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Abstract—It is well known that, due to the mobility of a
portable and limited channel availability, calls of portables may
not be completed due to being blocked or terminated during the
call initiation or the handover process. The characteristics of the
call-completion and call-holding times for both a complete call
and an incomplete call are of critical importance for establishing
the actual billing process in the PCS network. In this paper,
we derive the call-completion probability (hence, call-dropping
probability) and the effective call-holding time distributions for
complete/incomplete calls with a general cell-residence time and
a general call-holding time are analyzed, and general computable
formulas are obtained. We show that when call-holding times are
Erlang distributed, easy-to-compute formulas for the probability
of a call completion and the expected effective call-holding times
for both a complete call and an incomplete call can be derived.

Index Terms—Call blocking, call-holding time, call pricing, cell
residence, PCS.

I. INTRODUCTION

A personal communications services(PCS) network allows
users to communicate as they move [2], [8], [10], [17],

[18]. In this network, a large number of customers can be
served using spectrally efficient cellular systems [10], [18]. In
this system, the service area is populated with base stations.
The coverage area of a base station is called acell. The users
(the mobile phone or mobile computer) in a cell communicate
via radio links to base stations. When a new call is originated
and attempted in a cell, one of the channels assigned to the
base station is used for the communication between the mobile
portable and the base station as long as a channel is available.
When all channels in a cell are in use while a new call
(or handover call) is attempted in the cell, the call will be
blocked and cleared from the system. When a call gets a
channel, it will keep the channel until its completion, or until
the mobile moves out of the cell, in which case the channel
will be released for other use. When the mobile moves into
a new cell while its call is ongoing, a new channel needs
to be acquired in the new cell for further communication,
using a handover procedure. During handover, if there is no
channel available in the new cell for the “ongoing” call, it is
forced to terminate before its completion [8], [10]. In order to
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evaluate this behavior in a PCS network, the following three
possibilities need to be considered.

• The call is blocked at its call initiation, and is never
connected (ablocked new call).

• The call is connected, successfully makes one or more
handovers, but is forced to terminate before its completion
because of the lack of an available channel (anincomplete
call).

• The call is connected and completed (acomplete call).

In a PCS system, one ideally wishes to allow all calls to
be completed. Clearly, in the presence of channel availability
limitations, this objective is not obtainable at all times. As an
alternative, one wishes to make the call completion probability
as high as the grade of service (GoS) needed.

When defining the right objective, a major practical consid-
eration is obviously pricing. The use of the same flat rate for
both complete and incomplete calls is unfair and commercially
unattractive. To stay competitive, a PCS network provider
may apply discounts for calls that were not completed [12].
However, since incomplete calls may spend significant time
using PCS network resources, it is also impossible for the
provider to apply a constant discount rate to all incomplete
calls. In order to determine a reasonable (if not optimal)
discount factor, it is therefore necessary to know for how long
a call (either complete or incomplete) has used the network.
The duration of the requested call connection is referred to as
thecall-holding time. The duration of an actual call connection
for an incomplete call will be calledthe effective call-holding
time of an incomplete call, while the duration of an actual
call connection of a complete call will be calledthe effective
call-holding time of a complete call. It is obvious that the
duration of a requested call does not depend on the PCS
network; it only depends on the mobile user (how long he
wishes to maintain the call). For simplicity, we will term
this duration thecall-holding time, as this is consistent with
the ideal case when there are infinite numbers of channels
and the handover procedure does not affect the duration of a
connection. In reality, the number of radio channels is limited,
and the handover procedure does come into play. The duration
of an actual call connection will depend on the PCS network:
its traffic situation, channel availability, etc.

The performance modeling of a PCS network can be con-
ducted at two levels. The first-level modeling uses the number
of radio channels in cells as an input parameter to de-
termine the new call-blocking probability and the forced
termination probability. The second-level modeling uses the
new call-blocking and the forced termination probabilities as
input parameters to study the call-completion probability (or
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the probability that a call is successfully complete) and the
expected effective call-holding times of a complete or an
incomplete call. This paper deals with second-level model-
ing. The extension of our results to the first-level modeling
is possible, and will be treated in a separate paper. Since
existing cellular systems are typically engineered at 1–2%
new call-blocking and forced termination, these default values
may be used as the reference input parameters for second-
level modeling. However, the call-completion probability and
the expected effective call-holding times cannot be derived
directly from these two parameters. Both the cell-residence
time and the call-holding time distributions must carefully be
chosen to reflect the real systems. In our model, a general cell-
residence time distribution is considered, which can be used
to accommodate any real PCS system. The selection of the
call-holding times was in the past typically assumed to be ex-
ponentially distributed. Such an assumption may be reasonable
when the calls are charged based on the lengths of the call-
holding times. The assumption is no longer valid, however,
for the modern telephone services which apply flat-rate billing
programs. Flat-rate billing encourages people to make long
calls (for example, people may log on from their PC’s at home
to main computers in the companies through local telephone
calls, and sometimes keep the connections for several days).
Thus, with current communication environments, long tails
are observed for the call-holding time distributions. In recent
telephone network engineering [1], lognormal distributions
[5] have been used to approximate the wireline call-holding
times. For most existing cellular systems, the wireless calls
are charged based on the call-holding times, and these systems
can be appropriately modeled with the exponential call-holding
time distribution [13], [14]. However, for future PCS systems
(especially the low-power PCS systems such as CT-2 [19],
DECT [3], or PACS [16]), flat-rate billing programs have
been proposed. Thus, it is very important that we follow the
wireline telephone network engineering approach, that is, use
a more general distribution to represent the call-holding time
distribution.

In order to determine the call-completion probability and the
effective call-holding times, we need to know the call-arrival
distribution, call-holding time distribution, and cell-residence
time (i.e., a mobile stays in a cell) (reflecting the frequency of
handovers or the mobility of a mobile portable). We will call
the duration of a call in a given cell thecell-residence time.
In this paper, we will use the following assumptions.

• The call arrivals form a Poisson process.
• The cell residence times (the intervals that a portable stays

in the cells) are independent, identically distributed (i.i.d.)
with nonlattice distribution.

• The call-holding times are i.i.d. with nonlattice distribu-
tion.

The last two assumptions are a generalization of conven-
tional analysis assumptions (e.g., the commonly used expo-
nential distribution satisfies these two assumptions), and are
chosen to fit the emerging PCS networks. The cell-residence
times should be general since the time the mobile may spend

in a cell may be highly variable due to the mobile speed and
motion and the geographic situation in the cell. For example, in
an urban area, the routes the mobile users take may be highly
irregular. The rate of the residence times is used to describe
the mobility of the mobile portable.

In the traffic models studied in the literature, the call-holding
times are assumed to be exponentially distributed for reasons
of tractability [6], [21]. Under the assumption of exponentially
distributed call-holding times, Linet al. [13], [14] studied the
performance of channel assignment strategies, and obtained
analytical results for forced termination probability and new
call-blocking probability. Under the same assumption, Lin and
Chlamtac [12] analyzed the call-completion probability and
the expected effective call-holding times. However, as pointed
out by Guerin [4], the most commonly used assumption for
finding the blocking probabilities, i.e., the channel occupancy
time is exponentially distributed, may not be valid for some
cellular networks. The reason for this is that either the call-
holding times or the cell-residence times are not exponentially
distributed. Zonooziet al. [22] used the generalized Gamma
distributions to model the cell-residence times.

In this paper, we study the case of PCS networks using the
generalized assumptions above. For this generalized model,
we obtain formulas for the call-completion probability and
the distribution (its Laplace transforms) of the effective call-
holding times of both complete and incomplete calls, from
which expected effective call-holding times can be derived.
When the call-holding times are Erlang distributed, easily
computable formulas are given and recursive algorithms are
developed.

II. CALL -COMPLETION PROBABILITY

In this section, we study the call-completion probability.
Previously, Lin and Chlamtac [12] obtained a formula for the
call-completion probability for a PCS network with a general
residence time distribution and exponential call-holding time
distribution. Here, we generalize these results to the case when
call-holding times have a more general distribution.

We first consider the effective call-holding timet for an
incomplete call. Fig. 1 illustrates the timing diagram for the
call-holding time, whereT1 is the time that the portable resides
at cell 1, andti (i � 2) is the residence time at celli.
According to our assumptions,T1; t2; � � � ; tk; � � � are i.i.d. Let
ti have nonlattice density functionf (�) with mean1=�; and
let f�(s) be the Laplace transform off(�) (we will use �

to denote the Laplace transform following the tradition [9]).
Suppose that a call for the portable occurs when the portable
is in cell 1. Let t1 be the interval between the time instant
when the call arrives and that when the portable moves out
of cell 1. Let r(t1) andr�(s) be the density function and the
Laplace transform of thet1 distribution, respectively. From the
renewal theory [9],t1 is the residual life of the cell-residence
time of the portable in cell 1, so we have

r(t1) = �

Z
1

t1

f(� ) d� (1)
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Fig. 1. Timing diagram for a forced terminated call atkth handover.

r�(s) =
�

s
[1� f�(s)]: (2)

Consider the effective holding timet = t1+t2+� � �+tk where
fk(t) andf�k (s) are its density function and Laplace transform.
Sinceti (i = 2;3; � � � ; k) are i.i.d., it is easy to derive

f�k (s) =E

"
exp

 
�s

 
T1 +

kX
i=1

ti

!!#

= r�(s)[f�(s)]k�1

=
�

s
(1� f�(s))[f�(s)]k�1: (3)

Let po be the probability that a new call attempt is blocked
(i.e., the call is never connected), letpc be the probability
that a call is completed (i.e., the call is connected and
completed), and letpf be the forced termination probability
or the probability that no radio channel is available when a
handoff call arrives. Then the probability of an incomplete call
(i.e., the call is connected but is eventually forced to terminate)
pi is 1 � po � pc, which can be expressed as

1� po � pc = Pr (call is not blocked, making(k � 1)

handoffs and blocked atkth handoff)

=
1X
k=1

(1� po) (1� pf )
k�1pf

� Pr (t1 + t2 + � � �+ tk � tc)

=
1X
k=1

(1� po) (1� pf )
k�1pf

Z
1

0

fk(t)

� Pr (tc � tjt1 + � � �+ tk = t) dt

=
1X
k=1

(1� po) (1� pf )
k�1pf

Z
1

0

fk(t)

� Pr (tc � t) dt (independency)

=
1X
k=1

(1� po) (1� pf )
k�1pf

Z
1

0

fk(t)

�

�Z
1

0

fc(� ) d�

�
dt

=
1X
k=1

�Z
1

0

(1� po)fk(t) (1� pf )
k�1pf

�

�Z
1

t

fc(tc) dtc

�
dt

�
(4)

wherefc(tc) is the density function of the call-holding times.
In the last equation, the term inf�g is the probability that
a call is forced to terminate at thekth handover (notice that
the call is connected with probability1� po, and then makes
k�1 successful handovers with probability(1�pf )

k�1 and is
forced to terminate at thekth handover with probabilitypf ). In
the following derivation, we use the inverse Laplace transform
formula. We will use � to denote the real number with
appropriate meaning used in the inverse Laplace transform
formula [11]. From (4), we have

1� po � pc

= (1� po)pf

1X
k=1

Z
1

0

�
1

2�j

Z �+j1

��j1

f�k (s)e
st ds

�

� (1� pf )
k�1

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf

2�j

Z
1

0

Z �+j1

��j1

"
1X
k=1

f�k (s) (1� pf )
k�1

#

� est ds

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf

2�j

Z
1

0

Z �+j1

��j1

�

"
1X
k=1

�

s
(1� f�(s))[f�(s)]k�1(1� pf )

k�1

#

� est ds

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf�

2�j

�

Z
1

0

Z �+j1

��j1

"
1X
k=1

1� f�(s)

s

�[f�(s) (1 � pf )]
k�1

#
est

� ds

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf�

2�j

Z
1

0

Z �+j1

��j1

1� f�(s)

s
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�
1

1� (1� pf )f�(s)
est ds

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf�

2�j

Z �+j1

��j1

1� f�(s)

s[1� (1 � pf )f�(s)]

�

�Z
1

0

est
�Z

1

t

fc(tc) dtc

�
dt

�
ds: (5)

Assume that the�1 is such thate�1t
R
1

t
fc(tc) dtc �M <1

for any t (this will be true for most interesting distributions
with finite mean); then, choosing� < �1, we haveZ

1

0

����est
Z
1

t

fc(tc) dtc

���� dt
=

Z
1

0
e�t
����
Z
1

t

fc(tc) dtc

���� dt
=

Z
1

0

e�(�1��)t
����e�t

Z
1

t

fc(tc) dtc

���� dt
�M

Z
1

0

e�(�1��)t dt

=
M

�1 � �
<1:

Moreover, we haveZ
1

0

est
Z
1

t

fc(tc) dtc dt

=
1

s
est
Z
1

t

fc(tc) dtc

����
1

0

�
1

s

Z
1

0

est
d

dt

�

Z
1

t

fc(tc) dtc dt

= �
1

s
+

1

s

Z
1

0
estfc(t) dt =

f�(�s) � 1

s
:

Taking this into (5), we obtain

1� po � pc =
�(1� po)pf

2�j

Z �+j1

��j1

1� f�(s)

s[1� (1� pf )f�(s)]

�
f�c (�s) � 1

s
ds

=��(1� po)pf
1

2�j

Z �+j1

��j1

�
(1� f�(s) (1 � f�c (�s))

s2[1� (1� pf )f�(s)]
ds: (6)

Since f�(s) has no poles in the right half complex plane,
j(1�pf )f

�(s)j < 1. Let �c denote the set of poles off�c (�s)
in the right half complex plane (i.e.,��c = f�zjz 2 �cg is
the set of poles off�c (s) in the left half plane). Choosing the
contour that includes the vertical linez = � and the semicircle
CR = fz = � + Rej�j � �=2 � � � �=2g, noticing that the
integrand in (6) is on the order of1=R2 asR!1, and using
the Residue theorem [11], from (6), we obtain

1� po � pc =��(1� po)pf

�

(
� Res

s=p
p2�

c

(1� f�(s)) (1 � f�c (�s))

s2[1� (1 � pf )f�(s)]

)

from which, and the fact that the residue of an analytic function
is zero, we finally arrive at the following.

Theorem 1: The probability that a call is completed is given
by

pc = (1� po)

"
1 + �pf Res

s=p
p2�c

(1� f�(s))f�c (�s)

s2[1� (1� pf )f�(s)]

#
(7)

whereRess=p denotes the residue at poles = p.
Remark: Sincef�(s) is analytic and bounded by unity in

the right half complex plane, the(1 � f�(s))=s2[1 � (1 �
pf )f�(s)] is analytic in the right half plane; hence, the function
(1� f�(s))f�c (�s)=s

2[1� (1� pf )f�(s)] has the same poles
(including multiplicities) as the functionf�c (�s) in the right
half complex plane. In the computation of the residue in
Theorem 1, we only need to consider the poles and their
corresponding multiplicities.

Next, we show how to computepc for a few specific cases.
If the call-holding times are exponentially distributed with
density functionfc(t) = �e��t, then its Laplace transform
is given byf�c (s) = �=(s + �) which has a simple pole� in
the left half plane. From Theorem 1, we obtain

pc =(1� po)

"
1 + �pf Res

s=p
p2�c

(1� f�(s))f�c (�s)

s2[1� (1� pf )f�(s)]

#

=(1� po)

�
1 + �pf Res

s=�

(1� f�(s))�=(�s + �)

s2[1� (1� pf )f�(s)]

�

=(1� po)

�
1 + lim

s!�
(s � �)

(1 � f�(s))�=(�s + �)

s2[1� (1� pf )f�(s)]

�

=(1� po)

�
1�

�pf (1 � f�(�))

�[1� (1� pf )f�(�)]

�
: (8)

This is obtained in [12] using a different approach.
Assume now that the call-holding times are Erlang dis-

tributed with the following density function:

fc(tc) =
(�tc)

m�1

(m� 1)!
�e��tc; m = 1;2; � � �

wherem is the shape parameter and� = m� is the scale
parameter. This density function has the following Laplace
transform:

f�c (s) =

�
�

s+ �

�m

andf�c (�s) has a unique pole at� in the right half complex
plane. Let

g(s) =
1� f�(s)

s2[1� (1� pf )f�(s)]
:

As we remarked before, this function is analytic in the right
half complex plane. From Theorem 1, we obtain

pc =(1� po)

�
1 + �pf Res

s=�
g(s)

�
�

�s+ �

�m�

=(1� po)

�
1 +

�pf
(m � 1)!

lim
s!�

dm�1

dsm�1

�

�
(��)m(s � �)m

g(s)

(s � �)m

��

=(1� po)

�
1 + (��)m

�pf
(m � 1)!

g(m�1)(�)

�
:
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Thus, we have the following.
Corollary 1: For a PCS network with Erlang call-holding

times, the probability of a call completion is given by

pc = (1 � po)

�
1 + (��)m

�pf
(m� 1)!

g(m�1)(�)

�
(9)

whereg(m�1)(�) denotes the derivative of(m � 1)th order.
When m = 1, we have

pc =(1� po)[1� �pf�g(�)]

= (1� po)

�
1�

�pf (1� f�(�))

�[1� (1� pf )f�(�)]

�
;

this is the same as (8) (� = � in this case), which is not
surprising because the Erlang distribution is exponential when
m = 1.

When m = 2, note that

g0(s) =
d

ds

�
1� f�(s)

s2[1� (1� pf )f�(s)]

�

=�
f�(1)(s)

s2[1� (1� pf )f�(s)]
�

2(1� f�(s))

s3[1� (1� pf )f�(s)]

+
(1� pf ) (1� f�(s))f�(1)(s)

s2[1� (1� pf )f�(s)]2
:

Thus, from Corollary 1, we obtain

pc =(1� po)[1 + �pf�
2g0(�)]

= (1� po)

�
1�

�pf (1� f�(�))

�[1� (1� pf )f�(�)]

�

� �(1� po)�pf

�
f�(1)(�)=�+ (1 � f�(�))=�2

1� (1� pf )f�(�)

�
(1� pf ) (1 � f�(�))f�(1)(�)=�

[1� (1� pf )f�(�)]2

�
:

(10)

It is observed that asm increases, the computation becomes
much more involved. We will give a recursive algorithm for
the computation ofg(m)(�) which is needed in Corollary 1.
Let

h(s) = s2[1� (1� pf )f
�(s)]: (11)

Using the formula

(uv)(p) =

pX
i=0

�
p

i

�
u(i)v(p�i) (12)

we obtain

h(0)(�) =�2[1� (1 � pf )f
�(�)]

h(1)(�) =��2(1� pf )f
�(1)(�)

+ 2�[1� (1� pf )f
�(�)]

h(2)(�) =��2(1� pf )f
�(2)(�)� 4�(1� pf )f

�(1)(�)

+ 2[1� (1� pf )f
�(�)]

h(p)(�) =��2(1� pf )f
�(p)(�)� 2p�(1� pf )f

�(p�1)(�)

� p(p� 1) (1� pf )f
�(p�2)(�); p � 3: (13)

Since we haveg(s)h(s) = 1�f�(s), differentiating both sides
and applying (12), we obtain (p > 0)

pX
0

�
p

i

�
g(i)(s)h(p�i)(s) = �f�(p)(s):

From this, we obtain the following recursive algorithm to
computeg(m�1)(�):

g(0)(�) =
1� f�(�)

h(�)

g(p)(�) =�

f�(p)(�) +

p�1X
i=0

�
p

i

�
g(i)(�)h(p�i)(�)

h(�)
(p > 0):

(14)

Thus, using (13) and (14), we can easily computeg(m�1)(�),
and hencepc from Corollary 1.

III. T HE EXPECTED EFFECTIVE-CALL HOLDING TIMES

In the preceding section, we discussed the probability for
a call to complete. However, this quantity does not address
the time needed for a call to complete. It is desirable to know
how much time is needed for a complete call to finish, and
how much time an incomplete call spends using the resource
(bandwidth) so that an appropriate pricing scheme can be
devised. In this section, we present a solution to this problem.

Similar to the argument in [12], the density function for the
effective call-holding time of an incomplete call that is forced
to terminate is given by

gi(t) =

�
1

pi

�" 1X
k=1

fk(t) (1� po) (1� pf )
k�1pf

�

Z
1

t

fc(tc) dtc

#

=

�
1� po

1� pc � po

�" 1X
k=1

fk(t) (1� pf )
k�1pf

�

Z
1

t

fc(tc) dtc

#
(15)

wherepi = 1� po � pc denotes the probability of a call to be
incomplete andpc is computed in the last section. In the first
equation, the term under the summation is the density that the
call is forced to terminate afterk handovers.

Next, we want to find the Laplace transform ofgi(z) from
which the expected value can be easily obtained. From (15),
we have

g�i (z) =

Z
1

0

e�ztgi(t) dt

=
(1� po)pf

pi

Z
1

0

e�zt
1X
k=1

fk(t) (1 � pf )
k�1

�

Z
1

t

fc(tc) dtc dt
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=
(1� po)pf

pi

1X
k=1

Z
1

0

�
1

2�j

Z �+j1

��j1

f�k (s)e
stds

�

� e�zt(1� pf )
k�1

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf

2pi�j

Z
1

0

Z �+j1

��j1

"
1X
k=1

f�k (s) (1� pf )
k�1

#

� e(s�z)t ds

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf

2pi�j

Z
1

0

Z �+j1

��j1

�

"
1X
k=1

�

s
(1� f�(s))[f�(s)]k�1(1� pf )

k�1

#

� e(s�z)t ds

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf�

2pi�j

Z
1

0

Z �+j1

��j1

�

"
1X
k=1

1� f�(s)

s
[f�(s) (1� pf )]

k�1

#

� e(s�z)t ds

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf�

2pi�j

Z
1

0

Z �+j1

��j1

1� f�(s)

s

�
1

1� (1� pf )f�(s)
e(s�z)t ds

�

�Z
1

t

fc(tc) dtc

�
dt

=
(1� po)pf�

2pi�j

Z �+j1

��j1

1� f�(s)

s[1� (1� pf )f�(s)]

�

�Z
1

0

e(s�z)t
�Z

1

t

fc(tc) dtc

�
dt

�
ds: (16)

Similar to the argument in the last section, we haveZ
1

0

e(s�z)t
Z
1

t

fc(tc) dtc dt

= �
1

s� z
+

1

s� z

Z
1

0

e(s�z)t dt

=
f�(�s+ z)� 1

s � z
:

Taking this into (16), we obtain

g�i (z) =
�(1� po)pf

2pi�j

Z �+j1

��j1

1� f�(s)

s[1� (1� pf )f�(s)]

�
f�c (�s + z)� 1

s � z
ds: (17)

Note that

lim
s!z

f�c (�s + z)� 1

s � z
= f�(1)c (0)

sos = z is a removable singular point [11] of the integrand of
(17). Thus, the poles of the integrand in the right half complex

plane are those off�c (�s+ z), i.e.,fz + pjp 2 �cg. As in the
last section, we obtain the following.

Theorem 2:

g�i (z) =�
�(1� po)pf
1� po � pc

� Res
s=z+p
p2�c

(1 � f�(s)) (f�c (�s + z) � 1)

s(s � z)[1� (1� pf )f�(s)]
: (18)

Now, assume that the call-holding times are Erlang dis-
tributed with parameter(m;�). Thenf�c (s) = (�=(s+�))m.
Let

g1(s) =
1� f�(s)

s[1� (1� pf )f�(s)]
: (19)

Then, from Theorem 2, we have

g�i (z) =�
�(1� po)pf
1� po � pc

Res
s=z+�

g1(s)

�

2
664
�

�

�s + z + �

�m

� 1

s � z

3
775

=�(�1)m
�m�(1� po)pf

pi

� Res
s=z+�

g1(s)

(s � z)[s� (z + �)]m

=(�1)m�1
�m�(1 � po)pf

(m � 1)!pi
lim

s!z+�

dm�1

dsm�1

�

�
(s� (z + �))m

g1(s)

(s � z)[s� (z + �)]m

�

=(�1)m�1
�m�(1� po)pf

(m � 1)!pi
lim

s!z+�

�
dm�1

dsm�1

�
1

s� z
g1(s)

�

=(�1)m�1
�m�(1� po)pf

(m � 1)!pi
lim

s!z+�

m�1X
j=0

�

�
m � 1

j

��
1

s � z

�(j)

g
(m�1�j)
1 (s)

= (�1)m�1
�m�(1� po)pf

(m � 1)!pi
lim

s!z+�

m�1X
j=0

�

�
m � 1

j

�
(�1)jj!

(s � z)j+1
g
(m�1�j)
1 (s)

= (�1)m�1
�m�(1� po)pf

(m � 1)!pi

m�1X
j=0

�
m � 1

j

�

�
(�1)jj!

�j+1
g
(m�1�j)
1 (z + �)

=
�(1� po)pf

pi

m�1X
j=0

(��)m�1�j

(m � 1� j)!
g
(m�1�j)
1 (z + �)

=
�(1� po)pf

pi

m�1X
j=0

(��)j

j!
g
(j)
1 (z + �): (20)

Finally, we arrive at the following.
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Fig. 2. Timing diagram for the effective call times of a complete call: the call completes afterk handovers.

Theorem 3: For a PCS network with Erlang-distributed
call-holding times, the Laplace transform of the density func-
tion of the effective call-holding time of an incomplete call
is given by

g�i (z) =
�(1� po)pf
1� po � pc

m�1X
j=0

(��)j

j!
g
(j)
1 (z + �) (21)

the expected effective call-holding time of an incomplete call
is given by

Ti = �
�(1� po)pf
1� po � pc

m�1X
j=0

(��)j

j!
g
(j+1)
1 (�) (22)

and the variance of the effective incomplete call-holding times
is given by

Vi =
�(1 � po)pf
1� po � pc

m�1X
j=0

(��)j

j!
g
(j+2)
1 (�)

�

2
4�(1� po)pf
1� po � pc

m�1X
j=0

(��)j

j!
g
(j+1)
1 (�)

3
5
2

: (23)

Proof: Equation (22) can be obtained by noticing that
Ti = �g

�(1)
i (0). Equation (23) can be proved by the following

relationship:var (X) = E(X2) � E(X)2 for any random
variableX.

Remark: In fact, from (21), we can easily find all moments
of the effective call-holding time of an incomplete call, which
is easily given by letTi(k) denote thekth moment

Ti(k) = (�1)k
�(1� po)pf
1� po � pc

m�1X
j=0

(��)j

j!
g
(j+k)
1 (�);

k � 1:

When m = 1, the Erlang distribution is the exponential
distribution. In this case, we have

g�i (z) =
�(1� po)pf
1 � po � pc

g1(z + �)

and

Ti =
�(1� po)pf
1� po � pc

g
(1)
1 (0)

=
�(1� po)pf

�(1� po � pc)[1� (1� pf )f�(�)]

�

�
1� f�(�)

�
+

pff
�(1)(�)

1� (1� pf )f�(�)

�
: (24)

This is the same as in [12], where a different approach is
used. Using (8) in (24), we obtain

Ti =
1

�
+

pff
�(1)(�)

[1� f�(�)][1� (1� pf )f�(�)]
:

Sincef�(1)(�) < 0 and0 � f�(�) � 1, we haveTi � 1=�,
i.e., the expected effective call-holding time of an incomplete
call is less than the expected noninterrupted call-holding time.

Form > 1, we can also give a recursive algorithm as before
to computeg(p)1 (�) which is needed in (22). Let

h1(s) = s[1� (1� pf )f
�(s)]: (25)

Then, we have

h
(0)
1 (�) =�[1� (1� pf )f

�(�)]

h
(1)
1 (�) =��(1� pf )f

�(1)(�) + [1� (1� pf )f
�(�)]

h(p)(�) =��(1� pf )f
�(p)(�)

� p(1� pf )f
�(p�1)(�); p � 2 (26)

and

g
(0)
1 (�) =

1� f�(�)

h1(�)

g
(p)
1 (�) =�

f�(p)(�) +

p�1X
i=0

�
p

i

�
g
(i)
1 (�)h

(p�i)
1 (�)

h1(�)
;

(p > 0): (27)

Thus, using (26) and (27), we can easily computeg
(p�1)
1 (�)

(p = 1; 2; � � � ;m), and henceTi from Theorem 3.
Next, we study the expected effective holding time for a

complete call. The timing diagram is shown in Fig. 2, in
which the call is completed when the portable is in cellk0.
tc represents, as before, the effective call-holding time for a
complete call. Ifk0 = 1, 0 � tc � t1, while if k0 > 1,
t1+ t2+ � � �+ tk0�1 � tc � t1+ t2+ � � �+ tk0 . Let k = k0�1;
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then we have

for k = 0; 0 � tc � t1 (28)

for k > 0; t1 + t2 + � � �+ tk

� tc � t1 + t2 + � � �+ tk+1: (29)

Using a similar argument in [12] (or a simple conditional
probability argument), we can obtain the density function
gc(tc) of the effective call-holding time of a complete call
given by

gc(tc) = U (tc) +W (tc) (30)

where

U (tc) =

�
1� po
pc

��
fc(tc)

Z
1

tc

r(t1) dt1

�
(31)

W (tc) =

�
1� po
pc

�" 1X
k=1

fc(tc)

Z tc

0

Z
1

tc�t

�fk(t) (1� pf )
kf(� ) d� dt

#
: (32)

U (tc) corresponds to (28) andW (tc) corresponds to (29),
where(1�po) is the probability of nonblocking, and(1�pf )
is the probability of no forced termination. Equation (30) can
be derived fromP (tc � x) = �1k=0P (tc � x; k) where
P (tc � x; k) denotes the probability that the call is completed
in cell k+1 and the effective call-holding time does not exceed
x. Rigorous derivation can be obtained following a similar
argument in [13].

We first find the Laplace transforms ofU (tc) andW (tc).
From (31) and the Residue theorem, we have

U�(z) =

Z
1

0

e�ztcU (tc) dtc

=

�
1� po
pc

� Z
1

0

e�ztcfc(tc)

�Z
1

tc

r(t1) dt1

�
dtc

=

�
1� po
pc

� Z
1

0

e�ztcfc(tc)
1

2�j

�

�Z �+j1

��j1

1� r�(s)

s
estc ds

�
dtc

=

�
1� po
pc

�
1

2�j

Z �+j1

��j1

1� r�(s)

s

�

�Z
1

0

fc(tc)e
�(z�s)tc dtc

�
ds

=

�
1� po
pc

�
1

2�j

Z �+j1

��j1

s � �(1� f�(s))

s2

� f�c (z � s) ds

=�

�
1� po
pc

�
Res

s=z+p
p2�c

s � �(1� f�(s))

s2

� f�c (�s + z): (33)

Note that

d

dtc

�Z tc

0

fk(t)

Z
1

tc�t

f(� ) d� dt

�

= fk(tc)

Z
1

0

f(� ) d� �

Z tc

0

fk(t)f(tc � t) dt

= fk(tc)� fk(tc) � f(tc)

where � denotes the convolution operator; hence, the
Laplace transform of

R t
c

0 fk(t)
R
1

t
c
�t

f(� ) d� dtc is (f�k (s) �
f�k (s)f

�(s))=s = (1 � f�(s))f�k (s)=s. From (32) and the
Residue theorem, we have

W �(z) =

Z
1

0

e�ztcW (tc) dtc

=

�
1� po
pc

� 1X
k=1

(1� pf )
k

Z
1

0

e�ztcfc(tc)

�

�Z tc

0

fk(t)

Z
1

tc�t

f(� ) d� dt

�
dtc

=

�
1� po
pc

� 1X
k=1

(1� pf )
ke�ztcfc(tc)

�

�
1

2�j

Z �+j1

��j1

1� f�(s)

s
f�k (s)e

stc ds

�
dtc

=

�
(1� po) (1� pf )

2�pcj

� Z
1

0

e�ztcfc(tc)

Z �+j1

��j1

�
1� f�(s)

s

"
1X
k=1

f�k (s) (1� pf )
k�1

#
estc ds dtc

=

�
(1� po) (1� pf )

2�pcj

� Z
1

0

e�ztcfc(tc)

Z �+j1

��j1

� �

�
1� f�(s)

s

�2" 1X
k=1

[(1� pf )f
�(s)]k�1

#

� estc ds dtc

=

�
�(1� po) (1� pf )

2�pcj

� Z
1

0

e�ztcfc(tc)

�

Z �+j1

��j1

�
1� f�(s)

s

�2

�
1

1� (1� pf )f�(s)
estc ds dtc

=

�
�(1� po) (1� pf )

2�pcj

� Z �+j1

��j1

�
1� f�(s)

s

�2

�
1

1� (1� pf )f�(s)

Z
1

0

e�(�s+z)tcfc(tc) dtc ds

=

�
�(1� po) (1� pf )

2�pcj

� Z �+j1

��j1

�
[1� f�(s)]2

s2[1� (1� pf )f�(s)]
f�c (�s + z) ds

=�

�
�(1� po) (1� pf )

pc

�
Res

s=z+p
p2�c

�
[1� f�(s)]2

s2[1� (1� pf )f�(s)]
f�c (�s + z): (34)

From (33) and (34), we finally obtain the following.
Theorem 4: For a PCS network, the Laplace transform of

the density function of the effective call-holding time of a
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complete call is given by

g�c (z) =�

�
1� po
pc

�24 Res
s=z+p
p2�c

s � �(1 � f�(s))

s2
f�(�s + z)

+�(1� pf ) Res
s=z+p
p2�

c

[1� f�(s)]2f�c (�s + z)

s2[1� (1� pf )f�(s)]

3
5: (35)

Suppose now that the call-holding times are Erlang
distributed with parameter(m;�) with Laplace transform
fc(s) = (�=(s + �))m. Let

g2(s) =
s � �(1� f�(s))

s2
(36)

g3(s) =
[1� f�(s)]2

s2[1� (1� pf )f�(s)]
: (37)

Then, we have

Res
s=z+p
p2�c

s � �(1� f�(s))

s2
f�(�s+ z)

= Res
s=z+�

g2(s)

�
�

�s+ z + �

�m

= (��)m Res
s=z+�

g2(s)

(s� (z + �))m

=
(��)m

(m � 1)!
g
(m�1)
2 (z + �)

and

Res
s=z+p
p2�c

[1� f�(s)]2f�c (�s + z)

s2[1� (1� pf )f�(s)]

= (��)m Res
s=z+�

g3(s)

(s� (z + �))m

=
(��)m

(m � 1)!
g
(m�1)
3 (z + �):

From these and Theorem 4, we obtain the following.
Theorem 5: For a PCS network with Erlang-distributed

call-holding times, the Laplace transform of the density func-
tion of the effective call-holding time of a complete call is
given by

g�c (z) =
(�1)m�1�m(1� po)

(m� 1)!pc

� [g
(m�1)
2 (z + �) + (1� pf )�g

(m�1)
3 (z + �)] (38)

the expected effective call-holding time of a complete call is
given by

Tc =�g(1)c (0)

=
(�1)m�m(1� po)

(m � 1)!pc
[g(m)
2 (�) + (1� pf )�g

(m)
3 (�)]

(39)

and the variance of the effective complete call-holding times
is given by

Vc =
(�1)m�1�m(1 � po)

(m � 1)!pc

� [g(m+1)
2 (�) + (1� pf )�g

(m+1)
3 (�)]

�
�2m(1� po)2

[(m� 1)!pc]2
[g
(m)
2 (�) + (1� pf )�g

(m)
3 (�)]2: (40)

Remark: In fact, all moments of the effective call-holding
time of a complete call can be obtained from (38), and are
given as follows (letTc(k) denote thekth moment):

Tc(k) =
(�1)m+k�1�m(1� po)

(m � 1)!pc

� [g(m+k�1)
2 (�) + (1� pf )�g

(m+k�1)
3 (�)];

k � 1:

Whenm = 1, i.e., the call-holding times are exponentially
distributed, we have

Tc =�
�(1� po)

pc
[g(1)2 (�) + �(1� pf )g

(1)
3 (�)]

=
(1� po)f�� �[�f�(1)(�) + 2(1� f�(�))]g

pc�2

+
�(1 � po) (1 � pf )[1� f�(�)]

pc�[1� (1� pf )f�(�)]

�

�
2[1� f�(�)]

�
+ f�(1)(�) +

pff
�(1)(�)

1� (1� pf )f�(�)

�
:

This is obtained in [12] using a different approach. This
formula can be further simplified using (8) as follows:

Tc =
(1� po)

pc

�
1

�
�

�

�

�
f�(1)(�) +

2(1� f�(�))

�

��

+
�(1 � po)

pc�

�
1�

pf
1� (1 � pf )f�(�)

�

�

�
2[1� f�(�)]

�
+ f�(1)(�) +

pf f
�(1)(�)

1� (1� pf )f�(�)

�

=
1� po
pc

�
1

�
�

�pf
�[1� (1� pf )f�(�)]

�

�
2(1� f�(�))

�
+

pff
�(1)(�)

1� (1� pf )f�(�)

��

=
1� po
pc�

�
1�

�pf (1� f�(�))

�[1� (1� pf )f�(�)]

�

�
(1 � po)�pf

pc�

�
(1� f�(�))

�
+

pff
�(1)(�)

1� (1� pf )f�(�)

�

=
1

�
�

(1� po)�pf
pc�

�
(1� f�(�))

�

+
pf f

�(1)(�)

1� (1� pf )f�(�)

�
: (41)

It is observed from simulation in [12] thatTc < (1=�) when
the cell residence times are Gamma distributed. Using this
equation, we can prove this analytically for general cell-
residence distribution. We want to show that the term[�] in
the last equation of (41) is nonnegative. Let

�(�) = [1� f�(�)][1� (1� pf )f
�(�)] + �pff

�(1)(�):
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Sincef�(0) = 1, �(0) = 0. Also, we have

d

d�
�(�) = 2(1� pf )(1� f�(�))[�f�(1)(�)]

+ �pff
(2)(�) > 0

where we have used that0 � f�(�) � 1, f�(1)(�) � 0, and
f�(2)(�) � 0. Thus,�(�) is an increasing function; hence,
�(�) � �(0) = 0, from which we conclude that the term[�]
in the last equation of (41) is nonnegative. Thus, for any cell-
residence distribution, the expected effective call-holding time
of a complete call is always less than the expected call-holding
time.

When m > 1, the closed-form formula may be quite
involved. However, as before, recursive formulas can be easily
developed for the computation ofg(p)2 (�) and g

(p)
3 (�). For

g
(p)
2 (�), we have

g
(0)
2 (�) =

�� �(1� f�(�))

�2

g
(1)
2 (�) =

1 + �f�(1)(�)� 2�g(0)2 (�)

�2

g
(p)
2 (�) =

�f�(p)(�)� 2p�g
(p�1)
2 (�)� p(p� 1)g

(p�2)
2 (�)

�2
;

p � 2: (42)

For g(p)3 (�), let h(s) = s2[1 � (1 � pf )f
�(s)] as defined in

(11), h(p)(�) can be computed as in (13), and as shown in
(43), found at the bottom of the page.

As observed earlier, we can analytically prove that for
exponentially distributed call-holding times, the expected ef-
fective call-holding times for both a complete call and an
incomplete call are less than the expected call-holding time.
However, it is difficult to analytically prove from the formula
for m > 1 that the expected effective call-holding times
for both a complete and an incomplete call are less than
the expected call-holding time1=�. The following intuitive
argument can be used to prove this: the effective call-holding
times are just the “interrupted” call-holding times, and hence
should be “smaller” than the “noninterrupted” call-holding
times. We will verify this observation in the next section.

IV. I LLUSTRATIONS AND DISCUSSIONS

In this section, we present an example to show how to
apply our results to analyze the effective call-holding times
and attempt to draw some general conclusions. In this section,
we assume that the cell-residence times are Gamma distributed

with the following density function and Laplace transform:

f(t) =
(�)t�1e��t

�()
; t � 0;

f�(s) =

�
�

s + �

�

which have mean1=� and varianceV = 1=(�2). The call-
holding times are Erlang distributed with the following density
function and Laplace transform:

fc(t) =
(m�)mtm�1e�m�t

(m� 1)!
; t � 0;

f�c (s) =

�
m�

s +m�

�m

which have mean1=� and varianceV = 1=(m�2). We will
investigate how the probability of a call completion and the
expected effective call-holding times are affected by some
parameters such as the means and variances. In this section, we
use the commonly used average call-holding time1=� = 1:76
min [10]; we usem = 2 when we vary, while we use
 = 1:5 when we varym.

As mentioned earlier, the lognormal distributions have been
proved to be a good approximation to the wireline call-holding
time distribution [1]. Statistically, both the lognormal distribu-
tions and Gamma distributions (including Erlang distributions)
have the same capacity to approximate the measured data
[7]; the assumption of Erlang call-holding times seems to
be a reasonable replacement of the lognormal distributions
for the performance analysis. An important advantage of the
Erlang/Gamma distribution over the lognormal distribution
is that the Erlang/Gamma distribution has a simple Laplace
transform, which is a desired property in our modeling.

We first consider the probability of a complete call.
Fig. 3 shows the probability of a call completion versus

the inverse of the expected cell-residence time normalized
by �, i.e., the mobility �=�, for different values of the
shaping parameter in the Gamma distribution, while Fig. 4
demonstrates the variability of the call-completion probability
against the mobility�=� for various values of the shaping
parameterm in the Erlang distribution of the call-holding
times. When� is fixed, the variance of the cell-residence times
(the call-holding times, respectively) is uniquely determined
by the shaping parameter (m). From Figs. 3 and 4, we can
observe the following properties.

1) The call-completion probabilitypc decreases as the
expected cell-residence time (1=�) decreases. This is
reasonable because, for a fixed mobile route, i.e., the

g
(0)
3 =

[1� f�(�)]2

h(�)

g
(p)
3 =

�2f�(p)(�) +

pX
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�
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Fig. 3. Probability of a call completion: varying.

Fig. 4. Probability of a call completion: varyingm.

distribution of the cell-residence time is fixed, then the
expected cell-residence time is fixed, and the longer the
expected call-holding time, the more often the handovers
happen, and the greater the chance the call will be
dropped. This is equivalent to saying that for a fixed call-
holding time pattern (or the fixed expected call-holding
time), the probability of dropping the call increases as
the expected cell-residence time becomes smaller; hence,
the probability of a call completion decreases as the
expected cell residence time increases.

2) The call-completion probability decreases as the vari-
ance of the cell-residence times or the variance of the
call-holding times decreases (i.e., as or m increases).

3) When the expected cell-residence time is large (i.e.,
when� is small), the effect of the variance of the call-
holding times on the call-completion probability is not
significant. This is why the call-completion probability
pc alone is not a good evaluation measure for a PCS
network, and the effective call-holding times are needed.

(a)

(b)

Fig. 5. Effective call-holding time of an incomplete call: varying.

4) There is a significant difference between thepc for
m = 1 and that form > 1; this may be due to the
fact that the exponentially distributed call-holding times
(m = 1) are memoryless.

We remind readers that the above properties hold when the
new call-blocking probabilitypo and the handoff call-blocking
probability pf are fixed (the second-level modeling); this is
the situation when one is asked to compute the call-completion
probability for a PCS network already in operation. Of course,
call-completion probability is also dependent on some other
factors such as the number of channels and carried traffic; this
dependency is implied in the new call-blocking probabilitypo
andpf . By varying the values ofpo andpf , we can observe
the properties of call-completion probability.

Next, we study the effective call-holding times.
Figs. 5 and 6 show the expected effective call-holding time

of an incomplete call. From these figures, we obtain the
following observations for the expected effective call-holding
times of an incomplete call.
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(a)

(b)

Fig. 6. Effective call-holding time of an incomplete call: varyingm.

1) Ti� � 1, i.e., Ti � 1=�. This implies that the expected
effective call-holding time for an incomplete call is no
more than the expected noninterrupted call-holding time,
which is consistent with the observation we made based
on our intuition.

2) Ti is decreases as the mobility parameter�=� increases.
This is intuitive because when�=� increases, the
cell-residence times decrease, more handovers are
undertaken, more often the call is incomplete, and
hence the incomplete call-holding times tend to be
shorter.

3) For small mobility�=�, the expected incomplete call-
holding time decreases as the variance of the cell resi-
dence times increases, while for large mobility�=�, this
is reversed.

4) Ti decreases as the variance of the call-holding times
decreases for a longer range of mobility. This relation-
ship will be expected to reverse for very large mobility
(which may be an impractical range).

(a)

(b)

Fig. 7. Effective call-holding time of a complete call: varying.

5) There is a big difference between the case form = 1 (the
exponential distribution case) and the case form > 1,
which may be contributed from the memoryless property
of the exponential distribution.

6) The variance of the effective call-holding time of an
incomplete call decreases as the mobility increases; for
small mobility �=�, it increases as the variance of
the cell-residence times decreases, however, for large
mobility �=�, it decreases as the variance of cell-
residence times decreases. It always decreases as the
variance of the call-holding times decreases.

Finally, we observe the expected effective call-holding time
of a complete call.

Figs. 7 and 8 show the results for the effective complete
call-holding times. We have the following observations.

1) Tc� � 1, i.e.,Tc � 1=�. This implies that the expected
effective call-holding time for a complete call is no
more than the expected noninterrupted call-holding time,
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(a)

(b)

Fig. 8. Effective call-holding time of a complete call: varyingm.

which is consistent with the observation we made based
on our intuition.

2) Tc decreases as the mobility�=� increases. This is not
intuitive.

3) The expected effective complete call-holding timeTc
decreases as the variance of the cell-residence times
decreases.

4) Tc increases as the variance of the call-holding times
decreases.

5) There is a major difference between the case form =
1 (the exponential distribution case) and the case for
m > 1, which may be contributed from the memoryless
property of the exponential distribution.

6) The variance of the effective call-holding times always
decreases as the mobility�=� increases; it always de-
creases as the variance of cell-residence times decreases;
and it always decreases as the variance of call-holding
times decreases.

As mentioned in the Introduction, the study of the effective
call-holding times can support the provider’s billing activity.
Lin and Chlamtac [12] investigated the billing problem for
the case when call-holding times are exponentially distributed.
Similar conclusions can be drawn for our cases here. For
details of this application of our results to pricing strategies,
the interested reader is referred to [12].

V. CONCLUSIONS

All previous performance studies of PCS channel alloca-
tion assumed that the call-holding times are exponentially
distributed. While this assumption can be justified for ex-
isting cellular systems where the wireless calls are charged
based on the lengths of the call-holding times, future PCS
systems may exercise flat-rate billing programs, and therefore
a more general distribution is necessary for modeling the call-
holding times. In this paper, we use a general distribution
to model the call-holding times, and derive general formulas
for the probability of a call completion and the expected
effective call-holding times of both complete and incom-
plete calls. By specifying the call-holding time distribution
to be Erlang, we obtain easy-to-compute recursive formulas
to compute the above performance metrics. Our results can
be directly applied to pricing strategies for the emerging PCS
networks.
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