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Abstract—Accurate integer frequency offset (IFO) estimation
is crucial for OFDM systems, especially in the presence of
frequency-selective fading and residual timing offset (RTO). For
existing algorithms, however, it is still a challenge to obtain a
good tradeoff among the estimation performance, complexity
and spectrum overhead. In this paper, we propose a novel cross
ambiguity function (CAF) based IFO estimator using only one
training sequence. By designing the training sequence which has
only one single sharp peak on its ambiguity function surface, a
highly accurate and full acquisition range estimation of the IFO
can be obtained in the presence of frequency-selective fading
and RTO. Moreover, the adoption of the CAF expression in
terms of time-domain signals ensures the complexity of the
proposed algorithm is relatively low. Simulation results verify
its superior accuracy in frequency-selective fading channels and
in the presence of RTO.

Index Terms—cross ambiguity function, integer frequency
offset, residual timing offset, frequency-selective fading.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFD-
M) is a proven technique for high data rate transmission

over frequency-selective fading channels [1]. OFDM, however,
is extremely sensitive to the frequency offset. In practice,
the normalized frequency offset is divided into an integer
part (multiple of the subcarrier spacing) and a fractional part
(less than one-half of the subcarrier spacing) so that they
can be estimated separately. If not accurately estimated and
compensated, the fractional frequency offset (FFO) can destroy
the orthogonality of the subcarriers and result in inter-carrier
interference [2], while the integer frequency offset (IFO) will
lead to a circular shift of the subcarrier indices and degrade
performance.

For OFDM systems, frequency offset estimation is usually
performed after coarse timing estimation, i.e., the estimation
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of the start position of the FFT window. So far, although
sophisticated timing synchronization schemes can achieve high
accuracy for most applications [3], it is very hard to get
a perfect time synchronization in the presence of multipath
channel fading and noise [4]. Furthermore, even though the
linear phase shift caused by a timing error within the ISI-free
region of the cyclic prefix (CP) [3] can be easily recovered by
channel equalization, the residual timing offset (RTO) may
reduce the accuracy of the IFO and degrade the system.
Hence, the robustness to RTO is one of the most important
considerations in IFO estimation design.

Typically, IFO estimation that is also valid in the presence
of RTO can be carried out via time-domain or frequency-
domain correlation-based approaches using dedicated training
sequences [3][5]-[7]. In [3], a training sequence with a repeti-
tive structure, consisting of multiple identical parts multiplied
by a sign pattern, is adopted. However, the estimation range
is limited by the number of identical parts, and the number of
identical subparts. To obtain a full acquisition range, Schmidl
and Cox proposed to use two consecutive differentially en-
coded training sequences to estimate IFO [5], which we label
S&C. A modified version of S&C was proposed in [6] using
two training sequences with the same structure. To reduce
the training overhead, a differential OFDM (DOFDM) based
IFO estimation method using only one training sequence is
proposed in [7]. However, the estimation performance could
degrade severely if the channel is frequency selective. To
solve this problem, a maximum-likelihood (ML) approach for
IFO estimation is proposed in [8]; however, an assumption of
perfect timing synchronization is made. The IFO estimation
performance is very sensitive to the RTO even within the ISI-
free range of the CP. To the best of our knowledge, none
of the existing approaches can achieve a good performance
tradeoff among accuracy, training overhead, complexity and
IFO acquisition range in the presence of RTO and frequency
selectivity.

Different from these approaches, we investigate IFO esti-
mation from the perspective of the ambiguity function (AF)
characteristics of the training sequence. Specifically, we pro-
pose a cross ambiguity function (CAF) based IFO estimation
algorithm for OFDM systems that has full acquisition range
and good robustness to RTO. With the use of the energy-
detection based metric, high-resolution IFO estimation for
frequency-selective fading channels with RTO can be obtained
by designing a training sequence having an AF surface with
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only one single sharp peak, which can be easily designed in the
frequency domain. By utilizing the CAF expression in terms of
time-domain signals, the complexity of the proposed algorithm
can be kept at a relatively low level. Simulation results are also
provided to demonstrate the superior accuracy of this approach
in frequency-selective fading channels and its robustness to
RTO.

Notation: The superscript T and ∗ denote transpose and
complex conjugate, respectively; ∥·∥ denotes Euclidean norm;
C (m, :) and C (:, n) denote the mth row and nth column
of matrix C, respectively; δ (·) is the Dirac delta function;
NC(µ, σ

2) is a complex normal distribution with mean µ and
variance σ2; and χ2(k) is a chi-square distribution with k
degrees of freedom.

II. SYSTEM MODEL

Consider a discrete-time baseband OFDM system with the
lengths of the IFFT/FFT and the CP equal to N and Ng ,
respectively. x(n) (0 ≤ n ≤ N − 1) is the local training
sequence for IFO estimation, which is generated as

x (n) =
1

N

N−1∑
k=0

X (k) ej2πkn/N (1)

where X(k) (0 ≤ k ≤ N − 1) is the correspond-
ing frequency-domain training sequence. Assuming that
the length of the discrete-time channel impulse response
(CIR) is L and the channel is block stationary, we de-
note h = [h(0), h(1), · · · , h(L− 1)]T and H (k) =∑L−1
l=0 h (l) e−j2πlk/N as the discrete-time CIR and the chan-

nel frequency response, respectively.
The time-domain training sequence is transmitted over a

channel with frequency offset and corrupted by Gaussian
noise. Assume that the RTO of υ samples is within the ISI-
free region of the CP, i.e., υ ∈ {0, 1, . . . , Ng − L}, which
means it will only introduce a linear phase rotation in each
subcarrier. Then, the received time-domain training block can
be expressed as

y (n) =
L−1∑
l=0

h (l)x (n− υ − l) ej(2πε(n−υ)/N+θ0) + w (n)

(2)
where w(n) is the time-domain complex AWGN; ε and θ0 are
the normalized IFO and initial phase, respectively. Since IFO
is the focus here, we assume that the FFO has been perfectly
estimated and compensated. After CP removal, the FFT output
of the received training block is

Y (k) = ej(θ0−2πυk/N)H (k − ε)X (k − ε) +W (k) (3)

where W (k) represents the frequency-domain complex
AWGN with zero mean and variance σ2

n.

III. CAF BASED IFO ESTIMATION

Ambiguity functions (AF) were initially applied in target
resolution and parameter estimation for radar systems [9].
Applications of AF can also be found in pulse design and
optimization for OFDM [10]. Next, we introduce the AF

and CAF and then apply them to the design of the training
sequence and the establishment of an IFO estimation metric.

AF, a 2-D function of time delay and frequency offset
(Doppler), is defined as the inner product of a signal and its
time-delayed and frequency-shifted version [9]. Specifically,
the AF of the local training sequence x(n), denoted as Axx,
is

Axx (τ,ϖ) =

N−1∑
n=0

x (n)x∗ (n− τ) e−
j2πϖn

N (4)

where τ and ϖ represent the time delay and frequency
offset, respectively. As is well known, it is more convenient
for OFDM systems to design the training sequence in the
frequency domain. Hence, Axx can be derived equivalently
using the frequency-domain signal X(k), i.e.,

Axx (τ,ϖ) =
1

N

N−1∑
k=0

X (k +ϖ)X∗ (k)e
j2πkτ

N (5)

Similarly, the CAF, denoted as Ayx, of the received training
block y(n) and the local training sequence x(n) is

Ayx (τ,ϖ) =
1

N

N−1∑
k=0

Y (k +ϖ)X∗ (k) · e
j2πkτ

N (6)

Moreover, the following variables are defined:
• |Axx|2: AF surface, the set of

{
|Axx (τ,ϖ)|2

}
• |Ayx|2: CAF surface, the set of

{
|Ayx (τ,ϖ)|2

}
• Doppler cut: an ambiguity function cut along the time-

delay axis on the 2-D time-delay/frequency-offset plane
• Γϖ = Axx (: , ϖ): the ϖth AF Doppler cut
• Ψϖ = Ayx (: , ϖ): the ϖth CAF Doppler cut
The maximum of the AF surface appears at (0, 0) [9], i.e.,

|Axx (τ,ϖ)|2 ≤ |Axx (0, 0)|2 (7)

It is well known that an AF is ideal if it is non-zero only
at (0,0), which is referred to as a thumbtack-type AF [11];
that is Axx (τ,ϖ) = δ(τ) · δ(ϖ). Although this ideal function
could yield superior target-resolution capabilities, it cannot be
realized in practice [12], since there is no physically realizable
signal that can produce δ(τ) · δ(ϖ) according to the definition
of the AF. Next, we will find a practical training sequence
whose AF can approximate the ideal thumbtack-type AF.
Then, by investigating the energy-distribution of the CAF, we
will establish an energy-detection based IFO estimation metric
to obtain a highly accurate IFO estimation in the presence of
RTO.

A. Energy Distribution of AF

By investigating several commonly used training sequences
in practical applications, a frequency-domain sequence (denot-
ed by X(k)) with constant amplitude (λ) and random phase is
selected as the proposed training sequence for IFO estimation.
Normally, {X(k)} can be modeled as i.i.d. complex random
variables (RV) with zero mean and variance λ2. In order to
verify the validity of the selected training sequence, the AF
characteristics for X(k) are analyzed as follows. By denoting
Zτ,ϖ(k)

∆
= X(k +ϖ)X∗(k)ej2πkτ/N , we can rewrite (5) as
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Fig. 1. CAF surface (N = 512, λ = 2, ε = 5, υ = 6, L = 26,
max{|h(n)|2} = 0.6918)

Γϖ (τ) = 1
N

∑N−1
k=0 Zτ,ϖ(k). When ϖ = 0, from (5), it is

easy to show that the 0th AF Doppler cut is

Γϖ (τ) = λ2δ (τ) (8)

For ϖ ̸= 0, since {X(k)} are i.i.d. RVs with zero mean
and variance λ2, it is easy to show that {Zτ,ϖ(k)} are i.i.d.
RVs with zero mean and variance λ4. From the Central Limit
Theorem and the fact that Γϖ (τ) = 1

N

∑N−1
k=0 Zτ,ϖ(k), we

can deduce that {Γϖ(τ)} are nearly identically distributed
complex Gaussian RVs with zero mean and variance σ2

γ =
λ4/N , i.e.,

Γϖ (τ) ∼ NC(0, λ4/N), for ϖ ̸= 0 (9)

Then, from (8) and (9), the energy distribution of the AF
of X(k) can be obtained as follows:
1) From Parseval’s theorem, ∥Γϖ∥2 = λ4 for any given ϖ
(0 ≤ ϖ ≤ N − 1), which implies that all AF Doppler cuts
have the same energy.
2) Since |Γϖ (τ)|2 = λ2δ (τ) for ϖ = 0, the energy of the
0th AF Doppler cut is concentrated at the 0th time delay.
3) When ϖ ̸= 0, from (9), we can show that

{
|Γϖ (τ)|2

}
are nearly identically distributed complex χ2-distributed RVs
with degree of freedom 2. This implies that each element of
the ϖth (ϖ ̸= 0) AF Doppler cut has an average energy of
λ4/N . Therefore, the total energy λ4 of the ϖth (ϖ ̸= 0) AF
Doppler cut is uniformly spread over all N time delays in the
statistical sense.

Based on the above properties, we see that the proposed
training sequence has only a single sharp peak centered at (0,0)
on its AF surface. This verifies that the AF of a frequency-
domain sequence with constant amplitude and random phase
is a valid approximation of the ideal thumbtack-type AF.

B. Energy Distribution of CAF

Next, we derive the relationship between the CAF and
the AF to determine the energy distribution of the CAF.

Substituting (3) into (6), the CAF in the presence of IFO and
RTO is given by

Ayx(τ,ϖ) = 1
N

N−1∑
k=0

(ej(θ0−2πυ(k+ϖ)/N)H (k +ϖ − ε)

×X (k +ϖ − ε)X∗ (k) e
j2πkτ

N + C(τ,ϖ))
(10)

where C (τ,ϖ)
∆
= 1

N

∑N−1
k=0 W (k +ϖ)X∗ (k) e

j2πkτ
N is the

noise term. Since {W (k)} are i.i.d. Gaussian RVs with distri-
bution NC(0, σ

2
n) and independent of {X(k)}, we can show

that {C(τ,ϖ)} are identically distributed zero-mean complex
Gaussian RVs with variance σ2

g . Since {X(k)} have a constant
amplitude λ, σ2

g is given by σ2
g = λ2σ2

n/N .
After some mathematical manipulations, the relationship

between Ayx and Axx is

Ayx(τ,ϖ) = ej(θ0−2πευ/N)
N−1∑
m=0

(e−j2πm(ϖ−ε)/Nh (m− υ)

×Axx (τ −m,ϖ − ε) + C(τ,ϖ))
(11)

Further, the relationship between Ψϖ and Γϖ is

Ψϖ(τ) = ej(θ0−2πευ/N)
N−1∑
m=0

(e−j2πm(ϖ−ε)/Nh (m− υ)

×Γϖ−ε (τ −m) +Gϖ(τ))
(12)

where Gϖ(τ) is the τ th (0 ≤ τ ≤ N −1) element of C(:, ϖ).
From (12), we see that a CAF Doppler cut is a linear

transformation of an AF Doppler cut corrupted by additive
noise Gϖ(τ). Based on this observation, the CAF is expected
to have similar energy distribution properties as the AF;
specifically,
1) Using (12) and the fact that ∥Γϖ∥2 = λ4, the energy of the
ϖth (0 ≤ ϖ ≤ N − 1) CAF Doppler cut can be computed as

∥Ψϖ∥2 =
N−1∑
τ=0

|Ψϖ(τ)|2 ≈ ∥Γϖ∥2
L−1∑
l=0

|h(l)|2 +Nσ2
g

= λ4
L−1∑
l=0

|h(l)|2
(
1 + η−1

)
(13)

where η
∆
= λ2

σ2
n

∑L−1
l=0 |h(l)|2 is the signal-to-noise ratio (SNR).

Hence, all CAF Doppler cuts have approximately the same
energy. It also should be noted that the approximation in (13)
will approach equality as N and/or η increases.
2) Using (12) and Γ0 (τ) = λ2δ (τ), when the index of the
CAF Doppler cut equals the true IFO ε (i.e., ϖ = ε), we get

Ψϖ (τ) = ej(θ0−2πευ/N)λ2h (τ − υ) +Gϖ(τ) (14)

Since h(τ) is defined over τ ∈ [ 0, L−1] and υ ∈ [0, Ng−L],
we have

υ+L−1∑
τ=υ

|Ψϖ(τ)|2 ≈ λ4
L−1∑
l=0

|h(l)|2 + Lσ2
g

= λ4
L−1∑
l=0

|h(l)|2
(
1 + L

N η−1
) (15)

Similar to (13), the approximation in (15) will approach
equality as N and/or η increases. Comparing (13) and (15),
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the normalized energy difference between them is given by

L−1∑
τ=0

|Ψϖ(τ)|2 −
υ+L−1∑
τ=υ

|Ψϖ(τ)|2

L−1∑
τ=0

|Ψϖ(τ)|2
≈ N − L

N
· 1

1 + η
(16)

Since L is usually far less than N for OFDM systems, the
normalized energy difference in (16) can be approximated as
(1 + η)−1. Therefore, the energy of the εth CAF Doppler cut
tends to concentrate on the L time delays over [υ, υ + L− 1]
with an increase in η. In this case, for the εth CAF Doppler cut,
the peaks of the CAF surface only appear within the interval
υ ≤ τ ≤ υ + L − 1. Moreover, the peaks are approximately
proportional to |h(τ − υ)|2.
3) For ϖ ̸= ε, using (12) and Γϖ (τ) ∼ NC(0, σ2

γ), we
deduce that Ψϖ (τ) ∼ NC(0, σ2

ψ ), where σ2
ψ = σ2

g +

σ2
γ

∑L−1
l=0 |h(l)|2 = λ4

N

∑L−1
l=0 |h(l)|2(1 + η−1). Similar to AF

Doppler cuts, when ϖ ̸= ε,
{
|Ψϖ (τ)|2

}
are nearly iden-

tically distributed RVs which follow generalized chi-squared
distribution. Hence, the total energy of the ϖth (ϖ ̸= ε) CAF
Doppler cut is nearly uniformly spread over all N time delays,
in the statistical sense.

Therefore, we conclude that, for a frequency-domain train-
ing sequence with constant amplitude and random phase, the
main sharp peaks only appear at the L time delays over
[υ, υ + L− 1] of the CAF surface of the proposed training
sequence when ϖ = ε. CAF surfaces with ISI-free RTO are
shown in Fig. 1.

C. CAF Based IFO Estimation

From (14) and the fact that Gϖ(τ) ∼ NC(0, σ
2
g), we can

see that for ϖ = ε, Ψε(τ) and h(τ) are correlated only for
υ ≤ τ ≤ υ+L− 1. Moreover, from (9) and (12) we can also
show that Ψϖ(τ) and h(n) are uncorrelated at all time delays
for ϖ ̸= ε. In other words, on the 2-D time-delay/frequency-
offset plane, Ayx(τ,ϖ) and h(n) are correlated only in the
region {(τ,ϖ)|υ ≤ τ ≤ υ+L−1;ϖ = ε}. Therefore, if h(n)
is available for IFO estimation, an estimate of the IFO can be
obtained by computing the moving cross-correlations of h(n)
and every CAF Doppler cut, Ψϖ(τ), and finding the maximal
modulus. Moreover, from the facts that 0 ≤ υ ≤ Ng − L
and −εmax ≤ ϖ < εmax, the searching area is limited to
{(τ,ϖ)|0 ≤ τ ≤ Ng − 1;−εmax ≤ ϖ < εmax}. Denote
ε̂ and υ̂ as the trail values of IFO and RTO, respectively.
An IFO estimator based on peak-detection of moving cross-
correlations can be constructed as

(ε̂, υ̂) = argmax
−εmax≤ε̂<εmax

0≤υ̂≤Ng−L

∣∣∣∣∣
υ̂+L−1∑
τ=υ̂

ej2πε̂υ̂h∗(τ − υ̂)Ψε̂ (τ)

∣∣∣∣∣ (17)

However, (17) is hard to realize since a valid channel
estimation cannot be obtained before the IFO is estimated and
compensated. Nevertheless, using (14), we can establish an
estimate for h(n) as

ĥ (n) = ej2πε̂υ̂/NΨε̂ (n+ υ̂) /λ2 (18)

where 0 ≤ n ≤ L−1 (the initial phase θ0 is absorbed into the
channel estimation). This means that, for the proposed training
sequence, a given (ε̂, υ̂) corresponds to an estimate of the CIR
ĥ(n). Substituting (18) into (17), a CAF-based IFO estimation
metric can be obtained as

M (ε̂, υ̂) =
υ̂+L−1∑
τ=υ̂

|Ψε̂ (τ)|2 (19)

Then, the resulting IFO estimation can be constructed as

(ε̂, υ̂) = argmax
−εmax≤ε̂<εmax,0≤υ̂≤Ng−L

υ̂+L−1∑
τ=υ̂

|Ψε̂ (τ)|2 (20)

Note that M (ε̂, υ̂) is just the energy of the ε̂th CAF Doppler
cut over [υ̂, υ̂ + L− 1]. From the energy distribution of the
CAF in Sec. III-B, we can deduce that, in the high-SNR region,
the maximum value of the energy in (19) will be obtained
when ε̂ = ε and υ̂ = υ. Moreover, since the domain of
definition of ϖ in CAF is [−N/2, N/2), εmax can be up to
N/2; this means the proposed algorithm has full-range IFO
estimation capability.

Next, we analyze the performance of the proposed IFO
estimation from the AF and CAF energy distributions. For
the proposed training sequence, an increase in N will result
in a sharper main peak around (0, 0) on its AF surface. In turn,
for a given SNR η, a larger energy difference between the ϖth

(ϖ = ε) CAF Doppler cut and any other CAF Doppler cut
(ϖ ̸= ε) over τ ∈ [ υ, υ + L − 1] is consequently provided.
On the other hand, it is obvious that an increase in η will
make the energy difference more distinct. Hence, the accuracy
of the IFO estimation will be improved with an increase in
N and/or η. This can be alternatively explained from the
aspect of the probability of incorrect IFO estimation. From the
characteristics of the CAF we can show that, for an incorrect
ε̂, M (ε̂, υ̂) in (19) has a generalized chi-squared distribution
with mean Lσ2

ψ and variance Lσ4
ψ , where σ2

ψ = 1
N (λ2σ2

n +

λ4
∑L−1
l=0 |h(l)|2) = λ4

N

∑L−1
l=0 |h(l)|2(1 + η−1). Hence, for a

given CIR length L, an increase in N and/or η will result in a
decrease in both the expected value and variance. As a result,
the probability of incorrect IFO estimation is reduced.

Compared with conventional approaches using two differen-
tially encoded training sequences [5]-[6], the training overhead
of the proposed algorithms is reduced since only one training
sequence is required. In contrast to the DOFDM approaches
[7], the restriction to an identical frequency response across
adjacent subcarriers is relaxed. Therefore, the proposed al-
gorithm is more robust to the frequency-selectivity caused
by multipath channels. Compared with the ML-based IFO
estimation method in [8], the proposed IFO estimator is more
robust to the RTO.

D. Equivalent Estimation Metric with Low Complexity

From the above analysis we can see that, in order to obtain
a full acquisition range IFO estimation, N Doppler cuts of the
CAF are involved in computing (19). From the definition in
(6), the CAF can be obtained by N IFFT operations. However,
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Fig. 2. Performance comparison for AWGN channels (N = 128)
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Fig. 3. Performance comparison for AWGN channels (N = 512)

we can alternatively represent the CAF in terms of time-
domain signals as

Ayx (τ,ϖ) =

N−1∑
n=0

y (n)x∗ (n− τ) e−
j2πϖn

N (21)

where τ ∈ [0, Ng − 1] and ϖ ∈ [−N/2, N/2) represent the
time delay and frequency offset, respectively. Obviously, in
(21), only L FFT operations are needed. By substituting (21)
into (20), a low-complexity metric for the IFO estimation is
given by

(ε̂, υ̂) = argmax
−εmax≤ε̂<εmax

0≤υ̂≤Ng−L

υ̂+L−1∑
τ=υ̂

∣∣∣∣∣
N−1∑
n=0

y (n)x∗ (n− υ̂)e−
j2πε̂n

N

∣∣∣∣∣
2

(22)
It should be noted that, although (21) has a different expres-

sion from (6), the estimation performance will be unchanged
since they have absolutely identical values.

IV. NUMERICAL RESULTS

The validity of the proposed IFO estimation algorithm is
verified by computing the probability of failure estimation
(POFE) defined as Pr {ε̂ ̸= ε}. Two typical IEEE 802.16e
OFDMA parameter-sets, (N = 128; Ng = 16) and (N = 512;
Ng = 64), are adopted. The maximum normalized IFO is set
as εmax = N/2 (i.e., full acquisition range). The training sym-
bols are randomly chosen from a QPSK constellation. For each
SNR, at least 106 independent trials are performed in which
the IFOs are randomly generated within [−N/2, N/2) and
the RTOs are randomly generated within the ISI-free range.
Specifically, the proposed algorithm is compared with four
peer-algorithms: S&C [5], modified S&C (MSC) [6], DOFDM
[7] and ML-based [8]. We simulated the ML algorithm using
(15) in [8], and the RTO is incorporated in the received signal.
For a fair comparison, we choose J=1 and Q=1, where J and
Q represent the number of training sequences and identical
segments, respectively.

Figs. 2-3 show the performance of different IFO estimators
with and without RTO over AWGN channels. From the
simulation results we can see that whatever the RTO is, the
proposed CAF algorithm is far superior to the S&C, MSC
and DOFDM approaches. Although, in the case of perfect
timing synchronization (i.e., υ = 0), the proposed algorithm is
slightly inferior to the ML-based approach. The latter approach
will fail to estimate the IFO as long as the RTO is not equal
to zero. Compared with the ML-based algorithm, the other
three estimators show good robustness to the RTO. Another
observation from Figs. 2-3 is that an increase in the length
of the FFT (N ) results in a performance improvement for all
candidates. The reason for the performance improvement of
CAF-based IFO estimation was analyzed in Sec. III-C.

The performance of five types of estimators over frequency-
selective fading channels is shown in Figs. 4-6. From the
parameters used, we can deduce that the maximal ISI-free
RTOs are 16 − 6 = 10 (Ng = 16, L = 6), 64 − 26 = 38
(Ng = 64, L = 26), and 64 − 51 = 13 (Ng = 64, L = 51),
respectively. Simulation results show that, as in Figs. 4-6, the
CAF-based algorithm is significantly better than S&C, MSC
and DOFDM for all values of RTO. Moreover, these three
approaches have good robustness to the RTO. Although, the
ML-based algorithm slightly outperforms the CAF estimator
when RTO= 0, it will deteriorate with an increase in RTO.
Another important observation is that the ML-based method
is very sensitive to a large RTO. As long as the RTO is greater
than L, it fails to estimate the IFO.

Finally, the computational complexities of the five IFO
estimators with full IFO acquisition range are shown in Table
I in terms of the numbers of real multiplications and additions,
respectively. For Example 1, the parameters are chosen as
N = 128, Ng = 16, and L = 6. For Example 2, N = 512,
Ng = 64, and L = 6. From these numerical results, we see
that the overall complexity of the proposed CAF algorithm is
the lowest.

V. CONCLUSIONS

In this paper, the problem of IFO estimation for OFDM
systems with RTO and frequency-selective fading has been
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TABLE I
COMPLEXITY COMPARISON

Algorithm Real Multiplications Example 1 Example 2 Real Additions Example 1 Example 2
S&C N (4N + 2) 65792 1049600 N (4N − 1) 65408 1048064
MSC 4N2 65536 1048576 N (4N − 2) 65280 1047552

DOFDM N (4N + 2) 65792 1049600 N (4N − 1) 65408 1048064
ML 4N2 (L− 1)− 2NL 326144 5236736 2N2 (2L− 1)− 2NL 358912 5761024
CAF 2NNg (1 + log2N) 32768 655360 NNg (1 + 2log2N)− LNg (Ng − L− 1) 31776 645248
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Fig. 4. Performance comparison for COST207 RA channels (N = 128,
L = 6)
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Fig. 5. Performance comparison for ITU VA channels (N = 512, L = 26)

considered. By analyzing the energy distribution of the AF, a
constant-amplitude, random-phase sequence in the frequency
domain which has only one single sharp peak on its AF surface
is adopted as the training sequence. Moreover, by deriving
the energy distribution of the CAF, an energy-detection based
metric is established to obtain a highly accurate and full
acquisition range estimation of the IFO in the presence of
RTO. To guarantee low-level complexity, an equivalent CAF
expression in terms of time-domain signals is utilized to reduce
the number of FFT operations. Simulation results verify the
validity and the robustness of the proposed algorithm.
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Fig. 6. Performance comparison for COST207 TU channels (N = 512,
L = 51)
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