
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Resource Harvesting in Cognitive Wireless

Computing Networks with Mobile Clouds and

Virtualized Distributed Data Centers: Performance

Limits
Maria Kangas, Savo Glisic, Senior Member, IEEE, Yuguang Fang, Fellow, IEEE, and Pan Li, Member, IEEE,

Abstract—We consider a virtualized data center (VDC) con-
sisting of a set of servers hosting a number of mobile terminals
forming a mobile cloud, and study the problem of optimal
resource allocation in the presence of time varying workloads
and uncertain channels. The channel uncertainty may be either
due to fading and/or uncertain link availability and reliability in
cognitive wireless networks. The servers are processing certain
applications delegated to them by the terminals, for either energy
saving or due to the lack of necessary software at the terminal to
process the applications. The control problem is to dynamically
adjust resources according to channel and workload fluctuations
in order to maximize the long-term average throughput and to
minimize the energy cost of the overall system while maintaining
network stability. We develop a unified VDC model for both
cognitive and conventional wireless networks, carry out a unified
stability analysis and characterize the joint stability region for the
unified VDC model. We also propose a new dynamic policy that
supports every point in the network stability region, outperforms
previously proposed network stabilizing policies without using the
information of arrival statistics and mitigates the mutual impact
of primary and secondary service providers on each other.

Index Terms—Lyapunov drift, network stability, dynamic pro-
gramming, stability analysis, value iteration algorithm.

I. INTRODUCTION

Due to the high cost of cloud service data centers, there

is a growing interest in improving the energy efficiency

of today’s data centers and cloud computing facilities [1].

Unfortunately, resources inside the data centers often operate

at low utilization due to the inefficient resource allocation

[2]. For example, a single idle server can draw as much as

65% of the peak power value if not turned off [3]. In current

systems, servers are also under-utilized most of the time, as

applications’ resource demands are easily over-estimated in

order to handle even the most demanding workloads. As a

result, applications hold resources that they hardly need at all,

M. Kangas and S. Glisic are with the Department of Electrical and
Computer Engineering, University of Oulu, Oulu, Finland, 90570.
E-mails: maria.kangas@ee.oulu.fi, savo.glisic@ee.oulu.fi

Y. Fang is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611, USA.
E-mail: fang@ece.ufl.edu

P. Li is with the Department of Electrical Engineering and Computer
Science, Case Western Reserve University, Cleveland, OH 44106, USA.
E-mail: lipan@case.edu

The work of Y. Fang and P. Li was partially supported by US Na-
tional Science Foundation under grant CNS-1343356/CNS-1343220 and CNS-
1147813/CNS-1147851. The work of M. Kangas and S. Glisic was partially
supported by the Finnish Academy project COCAHANE # 257162.

since large workloads may be rare. Ideally, unused resources

should be released for other applications to use.

Data center virtualization has been shown to offer great

benefits in reducing the total power consumption and increas-

ing reliability allowing multiple heterogeneous applications to

share resources and run simultaneously on a single server

[4]. Virtualization increases server utilization by enabling

consolidation of multiple applications on the same server and

the sharing of resources among these applications. By using

this technique, it is possible to control the data center so

that the virtual machines (VMs) occupy only the necessary

resources to serve their applications. However, achieving right

balance between consolidation and resource utilization of each

application is a critical issue for applications with time-varying

demands. Workload adaptive resource allocation is important

to create high performance data centers. In addition, in order

to handle multiple resource competing applications with time

varying demands, implementing efficient power allocation,

scheduling and routing algorithms is important.

In this paper, we consider a virtualized cloud service data

center in the presence of workload fluctuations and uncertain

channels. The cloud consists of a set of terminals with queues

and the data center is composed of a subset of more powerful

servers, which are distributed across the network. The channel

uncertainty is due to fading in conventional wireless networks

(CWNs) and/or uncertain link availability and reliability both

in primary service provider (PSP) and secondary service

provider (SSP) cognitive networks (CNs). The statistics of

these uncertainties in a SSP cognitive network are studied in

[5]. In order to increase the energy efficiency of cognitive

networks, the concepts of SSP and PSP cognitive networks

have been recently introduced in [6]. In this concept, SSP

provides channel state information for secondary users (SUs)

so that the complexity is allocated to the network rather than

to the terminals. In this way, a wide range of terminals can

operate as SUs and terminals do not need to have cognitive

capabilities. The goal of this work is to maximize a joint utility

of the long-term application processing throughput of the

terminals and to minimize the average total power usage in the

overall system while keeping the network stable. We believe

that our results can be used as a performance benchmark

for comparing various solutions of different practical resource

allocation schemes in the VDCs.

The remainder of this paper is organized as follows. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

related work is presented in Section II. Section III describes

the system model and Section IV presents the optimization

problem formulation. In Section V, we reformulate the prob-

lem as a Markov decision process (MDP), and propose a new

optimal dynamic control policy. The joint network stability

regions for both SSP and PSP cognitive networks and also

for CWNs are derived in Section VI. The complexity of

the dynamic policy is analyzed in Section VII. In Section

VIII, the unified stability analysis for both PSP and SSP

cognitive networks and CWN is introduced and our dynamic

transmission policy is shown to outperform other existing

network stabilizing policies. The simulations are conducted

to validate the theoretical analysis of this paper and presented

in Section IX.

II. RELATED WORK

Dynamic resource allocation in VDCs has been a hot topic

among the researchers [2], [7], [8], [9]. In [2], [7] and [8]

feedback-driven resource control systems are designed to auto-

matically adapt to dynamic workload changes and to meet ser-

vice level objectives of applications within the shared virtual-

ized infrastructure. Such techniques use feedback control loop,

where the goal is to allocate resources to meet its performance

target. However, since feedback techniques require information

about the target performance level, they cannot be used when

the goal is to maximize the utility. In [9], the authors propose

a dynamic live placement scheme for applications in cloud

computing environments called EnaCloud, where an energy-

aware heuristic algorithm is proposed to minimize the number

of running VMs. Much of the previous work on resource

allocation in the VDCs is based on proactive workload adap-

tive resource provisioning and steady state queuing models

[10], [11], [12], [13]. The work in [10] defines a dynamic

resource provisioning problem for virtualized server systems

as a sequential optimization problem which is solved using a

lookahead control [11]. Such a technique is quite useful when

control actions have deadlines to meet, but requires estimates

of future workloads. In [13], dynamic resource provisioning

in a virtualized service environment is based on the estimate

of the power usage behavior of the hosted applications. Three

online workload adaptive resource control mechanisms based

on steady state queueing analysis, feedback control theory and

the combination of these two are proposed in [12]. This ap-

proach requires the implementation of the statistical models for

the workload, and resource allocation decisions are then made

to meet such a predicted resource demand. When predictions

are accurate, proactive resource allocation does provide very

good performance [14]. In practice, however, predictions may

be inaccurate and expensive since they require workload data

analysis and storage space. Lyapunov optimization has been

used to guarantee network stability optimal cross-layer control

policies for wireless networks [15]. The work in [16] uses

Lyapunov optimization to design an online control, routing

and resource allocation algorithm for a VDC. While this

algorithm adjusts to workload fluctuations, it does not take into

account the possible channel variations between the terminals

and the servers. By considering the changing user demands,

control decisions based on both the channel variations and the

workload, have been shown to be effective in providing higher

throughput and smaller delay in the presence of time varying

channels and resource demands [17], [18].

In this paper, we maximize the long-term application pro-

cessing throughput of the terminals and minimize the average

total power usage in the overall system while guaranteeing

the network stability. Different from the previous work, our

control problem is formulated as a Markov decision process

(MDP) and solved using dynamic programming and value

iteration algorithm (VIA) [19], [20] for both PSP and SSP cog-

nitive networks as well as for CWNs. The resulting dynamic

control policy is shown to support every point on the network

stability region without requiring the information of arrival

statistics and proved to be stable using the Lyapunov drift

theory. In [17] and [21], a randomized stationary policy and a

frame based algorithm were used to analyse the stability of a

dynamic algorithm. It is shown in [17], [21] that the perfor-

mance of their dynamic algorithm is fixed amount worse than

the performance of the randomized stationary and the frame

based algorithms. In this paper, we prove that the performance

of our dynamic policy is better than the performance of the

stationary policy and propose a new unified stability analysis

for both PSP and SSP cognitive networks as well as for CWNs.

In addition, we show that the frame based policy proposed

in [17], [21] cannot guarantee network stability. Different

from the works that use steady state queuing and channel

models, our approach makes use of both the queue length state

information (QSI) and the channel state information (CSI) to

dynamically adjust the available resources to meet the demand

and to increase reliability and resource utilization of the data

center. Our approach also differs from the previous works

in the sense that the requests can be processed either at the

terminals or at the virtual machines of the servers depending

on CSI, QSI and computational intensity of the request.

Resource harvesting in this paper refers to the possibility

of opportunistic utilization of the network resources by a

terminal. These resources include:

• Spectrum, when using cognitive links.

• Power of the data center.

• Necessary software in the data center that is not available

at the terminals.

The contributions of this paper can be summarized as

follows: 1. A comprehensive unified model of the virtualized

data center (computing could) for both PSP and SSP cognitive

networks as well as for CWNs is developed. 2. The model

decouples performance analysis of PSP and SSP cognitive

networks although their operations are interdependent. 3. The

mutual impact of PSP and SSP cognitive networks is mitigated

by appropriate adaptation of the access control parameters in

the network. 4. New optimal dynamic control policy is intro-

duced. 5. Unified stability region for PSP and SSP cognitive

networks and CWNs are characterized. 6. Unified stability

analysis for both PSP and SSP cognitive networks as well

as for CWNs is presented. 7. Using the Lyapunov drift theory,

it is shown that our dynamic policy supports every point in

the network stability region without requiring information of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. A cloud with a VDC.

arrival statistics and that the performance of our policy is better

than the performance of the stationary randomized policy

propose in [17], [21]. 8. We show that the frame based policy

described in [17], [21] cannot guarantee system stability.

III. SYSTEM MODEL

We consider a network composed of a VDC and a number of

mobile terminals with queues belonging to different clusters of

mobile clouds. We use I to denote the set of terminals within a

cloud and the VDC is composed of a set of servers S hosting

the cloud, as illustrated in Fig. 1. The VDC may be either

centralized or distributed across the network as in the network

with caching [22]. However, on purpose, we do not want to

limit our work on a specific network architecture. Our analysis

is valid for any data center with partitioning (virtualization) of

the processing resources (centralized or distributed) and any

conventional or PSP/SSP cognitive network characterized by

the primary user (PU) return probability and secondary user

(SU) channel sampling quality. By definition, mobile cloud is

a set/cluster of terminals that share a certain pool of resources

[23]. In our case, the terminals share the resources located at

the data center.

Let |S| denote the number of servers within the data center

and |I| represent the number of terminals within the cloud.

Each server s is transformed into |I| VMs, each capable of

serving a terminal. For simplicity, we assume that each mobile

terminal can request service only from one server at a time,

but the hosting server can change in time. By dividing the time

into frames with index n, we define the following parameter

for each terminal i and server s:

bis(n) =





1; If terminal i is served on a VM of server s
in frame n.

0; Otherwise.

Let Bi(n) = [bi1(n), ..., bi|S|(n)] denote the vector of these

parameters in frame n.

Application requests arrive to each terminal i according to

a process ai(n) at the beginning of each frame n. The arrival

processes ai(n) are stationary and ergodic with average rates

λi requests/frame. The external arrivals ai(n) are bounded in

their second moments every frame and E{[ai(n)]
2} ≤ (amax

i)2

for all i ∈ I. However, we do not assume any knowledge of the

statistics of ai(n). We let A(n) = [a1(n), ..., a|I|(n)] denote

the vector of these arrivals. For analysis purpose, we assume

that the application requests are placed into infinite length

transmission buffers qi(n), that are later defined in Subsection

III-C.

A. Channel Model

We use |his(n)|
2 to represent the channel gain between

terminal i and server s. A block fading model is assumed

so that the channel values remain fixed during a frame and

may change from frame to frame according to a Markov chain.

Let Hi(n) = [|hi1(n)|
2, |hi2(n)|

2, ..., |hi|S|(n)|
2] ∈ Hi denote

the vector of channel gain processes at terminal i in frame n.

The channel process Hi(n) is stationary and ergodic and takes

values on a finite state space Hi. Since the servers can have

different locations, it is possible that the channels between

terminal i and different servers are different.

If the channel is used within the CWN, the channel gain

vector is given by H(n) in every frame n. Let πHi
represent

the steady state probability for the channel state Hi in the

CWN. The channel processes are channel convergent with

steady state probabilities πHi
.

If the channel is used within the cognitive network, the

equivalent channel gain process He
i (n) will have the following

form:

He
i (n) =





Hi(n); With probability pP
H for PSP CN or

with probability pS
H for SSP CN.

0; With probability pP
0 for PSP CN or

with probability pS
0 for SSP CN.

For the PSP cognitive network, pP
H = (1 − pS

1) + pS
1ppd and

pP
0 = pS

1(1 − ppd). We assume that PU transmits a preamble

prior to message transmission to clear the channel in case that

SU is using it (with probability pS
1). Secondary user detects

correctly that preamble and clears the channel with probability

ppd. Let pP
1 represent the probability that a PU is active and

pid is the probability that a SU detects the idling channel. The

derivation of the probability 1 - pP
1 is given in [5]. In the SSP

cognitive network, pS
H is then given as pS

H = (1 − pP
1)pid,

and the probability that the channel cannot be used is pS
0 =

(1 − pP
1)(1 − pid) + pP

1. In other words, SU gets the channel

Hi(n), if the PU is not active and the SU detects the idling

channel. The channel is not used, if PU is not active but the

SU fails to detect the idling channel or the PU is active. Let

πe
Hi

denote the steady state probability for channel state He
i

in PSP/SSP cognitive networks given as

πe
Hi

=

{
pP
HπHi

/pS
HπHi

; When He
i = Hi.

1− pP
H/1− pS

H ; When He
i = 0.

We use I(n) to denote the channel availability indicator at

the beginning of a frame n. For the SSP cognitive network,

I(n) is defined as

I(n) =

{
1; If He

i (n) = Hi(n).
0; If He

i (n) = 0.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

The probability that I(n) = 1 is p[I(n) = 1] = pS
H and the

probability that I(n) = 0 is p[I(n) = 0] = pS
0. For the PSP

cognitive network, I(n) is given as

I(n) =

{
1; If He

i (n) = Hi(n).
0; If He

i (n) = 0.

The probabilities for the PSP cognitive network are p[I(n) =
1] = pP

H and p[I(n) = 0] = pP
0.

In addition, for the given channel in the SSP cognitive

network, we define a channel corruption indicator Ir(n) during

a frame n. In the SSP cognitive network, Ir(n) is given as

Ir(n) =

{
0; If PU returns to the channel.

1; Otherwise.

The probabilities p[Ir(n) = 1] = 1 − pP
return and p[Ir(n) = 0]

= pP
return. The PU return probability pP

return is discussed in [5].

The channel corruption indicator Ir(n) in the PSP cognitive

network is

Ir(n) =





0; If SU returns to the channel and does not

detect the presence of PU (collision).

1; Otherwise.

For the PSP cognitive network, the probabilities are given as

p[Ir(n) = 1] = (1 − pS
return) + pS

returnpsd and p[Ir(n) = 0] =
pS

return(1−psd), where pS
return is the probability of SU returning

to the channel and psd is the probability that SU correctly

detects the presence of PU.

Additional modification of the channel model includes the

option what we refer to as ”partial cognitive networks” (PC

networks), where the network operator’s overall resources

include both cognitive and conventional (purchased) links [6].

Given πHi
, πe

Hi
, He

i and Hi ∈ Hi, deriving the channel model

for the PC network is straightforward.

B. Power consumption

Depending on the current workloads, current channel states,

available energy and needed software, the application requests

can be processed either at the terminal or delegated to be

performed at one of the servers hosting the terminal. Let

µis(n) denote the number of requests delivered from terminal

i to be processed at the hosting server s in frame n. We

use µi(n) to represent the number of requests processed at

terminal i in frame n, when there is a channel available

between terminal i and server s, i.e., Hi(n) ∈ Hi. In addition,

let µi0(n) denote the number of requests that can be processed

at terminal i only, when there is no channel available between

terminal i and server s in frame n, i.e., I(n) = 0. When

I(n) = 0, more applications might be processed at terminal i
only and µi0(n) ≥ µi(n).

We use P tot
i (n) = Pi(n) + Pis(n) to represent the total

power consumption of terminal i in frame n, where Pi(n) is

the power required to process application requests at terminal

i and Pis(n) is the power required to deliver requests to be

processed at server s. Let αi and αis denote non-negative

parameters. In the CWN, we have

Pi(n) = µi(n)αi, (1)

Pis(n) =
µis(n)αis

|his(n)|2
. (2)

In the PSP/SSP congnitive networks, Pi(n) and Pis(n) are

given as

Pi(n) = I(n)µi(n)αi + [1− I(n)]µi0(n)αi, (3)

Pis(n) =
I(n)µis(n)αis

|his(n)|2
. (4)

Let Pmax denote the maximum power available at terminal i
in frame n.

Each server s has a set of resources that are allocated

to the VMs hosted on it by its resource controller. These

resources can include, for example, the data center power

and the necessary software at the data center that is not

available at the terminals. Both of these resources can be

easily added into the system model as described later in

Section IV. However, in this paper, we only focus on the CPU

frequency and power constraints. All servers are assumed to

have identical CPU resources. In our model, CPUs run at finite

number of operating frequencies fmin < f < ... < fmax. At

each utilization level f , the power consumption at server s
is estimated as P̂s(f) = P̂min + θ(f − fmin)

2 [16]. Available

techniques such as dynamic frequency scaling (DFS), dynamic

voltage scaling (DVS) and combination of the two can be used

to change the current CPU frequency that affects the CPU

power consumption [24], [25]. The maximum power at server

s is given as P̂max = P̂min + θ(fmax − fmin)
2. At utilization

level f , the maximum supportable service rate µ̂s(f) at server

s is given as [16]

µ̂s(f) =
P̂s(f)

α̂s

=
P̂min + θ(f − fmin)

2

α̂s

, (5)

where α̂s represents a non-negative parameter. The VM’s

resource allocation can be changed dynamically online without

disrupting the running applications within the VMs [26]. The

resources for each VM are adapted to the changing workloads

during its lifetime. In virtualized server environment the virtual

machine monitor (VMM) at any physical machine handles

resource multiplexing and isolation between VMs [26].

C. Queueing Model

Every frame n in the CWN, µi(n) + µis(n) application

requests are removed from the buffer of terminal i. Let

qi(n) denote the queue length at terminal i and Q(n) =
[q1(n), q2(n), ..., q|I|(n)] represent the vector of queue lengths

at terminals in frame n. The queuing dynamics in the CWN

are then given as

qi(n+ 1) = qi(n) + ai(n)− [µi(n) + µis(n)]. (6)

For the PSP/SSP cognitive networks, the corresponding equa-

tion is

qi(n+ 1) = qi(n) + ai(n)− I(n)[µi(n) +

Ir(n)µis(n)] + [1− I(n)]µi0(n). (7)

At each server s, the delegated requests can be stored

into a buffer reserved for terminal i at server s before the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

requests are processed at server s. We use q̂is(n) to denote

the queue length of terminal i at server s, Q̂(n) = [q̂11(n),

q̂12(n), ..., q̂1|S|(n); ...; q̂
|I|
1 (n), q̂

|I|
2 (n), ...q̂

|I|
|S|(n)] denotes the

|I| × |S| matrix of the queue lengths at each server s and

Q̂i(n) = [q̂i1(n), q̂
i
2(n), ..., q̂

i
|S|(n)] represents the ith row of

Q̂(n). Let µ̂i
s(n) represent the service rate [requests/frame]

server s provides to terminal i in frame n. The queueing

dynamics for the application requests of terminal i at server s
for both PSP and SSP cognitive networks is given as

q̂is(n+ 1) = q̂is(n) + I(n)Ir(n)µis(n)− µ̂i
s(n). (8)

For the CWN, q̂is(n+ 1) is written as

q̂is(n+ 1) = q̂is(n) + µis(n)− µ̂i
s(n). (9)

Finally, let µ̂s(n) =
∑

i∈I µ̂i
s(n) represent the total service

rate at server s, and q̂s(n) =
∑

i∈I q̂is(n) denote the sum of

queue lengths at server s.

IV. UNIFIED PROBLEM FORMULATION

In order to derive a unified optimization problem for both

CWN and PSP/SSP cognitive wireless networks, one should

note that the service rates for the PSP/SSP cognitive networks

can be derived from the service rates of the CWN. When the

number of requests transmitted from terminal i to server s and

the number of requests processes at terminal i in the CWN

are given by µis(n) and µi(n), respectively, the corresponding

service rates for PSP and PSP cognitive networks are defined

as

µis(n)
∗ = µis(n)p[I(n) = 1]p[Ir(n) = 1] (10)

µ́i(n)
∗ = µi(n)p[I(n) = 1] + µi0(n)p[I(n) = 0] =

µi(n)
∗ + µi0(n)

∗, (11)

where µi(n)
∗ = µi(n)p[I(n) = 1] and µi0(n)

∗ =
µi0(n)p[I(n) = 0].

Given (10) and (11), the unified power consumption and

queueing dynamics for both PSP and SSP cognitive networks

as well as for CWN are

Pi(n) = αiµ́i(n)
∗, (12)

Pis(n) =
µis(n)p[I(n) = 1]αis

|his(n)|2
, (13)

qi(n+ 1) = qi(n) + ai(n)− [µ́i(n)
∗ + µis(n)

∗] (14)

for each terminal i and

q̂is(n+ 1) = q̂is(n) + µis(n)
∗ − µ̂i

s(n) (15)

for each terminal i at server s.

A specific control action at terminal i is a decision on how

many applications are processed at the terminal, how many

requests are forwarded to server s, and which specific server s
is hosting the terminal i. We let U(n) denote the set of control

actions available at the terminals in frame n, and Ui(n) =
{µ́i(n)

∗, µis(n)
∗, bis(n)} ∈ U(n) represents a specific control

action at terminal i in frame n. In addition, we use U(n) =
[U1(n), U2(n), ..., U|I|(n)] to represent the vector of control

actions in frame n.

The control action at each server s includes selecting the

CPU frequency, that affects the power consumption P̂s(n), as

well as CPU resource distribution among different VMs that

host the terminals running on that server. This allocation is

subject to the available control options at each server s. For

example, the controller may allocate different fractions of CPU

to the VMs in that frame. We use Û(n) to denote the set of all

control actions available at server s. Let Ûs(n) = {µ̂s(n)} ∈
Û(n) denote a particular control action taken at server s in

frame n under any policy and P̂s(n) is the corresponding

power consumption. The vector of control actions at the data

center is given as Û(n) = [Û1(n), Û2(n), ..., Û|S|(n)].

Let X(n) = {Q(n) + A(n), Q̂(n),H(n)}
represent the state of the system in frame n
with countable state space X , where H(n) =
[|h11(n)|

2, |h12(n)|
2, ..., |h1|S|(n)|

2; |h21(n)|
2, |h22(n)|

2, ...,
|h2|S|(n)|

2; ..., ; |h|I|1(n)|
2, |h|I|2(n)|

2, ..., |h|I||S|(n)|
2]

denote |I| × |S| channel gain matrix in frame n. We use

DX(n) = {U(n), Û(n)} to denote the control input, i.e., the

action, in fame n, when the state of the system is X(n). At

the beginning of each fame n, the network controller decides

upon the value of DX(n) depending on the current state of

the system X(n). The control input DX(n) takes values in a

general state space DX(n), which represents all the feasible

control options in state X(n). Starting from state X , let

π = {DX(1), DX(2), ...} denote the policy, i.e., the sequence

of actions. We use Π to denote the space of all such policies

and π ∈ Π.

It is important to note that the availability of the software

resources could be added here to the system model by simply

introducing a binary variable

ϕi(n) =





1; If terminal i has the necessary

software to process the applications.

0; Otherwise.

and rewriting the state as X(n) = {Q(n) +
A(n), Q̂(n),H(n), ϕ(n)}, where ϕ(n) = [ϕ1(n), ..., ϕ|I|(n)]
is the vector of variables ϕi(n). If ϕi(n) = 0, application

requests cannot be processed at terminal i in frame n.

Let δi represent a non-negative weight used as a normalizing

parameter. The goal is to map from the current X(n) to

an optimal sequence of DX(n), that solves the following

optimization problem:

maximize
π∈Π

lim
n→∞

1

n

n−1∑

η=0

∑

i∈I

E
π
X

{
µ́i(η)

∗ +
∑

s∈S

bis(η)µis(η)
∗ −

δi
P tot
i (η)

Pmax

}
− lim

n→∞

1

n

n−1∑

η=0

∑

s∈S

E
π
X

{
P̂s(η)

}
(16)

subject to

λi ∈ ΛT,

qi(η) and q̂is(η) stay stable,

P tot
i (η) ≤ Pmax and P̂s(η) ≤ P̂max.

The constraints are valid for all i ∈ I and s ∈ S and ΛT

represents network stability region presented later in Section

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

VI. The objective in (16) is a constrained dynamic optimiza-

tion problem and it maximizes the joint utility of the sum

throughput of the applications processed at the terminals and

minimizes the overall power usage both at the terminals and

at the data center. It allows the design of resource allocation

policies that adjust to workload and channel variations. For

example, if the current workload is small, then this objective

encourages scaling down the instantaneous capacity in the

servers in order to achieve energy savings. Similarly if the

current workload is large, the objective encourages scaling up

the instantaneous capacity by higher power consumption. In

addition, (16) encourages to delay some parts of input traffic

by scheduling more packets in good channel states, and less

in poor conditions in order to achieve the maximum long-term

throughput with minimum power consumption.

V. OPTIMAL CONTROL POLICY

In this section, we propose a dynamic control policy that

solves the constrained dynamic optimization problem in (16).

Every frame n, the policy uses the current QSI and CSI to

define resource allocation decisions Ui(n) and Ûs(n) for each

terminal i and server s. However, in order to calculate the

control actions at terminal i, we do not need information

about the input statistics or QSI and CSI of other terminals.

Similarly, in order to calculate the control actions at server s,

we do not need information about the input statistics or QSI

of other servers. As calculating the optimal control actions

requires information of the current QSI and CSI only and do

not rely on the statistics governing future arrivals, one should

note that (16) can be solved separately for each terminal i and

server s.

A. Resource allocation at the terminals

Let Xi(n) = {qi(n) + ai(n), Q̂i(n), Hi(n)} represent

the state of terminal i in frame n with countable state

space Xi. Let yi(n) = qi(n) + ai(n) and rewrite Xi(n)
as Xi(n) = {yi(n), Q̂i(n), Hi(n)}. In addition, we use

UXi
(n) = {µ́i(n)

∗, µis(n)
∗, Bi(n)} to denote the control

input, i.e., action, at terminal i in frame n in state Xi(n).
The control input UXi

(n) takes values in a general state space

UXi
(n), which represents all the feasible resource allocation

options available in state Xi(n) in frame n. By feasible

options we mean the set of control actions that satisfy the

power and the queue constraints, as we cannot transmit more

application requests than there are in the queue. Let πi =
{UXi

(0), UXi
(1), ...} denote the policy, i.e., the sequence of

actions, at terminal i, and Πi represent the space of all such

policies.

For each terminal i, the goal of this paper is to map from

the current QSI and CSI to an optimal policy π⋆
i ∈ Πi that

stabilizes the system and solves the following optimization

problem:

maximize
πi∈Πi

lim
n→∞

1

n

n−1∑

η=0

E
πi

Xi
{Ti(η) + Si(η)}

subject to lim
n→∞

1

n

n−1∑

η=0

E
πi

Xi

{P tot
i (η)

Pmax

}
≤ 1. (17)

In (17),

Ti(η) = [yi(η)−
∑

s∈S

bis(η)q̂
i
s(η)]

∑
s∈S bis(η)µis(η)

∗

µmax
is

, (18)

Si(η) = yi(η)[µ́i(η)
∗ +

∑

s∈S

bis(η)µis(η)
∗] (19)

and the maximum number of application requests that can be

delivered from terminal i to server s in one frame is

µmax
is = max

{s∈S,Hi∈Hi}

Pmax|his|
2

αis

. (20)

One should note that, based on the definition of He
i for

PSP/SSP cognitive networks in Section III-A, µmax
is gets the

same value for both the PSP/SSP cognitive network and

the CWN. Equation (17) maximizes the long-term average

throughput of the terminals while keeping the energy cost

and queues low. For example, high power computationally

intensive application requests at the terminal can be delegated

to the hosting server in order to achieve energy savings at

the terminal. If the backlog value at the terminal i is larger

than the backlog of terminal i at server s, the objective in (17)

encourages the terminal to delegate its requests to be processed

at the servers.
1) Formulation as a Markov Decision Process: We first

convert the constrained dynamic optimization problem in (17)

into an unconstrained problem (UP) and then find the optimal

policy for this UP [19], [20], [27], [28].

The set of feasible actions UXi
in each state Xi = {yi, Q̂i,

Hi} is the set of all {µ́∗
i , µ

∗
is, Bi} that satisfy the power and

the queue constraints as we cannot transmit more packets than

there are in the queue, i.e., µ́∗
i + µ∗

is ≤ yi and P tot
i ≤ Pmax.

After taking an action UXi
= {µ́∗

i , µ
∗
is, Bi}, the following state

is given as Zi = {qi, Ŷi, Hi}, where Ŷi = [ŷi1, ..., ŷ
i
|S|] and

ŷis = q̂is + bisµ
∗
is. Based on (6) and (9), we get this by noting

that yi − (µ́∗
i +µ∗

is) = qi and q̂is +µ∗
is = ŷis. It is important to

note that for each state Xi = {yi, Q̂i, Hi} with equal Q̂i and

Hi, where qi ∈ {0, 1, ..., yi}, ai ∈ {0, 1, ..., yi} and qi + ai =
yi, the set of feasible actions and following states are the same.

Thus, state Zi = {qi, Ŷi, Hi} is equivalent to a state Xi = {yi,
Q̂i, Hi}, if the channels are the same and both qi and ai take

values with the set {0, 1, ..., yi} so that qi + ai = yi and q̂is
takes values with the set {0, 1, ..., ŷis} so that ŷis = q̂is+ bisµ

∗
is

for each server s. When ai = 0 and bisµ
∗
is = 0 for all s ∈ S ,

we have yi = qi and Q̂i = Ŷi. Then, Xi = {yi, Q̂i, Hi}
= {qi, Ŷi, Hi} = Zi. For example, let us consider a system

with a terminal and 2 servers. In state Xi = {yi, Q̂i, Hi}, we

let yi = 3 and Q̂i = [q̂i1, q̂
i
2] = [1, 2]. Then, qi = {0, 1, ..., 3},

ai = {0, 1, ..., 3}, qi + ai = 3 and [ŷi1, ŷ
i
2] = [1, 2]. When

ai = 0 and bisµ
∗
is = 0, yi = qi = 3 and q̂is = ŷis. Now we

have Xi = Zi. This property is important when calculating

the optimal value functions in (28), as W l(Xi) = W l(Zi), if

Xi is equivalent to Zi. We let p(Zi|Xi, UXi
) to denote the

transition probability from state Xi to state Zi with action

UXi
.

For a policy πi, define the reward Di and cost functions Ei

as

Di = lim
n→∞

1

n

n−1∑

η=0

E
πi

Xi

{
Ti(η) + Si(η)]

}
(21)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

and

Ei = lim
n→∞

1

n

n−1∑

η=0

E
πi

Xi

{ P tot
i (η)

Pmax(η)

}
. (22)

Let ΠE
i denote the set of all admissible control policies πi ∈

Πi, which satisfy the constraint Ei(η) ≤ 1 in every frame

η. Then, (17) can be restated as a constrained optimization

problem given as

maximize Di; subject to πi ∈ ΠE
i . (23)

The problem (23) can be converted into a family of

unconstrained optimization problems through a Lagrangian

relaxation [29]. The corresponding Lagrangian function for

any policy πi ∈ Πi and for every βi ≥ 0 can now be defined

as

Jπi

β (Xi) = lim
n→∞

1

n

n−1∑

η=0

E
πi

Xi

{
Ti(η)+Si(η)−βiEi(η)

}
. (24)

Given βi ≥ 0, the unconstrained optimization problem is

defined as

maximize Jπi

β (Xi) subject to πi ∈ Πi. (25)

An optimal policy for unconstrained problem is also optimal

for the original constrained control problem when βi is appro-

priately chosen [27], [29].

The problem given in (25) is a standard MDP with the

maximum average reward criterion. For each initial state

Xi ∈ Xi, define a corresponding discounted reward MDP with

value function

Wα(Xi) = maximize
πi∈Πi

∞∑

n=0

E
πi

Xi

{
αnR[UXi

(n), Xi(n)]
}

(26)

where the discount factor α ∈ (0, 1), and a reward from taking

an action UXi
(η) in state Xi(η) is defined as

R[UXi
(n), Xi(n)] = Ti(n) + Si(n)− βiEi(n). (27)

Wα(Xi) is defined as the optimal total expected discounted

utility for discount factor α [30]. One way to solve (26) is to

use value iteration algorithm (VIA) [27], [30], [31].

VIA is the standard dynamic programming approach to

recursively compute the discount optimal sequence π⋆
i for (26)

[27], [31]. For notational simplicity, we suppress the subscript

α. The solution to (26), i.e., the optimal value functions

W ⋆(Xi) for each initial state Xi and the corresponding

discount optimal sequences π⋆
i ∈ Πi can be solved with the

following iterative algorithm:

W l+1(Xi) = max
UXi

∈UXi

{R(UXi
, Xi) +

α
∑

Zi∈Zi

p(Zi|Xi, UXi
)W l(Zi)}. (28)

In (28), Zi ⊂ Xi is the set of feasible states that follow state

Xi by taking an action UXi
, and l denotes the iteration index.

For each initial state Xi, define the optimal action in each

state Xi as

arg max
UXi

∈UXi

{
R(UXi

, Xi) + α
∑

Zi∈Zi

p(Zi|Xi, UXi
)W ⋆(Zi)

}
.

(29)

B. Resource allocation at the servers

Let X̂s(n) = [ŷ1s(n), ..., ŷ
|I|
s (n)] represent the vector of

queue lengths at server s in frame n with countable state space

X̂s. Let ÛX̂s
(n) = {[µ̂1

s(n), ..., µ̂
|I|
s (n)]} denote the particular

control action in state X̂s(n), and ÛX̂s
(n) is the set of feasible

resource allocation options in each state X̂s(n). In addition,

we use π̂s = {ÛX̂s
(1), ÛX̂s

(2), ...} to denote the sequence of

control actions at server s and Π̂s represents the set of all such

policies.

For each terminal s, map from the current queue and

channel states to an optimal sequence of actions that stabilizes

the system and solves the following optimization problem:

maximize
π̂s∈Π̂s

lim
n→∞

1

n

n−1∑

η=0

∑

i∈I

E
π̂s

X̂s

{
ŷis(η)µ̂

i
s(η)

}

subject to P̂min ≤ lim
n→∞

1

n

n−1∑

η=0

E
π̂s

X̂s

{P̂s(η)} ≤ P̂max. (30)

The objective encourages allocating bigger fractions of CPU

to the VMs of the terminals with the biggest backlog values

at the server. If the current backlog value of terminal i at

server s is inside the instantaneous capacity region, then this

objective also encourages allocating less CPU to the VMs

of the terminals with low backlog values and/or run CPU at

slower speeds to achieve energy savings at the server.

1) Formulation as a Markov Decision Process: The set of

feasible actions in each state X̂s = [ŷ1s , ..., ŷ
|I|
s] is the set

of all {[µ̂1
s, ..., µ̂

|I|
s]} that satisfy µ̂i

s ≤ ŷis and P̂s ≤ P̂max.

After taking an action ÛX̂s
, the following state is given as

Ẑs = {[q̂1s , ..., q̂
|I|
s]}. State Ẑs that is equivalent to a state

X̂s, where q̂is ∈ {0, 1, ..., ŷis}, bisµ
∗
is ∈ {0, 1, ..., ŷis} and

q̂is + bisµ
∗
is = ŷis, as described in Subsection V-A1. Let

p(Ẑs|X̂s, ÛX̂s
) denote the transmission probability from state

X̂s to state Ẑs with action ÛX̂s
. Just as in Subsection V-A1,

(30) can now be solved by converting it into a MDP and by

finding the optimal policy for this MDP using the VIA.

VI. ACHIEVABLE RATES

The network capacity/stability region is defined as the set

of all arrival rates λ = [λ1, ..., λ|I|] that the network can

stably support, considering all possible resource allocation

policies that we can have for the system. In this Section,

we characterize the fundamental throughput limitations and

present the unified capacity/stability region of the system given

in Fig. 1 for both SSP and PSP cognitive networks as well

as for the CWN. For precise definition of stability for single

queues and for queueing networks, we refer readers to [17].

As the optimization can be solved separately for each terminal

i and server s, the supportable arrival rate regions can also be

derived separately for the two cases.

A. Unified Arrival Rate Region at the Terminals

Let gi denote the long-term average number of application

requests that can be supported at each terminal i in the

CWN. We use ci to denote the long-term average number of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

application requests processed at terminal i, cis represents the

long-term average number of application requests delivered

from terminal i to server s and gi = ci +
∑

s∈S cis.

Given ci and cis for the CWN, the long-term average

number of application requests processed at terminal i and

the long-term average number of application requests delivered

from terminal i to server s for the cognitive wireless networks

are respectively given as

c∗is = cisp(I = 1)p(Ir = 1) (31)

ć∗i = cip(I = 1) + ci0p(I = 0) = c∗i + c∗i0, (32)

where c∗i = cip(I = 1) and c∗i0 = ci0p(I = 0). Here c∗i0
represents the long-term average number of requests processed

at terminal i, when there is no channel available between

terminal i and server s, i.e., He
i = 0. Let g∗i = ć∗i +

∑
s∈S c∗is

denote the long-term average number of application requests

that can be supported at terminal i in PSP/SSP cognitive

networks.

Due to the time varying channel conditions between termi-

nal i and the servers, g∗i must be averaged over all possible

channel states. Moreover, for the given channel states, g∗i is not

fixed and depends on control policy πi ∈ Πi for choosing the

control actions. Thus, numerical calculation of all supportable

rates g∗i is computationally very challenging.

However, based on (1) and (2), the supportable arrival rate

region at the terminals can also be defined by considering only

the set of policies, where each terminal transmits at full power

in each frame n. Let OHi
⊂ UXi

represent the set of possible

options to allocate the total power Pmax at each terminal i in

channel state Hi. In addition, we use OHi
∈ OHi

to denote a

total power allocation action at terminal i, when the system is

in channel state Hi. The long-term average transmission rate

of terminal i for the full power policies is given by g∗maxi
. The

set of all full power long-term average transmission rates g∗maxi

that a terminal can be configured to support is now given as

Γ∗ =
∑

Hi∈Hi

πHConv{µi(OHi
, Hi)

∗ +

∑

s∈S

bisµis(OHi
, Hi)

∗|OHi
∈ OHi

}+ p(I = 0)µmax
i0 , (33)

where

µmax
i0 = Pmax/αi (34)

is the maximum number of requests that can be processed at

terminal i, when there is no channel available between terminal

i and server s. For the PSP and SSP cognitive networks, p(I =
0) = pP

0 and p(I = 0) = pS
0, respectively. In the CWN, p(I =

0) = 0. In (33), addition and scalar multiplication of sets are

used, and Conv{B} represents the convex hull of the set B that

is defined as the set of all convex combinations p1v1+p2v2+
... + pjvj of elements vj ∈ V , where pjs are probabilities

summing to 1.

The throughput region Γ∗ can be viewed as the set of

all long-term full power average service rates g∗maxi
that the

terminal can be configured to support. Thus, the unified

supportable rate region ΛT at the terminals for both the PSP

and SSP cognitive networks as well as for the CWN is the set

0 2 4 6 8 10 12
0

2

4

6

8

10

12

λ
it 1
 +

 λ
i1ts

λ
i

t
2 + λ

i2

ts

Λ
T
i

Subset

Fig. 2. The rate region λ
t2
i

+ λts
i2

vs. λ
t1
i

+ λts
i1

and the subregion λts
i2

vs.
λ

ts
i1

.

of all average arrival rates vectors λ = [λ1, λ2, ..., λ|I|] for

which there exists a control policy πi that satisfies

λi ≤ lim
n→∞

1

n

n−1∑

η=1

E
πi

Xi
{µi(η)

∗ +
∑

s∈S

bis(η)µis(η)
∗}+

p(I = 0)µmax
i0 ≤ g∗maxi

(35)

for some g∗maxi
∈ Γ∗, as rates below each point in Γ∗ can

likewise be supported. Specifically, λ is in the region ΛT if

there exists a average service rate vector g∗i such that there

exists a control process which supports the rates λ.

For the CWN, we write λi as λi = λt
i +

∑
s∈S λts

is, where

λt
i denotes the average number of supported input requests at

terminal i that are processed at terminal i, and λts
is represents

the average number of supported input requests at terminal i
that are forwarded from terminal i to server s. In addition, let

λts
i denote the average number of supportable input requests

processed at terminal i, when bis = 1, and λt
i =

∑
s∈S λts

i . In

order to avoid multidimensional illustration of the results, we

fix |I| = |S| = 2. For the channel model given in Section IX,

the supportable rate region λt2
i +λts

i2 vs. λt1
i +λts

i1 is plotted as a

dashed line in Fig. 2 and denoted as ΛTi
. For comparison, the

subset of the region ΛTi
in Fig. 2, illustrates the supportable

arrival rate region for the channels between terminal i and

servers, i.e., λt1
i = λt2

i = 0.

Let λmax
i denote the maximum average number of requests

that can be supported at terminal i in the CWN. It can

be seen in Fig. 2, that λmax
i = 8 + 7 = 15. We have

λmax
i = λt

maxi
+

∑
s∈S λts

maxis
, where λt

maxi
denote the

maximum number of supported input requests at the terminal

i processed at terminal i and λts
maxis

represents the maximum

number of supported input requests at terminal i forwarded

from terminal i to server s. In Fig. 2, it can be seen that

λt
maxi

= 0.5 and
∑

s∈S λts
maxis

= 8 + 6.5 = 14.5. Given

λmax
i , the maximum supportable arrival rate at terminal i for

the PSP and SSP cognitive networks is given as

λcn
maxi

= λt
maxi

p(I = 1) +
∑

s∈S

λts
maxis

p(I = 1)p(Ir = 1) + p(I = 0)µmax
i0 . (36)

For the channel model of the CWN given in Section IX, the

unified supportable arrival rate region at terminals (ΛT) for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

λ
1

λ
2

Λ
T

Λ
S

Fig. 3. The unified supportable arrival rate region at the terminals (ΛT) and
at the server (ΛS).

both the PSP and SSP cognitive networks as well as for the

CWN is now illustrated in Fig. 3.

B. Unified Arrival Rate Region at Servers

Let ĝis denote the long-term average number of application

requests of terminal i processed at server s, and ĝs =
∑

i∈I ĝis
is the long-term average supportable rate at server s. The long-

term average number of application requests ĝs is not fixed and

depends on control policy for choosing the actions.

Let ΛS represent the supportable arrival rate region at server

s. In order to calculate ΛS, we consider only the set of policies

that consume the whole P̂max at server s in each frame n. We

use Ôs to represent the set of possible full power allocation

options at server s, and Ôs ∈ Ôs denotes a full power

allocation action at server s. One should note that Ôs ⊂ Ûs.

Let ĝmax
s denote the long-term full power average number of

requests processed at server s. The set of full power average

number of requests that can be supported at server s is

Γ̂ = Conv{µ̂1
s(Ôs)+µ̂2

s(Ôs)+...,+µ̂|I|
s (Ôs)|Ôs ∈ Ôs}. (37)

Specifically, the throughput region Γ̂ can be viewed as the set

of all full power long-term average service rates ĝmax
s that

a server can be configured to support. Thus, the supportable

arrival rate region ΛS at server s is the set of all average arrival

rates
∑

i∈I λts
is for which there exists a control policy π̂s that

satisfies

∑

i∈I

λts
is ≤ lim

n→∞

1

n

n−1∑

η=1

E{µ̂s(η)} ≤ ĝs ≤ ĝmax
s (38)

for some ĝmax
s ∈ Γ̂ as rates below each point in Γ̂ can likewise

be supported.

For comparison, the supportable arrival rate region at server

s, ΛS, is illustrated in Fig. 3 together with ΛT. Since ΛT is a

subset of ΛS, it is clear that server s can support all arrival

rates λ inside ΛT. Thus, the network stability region Λ is equal

to ΛT. Stability region is unique for each network and it should

not be mixed up with the stability region of a specific resource

allocation policy. The stability region of a resource allocation

policy is a closure of the set of arrival rate vectors λ that the

policy can stably support and it is a subset of the network

capacity region [17].

VII. COMPLEXITY ANALYSIS

In this section, we analyse the complexity of the dynamic

control policy proposed in Section V. The complexity of solv-

ing MDPs using VIA has been also considered, for example,

in [27] and [32]. However, unlike in [27], we would like to

emphasize that our policy does not require any knowledge

of the statistics of ai(n) which significantly decreases the

computational complexity of the VIA.

In order to calculate the optimal policy in (29), we first

need to calculate the rewards in (27) and then the optimal

value functions in (28). It is easy to see that the complexity of

calculating the optimal control policy depends not only on the

sizes of Xi and X̂s but also on the number of feasible control

options in each state Xi ∈ Xi and X̂s ∈ X̂s. We start with

defining the cardinality of Xi and X̂s.

Let |Xi| and |X̂s| denote the number of states in Xi and X̂s,

respectively. In addition, let |Hi| denote the number of channel

states in state space Hi. For arrival rates inside ΛT, we have

lim supn→∞ yi(η) = ymax
i and lim supn→∞ ŷis(η) = ŷmax

s for

all i ∈ I and s ∈ S . The total number of states at terminal i
is

|Xi| = (ymax
i + 1)|Hi|(ŷ

max
s + 1)|S| (39)

and the total number of states at servers s

|X̂s| = (ŷmax
s + 1)|I|. (40)

The rewards in (27) need to be calculated for each action

UXi
∈ UXi

in each state Xi ∈ Xi. Let |UXi
| and |ÛX̂s

| denote

the number of feasible control actions in each state Xi ∈
Xi and X̂s ∈ X̂s, respectively. In addition, we use µmax

Xi
to

represent the maximum number of application requests that

can be removed from the buffer of terminal i with power Pmax

in state Xi. The number of feasible actions in state Xi is then

given as

|UXi
| = (|S|+ 1)min{yi, µ

max
Xi

}+ 1, (41)

and the number of feasible actions in state X̂s as

|ÛX̂s
| = |I|min{

∑

i

ŷis, µ̂
max
s }+ 1, (42)

where µ̂max
s = P̂max/αs. The total number of calculated

rewards at terminal i and server s are now given as
∑

|Xi|
|UXi

|

and |X̂s||ÛX̂s
|, respectively.

After calculating all the rewards, we get the optimal value

functions W ⋆ by calculating the value function in (28) l times

for each state Xi ∈ Xi until the convergence happens. Thus,

in order to get the optimal value functions, the value functions

need to be calculated in total of l|Xi| times for terminal i and

l|X̂s| times for server s. Given the optimal value functions,

the optimal actions for each state Xi ∈ Xi (X̂s ∈ X̂s) can

now be calculated from (29).

It is important to note that if the dynamic policy required the

knowledge of the arrival rate statistics, we could not calculate

the optimal actions separately for each terminal i and server

s. Then, the total number of network states would be given as

(ymax
i + 1)|I||Hi|(ŷ

max
s + 1)|S|(ŷmax

s + 1)|I||S|(amax
i + 1)|I|.

(43)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

When compared to (39) and (40), the number of states in (43)

is considerably higher.

VIII. STABILIZING CONTROL POLICIES

In this section, we compare the performance of our dynamic

policy with the performance of the randomized stationary

policy presented in [17], [21]. We show that the performance

of our dynamic policy is better than the performance of the

stationary policy and prove that the frame based policy, that

was argued to provide performance better than the stationary

policy in [17], [21] cannot guarantee network stability.

A. Lyapunov Drift

Our stability analysis relies on Lyapunov drift that specifies

a sufficient condition for the stability of a system with queues.

This method is used to prove the stability of different policies

in several publications, such as [15], [17], [21], [33], [34] and

[35].

1) Lyapunov drift at terminal i: The maximum service rate

at terminal i is given as

µ∗
maxi

= max{µmax
i , µmax

i0 }, (44)

where µ∗
maxi

= max{s∈S,Hi∈Hi} µi(Pi) + µis(Pis, his) and

µmax
i0 is given in (34). Such a value exists because the arrival

rates are bounded [15], [17], [21].

Consider the K-step dynamics of unfinished work at termi-

nal i:

qi(K) = qi(0)+
K−1∑

n=0

ai(n)−
K−1∑

n=0

[µ́i(n)
∗+

∑

s∈S

bis(n)µis(n)
∗].

(45)

We can write (45) as

qi(K) = yi(0)+
K−1∑

n=1

ai(n)−
K−1∑

n=0

[µ́i(n)
∗+

∑

s∈S

bis(n)µis(n)
∗],

(46)

where yi(0) = qi(0) + ai(0). By adding ai(K) on both sides

of (46), we get

yi(K) = yi(0)+

K∑

n=1

ai(n)−

K−1∑

n=0

[µ́i(n)
∗+

∑

s∈S

bis(n)µis(n)
∗],

(47)

where yi(K) = qi(K) + ai(K). Inserting yi = yi(0),
µ́∗
i +µ∗

is =
1

K

∑K−1

n=0
µ́i(n)

∗+
∑

s∈S bis(n)µis(n)
∗ and ai =

1

K

∑K
n=1

ai(n) into (47), we have

yi(K) = yi +Kai −K(µ́∗
i + µ∗

is). (48)

Squaring both sides of (45), defining the Lyapunov function

as L(yT) = y2i and taking conditional expectations of the

inequality given yT(0), the K-step Lyapynov drift is given as:

E{L[yT(K)]− L[yT(0)]
∣∣yT(0)} ≤ K2M − 2Kyi(0)

1

K
×

[K−1∑

n=0

E{µ́i(n)
∗ +

∑

s∈S

bis(n)µis(n)
∗
∣∣yT(0)} −

K∑

n=1

E{ai(n)
∣∣yT(0)}

]
. (49)

The above equation represents Lyapunov drift for any resource

allocation policy that we can have for the system and

M = (µ∗
maxi

+ amax
i)2. (50)

Since yi(K) = qi(K) + ai(K), where qi(K) is given in

(45), the policy that minimizes 1

K+1

∑K
n=0

E{yi(n)} also

minimizes 1

K+1

∑K
n=0

E{qi(n)}.

We now define K as the number of frames required to reach

the steady state behavior so that

K∑

n=0

E{yi(n)} =
K+k∑

n=0

E{yi(n)}, ∀ i ∈ I, (51)

where k = {1, ...,∞}.

2) Lyapunov drift at server s: The maximum service rate

of terminal i at server s is

µ̂maxi
s , max

{i∈I}
µ̂i
s(P̂

max). (52)

The K-step dynamics of unfinished work at server s are

given by

q̂is(K) = q̂s(0) +

K−1∑

n=0

µis(n)
∗ −

K−1∑

n=0

µ̂i
s(n), (53)

that can be written as

ŷis(K) = ŷis(0) +
K∑

n=1

µis(n)
∗ −

K−1∑

n=0

µ̂i
s(n). (54)

By defining Lyapunov function as L(ŷST) = (ŷis)
2, the K-step

Lyapunov drift is then given as

E{L[ŷST(K)]− L[ŷST(0)]
∣∣ŷST(0)} ≤ K2M̂ − 2Kŷis(0)

1

K
×

[K−1∑

n=0

E{µ̂i
s(n)

∣∣ŷST(0)} −
K∑

n=1

E{µis(n)
∗
∣∣ŷST(0)}

]
, (55)

where M̂ is given as

M̂ = (µ̂maxi
s + µmax

is)2 (56)

and µmax
is is defined in (20). Equation (55) represents the

Lyapunov drift for any resource allocation policy yielding

service rate µ̂i
s at server s. Since ŷis(K) = q̂is(K) + µis(K)∗,

the policy that minimizes maxi∈I

{
1

K+1

∑K
n=0

E{ŷis(n)}
}

,

also minimizes maxi∈I

{
1

K+1

∑K
n=1

E{q̂is(n)}
}

.

B. Randomized Stationary Policy

In order to support every point in the network stability

region described in Section VI, it is sufficient to consider only

the class of stationary, randomized policies that take control

decisions based on the current channel states only and does not

consider current workloads. The randomized stationary policy

was presented in [17] and it can be implemented only if the

channel steady state probabilities and both the external arrival

rates λ and the internal arrival rates c∗is are known in advance.

In this paper, the stationary policy will be used to analyze the

performance of our dynamic control policy. The details on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

stability analysis and the implementation of a stationary policy

can be found in [17], [21].

The average arrival rates of each terminal i and the average

arrival rates of each terminal i at servers s are assumed to be

within Λ, so that λi+θ ∈ Λ and λts
is+θ ∈ Λ. Then, λi ≤ g∗i −θ

and λts
is ≤ ĝis − θ. For the stationary policy, we can now have

[17], [21]

1

K

K−1∑

n=0

E{µ́i(n)
∗ +

∑

s∈S

bis(n)µis(n)
∗}−

1

K

K∑

n=1

E{ai(n)} ≥
2θ

3
(57)

for each terminal i and

1

K

K−1∑

n=0

E{µ̂i
s(n)} −

1

K

K∑

n=1

E{µis(n)
∗} ≥

2θ

3
. (58)

for each terminal i at server s. Inserting (57) and (58) into right

hand side of (49) and (55), respectively, the queuing bounds

for the stationary policy are given as

lim sup
n→∞

1

n+ 1

n∑

η=0

E{qi(η)} ≤

lim sup
n→∞

1

n+ 1

n∑

η=0

E{yi(η)} ≤
3KM

4θ
(59)

for all i ∈ I and

lim sup
n→∞

1

n+ 1

n∑

η=0

E{q̂is(η)} ≤

lim sup
n→∞

1

n+ 1

n∑

η=0

E{ŷis(η)} ≤
3KM̂

4θ
(60)

for all i ∈ I and s ∈ S .

C. Frame Based Policy

Frame based policy works like the dynamic policy, but

updates the backlog information every K frames. Given (17)

and (30), the frame based policy is then designed to maximize

1

K

K−1∑

n=0

E

{
[yi(0)− q̂is(0)]

∑
s∈S bis(n)µis(n)

∗

µmax
is

+

yi(0)[µ́i(n)
∗ +

∑

s∈S

bis(n)µis(n)
∗]
}

(61)

at each terminal i and

1

K

K−1∑

n=0

∑

i∈I

E{ŷis(0)µ̂
i
s(n)} (62)

at each servers s.

It was argued in [17], [21] that since the frame based policy

maximizes

1

K

K−1∑

n=0

yi(0)E{µ́i(n)
∗ +

∑

s∈S

bis(n)µis(n)
∗} (63)

and (62), the frame based policy is stable and its performance

is better than the performance of any other network stabilizing

policy.

Theorem 1: Frame based policy is not the best policy and

it cannot guarantee network stability.

Proof: In order for a system to be stable, all the queues

both at the terminals and servers must be stable [17]. It is easy

to see that by maximizing the sum in (63), the frame based

policy maximizes the right hand side of the Lyapunov drift in

(49). However, when there are shared resources in the network,

by maximizing only the sum in (62), the frame based policy

cannot guarantee that the right hand side of (55) is maximized

for each virtual queue of terminal i at server s.

Let us consider a simple example of a system with two

terminals and a server s. By assuming that for the best network

stabilizing policy we have

K∑

n=1

2∑

i=1

µis(n)
∗ −

K−1∑

n=0

2∑

i=1

µ̂i
s(n) = 40, (64)

K∑

n=1

µ1s(n)
∗−

K−1∑

n=0

µ̂1
s(n) = 0+10+5+8−10+2+8−4+1 = 20

(65)

and

K∑

n=1

µ2s(n)
∗−

K−1∑

n=0

µ̂2
s(n) = 0+10+5+8−10+2+8−4+1 = 20.

(66)

It can be seen that if
∑n

η=1
µis(η)

∗ −
∑n−1

η=0
µ̂i
s(η) = 23,

ŷis(η+1)− ŷis(η) = µis(η+1)∗− µ̂i
s(η) is negative preventing

(65) and (66) to get bigger than 23. However, since the frame

based policy is designed to maximize only the sum in (62), it

can allocate the resources so that

K∑

n=1

µ1s(n)
∗−

K−1∑

n=0

µ̂1
s(n) = 0+10+5+8−0+2+8−0+1 = 34

(67)

and

K∑

n=1

µ2s(n)
∗−

K−1∑

n=0

µ̂2
s(n) = 0+10+5+8−20+2+8−8+1 = 6.

(68)

The frame based policy maximizes the sum
∑K

n=1

∑2

i=1

µis(n)
∗ −

∑K−1

n=0

∑2

i=1
µ̂i
s(n) = 34 + 6 = 40, but it cannot

guarantee that the right hand side of (55) is maximized for

each virtual queue of terminal i at server s. The frame based

policy provides very small delay for terminal 2, but prevents

terminal 1 to reach its steady state and stability.

D. Dynamic Control Policy

In this section, we show that our dynamic control policy

offers performance better than the stationary policy and pro-

vides bounds on average delays at each terminal i and server

s without requiring information of arrival statistics.

Theorem 2: Dynamic policy supports every point on the net-

work stability region without requiring information of arrival

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

statistics. The performance of the dynamic policy is better than

the performance of the randomized stationary algorithm.

Proof: Dynamic control policy is designed to maxi-

mize (17) at each terminal i and (30) at each servers s.

Inserting yi(n) = yi(0) +
∑n

η=1
ai(η) −

∑n−1

η=0
[µ́i(η)

∗ +∑
s∈S bis(η)µis(η)

∗] into (19) in (17) and ŷis(n) = ŷis(0) +∑n
η=1

µis(η)
∗ −

∑n−1

η=0
µ̂i
s(η) into (30), we see that the dy-

namic policy maximizes

1

K

K−1∑

n=0

E

{
[yi(n)− q̂is(n)]

∑
s∈S bis(n)µis(n)

∗

µmax
is

+

yi(0)[µ́i(n)
∗ +

∑

s∈S

bis(n)µis(n)
∗] + [µ́i(n)

∗ +

∑

s∈S

bis(n)µis(n)
∗]
[n∑

η=1

ai(η)−

n−1∑

η=0

[µ́i(η)
∗ +

∑

s∈S

bis(η)µis(η)
∗]
]}

(69)

at each terminal i and

1

K

K−1∑

n=0

∑

i∈I

E

{
ŷis(0)µ̂

i
s(n)+

µ̂i
s(n)

[n∑

η=1

µis(η)
∗ −

n−1∑

η=0

µ̂i
s(η)

]}
(70)

at each servers s.

It can be seen in (69) that dynamic policy maximizes

the right hand side of the Lyapunov drift in (49). In ad-

dition, it is easy to see in (70) that dynamic policy is

designed to maximize the right hand side of (55) for each

user i at server s. The dynamic policy allocates more CPU

to a terminal with the longest queue and thus minimizes

maxi∈I

{
1

K

∑K−1

n=0
E{q̂is(n)}

}
at server s. By comparing (62)

and (70) it can also be seen that, unlike the frame based policy,

our dynamic policy maximizes 1

K

∑K−1

n=0

∑
i∈I E{µ̂i

s(n)} so

that 1

K

∑K−1

n=0
E{µ̂i

s(n)} −
∑K

n=1
E{µis(n)

∗} on the right

hand side of (55) is maximized for each virtual queue of

terminal i at server s. Thus, the dynamic policy stabilizes the

network and its performance is better that the performance of

the stationary policy. The queueing bounds for the dynamic

policy can now be given as in (59) and (60).

IX. PERFORMANCE EVALUATION

For illustration purposes, we have evaluated the perfor-

mance of the dynamic control policy via simulations. The

performance of the optimal dynamic transmission policy is

illustrated in the presence of time varying workloads and

uncertain channels both for CN and PC network as well as for

CWN. It is shown that by adapting to the changes in network

conditions, our control policy mitigates the effect of PSP and

SSP cognitive networks on each other. The simulations support

our stability analysis presented in Sections VI and VIII, and

are implemented using Matlab.

A. Experiment Setup

Due to the complexity of the problem, we set |I| = |S| = 2.

Although the simulations are run only for a small system,

we would like to point out that the stability has been proven

analytically for any size of the system in Section VIII. The

channel process is generated according to a Markov chain and

state transition matrix for the channel between terminal i and

the hosting servers in the CWN is given as

T =




T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


 =




0.3 0.5 0.2 0
0.1 0.6 0.2 0.1
0.1 0.3 0.5 0.1
0 0.1 0.25 0.65


 ,

(71)

where Tkl is the probability of transitioning from channel

state k to l, and the corresponding stationary probabilities

p{Hi = (|h11|
2, |h12|

2)} are given as p{Hi = (10, 10)} =
0.1, p{Hi = (10, 20)} = 0.4, p{Hi = (20, 10)} = 0.3,

p{Hi = (20, 20)} = 0.2.

For the SSP cognitive network, the probability that the

channels between terminal i and the servers are available for

communication is pS
H = 0.9 or pS

H = 0.7. The stationary

probabilities are then given as p{Hi = (10, 10)} = 0.09,

p{Hi = (10, 20)} = 0.36, p{Hi = (20, 10)} = 0.27,

p{Hi = (20, 20)} = 0.18, p{Hi = (0, 0)} = 0.1 or

p{Hi = (10, 10)} = 0.07, p{Hi = (10, 20)} = 0.28,

p{Hi = (20, 10)} = 0.21, p{Hi = (20, 20)} = 0.14,

p{Hi = (0, 0)} = 0.3. The probability that PU returns to

the given channel is pP
return = 0.05.

In the PC network, where the overall resources include both

cognitive and conventional links, we assume that the channel

between terminal i and server 1 is cognitive and the channel

between terminal i and server 2 is a non-cognitive channel.

The probability that the channel between terminal i and server

2 is available for communication is pS
H = 0.9 or pS

H = 0.7.

The stationary probabilities are given as p{Hi = (10, 10)} =
0.09, p{Hi = (10, 20)} = 0.36, p{Hi = (20, 10)} = 0.27,

p{Hi = (20, 20)} = 0.18, p{Hi = (0, 10)} = 0.05, p{Hi =
(0, 20)} = 0.05 or p{Hi = (10, 10)} = 0.07, p{Hi = (10,

20)} = 0.28, p{Hi = (20, 10)} = 0.21, p{Hi = (20, 20)} =
0.14, p{Hi = (0, 10)} = 0.15, p{Hi = (0, 20)} = 0.15.

The probability that PU returns to the given channel between

terminal i and server 2 is pp
return = 0.05.

For a Poisson process, the second moment of arrivals in each

frame is finite [17]. Thus, each terminal is assumed to receive

requests from applications according to a Poisson process at an

average rate of λi. In the simulations, λi takes values between

1 to 8 requests/frame, and λ1 = λ2. The maximum available

power at each terminal is Pmax = 4W . We use αi = 0.6 in

(1), the discount factor α = 0.7 in (26) and αis = 100 in

(2). The Lagrangian multiplier is fixed to βi = 1. The long-

term average sum power, sum delay, and sum throughput are

calculated over N = 20000 frames.

Each CPU is assumed to follow a quadratic power-frequency

relationship. Specifically, CPU is assumed to have a discrete

set of frequency options in the interval [1.6GHz, ..., 2.6GHz]

at increments of 0.2 GHz and the corresponding power con-

sumption (in watts) at frequency f is given by P̂min + θ(f −

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

1.6GHz)2 where P̂min = 10W and θ = 10W/(GHz)2. Thus,

the CPU power consumption at the highest frequency is 20W .

At each utilization level f , the maximum supportable service

rate µmax
is (f) is given in (5), where α̂s = 0.4. Thus, on

average, a server running at the minimum (maximum) speed

can process 25 (50) requests/frame.

B. Numerical Results and Discussions

In the figures we have used the following notations: ’CWN’

- conventional wireless network, ’CN’ - cognitive network,

’PC’ - partial cognitive network, ’T’- terminals, ’S’- servers,

’TS’- transmission from terminals to servers and ’NW’ -

entire network. In addition, ’10%’ and ’30%’ represent the

probabilities that the channel between terminal i and server 1

is not available for communication.

The average sum service rates at the terminals (T) and the

average sum rates from terminals to servers (TS) are plotted as

a function of λ1 + λ2 for both the CWN and the PC network

in Fig. 4(a). It can be seen in the figure, that the average sum

service rates at the terminals both in the CWN and the PC

network equal λ1 + λ2. In the CWN, almost all application

requests are forwarded to be processed at the servers. In the

PC network, the effect of PSP and SSP cognitive networks

on each other is mitigated by processing considerably more

requests at the terminals. If the channel between the terminal

and server 1 is not available for communication, and if the

channel between the terminal and server 2 is bad, the more

requests are processed at the terminal, especially when the

arrival rates are low. However, it also can be seen in Fig.

4(a), that the number of requests forwarded to the servers gets

higher with the increase of λ1+λ2. This is due to the smaller

processing capabilities at the terminals than at the servers.

The average sum delays at the terminals (T) and the average

sum delays over the entire network (NW) are plotted as a

function of λ1 + λ2 for both CWN and PC network in Fig.

4(b). It can be seen, that for the given system parameters the

processing delay at the servers decreases as λ1+λ2 increases,

when λ1 + λ2 < 9. This is because, at low arrival rates, the

queues at the servers are short. Thus, in order to maximize

(30), it is more advantageous to delay some of the requests in

order to achieve energy savings at the server. When λ1+λ2 is

large, there is no much processing delay at the servers, because

high arrival rates from the terminals encourage servers to

empty their queues by increasing their processing capabilities.

Due to the uncertain availability and reliability of the channel

between the terminals and server 1 in the PC network, the

delay at server 1 is longer in the PC network than in the

CWN. Thus, also the overall network delay in the PC network

is longer than that of the CWN. It can also be seen, that

the overall network delay in the PC 30% network is a bit

shorter than in the PC 10% network. This is due to the fact

that, even if the channel between the terminals and server 1

is not available for communication, the channel between the

terminals and server 2 is. In addition, the probability that the

transmission over the given channel between terminal i and

server 1 fails is smaller in the PC 30% network than in the

PC 10% network, since p(I = 1)p(Ir = 0) = 0.7×0.5 = 0.35
and p(I = 1)p(Ir = 0) = 0.9× 0.5 = 0.45.

4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

λ
1
 + λ

2

A
v
e
ra

g
e
 s

u
m

 s
e
rv

ic
e
 r

a
te

CWN T

CWN TS

PC 10% T

PC 10% TS

PC 30% T

PC 30% TS

(a) Average sum rates vs. λ1 + λ2.

4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

λ
1
 + λ

2

A
v
e
ra

g
e
 s

u
m

 d
e
la

y

CWN T

CWN NW

PC 10% T

PC 10% NW

PC 30% T

PC 30% NW

(b) Average sum delays vs. λ1 + λ2.

4 6 8 10 12 14 16

2

4

6

8

10

12

14

λ
1
 + λ

2

A
v
e
ra

g
e
 s

u
m

 p
o
w

e
r

CWN T

CWN S

PC 10% T

PC 10% S

PC 30% T

PC 30% S

(c) Average sum powers vs. λ1 + λ2.

Fig. 4. Average sum rates, average sum delays and average sum powers of
the optimal policy as a function of λ1 + λ2 for both CWN and PC network.

The average sum power consumptions both at terminals (T)

and servers (S) are plotted as a function of λ1 + λ2 for CWN

and PC network in Fig. 4(c). As most of the requests are

processed at the servers in the CWN, the power consumption at

the servers is significantly higher than the power consumption

at the terminals. Due to the uncertain availability and reliability

of the channel between the terminals and server 1 in the PC

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

network, terminals consume more power in the PC network

than in the CWN. If the channel between terminal i and server

1 is not available for communication, or if the channel between

terminal i and server 2 is bad, it is more advantageous in terms

of saving the transmission power to process more requests

at the terminal. For the given range of λ1 + λ2, the power

consumption at the servers in the CWN is smaller when λ1 +
λ2 ≥ 13 than when 7 < λ1 + λ2 < 13. As mentioned earlier

in this paper, the server consumes at least P̂min even to process

only a small amount of data. Thus, the active servers do not

necessarily always process the maximum number of requests

that could be processed with the used power, when 7 < λ1 +
λ2 < 13. If λ1 + λ2 is large, the used power can be better

utilized in every frame, and more data can be processed with

the lower power consumption. It can also be seen, that the

average sum power in the PC 30% network is very close to

the average sum power in the PC 10% network. This is because

the channel between the terminal and server 2 is non-cognitive

and the probability that the transmission over the given channel

between terminal i and server 1 fails is smaller in the PC 30%
network than in the PC 10% network, i.e., p(I = 1)p(Ir =
0) = 0.7× 0.5 = 0.35 and p(I = 1)p(Ir = 0) = 0.9× 0.5 =
0.45. In addition, due to the uncertain link availability and

reliability between server 1 and the terminals, server 1 does

not receive as many requests as server 2. However, as severs

consumes at least P̂min to process any amount of data, server 1

consumes almost equal amount of power as server 2. For the

given arrival rates there is not enough requests to fully exploit

the available power at server 1 and that is why the sum power

consumption at the servers increases for all λ1 + λ2.

The average sum service rates at the terminals (T) and the

average sum rates from terminals to servers (TS) are plotted

as a function of λ1 + λ2 for both CWN and SSP cognitive

network (CN) in Fig. 5(a). It can be seen that the average

sum service rates at the terminals equal λ1 + λ2 for both

networks supporting our stability analysis in Sections VI and

VIII. However, due to the different network stability regions,

the maximum supportable arrival rates in cognitive wireless

networks is smaller than in the CWN. It can be seen, that

the probability to process requests at the terminals is slightly

higher in the CN than in the CWN, when arrival rates are

low. This is due to the uncertain channel availability and

reliability between the terminals and the servers. However,

for high arrival rates, most of the requests are processed at

the server only also in cognitive wireless network. For high

arrival rates, it is more beneficial in terms of decreasing the

transmission power and the delay to forward the application

requests to the servers.

The average sum delays at the terminals (T) and average

sum delays over the entire network (NW) are plotted as a

function of λ1 + λ2 for both CWN and CN in Fig. 5(b). Due

to the uncertain channel availability and reliability between the

terminals and the servers, the delay in the CN is significantly

longer than in the CWN. It can also be seen, that the processing

delay at the servers decreases as λ1 + λ2 increases, when

λ1 + λ2 is small. This is because, at low arrival rates, the

queues at the servers are short. Thus, it is more advantageous

to delay some of the requests in order to achieve energy

4 6 8 10 12 14 16 18
2

4

6

8

10

12

14

16

18

λ
1
 + λ

2

A
v
e
ra

g
e
 s

u
m

 s
e
rv

ic
e
 r

a
te

CWN T

CWN TS

CN 10% T

CN 10% TS

CN 30% T

CN 30% TS

(a) Average sum rates vs. λ1 + λ2.

4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

λ
1
 + λ

2

A
v
e
ra

g
e
 s

u
m

 d
e
la

y

CWN T

CWN NW

CN 10% T

CN 10% NW

CN 30% T

CN 30% NW

(b) Average sum delays vs. λ1 + λ2.

4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

11

λ
1
 + λ

2

A
v
e
ra

g
e
 s

u
m

 p
o
w

e
r

CWN T

CWN S

CN 10% T

CN 10% S

CN 30% T

CN 30% S

(c) Average sum powers vs. λ1 + λ2.

Fig. 5. Average sum rates, average sum delays and average sum powers of
the optimal policy as a function of λ1+λ2 for both CWN and SSP cognitive
network.

savings at the server. When λ1 + λ2 is large, there is not

much processing delay at the servers, because high arrival rates

from the terminals encourage servers to empty their queues by

increasing the capability to process the requests.

The average sum power consumptions both at the terminals

(T) and the servers (S) are plotted as a function of λ1+λ2 for

CWN and CN in Fig. 5(c). It can be seen in the figure, that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

in the cognitive network our policy consumes approximately

10% or 30% less power at the servers than the policy consumes

in the CWN. That is due to the uncertain channel availability

between the terminal and the servers in the cognitive wireless

network. It can also be seen, that the power consumption at

the terminals in the cognitive network is slightly smaller or

equal to power consumption in the CWN. The delay in the CN

is significantly longer than in the CWN, since the terminals

delay its requests waiting for the available channels or better

channel conditions. Thus, the average power consumption at

the terminals in the cognitive network is slightly smaller than

in the CWN.

X. CONCLUSION

In this paper, we have considered a virtualized data center

(computing cloud) consisting of a set of servers hosting a

number of mobile terminals (a mobile cloud) and studied

the problem of optimal resource allocation in the presence

of time varying workloads and uncertain channels. The chan-

nel uncertainty is either due to fading and/or uncertain link

availability and reliability in PSP/SSP cognitive networks.

We have designed an optimal resource allocation policy that

maximizes jointly utility of the long-term average throughput

and minimizes the energy consumption, both at terminals

and servers, while maintaining network stability. We have

characterized the unified network stability region for both

SSP and PSP cognitive networks as well as for the CWN,

and presented a new unified stability analysis for the three

networks. Under this model we have provided a new dynamic

resource allocation policy that is shown to support every point

on the network stability region without requiring information

of arrival statistics. Performance evaluation has been carried

out in order to compare the performance of optimal dynamic

policy in the CWN with the performance of dynamic policy

in the SSP/PSP cognitive wireless networks, and to validate

the theoretical analysis of the paper. The results have shown

that by adapting to the changes in network conditions, our

dynamic policy can mitigate the impact of PSP and SSP

cognitive networks on each other. We believe that the presented

approach can be used as a performance benchmark and lays the

foundation for future solutions of different simplified resource

allocation schemes in VDC computing clouds.

REFERENCES

[1] H. T. Dinh, C. Lee, D. Niyato and P. Wang, “A survey of mobile
cloud computing: Architecture, applications, and approaches,” Wireless

Communications and Mobile Computing (WCMC), pp. 1587-1611, 2013.
[2] P. Padala, K-Y. Hou, K. G Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal

and A. Merchant, “Adaptive control of virtualized resources in utility
computing environments”, in Proceedings of EuroSys, 2007.

[3] A. Greenberg, J. Hammilton, D. A. Maltz and P. Patel, “The cost of a
cloud: Research problems in data center networks”, ACM SIGCOMM

Computer Communication Review, vol. 39, no. 1, Jan. 2009.
[4] A. Wolke, M. Bichler and T. Setzer, “Planning vs. dynamic control:

Resource allocation in corporate clouds”, IEEE Transactions on Cloud

Computing, no. 99, pp. 1-14, 2015.
[5] S. Glisic, B. Lorenzo, I. Kovacevic and Y. Fang, “Modeling dynamics

of complex wireless networks”, in HPCS, Helsinki, Finland, July 2013.
[6] H. Yue, M. Pan, Y. Fang and Savo Glisic, “Spectrum and energy efficient

relay station placement in cognitive radio networks”, IEEE J. Select.

Areas Commun., vol. 31, no. 5, May 2013.

[7] P. Padala, K-Y. Hou, K. G Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal
and A. Merchant, “Automatic control of multiple virtualized resources”,
in Proceedings of EuroSys, 2009.

[8] X. Liu, X. Zhu, P. Padala, Z. Wang and S. Singhal, “Optimal multivariate
control for differentiated service on a shared hosting platform”, in
Proceedings of CDC, Dec. 2007.

[9] B. Li, J. Li, J. Huai, T. Wo, Q. Li and L. Zhong, “EnaCloud: An
energy-saving application live placement approach for cloud computing
environments”, in IEEE International Conference on Cloud Computing,
Tampa, USA, 2009.

[10] D. Kusic and N. Kandasamy, “Power and performance management of
virtualized computing environments via lookahead control”, in Proceed-

ings of ICAC, June 2008.

[11] S. Abdelwahed, N. Kandasamy, S. Singhal and Z. Wang, “Predictive
control for dynamic resource allocation in enterprise data centers”, in
Proceedings of IEEE RTAS, 2004.

[12] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang and N. Gautam,
“Managing server energy and operational cost in hosting centers”, in
Proceedings of SIGMERICS, June 2005.

[13] S. Govindan, J. Choi, B. Urgaongar, A. Sivasubramanian and A. Baldini,
“Statistical profiling-based techniques for effective power provisioning
in data centers”, in Proceedings of EuroSys, Apr 2009.

[14] W. Xu, X. Zhu and S. Neema, “Online control for self-management
in computing systems”, in Proceedings of the IEEE/IFIP Network

Operations and Management Symposium (NOMS), 2006.

[15] L. Georgiadis, M. J. Neely and L. Tassiulas, Resource Allocation and

Cross-Layer Control in Wireless Networks, Foundations and Trends in
Networking, Now Publisher, 2006.

[16] R. Urgaonkar, U. L. Kozat, K. Igarashi and M. J. Neely, “Dynamic
resource allocation and power management in virtualized data centers”,
in Proceedings of the IEEE Network Operations and Management

Symposium (NOMS), 2010.

[17] M. J. Neely, Dynamic power allocation and routing for satellite and

wireless networks with time varying channels, Ph.D dissertation, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, 2003.

[18] B. E. Collins and R. L. Cruz, “Transmission policies for time varying
channels with average delay constraints”, in Proc. of Allerton Conf. on

Commun., Control, and Comp., Monticello, IL, USA, 1999.

[19] D. Bertsekas, Dynamic Programming and Optimal Control, Vol. 1, 3rd
ed., Athena Scientific, 2005.

[20] D. Bertsekas, Dynamic Programming and Optimal Control, Vol. 2, 3rd
ed., Athena Scientific, 2007.

[21] M. J. Neely, E. Modiano and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks”, IEEE J. Sel. Areas

Commun., vol. 23, no. 1, pp. 89-103, Jan. 2005.

[22] C. Yang, Z. Chen, Y. Yao, B. Xia and H. Liu, “Energy efficiency in
wireless cooperative caching networks”, in Proc. IEEE ICC, 2014.

[23] R. Kaewpuang, D. Niytao, P. Wang and E. Hossain, “A framework for
cooperative resource management in mobile cloud computing”, IEEE J.

Sel. Areas Commun., vol. 31, no. 12, pp. 2685-2700, Dec. 2013.

[24] J. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Rawson and
C. Lefurgy, “Coordinating multiple autonomic managers to achieve
specified power-performance tradeoff”, in Proc. International Conf. on

Autonomic Computing, June 2007.

[25] D. Kusic and N. Kandasamy”, “Control for dynamic resource provision-
ing in enterprise computing systems”, in Proc. International Conf. on

Autonomic Computing, 2006.

[26] E. Kalyvianaki, Resource provisioning for virtualized server appli-

cations, Computer Laboratory, University of Cambridge, Cambridge,
United Kingdom, Tech. Rep., Nov. 2009.

[27] M. Goyal, A. Kumar and V. Sharma, “Optimal cross-layer scheduling
of transmissions over a fading multiaccess channel”, IEEE Trans. Inf.

Theory, vol. 54, no. 8, pp. 3518-3537, Aug. 2008.

[28] R. A. Berry and R. B. Gallager, “Communication over fading channels
with delay constraints”, IEEE Trans. Inf. Theory, vol. 50, no. 1, pp.
125-144, Jan. 2002.

[29] D. J. Ma, A. M. Makowski and A. Shwartz, “Estimation andoptimal
control for constrained Markov chains”, in IEEE Conference on Desicion

and Control, 1986.

[30] M. Goyal and A. Kumar and V. Sharma, “Power constrained and delay
optimal policies for scheduling transmissions over a fading channel”, in
IEEE Infocom, 2003.

[31] R. Bellman, Dynamic Programmin, Princeton University Press, Prince-
ton, NJ, 1957.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[32] M. L. Littman, T. L. Dean and L. Pack Kaelbling”, “On the complexity
of solving Markov Decision Problems”, in Proc. of the 11th Interna-

tional Conference on Uncertainty in Artificial Intelligence, 1995.
[33] E. Yeh and R. Berry, “Throughput optimal control of cooperative relay

neworks”, IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3827-3833, Oct.
2007.

[34] H. Halabian, I.Lambaris and C. Lung”, “Network capacity region of
multi-queue multi-server queuing system with time varying connectivi-
ties”, in ISIT, 2010.

[35] J. Jose, L. Ying and S. Wishwanath”, “On the stability region of amplify-
and-forward cooperative relay networks”, in ITW, Oct. 2009.

PLACE
PHOTO
HERE

Maria Kangas is currently a doctoral researcher and
a project manager in the area of wireless networks
at Centre for Wireless Communications (CWC) at
University of Oulu, Finland. She received her M.Sc.
degree in Telecommunication Engineering from Uni-
versity of Oulu, Finland, in 2007. She was a visiting
Phd student at the Rice University, Houston, Texas
during 1.11.2008-1.5.2009 and 1.1.2010-1.5.2010.
Her research interests include dynamic program-
ming, network stability, heterogeneous networks,
radio resource management, network optimization

theory, network topology control, opportunistic communications, social net-
works and complex networks.

PLACE
PHOTO
HERE

Savo Glisic (M′90-SM′94) is a Professor of
Telecommunications at University of Oulu, Finland,
head of the networking research group, and Director
of Globalcomm Institute for Telecommunications.
He was Visiting Scientist at Cranfield Institute of
Technology, Cranfield, U.K.(1976-1977) and Uni-
versity of California, San Diego (1986-1987). He
has been active in the field wireless communications
for 30 years and has published a number of papers
and books. The incoming book ”Advanced wireless
Networks: 5G/6G, 3E, John Wiley and Sons, 2015”

covers the enabling technologies for the definition of 5G/6G systems. He is
also running an extensive doctoral program in the field of wireless networking.
His research interest is in the area of network optimization theory, network
topology control and graph theory, cognitive networks and game theory, radio
resource management, QoS and queuing theory, networks information theory,
protocol design, advanced routing and network coding, relaying, cellular,
WLAN, ad hoc, sensor, active and bio inspired networks with emphasis on
genetic algorithms. Dr. Glisic has served as the Technical Program Chairman
of the third IEEE ISSSTA′94, the eighth IEEE PIMRC′97, and IEEE ICC′01.
He was Director of IEEE ComSoc MD programs.

PLACE
PHOTO
HERE

Yuguang ”Michael” Fang (S′92-M′97-SM′99-
F′08) received a Ph.D. degree in Systems Engi-
neering from Case Western Reserve University in
January 1994 and a Ph.D degree in Electrical Engi-
neering from Boston University in May 1997. He
was an assistant professor in the Department of
Electrical and Computer Engineering at New Jersey
Institute of Technology from July 1998 to May 2000.
He then joined the Department of Electrical and
Computer Engineering at University of Florida in
May 2000 as an assistant professor, got an early

promotion to an associate professor with tenure in August 2003 and to a
full professor in August 2005. He holds a University of Florida Research
Foundation (UFRF) Professorship from 2006 to 2009, a Changjiang Scholar
Chair Professorship with Xidian University, Xian, China, from 2008 to 2011,
and a Guest Chair Professorship with Tsinghua University, China, from
2009 to 2012. He has published over 250 papers in refereed professional
journals and conferences. Dr. Fang received the National Science Foundation
Faculty Early Career Award in 2001 and the Office of Naval Research Young
Investigator Award in 2002, and is the recipient of the Best Paper Award
in IEEE International Conference on Network Protocols (ICNP) in 2006
and the recipient of the IEEE TCGN Best Paper Award in the IEEE High-
Speed Networks Symposium, IEEE Globecom in 2002. Dr. Fang is also
active in professional activities. He is a Fellow of IEEE and a member
of ACM. He is currently serving as the Editor-in-Chief for IEEE Wireless
Communications and serves/served on several editorial boards of technical
journals including IEEE Transactions on Communications, IEEE Transactions
on Wireless Communications, IEEE Wireless Communications Magazine and
ACM Wireless Networks. He was an editor for IEEE Transactions on Mobile
Computing and currently serves on its Steering Committee. He has been
actively participating in professional conference organizations such as serving
as the Steering Committee Co-Chair for QShine from 2004 to 2008, the
Technical Program Vice-Chair for IEEE INFOCOM 2005, Technical Program
Symposium Co-Chair for IEEE Globecom 2004, and a member of Technical
Program Committee for IEEE INFOCOM (1998, 2000, 2003-2010).

PLACE
PHOTO
HERE

Pan Li received the B.E. degree in Electrical Engi-
neering from Huazhong University of Science and
Technology, Wuhan, China, in 2005, and the Ph.D.
degree in Electrical and Computer Engineering from
University of Florida, Gainesville, in 2009, respec-
tively. Since Fall 2015, he has been with the De-
partment of Electrical Engineering and Computer
Science at Case Western Reserve University. He
was an Assistant Professor in the Department of
Electrical and Computer Engineering at Mississippi
State University between August 2009 and August

2015. His research interests include network science and economics, energy
systems, security and privacy, and big data. He has been serving as an Editor
for IEEE Journal on Selected Areas in Communications – Cognitive Radio
Series and IEEE Communications Surveys and Tutorials, a Feature Editor for
IEEE Wireless Communications, and a Technical Program Committee (TPC)
Co-Chair for Ad-hoc, Mesh, Machine-to-Machine and Sensor Networks Track,
IEE VTC 2014, Physical Layer Track, Wireless Communications Symposium,
WTS 2014, and Wireless Networking Symposium, IEEE ICC 2013. He
received the NSF CAREER Award in 2012 and is a member of the IEEE
and the ACM.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCCN.2015.2508029

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

