressed by frequency planning and
our interference model that will be introduced later. Many related works on
cross-layer optimization for cognitive cellular networksalso focus on one cell
only [11]–[15]. Besides, the presented study here can be easily extended to
multi-cell scenarios with minor changes.

wherei andj also denote the positions of nodei and nodej,
respectively,d(i, j) refers to the Euclidean distance between
i and j, γ is the path loss factor, andC is a constant
related to the antenna profiles of the transmitter and the
receiver, wavelength, and so on. We assume that the data
transmission is successful only if the received power spectral
density at the receiver exceeds a thresholdP bT . Meanwhile,
we assume interference becomes non-negligible only if it
produces a power spectral density over a threshold ofP bI
at the receiver2. Thus, the transmission range for a nodei
on channelb is Ri,bT = (CP bi /P

b
T )

1/γ , which comes from
C(Ri,bT )−γ · P bi = P bT . Similarly, based on the interference
thresholdP bI (P

b
I < P bT ), the interference range for a node is

Ri,bI = (CP bi /P
b
I )

1/γ , which is larger thanRi,bT . Thus, differ-
ent nodes may have different transmission ranges/interference
ranges on different channels with different transmission power.

In addition, according to the Shannon-Hartley theorem, if
nodei sends data to nodej on link (i, j) using channelb, the
capacity of link(i, j) on channelb is3

cbij =W b log2

(

1 +
gijP

b
i

η

)

, (1)

where η is the thermal noise at the receiver. Note that the
denominator inside the log function only containsη. This is
because of one of our interference constraints, i.e., when nodei
is transmitting to nodej on channelb, all the other neighbors
of node j within its interference range are prohibited from
using this channel. We will address the interference constraints
in detail in the following section.

III. M INIMUM LENGTH SCHEDULING FORM3C2NS

In this section, we investigate the minimum length schedul-
ing problem for M3C2Ns by joint frequency allocation, link
scheduling, and routing. Traditional cellular networks employ
one-hop transmissions to support the traffic between base
stations and network users, which we call the “infrastructure
mode” communications. This design results in very poor
throughput performance due to limited frequency channel
bandwidth. In this study, we propose a “hybrid mode” com-
munication paradigm to enhance the performance of M3C2Ns
by taking advantage of local available channels and link rate
adaptivity.

A. Hybrid Mode Communications

In hybrid mode communications, we only let a fraction
of nodes close to a base station communicate with the base

2Note that the interference model we adopt in this study is theProtocol
Model introduced in [20], which considers one interfering link at a time.
[20] also introduces the Physical Model, according to whicha transmission
is successful if its signal-to-interference plus noise ratio (SINR) is above
a threshold. It has been shown in [20] that these two interference models
can be equivalent in terms of network capacity by setting theinterference
range in Protocol Model appropriately. [21] also studies how to set the
optimal interference range in Protocol Model to bridge the gap between it
and Physical Model in analyzing throughput of multi-hop wireless networks.
Protocol Model has been widely adopted in works on cross-layer wireless
network optimization and design [3], [22], [23].

3Note that this link capacity is the same no matter which radios the
transmitter and the receiver use.
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Fig. 2. Hybrid mode communications.

station directly in one hop. The other nodes farther away need
communicate via multiple hops, i.e., in ad hoc mode, with
some of the above nodes in order to communicate with the
base station.

We further illustrate the hybrid mode communication
paradigm in Fig. 2. Consider a regular cellC, at the center
of which there is a base station denoted byB. We denote
the minimum transmission range of all the users on all the
channels byRminT , i.e., RminT = mini∈N ,b∈M{Ri,bT }, and
define an areaSp (1 ≤ p ≤ P ) as follows:

Sp = {ρ|(p− 1) ·RminT ≤ d(ρ,B) < p · RminT }

whereρ denotes a point in the network and its position as
well, andB denotes the position of the base station. Letting
the largest distance between the BS and a point in the cell be
D, we can haveP =

⌈

D/RminT

⌉

. Then, we choose one of
the above areas, saySg (1 ≤ g ≤ P ), as the proxy region.
In particular, define byδ(p) (1 ≤ p ≤ P ) a binary function,
which is equal to 1 when areaSp is selected as the proxy
region and0 otherwise. Consequently, we have

P
∑

p=1

δ(p) = 1, andg = δ−1(1).

Let A2 = Sg. Then, the nodes inA1 =
⋃g
p=1 Sp, which

we call the infrastructure region, communicate with the base
station directly in one hop. The nodes inA3 = C\A1, which
we call the ad hoc region, communicate via multiple hops
with the nodes inA2 in order to communicate with the base
station.

Note that the hybrid mode communication paradigm
changes into the traditional infrastructure mode wheng = P ,
and becomes the pure ad hoc mode wheng = 1. Although
ad hoc mode transmissions lead to higher frequency reuse,
more ad hoc mode transmissions in the network, i.e., lowerg,
do not necessarily lead to higher performance. For instance,
when g = 1, all the traffic burden will be put on the nodes
in S1, which may not be the optimal strategy resulting in
the best performance when all the network users have the
same available channels, not to mention the fact that the users
in S1 may even have fewer available channels with lower

bandwidths. Therefore, we need to find out an optimal proxy
region in the network.

In addition, although only the nodes in the infrastructure
region communicate with the base station in one hop, the base
station still needs to maintain the transmission power level to
cover the whole cell in order to guarantee voice services, and
controlling and signalling. So we assume the base station’s
transmission range is the same on all the channels, i.e., to
cover the whole cell.

B. Construction of Conflict Graph and Independent Sets

Taking into account the local channel availability and the
existence of a powerful base station, we construct a two-
layer conflict graph as follows to characterize the interference
among the communication links in a cell.

In particular, we denote the conflict graph byG(V,E),
whereV is the vertex set andE is the edge set. Each vertex
corresponds to a link-radio-channel (LRC) tuple defined as
((i, j), (m,n), b), wherei, j ∈ N , j ∈ T b

i , m ∈ Rm, n ∈ Rn,
andb ∈ Mi

⋂

Mj. Here,T b
i is the set of nodes within node

i’s transmission range on channelb. The LRC tuple indicates
that nodei transmits to nodej on channelb with i andj using
radiom and radion, respectively. The conflict graph has two
layers: the higher layer contains all the vertices involving the
base station, while the lower layer consists of all the other
vertices, i.e., the LRC tuples with respect to the users only.
Besides, we say that two LRC tuples interfere with each other
if 1) the receiving node in one tuple is within the interference
range of the transmitting node in the other tuple given that the
two tuples are using the same channel, or 2) the two tuples use
the same radio at one or two nodes. We connect two vertices
in V with an undirected edge if the corresponding LRC tuples
interfere with each other.

In the two-layer conflict graphG(V,E), we define a variable
wxy, wherex, y ∈ V , as follows:

wxy =

{

1, if there is an edge between vertexx andy
0, otherwise

.

Thus, if there is a vertex (i.e., LRC tuple) setI ⊆ V and a
vertexx ∈ I satisfying

∑

y∈I,x 6=y wxy < 1, the transmission
on the LRC tuplex can be carried out successfully even if all
the other LRC tuples belonging to the setI transmit at the
same time. If everyx ∈ I satisfies the above condition, we
can schedule the transmissions over all these LRC tuples in
I to be active simultaneously. Such a vertex setI is called
an independent set. If adding any more LRC tuples into an
independent setI results in a non-independent one,I is
defined asa maximal independent set.

C. Link Scheduling and Routing Constraints

1) Link Scheduling Constraints:Given the constructed con-
flict graphG = (V,E), suppose we can list all the maximal
independent sets4 as K = {I1, I2, ..., IQ}, whereQ = |K|,
and Iq ⊆ V for 1 ≤ q ≤ Q. Then, in the conflict graphG,

4We will show in the next section that we do not really need to find all the
maximal independent sets.
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at any time instance, there should be only one active maximal
independent set to ensure the success of all the transmissions.
We denote the maximal independent setIq ’s time share (out
of unit time 1) to be active bywq . Therefore, we have

∑

1≤q≤Q
wq ≤ 1, wq ≥ 0 (1 ≤ q ≤ Q).

Let cbij,mn(Iq) be the data rate on the LRC tuple
((i, j), (m,n), b) when the maximal independent setIq is
active. Then,cbij,mn(Iq) is equal to 0 if the LRC tuple
((i, j), (m,n), b) is not in Iq, and equal to the link capacity
calculated according to (1) otherwise. Thus, lettingfij(l)
denote the flow rate of sessionl over link (i, j) (over all
the channels), wherei ∈ N , l ∈ L, and j ∈

⋃

b∈Mi
T b
i ,

the traffic rate on link(i, j), i.e.,
∑

l∈L fij(l), should not
exceed the capacity of the link. Consequently, the schedule
of the maximal independent sets should satisfy the following
constraint:

∑

l∈L
fij(l) ≤

Q
∑

q=1

wq
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

cbij,mn(Iq). (2)

2) Routing Constraints:Recall that we consider downlinks
in this study, which means that the base station is the source
node for all the flows. In our hybrid mode communication
paradigm presented in Section III-A, we have defined the
infrastructure regionA1, the proxy regionA2, and the ad hoc
regionA3. The destinations in the infrastructure region receive
packets from the base station in one hop and hence on a single
path, while packets intended for the destinations in the ad hoc
region reach the proxy region first, which may go through
multiple paths.

Thus, at the base station, we have the following constraints.
∑

j∈N
fjB(l) = 0, (3)

fBd(l)(l) = r(l) ∀d(l) ∈ A1, (4)
∑

j∈A2

fBj(l) = r(l) ∀d(l) ∈ A3. (5)

The first constraint means that the incoming data rate at
the base station is 0. The second constraint indicates that
the traffic intended for any destination in the infrastructure
region is delivered in one hop on a single path. The third
constraint means that the traffic for any destination in the ad
hoc region goes through the proxy region and may be delivered
on multiple paths.

Remember that we define byd(l) (l ∈ L) the destination
node of sessionl. We then define byd−1(j) the session whose
destination isj. We further letD(L) be the set of all the
destination nodes in the network, i.e.,D(L) = {d(l)|l ∈ L},
andTi =

⋃

b∈Mi
T b
i . Then, we can have the constraints below.

• For anyj ∈ A1 andj ∈ D(L), we have

fBj(l) = r(l), (6)

i.e., the destination nodes in the infrastructure regionA1

receive their packets from the base station directly in
one hop on a single path. Note that this constraint holds
whenever the constraint (4) holds.

• For anyj ∈ A2

⋃

A3, d(l) ∈ A3, andj 6= d(l), we have
∑

{p|j∈Tp}
fpj(l) =

∑

i∈Tj

fji(l), (7)

which indicates that each node in the proxy regionA2

and in the ad hoc regionA3 can act as a relay node for
the destination nodes in the ad hoc region, and hence its
total incoming data rate is equal to its total outgoing data
rate.

• For any j ∈ A3 and j ∈ D(L), we have
∑

{i|j∈Ti} fij(l) = r(l), which means that the total
incoming data rate to each destination node in the ad
hoc region is equal to its throughput demand. Note that
this constraint holds whenever the constraints (5) and (7)
hold.

D. Scheduling Length Optimization for M3C2Ns

The objective of this study is to exploit both the cellular and
the local available channels to minimize the scheduling length,
i.e., Ψ =

∑

1≤q≤Q wq, required to support certain traffic
demands in M3C2Ns. Gathering information about channel
availability in the network, the service provider can achieve
this goal by optimally selecting proxy region, determiningend-
to-end paths, and scheduling the transmissions. Note that a
minimum value ofΨ greater than 1 indicates that the current
traffic demands exceed the system capacity and cannot be
satisfied.

Considering the hybrid communication paradigm, the
scheduling length optimization problem under the aforemen-
tioned link scheduling and routing constraints can be formu-
lated as follows:

OOP: Minimize Ψ =
∑

1≤q≤Q
wq

s.t. Equations(2) and(3)
P
∑

p=1

δ(p) = 1, δ(p) ∈ {0, 1}(1 ≤ p ≤ P ), g = δ−1(1) (8)

A1(g) =

g
⋃

p=1

Sp, A2(g) = Sg, A3(g) = C\A1(g) (9)

fBd(l)(l)1{d(l) ∈ A1(g)} = r(l) (l ∈ L) (10)
∑

j∈A2

fBj(l)1{d(l) ∈ A3(g)} = r(l) (l ∈ L) (11)

∑

{p|j∈Tp}
fpj(l)1{d(l) ∈ A3(g), j ∈ A2(g) ∪ A3(g), j 6= d(l)} =

∑

i∈Tj

fji(l)1{d(l) ∈ A3, j ∈ A2(g) ∪ A3(g), j 6= d(l)}(l ∈ L)(12)

wq ≥ 0 (1 ≤ q ≤ Q) (13)

fij(l) ≥ 0 (l ∈ L, i ∈ N , j ∈ Ti) (14)

where (2) indicate that the flow rate over link(i, j) cannot
exceed the link capacity, (8)–(9) characterize the hybrid com-
munication paradigm and define the infrastructure region, the
proxy region, and the ad hoc region, and (3), (10)–(12) are the
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routing constraints. Here, we define an indicator function1{A}
which is equal to 1 if the eventA is true, and 0 otherwise5.

Given all the maximal independent sets in the network, we
can find that the formulated optimization problem above is a
Mixed Integer Non-Linear Programming problem, which is in
general NP-hard to solve [24], [25]. In the rest of this paper,
we call this optimization problem the original optimization
problem (OOP), and denote the minimum scheduling length
by Ψ∗.

Note that the solution to the OOP consists of the following
four parts:δ(p)’s, fij(l)’s, sbij,mn’s andwq ’s, which determine
the proxy region, routing, frequency-domain scheduling, and
time-domain scheduling, respectively. Particularly,wq ’s rep-
resent the time share (out of unit time 1) for the maximal
independent setIq to be active. The service provider can pre-
assign an index number to each of the maximal independent
sets, and schedule all the independent sets (i.e., the link-radio-
channel tuples) to be active following a certain order in each
time slot, e.g., from the lowest index number to the highest.
In so doing, a detailed schedule can be obtained and each
LRC tuple knows when and how long it needs to be active
in each time slot. Besides, if the traffic demand changes or
some users join/leave the network, the OOP problem will be
computed again to find a new solution. Otherwise, the same
solution will be adopted.

IV. A C OLUMN GENERATION BASED EFFICIENT

ǫ-BOUNDED APPROXIMATION ALGORITHM

In this section, we propose a column generation basedǫ-
bounded approximation algorithm, which can efficiently find
the ǫ-bounded approximate results and the optimal result as
well, i.e., whenǫ = 0 in the algorithm, without finding all
the maximal independent sets. The definition ofǫ-bounded
approximate solution will be given later.

A. Decomposition of the Original Optimization Problem

The OOP is a mixed integer non-linear programming prob-
lem because ofδ(p)’s in constraint (8) and the non-linear
constraints (10)–(12). Notice that when the proxy regionA2,
i.e., δ(p)’s, is fixed, the infrastructure regionA1 and the ad
hoc regionA3 will both be determined, which can turn the
OOP into a linear programming problem. Therefore, we can
solve the OOP as follows: we first solve theP scheduling
length optimization problems separately considering thatone
of theP subareas (as shown in Fig. 2) is selected as the proxy
region, and then compare theP results and find the minimum
scheduling length among them as the global optimization
result for the OOP. Notice that when the user density is
sparse, it is possible that there are no users in one or some
(but obviously not all) of theP subareas. Thus, when an
empty subarea is selected as the proxy region, the traffic for
destinations in the ad hoc region cannot be supported, and
hence we set the minimum scheduling length in that case to
be infinity.

5Note that each maximal independent set’s time share to be active is a
real number. OOP is formulated based on the maximal independent sets as in
[3]–[5].

Specifically, we decompose the OOP intoP linear program-
ming problems, each of which we call a Master Problem (MP).
Notice that the optimal result of OOP remains the same when
we consider all the independent setsK which include all the
maximal independent setsK. Thus, when the proxy region is
Sg (1 ≤ g ≤ P ), the MP is formulated as follows:

MP: Minimize ψg =
∑

1≤q≤|K|

wq

s.t. Equations(2), (3), (13), and (14)

fBd(l)(l) = r(l) (l ∈ L, d(l) ∈ A1(g)) (15)
∑

j∈A2(g)

fBj(l) = r(l) (l ∈ L, d(l) ∈ A3(g)) (16)

∑

{p|j∈Tp}
fpj(l) =

∑

i∈Tj

fji(l)

(l ∈ L, j ∈ A2(g) ∪ A3(g), d(l) ∈ A3(g), j 6= d(l)) (17)

However, after the decomposition, there are still two dif-
ficulties in solving this linear programming problem. First,
each MP is a linear programming problem if we can find all
the independent sets, which is nonetheless an NP-complete
problem itself [26], [27]. Second, even if we can find all the
independent sets, the number of such sets increases exponen-
tially as the number of LRC tuples and hence can be huge. In
the following, we propose a column generation based approach
to circumvent these difficulties and efficiently solve each MP.

B. Column Generation

Column generation (CG) is an iterative approach for solving
huge linear or nonlinear programming problems, in which the
number of variables (columns) is too large to be considered
completely [6]. Generally, only a small subset of these vari-
ables are positive values in an optimization solution, while the
rest of the variables (callednonbasis) are zeros. Therefore, CG
leverages this idea by generating only those critical variables
that have the potential to improve the objective function. In our
case, each MP is further decomposed into a Restricted Master
Problem (RMP) and a Pricing Problem (PP). The strategy of
this further decomposition procedure is to operate iteratively
on two separate, but easier, problems. During each iteration,
PP tries to determine whether any columns (i.e., independent
sets) uninvolved in RMP exist that have a negative reduced
cost6, and adds the column with the most negative reduced
cost to the corresponding RMP, until the algorithm terminates
at, or satisfyingly close to, the optimal solution.

Notice that the formulation of MP considers the entire set
of independent setsK, while RMP only starts with a set of
initial feasible independent sets, sayK′, which can be easily
formed by placing just one LRC tuple in each of them. Thus,

6Reduced cost [6] refers to the amount by which the objective function
would have to improve before the corresponding column is assumed to be
part of optimal solution. In the case of a minimization problem like in this
paper, improvement in the objective function means a decrease of its value,
i.e., a negative reduced cost. In finding the column with the most negative
reduced cost, the objective is to find the column that has the best chance to
improve the objective function.
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an RMP can be formulated as follows:

RMP: Minimize ψg =
∑

1≤q≤|K′|
wq

s.t. Equations(3), (13), (14), and (15)− (17)

∑

l∈L
fij(l) ≤

|K′|
∑

q=1

wq
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

cbij,mn(Iq)

(i ∈ N , j ∈ Ti, andIq ∈ K′) (18)

RMP is a small-scale linear programming problem that can
be easily solved in polynomial time by the simplex algorithm
[28]. We can thus obtain its primal optimal solution and a
Lagrangian dual optimal solution. Since RMP uses only a
subset of all the independent sets (i.e., columns) used by MP,
i.e., K′ ⊆ K, the optimal result for RMP serves as an upper
bound on the optimal result for MP. By introducing more
independent sets to the RMP, column generation may be able
to decrease the upper bound. Therefore, we need to determine
which column can potentially improve the optimization result
the most and when the optimal result of RMP is exactly the
same as or satisfyingly close to the optimal result of MP.

C. Introducing More Columns to RMP

During every iteration, when RMP is solved, we need to ver-
ify whether any new independent set can improve the current
solution. In particular, for each independent setIq ∈ K \ K′,
we need to examine if any of them has a negative reduced
cost. The reduced costug(Iq) for a columnIq ∈ K \ K′ can
be calculated as [28]:

ug(Iq) = 1−
∑

i∈N ,j∈Ti

λij
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

cbij,mn(Iq),

(19)
whereλij ’s are the Lagrangian dual optimal solution corre-
sponding to (18). Since there are totally|N | × (|N | − 1)
constraints generated from (18), the total number ofλij ’s is
also |N | × (|N | − 1).

Notice that we need to find the column which can produce
the most negative reduced cost. Consequently, this column to
be added to RMP can be obtained by solving

Minimize
Iq∈K/K′

ug = ug(Iq), (20)

or equivalently

Maximize
Iq∈K\K′

vg =
∑

i∈N ,j∈Ti

λij
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

cbij,mn(Iq),

(21)
which is called a Pricing Problem (PP). Denote byu∗g andv∗g
the optimal solutions to the above two problems, respectively.
Then, if u∗g ≥ 0 or v∗g ≤ 1, it means that there is no negative
reduced cost and hence the current solution to RMP optimally
solves MP as well. Otherwise, we add to RMP the column
derived from (21), and repeat re-optimizing RMP. We leave
how to solve PP in Section IV-D.

D. Solving PP

Next, we study how to solve PP, i.e., the optimization
problem formulated in (21). Our objective is to find out the
independent set, i.e., all the LRC tuples that can be active at
the same time, which can maximizev.

We define a variablesbij,mn as follows:sbij,mn is equal to 1
if node i, using radiom, transmits to nodej, using radion,
on channelb, and equal to 0 otherwise. Then, the independent
set we need to find out is{((i, j), (m,n), b)|sbij,mn = 1} that
can maximizevg in (21).

Recall that we letT b
i denote the set of nodes that can access

channelb and are within the transmission range of nodei, and
Ri the set of radios at nodei. We can prove that a node cannot
transmit to or receive from multiple nodes on the same channel
due to interference, even if it has multiple radios with different
transmission power. Thus, we have

∑

j∈T b
i

∑

m∈Ri

∑

n∈Rj

sbij,mn ≤ 1,
∑

{i|j∈T b
i
}

∑

m∈Ri

∑

n∈Rj

sbij,mn ≤ 1.

(22)

Besides, a nodej cannot use the same channel or radio for
transmission and reception at the same time. Therefore, we
get

∑

{i|j∈T b
i
}

∑

m∈Ri

∑

n∈Rj

sbij,mn +
∑

q∈T b
j

∑

y∈Rj

∑

z∈Rq

sbjq,yz ≤ 1. (23)

∑

b∈Mj

∑

{i|j∈T b
i
}

∑

m∈Ri

sbij,mn +
∑

p∈Mj

∑

q∈T b
j

∑

z∈Rq

spjq,nz ≤ 1. (24)

Moreover, the total number of communication links, transmit-
ting or receiving, at any nodej should be no larger than the
number of radios nodej has, which means

∑

b∈Mj

∑

{i|j∈T b
i
}

∑

m∈Ri

∑

n∈Rj

sbij,mn +
∑

b∈Mj

∑

q∈T b
j

∑

y∈Rj

∑

z∈Rq

sbjq,yz

≤ |Rj | = Rj . (25)

In addition to the above constraints at the same node, there
are also scheduling constraints due to potential interference
among the nodes in the network. In particular, if nodei uses
channelb to transmit data to nodej ∈ T b

i , then any other node
that may interfere with the reception at nodej should not use
this channel. To model this constraint, we letIbj represent
the set of nodes that can produce interference at nodej on
channelb, i.e., Ibj = {p | dpj ≤ Rp,bI , p 6= j, T bp 6= ∅}. The
interpretation ofT b

p 6= ∅ in the above definition is that nodep
may interference with the reception at nodej only if there are
some nodes withinp’s transmission range on channelb which
p can transmit to. Based on the definition ofIbj , we have

∑

{i|j∈T b
i
}

∑

m∈Ri

∑

n∈Rj

sbij,mn +
∑

q∈T b
p

∑

y∈Rp

∑

z∈Rq

sbpq,yz ≤ 1. (26)

Consequently, considering the above constraints, the pricing
problem (PP) (21) of finding the optimal column can be
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formulated as follows:

PP: Maximize
∑

i∈N ,j∈Ti

λij
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

cbij,mns
b
ij,mn

s.t. Equations(22)− (26)

sbij,mn = 0 or 1

wheresbij,mn are the optimization variables. Recall thatλij ’s
are the Lagrangian dual optimal solutions to RMP, andcbij,mn’s
are calculated according to (1). Sincesbij,mn can only take
value of 0 or 1, PP is a Binary Integer Programming (BIP)
problem and thus NP-complete [25]. Instead of using the tra-
ditional branch-and-boundor branch-and-cut[24] approach,
we follow a similar idea to that in [5], [29] to develop a greedy
algorithm to find a suboptimal solution to PP, which is called
the sequential-fix (SF) algorithm.

The main idea of SF is to fix the values ofsbij,mn’s
sequentially through a series of relaxed linear programming
problems. Specifically, in each iteration, we first relax allthe
0-1 integer constraints onsbij,mn’s to 0 ≤ sbij,mn ≤ 1 to
transform the problem to a linear programming (LP) problem.
Then, we solve this LP to obtain an optimal solution with
eachsbij,mn being between 0 and 1. Among all the values,
we set the largestsbij,mn to 1. After that, by (25), among all
the scpj,hk and sdjq,yz for any c, d ∈ Mj , {p|j ∈ T c

p , p 6= i},
q ∈ T d

j , h ∈ Rp, k, y ∈ Rj , z ∈ Rq, we randomly choose
Rj − 1 of them and set them to 1, while having the rest set
to 0. Then, by (26), we can fixsbpj,hk = 0 andsbtq,yz = 0 for
any {p|j ∈ T b

p , p 6= i}, t ∈ Pbj , q ∈ T b
t , h ∈ Rp, k ∈ Rj ,

y ∈ Rt, z ∈ Rq.
Having fixed somesbij,mn’s in the first iteration, we remove

all the terms associated with those already fixedsbij,mn’s,
eliminate the related constraints in (25) and (26), and update
the problem to a new one for the second iteration. Similarly,in
the second iteration, we solve an LP with reduced number of
variables, and then determine the values of some other unfixed
sbij,mn’s based on the same process. The iteration continues
until we fix all sbij,mn’s to be either 0 and 1.

Recall that when the optimal result of PP is less than
1, i.e., v∗g ≤ 1, it means that there is no negative reduced
cost and RMP can be optimally solved. Unfortunately, the SF
algorithm developed above does not find the optimal solution
to PP. Nevertheless, when the optimal result of the relaxed
PP (formulated by relaxing binary variables in PP to variables
between 0 and 1), denoted byv∗g , is less than 1, we have
v∗g ≤ v∗g ≤ 1 and hence RMP can still be optimally solved.

E. ǫ-Bounded Approximate Solutions

Since the number of independent sets inK increases expo-
nentially as the number of links in the network, the number
of iterations (of PP) needed to find all the independent sets
producing negative reduced cost might be very large, espe-
cially in large-size networks. However, it has been observed
in the context of column generation algorithms [6], [7] thatone
can usually determine solutions that are at least95% − 99%
of the global optimality fairly quickly, although the tail-end
convergence rate in obtaining the optimal solution can be slow

in some classes of problems. Here, we propose anǫ-bounded
approximation algorithm to findǫ-bounded approximate solu-
tions more efficiently.

We first give the definition ofǫ-bounded solutions as fol-
lows.

Definition 1: Let 0 ≤ ǫ < 1 be a predefined parameter and
ψ∗
g be the optimal result of the MP when the proxy region

is Sg (1 ≤ g ≤ P ). Then, a solution is called anǫ-bounded
approximate solution if its corresponding resultψg satisfies

(1− ǫ)ψ∗
g ≤ ψg ≤ (1 + ǫ)ψ∗

g .

Then, we can have the following lemma.
Lemma1: Denote byψug and ψlg the upper bound and

lower bound on the optimal resultψ∗
g of the MP when the

proxy region isSg (1 ≤ g ≤ P ). Then,ǫ-bounded approximate
solutions (0 ≤ ǫ < 1) can be obtained when the iteration stops
at v∗g ≤ 1 or

ψlg
ψug

≥
1

1 + ǫ
. (27)

Proof: When
ψl

g

ψu
g

≥ 1
1+ǫ , we can get thatψug ≤ (1 +

ǫ)ψlg ≤ (1 + ǫ)ψ∗
g and ψlg ≥ ψug /(1 + ǫ) ≥ (1 − ǫ)ψug ≥

(1 − ǫ)ψ∗
g . Thus, any obtained result between the upper and

lower bounds, i.e.,ψlg ≤ ψg ≤ ψug , satisfiesψg ≤ ψug ≤
(1+ǫ)ψ∗

g andψg ≥ ψlg ≥ (1−ǫ)ψ∗
g , and hence is anǫ-bounded

approximate solution by definition. Besides, whenv∗g ≤ 1, as
mentioned before, the obtained solution is the optimal solution
and hence anǫ-bounded approximate solution as well.

Notice that in (27),ǫ is predetermined, e.g.,3%. As men-
tioned before, the optimal result of RMP in each iteration is
an upper bound on the optimal result of MP, i.e.,ψug . A lower
bound can be obtained by [28]

ψlg = ψug + Yu∗g ≤ ψ∗
g , (28)

where u∗g is obtained by solving (20) optimally, andY ≥
∑

1≤q≤|K| wq holds for the optimal solution to RMP [28]. We
set Y = 1. Then, if a traffic demand can be supported, the
optimal solution must satisfy

∑

1≤q≤|K| wq ≤ Y = 1. Thus,
if an optimal solution leads to

∑

1≤q≤|K| wq > 1, then the
corresponding traffic demand cannot be supported. However,
since we actually do not obtainu∗g with the SF algorithm, the
lower bound can be set toψlg = ψug +Yu∗g, which is less than
ψug +Yu∗g and henceψ∗

g . Here,u∗g is obtained by the optimal

result of the relaxed PP, i.e.,u∗g = 1−v∗g . In addition, sinceu∗g
is negative,ψlg may be negative as well. Therefore, we finally
calculateψlg by

ψlg = max{ψug + Yu∗g, 0}. (29)

We finally detail anǫ-bounded approximation algorithm
for the scheduling length optimization problem in Algorithm
1. Note that in the algorithm we choose the solution of an
RMP, whose result,ψug , serves as an upper bound on the
optimal result of the corresponding MP, as theǫ-bounded
approximate solution of the MP since we have found the
corresponding scheduling and routing solutions. It is easyto
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prove thatmin1≤g≤P {ψug } among all the MPs is anǫ-bounded
approximate solution to the OOP7.

Algorithm 1 ǫ-Bounded Approximation Algorithm
Input: Approximation factorǫ, traffic demandr(l), initial

independent setK′, P =
⌈

D
Rmin

T

⌉

, ψug = ∞, ψlg = 0,

ug = −∞ andv∗g = +∞ for any g ∈ [1, P ].
Output: g∗, ψug∗ , ψlg∗ , w∗

q , f∗
ij(l)

1: Decompose OOP intoP RMPs by consideringA2 is
chosen as one of theP subareas in the cell;

2: for g = 1 to P do

3: while
ψl

g

ψu
g
< 1

1+ǫ andv∗g >1 do
4: Solve RMP with current region plang andK′,

and obtain its optimal resultψug and dual optimal
solutionλij ’s;

5: while {sbij,mn|i, j ∈ N ,m ∈ Ri, n ∈ Rj , b ∈
Mi

⋂

Mj} 6= ∅ do
6: Solve PP by relaxing0 ≤ sbij,mn ≤ 1;
7: Search for thesbij,mn with the largest value

and set it to be 1;
8: Find scpj,hk and sdjq,yz for any c, d ∈ Mj,

{p|j ∈ T c
p , p 6= i}, q ∈ T d

j , h ∈ Rp, k, y ∈
Rj , z ∈ Rq, and setRj − 1 of them to 1
and the others to 0;

9: Fix sbpj,hk = 0 and sbtq,yz = 0 for any
{p|j ∈ T b

p , p 6= i}, t ∈ Pbj , q ∈ T b
t ,

h ∈ Rp, k ∈ Rj , y ∈ Rt, z ∈ Rq

10: Remove the fixedsbij,mn’s from {sbij,mn};
11: end while
12: Update K′ = K′ ∪ Iq, where Iq =

{((i, j), (m,n), b)|sbij,mn = 1};
13: Obtain the current optimal result of the relaxed

PPv∗g ;
14: u∗g = 1− v∗g ;

15: ψlg = ψug + Yu∗g;
16: end while
17: end for
18: Sort the scheduling time under each proxy region plan in

increasing order,ψu1 ≤ · · · ≤ ψuP ;
19: if ψu1 ≤ 1 then
20: Current traffic demand can be supported, andg∗ =

argψu1 , ψug∗ = ψu1 , ψlg∗ = ψl1;
21: else ifψu1 > 1+ ǫ or the corresponding lower bound> 1

then
22: Current traffic demand cannot be supported;
23: else
24: Set ǫ = 0 to see if the traffic demand can be

supported.
25: end if

7Denote the optimal result of the OOP byΨ∗. Define ψu
g∗ =

min1≤g≤P {ψu
g }. Then we haveψu

g∗ ≤ ψu
g ≤ ψ∗

g (1 + ǫ) for any g 6= g∗,
whereψ∗

g is the optimal result of the MP corresponding toψu
g . SinceΨ∗

is equal to either one of theψ∗
g ’s or ψ∗

g∗ , we haveψu
g∗ ≤ (1 + ǫ)Ψ∗.

Besides, sinceψu
g∗ ≥ ψl

g∗ ≥ ψ∗
g∗ (1 − ǫ) and ψ∗

g∗ ≥ Ψ∗, we can get
ψu
g∗ ≥ (1−ǫ)Ψ∗. In fact, we also haveψu

g∗ ≥ Ψ∗ sinceψu
g∗ ≥ ψ∗

g∗ ≥ Ψ∗.

F. Computational Complexity Analysis

As we mentioned before, although each MP is an LP
problem, solving it directly still requires a high computational
complexity since finding all the independent sets is an NP-
complete problem. Note that each node needs to haveΘ(logn)
neighbors on average in order to achieve asymptotic connec-
tivity in wireless networks as proved in [30]. Considering a
connected network, the number of LRC tuples in it, denoted
byG, will beO(|N |(log |N |)|R|2|M|) where|R| denotes the
maximum number of radios a node can have. Thus, the number
of independent sets is at most2G, i.e.,O(2|N |(log |N |)). Since
usually only a small number of independent sets would be use-
ful in a scheduling problem, the developed column generation
based algorithm finds the useful ones one-by-one iteratively.
We analyze the computation complexity of our algorithm as
follows.

Theorem1: The computational complexity of our proposed
column generation based algorithm for MP isO(K4 +
|N |8) when there areK iterations in the algorithm, and
O(24|N | log |N |) in the worst case.

Proof: In our proposed column generation based algo-
rithm, one RMP and one PP are solved in each iteration. In
RMP, the variables includewq ’s and fij(l)’s. Note that the
initial independent sets are formed by placing one LRC in
each of them. Thus, in thekth iteration, the numbers ofwq ’s
andfij(l)’s areG+ k and |N |(log |N |)L, respectively. Since
RMP is an LP problem, it can be solved by the polynomial
interior algorithm introduced in [31], whose computation
complexity isO(n3) wheren is the number of the variables in
a problem. Therefore, the computation complexity of RMP in
the kth iteration isO((G + k + |N |(log |N |)L)3), and hence
O((G + k + |N |2L)3). In PP, we develop an SF algorithm
that consists of multiple rounds of computation for relaxedLP
problems with a decreasing number of variables, i.e.,sbij,mn’s,
in each round. Note that the number of variables is clearly
upper bounded byG. Thus, the computation complexity in
each round is no larger thanO(G3). Besides, notice that in
each round, SF fixes one ofsbij,mn’s to 1 and other interfering
variables to 0 according to constraints (22)-(26). Particularly,
from the first inequality in (22), we can know that ifsbij,mn =
1, then sbik,yz = 0 (k 6= j or y 6= m or z 6= n). Therefore,
all the variablessbij,mn’s in PP can be determined in at most
|N ||M| rounds. Consequently, the computation complexity of
PP in thekth iteration is upper bounded byO(G3|N ||M|). We
can see that the computational complexity in thekthe iteration
of our algorithm isO

(

(G+ k + |N |2L)3 +G3|N ||M|
)

.
Thus, the computational complexity of our column genera-

tion algorithm when there areK iterations is

O(

K
∑

k=1

[

(G+ k + |N |2L)3 +G3|N ||M|
]

= O
(

(G+K + |N |2L)4 +KG3|N ||M|
)

= O(K4 + |N |8).

The first step is due to
∑K
k=1 k

3 = K2(K + 1)2/2. In the
worst case that all the independent sets need to be found, our
algorithm needs to have at most2G −G iterations and hence
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its computational complexity isO((2|N | log |N |)4+ |N |8), i.e.,
O(24|N | log |N |).

Note that the computational complexity of our algorithm
is polynomial if the number of iterations needed in the
algorithm is at most a polynomial function of|N |. Our
later simulations show that usually only a small number of
iterations are needed. In contrast, if we solve MP directly,
the computational complexity isO

(

(2G + |N |(log |N |)L)3
)

,
i.e.,O(23|N | log |N |), and hence always exponential. Thus, our
algorithm’s computational complexity can be much lower.

V. UNCERTAIN CHANNEL AVAILABILITY

So far we have assumed that frequency channels in M3C2Ns
have constant bandwidths. However, in practice, the va-
cancy/occupancy of the secondary channels (or licensed chan-
nels) is uncertain and dynamic at different times, due to the
unpredictable activities of the primary users. To model this
unique feature of M3C2Ns, we consider that the bandwidths of
secondary channels, i.e.,W b’s (1 ≤ b ≤M), are independent
random variables, which is inspired by the statistical results of
frequency channels obtained by experiments in [8]–[10]. Thus,
from (1), we can know that link capacitiescbij ’s are random
variables as well.

Taking uncertain frequency channel availability into consid-
eration, we can reformulate constraint (2) in OOP as follows:

Pr





Q
∑

q=1

wq
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

cbij,mn(Iq) ≥
∑

l∈L
fij(l)





≥ β (30)

whereβ is a control parameter describing network operator’s
requirements on link quality. In so doing, the original MINLP
becomes a Stochastic Optimization Problem (SOP), with ran-
dom variables involved in its constraints. Obviously, we cannot
directly apply our previously proposed method to solve this
problem.

On the other hand, according to Markov inequality, we have

Pr





Q
∑

q=1

wq
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

cbij,mn(Iq) ≥
∑

l∈L
fij(l)





≤
E
[

∑Q
q=1 wq

∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj
cbij,mn(Iq)

]

∑

l∈L fij(l)

=

∑Q
q=1 wq

∑

b∈Mi∩Mj
E
[

∑

m∈Ri

∑

n∈Rj
cbij,mn(Iq)

]

∑

l∈L fij(l)
,

which can give us a relaxed linear constraint as follows:

β
∑

l∈L
fij(l) ≤

Q
∑

q=1

wq
∑

b∈Mi∩Mj

∑

m∈Ri

∑

n∈Rj

E
[

cbij,mn(Iq)
]

.

(31)

As a result, the SOP can be transformed back to an MINLP,
which can be efficiently solved using our proposedǫ-bounded
approximation algorithm. Notice that since (31) is a relaxed
constraint compared to (30), the obtained optimal results serve
as lower bounds on the optimal results of SOP.

VI. SIMULATION RESULTS

In this section, we carry out extensive simulations to eval-
uate the performance of the proposed algorithms. Simulations
are conducted under CPLEX 12.4 and C++ on a computer
with a 2.8 GHz CPU and 24 GB RAM. Besides, notice that
previous works obtain suboptimal results that are either un-
bounded or far away from the optimal results, and many works
based on conflict graphs assume all the maximal independent
sets are given. Since our developedǫ-bounded approximation
algorithm relaxes this assumption and is able to find tightǫ-
bounded approximate solutions and the optimal solution as
well, it is not very fair to compare it with other algorithms.
Moreover, the new M3C2N architecture and the new hybrid
communication paradigm make the problem studied in this
paper a very unique problem, and hence it is not very ap-
propriate to compare with other algorithms. In fact, due to a
similar reason, most previous papers, e.g., [3], [11], [18], [19],
[29], focus on the performance evaluation of their proposed
algorithms and do not compare with other ones, either.

Specifically, we consider a square network of area1000m×
1000m. A base station (BS) is located at the center, while
30 nodes are uniformly and randomly distributed in the area.
Assume that each node has a downlink session from the BS
and has a traffic demand of 100Kbps. The number of radio
interfaces at the BS and at each user are 5 and 2, respectively.
Some important simulation parameters are listed as follows.
The path loss exponent is 4 andC = 62.5. The transmission
power spectral density of nodes is8.1×107η, and the reception
threshold and interference threshold are both10η. Thus, the
transmission range and the interference range on all channels
are all equal to 150m. Besides, we set the reception power
density of nodes to be4.5 × 107η based on the fact that the
ratio of transmission power to reception power of wireless
adaptors is usually 1:1 to 2:1 [32]. The transmission power
spectral density of the BS is5.06×1010η, and hence the BS’s
transmission range is 750m on all channels, i.e., covering the
whole network area. Note that since the location of the BS is
(500m, 500m) andRT = 150m, there areP = ⌈ 500

√
2

150 ⌉ =
5 proxy region candidates. Moreover, we assume the basic
channel, i.e., the cellular channel available at the nodes and the
BS, has bandwidth of 1MHz. The available secondary channels
at each user are 4 randomly chosen channels from the channel
set [10, 20, ..., 100]KHz, all of which are available at the BS.
In addition, in the case of uncertain channel availability,we
consider all the secondary channels’ bandwidths follow the
same normal distributionN (50KHz, (5KHz)2).

In the following, we evaluate the cost of solving RMP in
Section VI-A. We evaluate the cost of solving PP, and compare
the performance of the proposed SF algorithm with that of one
traditional algorithm in Section VI-B. Then, we show the mini-
mum scheduling length and the maximum network throughput,
and compare the performance of our proposed architecture
with that of pure ad hoc mode and that of traditional cellular
networks in Section VI-C. We finally demonstrate the results
under uncertain channel availability in Section VI-E.
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TABLE II
SOLVING RMP WITH DIFFERENTǫ’ S.

ǫ Iteration Number Running Time (s)
5% 102 16.51
3% 113 18.28
1% 131 21.20
0% 151 24.41

TABLE III
SOLVING RMP WITH DIFFERENTNETWORK SIZES.

Network Size Iteration Number Running Time (s)
N = 20 55 6.38
N = 25 79 11.34
N = 30 151 24.41

A. Cost of Solving RMP

We first study the cost of solving RMP under different
network settings. Note that in order to well investigate thecost
of solving RMP, we apply a traditional algorithm (provided
by CPLEX), which can solve BIPs, to solve PP in inner
iterations. Table II shows the iteration numbers and running
time needed to solve RMP in order to obtainǫ-bounded
approximate solutions wheng = 3. We can see that when
N = 30, it takes 102 iterations and 16.51 seconds to obtain
5%-bounded results, and 151 iterations and 24.41 seconds to
get the optimal result, i.e., whenǫ = 0%. Table III gives the
cost of solving RMP whenǫ = 0% in networks of different
sizes. We can observe that it only takes a few iterations and
very little time to obtain the results.

Besides, Fig. 3 illustrates the convergence property of upper
and lower bounds on optimal scheduling length when we use
traditional algorithms to solve PP in inner iterations, given that
ǫ = 0% and there are 30 nodes in the network. Specifically,
we assume the proxy region is atg = δ−1(1) = 3. At each
iteration, we compute the lower and upper bounds on the
minimum scheduling length of MP and track their progresses.
Recall that in each iteration the upper bound, denoted byψu
for simplicity, is the optimal result for RMP, while the lower
bound, denoted byψl for simplicity, is calculated according
to (29). We can find that, even though the gap between the
lower and upper bounds is initially high, the gap narrows down
quickly in the first 100 iterations. In addition, note that there
is a sharp decrease ofψu at the beginning. This is because the
initial set of independent setsK′ used for solving RMP is very
small, and can be easily well improved. Thus, it demonstrates
that the choice of initial independent sets does not have much
impact on the convergence performance. Moreover, we find
that the minimum scheduling length achieved is 0.78, which
is smaller than 1. This means that with current proxy region
plan, we can find a valid optimal solution to support users’
traffic demands.

B. Cost of Solving PP

We then evaluate the cost of solving PP by the proposed
SF algorithm under different network settings. Particularly,
Table IV compares the iteration numbers (for solving RMP)
and the total running time of SF with those of a traditional
algorithm provided by CPLEX wheng = 3. We notice that
although using SF leads to a few more iterations than using
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Fig. 3. Convergence property when using the traditional algorithm to solve
PP.

TABLE IV
SOLVING PPUSING SFWITH DIFFERENTǫ’ S.

ǫ Iter. No. Run. Time (S) Iter. No. Run. Time (s)
(Trad. Alg.) (Trad. Alg.) (SF) (SF)

5% 102 8.48 115 4.80
3% 113 9.32 129 5.35
1% 131 10.95 151 6.37
0% 151 12.67 173 7.34

the traditional algorithm, the running time when using SF is
much less due to much lower complexity. We then evaluate
in Table V the cost of solving PP in networks of different
sizes whenǫ = 0% and g = 3. Obviously, the proposed SF
outperforms (in terms of running time) traditional algorithms
more as network size gets larger.

Moreover, from Table II and Table IV, we can see that when
N = 30 and ǫ = 0%, the running time for RMP and PP are
24.41 seconds and 7.34 seconds, respectively, resulting intotal
running time of 31.75 seconds. WhenN = 30 and ǫ = 5%,
the running time for RMP and PP are 16.51 seconds and 4.81
seconds, respectively, resulting in total running time of 21.32
seconds. Note that the number of iterations for solving RMP
is 151 whenǫ = 0% and 102 whenǫ = 5%. Thus, we can
see that given the same network size, the total running time
is approximately proportional to the number of iterations for
solving RMP (151 : 102 ≈ 31.75 : 21.32 ≈ 1.48).

In order to further illustrate the iteration number (and hence
running time as well) with regard toǫ of our proposedǫ-
bounded approximation approach, we show in Fig. 4 the
iteration ratio under differentǫ’s. Here, the iteration ratio is
defined as the ratio of the iteration number under certainǫ
to that to achieve optimality, i.e.,ǫ = 0. We can see that the
iteration ratio decreases very fast asǫ increases. In particular,
even whenǫ is very tight, say 0.01, the iteration ratio is only
about 0.87. Whenǫ is larger than 0.1, the iteration ratio drops
below 0.62. This reveals similar results observed by [6], [7]

TABLE V
SOLVING PPUSING SF WITH DIFFERENTNETWORK SIZES.

Network Iter. No. Run. Time (S) Iter. No. Run. Time (s)
Size (Trad. Alg.) (Trad. Alg.) (SF) (SF)

N = 20 55 2.66 70 2.15
N = 25 79 4.08 99 3.82
N = 30 151 12.67 173 7.34
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that column generation approaches can determine solutions
that are at least95% − 99% of the global optimality fairly
quickly.

In addition, Fig. 5 shows the convergence property of upper
and lower bounds on optimal scheduling length when we use
SF to solve PP in inner iterations, given thatǫ = 0%, g = 3,
and there are 30 nodes in the network. We can see that the
minimum scheduling length is also 0.78, which is the same
result as that in Fig. 3.
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Fig. 4. The relationship betweenǫ and iteration ratio.
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Fig. 5. Convergence property when using SF to solve PP.

C. Minimum Scheduling Length and End-to-End Throughput

Next, we study the minimum scheduling length and the
maximum end-to-end throughput with different proxy region
allocation plans.

Fig. 6(a) depicts the minimum scheduling lengthψ∗
g wheng

ranges from 1 to 5. We can see that the minimum scheduling
length ψ∗ is equal to 0.61 wheng = 2, which means that
the second proxy region candidateS2 is the optimal proxy
region. Besides, wheng = 1, i.e., in the case of pure ad hoc
mode transmissions, ψ∗

g is 0.97. Wheng = 5, the M3C2N
becomesa one-hop cognitive cellular network(one-hop mode
communications with both cellular and secondary channels
available). Obviously, this structure cannot exploit spectrum
spatial reuse among nodes and results inψ∗

g = 1.05, which
is larger than 1. It indicates that we cannot support users’
traffic demands with this proxy region plan. Accordingly, we
can derive the maximum end-to-end throughputr∗g(l), i.e.,
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Fig. 6. Performance results with different proxy region plans. (a) Minimum
scheduling length. (b) Maximum end-to-end throughput.
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Fig. 7. Performance results in different transmission modes. (a) Minimum
scheduling length. (b) Maximum end-to-end throughput.

saturated throughput when the minimum scheduling length
is 1, for each node under each region allocation plang,
assuming that all nodes still have equal traffic demands, which
is r∗g(l) = r(l)/ψ∗

g .
To more clearly compare the performance of our proposed

hybrid mode communications with that of pure ad hoc mode
transmissions (g = 1) and that of pure one-hop mode transmis-
sions (g = 5), we show the scheduling length and maximum
throughput of these three architectures with different number
of users in Fig. 7. We can easily see that the hybrid mode
architecture has the best performance.

We further demonstrate the minimum scheduling length
as well as the maximum end-to-end throughput in Fig. 8
under four different network architectures, i.e., single-radio
single-channel single-hop traditional cellular network (Type
A), single-radio single-channel multi-hop cellular network
(Type B), single-radio single-channel multi-hop cognitive cel-
lular network, (Type C) and multi-radio multi-channel multi-
hop cognitive cellular network (Type D). Note that we still
consider that each node has a downlink traffic demand of
100Kbps. In particular, Type A architecture represents the
current typical cellular network. Its scheduling lengths are all
larger than 1 whenN ranges from 5 to 30, indicating that it
cannot fully support all the data traffic demands. Besides, the
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Fig. 8. Performance Results under different architectures. (a) Minimum
scheduling length. (b) Maximum end-to-end throughput.
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scheduling length keeps on increasing asN grows. For Type
B architecture, it allows multi-hop transmissions in cellular
networks and hence can support more traffic than Type A due
to increased spectrum spatial reuse and link rate adaptivity.
Type C architecture can further enhance network throughput
because of more available channel resources brought by cog-
nitive radio. Type D architecture, i.e., the proposed one inthis
paper, has the best performance.

D. Energy Consumption

We also compare the energy consumption, including trans-
mission energy and reception energy, per bit of traffic in our
proposed hybrid mode with that in pure ad hoc mode and
that in pure one-hop mode. Specifically, it is calculated by
dividing the total power consumption by the maximum end-to-
end throughput achieved. Since energy consumption at mobile
users is more critical in wireless networks, Fig. 9 shows the
energy consumption per bit of traffic at all mobile users, when
N ranges from 5 to 30. The energy per bit consumed in pure
1-hop mode is the lowest since the mobile users’ transmission
energy is 0. Besides, we find that given the sameN , the mobile
users consume much more energy per bit in pure ad hoc mode
than in hybrid mode. This is because first, more nodes may be
involved in the data transmissions in pure ad hoc mode, and
second, hybrid mode can support higher end-to-end throughput
as illustrated in Fig. 7(b). Note that the results are obtained
when downlink traffic is considered. Obviously, the energy
saving in the hybrid mode compared with that in the pure
one-hop mode will be more significant for uplink traffic.
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Fig. 9. Energy consumption at mobile users under different transmission
mode.

E. Minimum Scheduling Length Under Uncertain Channel
Availability

We first illustrate the results of minimum scheduling length
under uncertain channel availability with differentβ’s in Fig.
10. Note that we consider a network of 30 nodes, and setg = 3
as the proxy region. We can see that the minimum scheduling
length (when the results are stable) whenβ = 0.9 is shorter
than that whenβ = 0.95. This is intuitively true because a
smaller β indicates a lower requirement on service quality,
and hence the minimum scheduling length can be lower.
Interestingly, we also notice that it takes more iterationsfor the
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Fig. 10. Performance comparison under differentβ’s for uncertain channel
availability.
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Fig. 11. Minimum scheduling length under differentβ’s for uncertain channel
availability.

result to become stable whenβ is smaller. We also show in Fig.
11 the minimum scheduling length under differentβ’s. Note
that we have assumed that all secondary channels have the
same expected bandwidths of 50 KHz. For eachβ, we conduct
50 simulations, each with a newly generated topology and
bandwidths for all the secondary channels according to their
distributions. We find that the minimum scheduling length
achieved whenβ = 0.85 is the lowest among the three, due to
the same reason as that for Fig. 10. In addition, we show in Fig.
11 the minimum scheduling length under secondary channels
of different expected bandwidthsE[W b]’s, which indicates
different levels of secondary channel availability. We assume
that all secondary channels have the same standard variance
of 5 KHz. For eachE[W b], we conduct 50 simulations, each
of which uses a newly generated topology. We setβ = 0.9.
As shown in Fig. 12, we find that the minimum scheduling
length achieved whenE[W b] = 60KHz is the lowest since it
has the highest level of channel availability.

VII. R ELATED WORK

In this section, we discuss related work on multihop cellular
networks and cross-layer throughput optimization for wireless
networks.

A. Cellular Network Architecture

In traditional cellular networks [1], [33]–[35], ad hoc com-
munications are introduced to deliver information between
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Fig. 12. Minimum scheduling length under differentE[W b]’s for uncertain
channel availability.

users, but every user still communicates with base stations
directly in one hop, which leads to low frequency spatial reuse
and hence low throughput. Considering multi-hop communi-
cations between nodes and base stations, some works such as
[1], [2] investigate the capacity of multihop cellular networks,
which has been shown to be much higher than that of tradi-
tional cellular networks. However, these works only consider
the case where nodes share the cellular channels and have
not exploited the local available channels or multi-radio as we
propose in this study. Besides, although asymptotic capacity
bounds have been studied, the exact optimal throughput value
remains unknown.

B. Cross-Layer Optimization for Wireless Networks

There has been some work on joint link scheduling and rout-
ing for throughput optimization in traditional ad hoc networks
[4], [36]–[38], multi-radio multi-channel mesh networks [26],
[39]–[43], and cognitive ad hoc networks [3], [18], [19], [29],
[44].

Traditional ad hoc networks:Jain et al. [36] study the
throughput bounds of one source-destination pair considering
both routing and interference. Zhai and Fang [4] study the
impact of routing metrics on path capacity by formulating
a joint link scheduling and routing optimization problem. A
single traffic flow is considered in the paper. Lin and Shroff
[37] employ a joint rate control and scheduling approach to
maximize the utility of the network subject to the constraint
that the network is stable. The same authors [38] then design
a distributed algorithm to solve the problem, which is shown
to achieve a constant factor of the capacity region. Routingis
not considered in their optimization problem. In these works,
they study single-radio single-channel networks.

Multi-radio multi-channel networks:Alicherry et al. [39],
[40] investigate the throughput optimization problem by
joint channel assignment and routing, assuming a CSMA/CA
medium access control protocol, and find a suboptimal result
that is withinK · c(q)/I of the optimal result, whereK is the
number of channels,c(q) is a constant greater than 4, andI is
the number of radios at each node. Kodialam and Nandagopal
[41] study the throughput bounds of multi-radio multi-channel
mesh networks following a similar approach. Li et al. [26]
explore the capacity region by formulating a joint schedul-

ing, channel assignment, and routing optimization problem,
and develop a heuristic algorithm to obtain capacity upper
bounds. Zhou et al. [42] study the video streaming problem to
minimize the video distortion by jointly considering channel
assignment, rate allocation, and routing. Link schedulingis not
considered. Lin and Rasool [43] design distributed algorithms
that jointly solve the channel assignment, scheduling, and
routing problem, and show that the algorithms can achieve
an efficiency ratio of1/(K + 2) or 1/K, whereK is the
interference degree of the network.

Cognitive ad hoc networks:Tang et al. [3] try to maximize
network throughput considering frequency channel allocation
and scheduling but not routing, and find suboptimal results.
Feng and Yang [18] study a joint transport, routing, and fre-
quency channel allocation optimization problem to maximize
network utility. Ding et al. [44] attempt to maximize network
utility by joint relay selection, routing, and frequency chan-
nel allocation, and propose both centralized and distributed
algorithms to obtain suboptimal results. Hou et al. [19], [29]
try to minimize space-bandwidth product by joint frequency
channel sharing and routing. Heuristic algorithms are proposed
to find lower bounds on the optimal results. In such works,
time-domain link scheduling is not considered.

TABLE VI
COMPARISON OF OUR WORK AND EXISTING WORKS ON CROSS-LAYER

OPTIMIZATION FOR WIRELESS NETWORKS.

Multi- Frequency- Time- Optimal
radio domain domain solution
multi- scheduling scheduling

channel
[4] × √ √ ×
[45] × × √ ×
[37] × × √ √
[38] × × √ √
[39]

√ √ × ×
[40]

√ √ × ×
[41]

√ √ √ ×
[26]

√ √ √ ×
[42]

√ √ × ×
[43]

√ √ √ ×
[3] × √ √ ×
[18] × √ √ ×
[44] × √ √ ×
[29]

√ √ × ×
[19]

√ √ × ×
Our work

√ √ √ √

We summarize the main differences between the above
works and ours in Table VI. In general, only a few perform a
complete study on joint link scheduling (both in time domain
and in frequency domain) and routing. Besides, previous works
only obtain suboptimal results that are either unbounded or
still far from the optimal results. In this paper, we are able
to find ǫ-bounded approximate results, which are less than
(1+ ǫ) and larger than(1− ǫ) of the optimal result and hence
much tighter. Here,0 ≤ ǫ < 1 is a system control parameter.
Besides, some conflict graph based works like [3], [4] assume
all the maximal independent sets are given, while we do not
make this assumption in this study.

Moreover, a few works [11]–[13] study cognitive cellular
networks, but they focus on resource management rather than
join link scheduling and routing optimization, and still enforce
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one-hop direct communications between nodes within the
transmission range of base stations and the base stations. In
addition, since each node has only one radio, such networks
can be considered as a special case in the proposed M3C2Ns.

Furthermore, most previous research on the minimum length
scheduling has been conducted on traditional ad hoc networks
[46]–[48] and only considers link scheduling. In contrast,we
study this problem in cognitive networks by taking into con-
sideration both scheduling and routing. Besides, most previous
works only derive an upper bound on the minimum scheduling
length, while we obtain both upper and lower bounds inǫ-
bounded approximate solutions, which converge quickly, and
can also efficiently find the optimal result whenǫ = 0%.

In addition, most previous works study homogeneous net-
works, where each node has a fixed set of available channels
and all nodes have the same transmission range on all the chan-
nels. While in M3C2Ns, we consider heterogeneous networks
and take uncertain channel availability into account, which is
an intrinsic feature of cognitive radio networks but has rarely
been studied before. Besides, although column generation has
been adopted in the study of wireless networks [49]–[54], our
problem formulation and the algorithm design are completely
different. We propose anǫ-bounded approximation algorithm
for the first time in the literature.

VIII. C ONCLUSIONS

In this paper, we have proposed a novel Multi-radio Multi-
channel Multi-hop Cognitive Cellular Network (M3C2N) ar-
chitecture to enhance the throughput of current cellular net-
works. We study the minimum length scheduling problem in
M3C2Ns, and formulate it as a maximal independent set based
joint scheduling and routing optimization problem, which
we call OOP and is a Mixed Integer Linear Programming
(MINLP) and hence generally NP-hard problem. Then, we
decompose OOP into a sequence of MPs, each of which
is further decomposed into an RMP and a PP. Noticing
that RMP can be solved in polynomial time but PP is still
an NP-complete problem, we then design a sequential-fix
(SF) algorithm which can find a suboptimal solution to PP
in polynomial time. After that, anǫ-bounded approximation
algorithm is developed which can find theǫ-bounded approx-
imate result and the optimal result (whenǫ = 0%) quickly.
Consequently, we are able to solve OOP very efficiently, in
terms of bothǫ-bounded approximate solutions and optimal
result as demonstrated by simulations, without having to find
all the maximal independent sets. Furthermore, although most
previous research only assumes constant channel bandwidth,
we take uncertain channel availability into considerationto
account for practical issues, e.g., the unpredictable activities
of primary users.
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