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Call Performance for a PCS Network

Yuguang FangStudent Member, IEEBmrich ChlamtacFellow, IEEE and Yi-Bing Lin, Senior Member, IEEE

Abstract—It is well known that, due to the mobility of a evaluate this behavior in a PCS network, the following three
portable and limited channel availability, calls of portables may possibilities need to be considered.
not be completed due to being blocked or terminated during the . . s .
call initiation or the handover process. The characteristics of the ~ * The call is blocked at its call initiation, and is never
call-completion and call-holding times for both a complete call connected (locked new ca)l

and an incomplete call are of critical importance for establishing » The call is connected, successfully makes one or more
the actual billing process in the PCS network. In this paper, handovers, but is forced to terminate before its completion

we derive the call-completion probability (hence, call-dropping . .
probability) and the effective call-holding time distributions for because of the lack of an available channelif@omplete

complete/incomplete calls with a general cell-residence time and call).

a general call-holding time are analyzed, and general computable « The call is connected and completedc@mplete cal.

formulas are obtained. We show that when call-holding times are | PCS t ideall ishes to all Il calls t
Erlang distributed, easy-to-compute formulas for the probability na system, one ideally wishes 1o allow all calls 1o

of a call completion and the expected effective call-holding times be completed. Clearly, in the presence of channel availability
for both a complete call and an incomplete call can be derived. limitations, this objective is not obtainable at all times. As an

Index Terms—Call blocking, call-holding time, call pricing, cell ~ alternative, one wishes to make the call completion probability
residence, PCS. as high as the grade of service (GoS) needed.

When defining the right objective, a major practical consid-
eration is obviously pricing. The use of the same flat rate for
both complete and incomplete calls is unfair and commercially
Apersonal communications servicg2CS) network allows ynattractive. To stay competitive, a PCS network provider

users to communicate as they move [2], [8], [10], [17}nay apply discounts for calls that were not completed [12].
[18]. In this network, a large number of customers can Bgowever, since incomplete calls may spend significant time
served using spectrally efficient cellular systems [10], [18]. 'L']‘sing PCS network resources, it is also impossible for the
this system, the service area is popglated with base Statioﬁ‘:%vider to apply a constant discount rate to all incomplete
The coverage area of a base station is calleele The users .45 |n order to determine a reasonable (if not optimal)
(the mobile phone or mobile computer) in a cell communicalfscoynt factor, it is therefore necessary to know for how long
via radio links tq base stations. When a new call is originated .o (either complete or incomplete) has used the network.
and attempte_d in a cell, one of the_ chgnnels assigned to ﬁk}?e duration of the requested call connection is referred to as
base station is used for the_ communication between_the m_Ol?H%call-holding time The duration of an actual call connection
portable and the bas_e station as qug asa cha_nnel is avail Fan incomplete call will be callethe effective call-holding
When all channels_ in a cell are in use while a new Catl me of an incomplete callwhile the duration of an actual
(or handover call) is attempted in the cell, the call wil b‘?:all connection of a complete call will be calle¢de effective
blocked and cleared from the system. When a call getsggﬂ-holding time of a complete calllt is obvious that the

channel,. it will keep the channel unnl |ts'complet|0n, or unti ration of a requested call does not depend on the PCS
the mobile moves out of the cell, in which case the channﬁ

. s ._hetwork; it only depends on the mobile user (how long he
will be reIeasegl fqr other.use. When the mobile moves int Ishes to maintain the call). For simplicity, we will term
a new cell while its call is ongoing, a new channel nee

0 b ired in th Il for furth icati Ris duration thecall-holding time as this is consistent with
0 be acquired n the new cell Tor further communica IOrfhe ideal case when there are infinite numbers of channels

using a hanglover 'procedure. During han“dover., |f”there 'S BRd the handover procedure does not affect the duration of a
channel available in the new cell for the “ongoing” call, it is . ; . S
. . : connection. In reality, the number of radio channels is limited,

forced to terminate before its completion [8], [10]. In order tQ . :
and the handover procedure does come into play. The duration

of an actual call connection will depend on the PCS network:

. _ _ _ . its traffic situation, channel availability, etc.
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the probability that a call is successfully complete) and thie a cell may be highly variable due to the mobile speed and
expected effective call-holding times of a complete or amotion and the geographic situation in the cell. For example, in
incomplete call. This paper deals with second-level modeln urban area, the routes the mobile users take may be highly
ing. The extension of our results to the first-level modelinigregular. The rate of the residence times is used to describe
is possible, and will be treated in a separate paper. Sirtbe mobility of the mobile portable.

existing cellular systems are typically engineered at 1-2%In the traffic models studied in the literature, the call-holding
new call-blocking and forced termination, these default valuéismes are assumed to be exponentially distributed for reasons
may be used as the reference input parameters for secovidvactability [6], [21]. Under the assumption of exponentially
level modeling. However, the call-completion probability andistributed call-holding times, Liet al. [13], [14] studied the

the expected effective call-holding times cannot be derivgrformance of channel assignment strategies, and obtained
directly from these two parameters. Both the cell-residenagalytical results for forced termination probability and new
time and the call-holding time distributions must carefully beall-blocking probability. Under the same assumption, Lin and
chosen to reflect the real systems. In our model, a general céllamtac [12] analyzed the call-completion probability and
residence time distribution is considered, which can be usét expected effective call-holding times. However, as pointed
to accommodate any real PCS system. The selection of ®g by Guerin [4], the most commonly used assumption for
call-holding times was in the past typically assumed to be efinding the blocking probabilities, i.e., the channel occupancy
ponentially distributed. Such an assumption may be reasonaliiee is exponentially distributed, may not be valid for some
when the calls are charged based on the lengths of the c&llular networks. The reason for this is that either the call-
holding times. The assumption is no longer valid, howevdpolding times or the cell-residence times are not exponentially
for the modern telephone services which apply flat-rate billifjstributed. Zonoozet al. [22] used the generalized Gamma
programs. Flat-rate billing encourages people to make loflitributions to model the cell-residence times.

calls (for example, people may log on from their PC’s at home In this paper, we study the case of PCS networks using the
to main computers in the companies through local telepho@igneralized assumptions above. For this generalized model,
calls, and sometimes keep the connections for several day$§. obtain formulas for the call-completion probability and
Thus, with current communication environments, long tait§e distribution (its Laplace transforms) of the effective call-
are observed for the call-holding time distributions. In recef@lding times of both complete and incomplete calls, from
telephone network engineering [1], lognormal distributiondhich expected effective call-holding times can be derived.
[5] have been used to approximate the wireline call-holding/hen the call-holding times are Erlang distributed, easily
times. For most existing cellular systems, the wireless caffmputable formulas are given and recursive algorithms are
are charged based on the call-holding times, and these systéf&eloped.

can be appropriately modeled with the exponential call-holding

time distribution [13], [14]. However, for future PCS systems II. CALL-COMPLETION PROBABILITY

(especially the low-power PCS systems such as CT-2 [19],
DECT [3], or PACS [16]), flat-rate billing programs haveF>r
been proposed. Thus, it is very important that we follow thceall-completion probability for a PCS network with a general

wireline telephong ngtwgrk engineering approach, th;f‘t 'S, URidence time distribution and exponential call-holding time
a more general distribution to represent the call-holding ti

o Mfistribution. Here, we generalize these results to the case when
distribution.

In order to determine th ll-completion probability and thcall-holding times have a more general distribution.
order fo gete € the cafl-completion probability a € We first consider the effective call-holding timefor an

effective call-holding times, we need to know the call-arrival

S . . . . incomplete call. Fig. 1 illustrates the timing diagram for the
distribution, call-holding time distribution, and cell-re&dencg b g g ciag

i 3 bile st : I flecting the f F\II-holding time, wheré is the time that the portable resides
ime (i.e., a mobile stays in a cell) (reflecting the frequency gf" ., 1, andt; (: > 2) is the residence time at cell
handovers or the mobility of a mobile portable). We will cal

the durati f I . Il theell-resid i According to our assumption$; ,¢,,- - -, {;,- - - are i.i.d. Let
e curation of a cat in a given o “fesIdence iMe have nonlattice density functiofi(-) with meanl1/», and
In this paper, we will use the following assumptions.

let f*(s) be the Laplace transform of(-) (we will use *

* The call arrivals form a Poisson process. to denote the Laplace transform following the tradition [9]).

* The cell residence times (the intervals that a portable staygppose that a call for the portable occurs when the portable
in the cells) are independent, identically distributed (i.i.di} in cell 1. Let#; be the interval between the time instant

In this section, we study the call-completion probability.
eviously, Lin and Chlamtac [12] obtained a formula for the

with nonlattice distribution. . ~ when the call arrives and that when the portable moves out
. The call-holding times are i.i.d. with nonlattice distribuyf cell 1. Letr(t,) andr*(s) be the density function and the
tion. Laplace transform of thg distribution, respectively. From the

The last two assumptions are a generalization of conveaenewal theory [9]¢; is the residual life of the cell-residence
tional analysis assumptions (e.g., the commonly used expiore of the portable in cell 1, so we have
nential distribution satisfies these two assumptions), and are -
chosen to fit the emerging PCS networks. The cell-residence r(t)) =7 / f(r)dr (1)
times should be general since the time the mobile may spend t1
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Fig. 1. Timing diagram for a forced terminated call /ath handover.

r*(s) = g [1— f(s)]. (2) wheref.(t.) is the density function of the call-holding times.

In the last equation, the term ifi} is the probability that

Consider the effective holding tinte= ¢, +-¢,+-- -+, where 5 ca| is forced to terminate at theth handover (notice that
Je(t) andf; (s) are its density function and Laplace transformpe call is connected with probability— p,, and then makes

Sincet; (i = 2,3, -, k) are i.id,, itis easy to derive k —1 successful handovers with probability—p; )*~* and is
forced to terminate at theth handover with probability;). In
fi(s) = Eexp (-5 (T1 =+ Z t; ))] the following derivation, we use the inverse Laplace transform
i=1 formula. We will uses to denote the real number with

=1 (s)[f*(s)]"" appropriate meaning used in the inverse Laplace transform

_n " K[ \Th—1 formula [11]. From (4), we have

= (L= €) (11 @

Let p, be the probability that a new call attempt is blocked
(i.e., the call is never connected), lgt be the probability 1—p, —pe
that a call is completed (i.e., the call is connected and 1 otjoo
completed), and lep; be the forced termination probability =(1-po)py Z / [— / fi(s)e ds]
or the probability that no radio channel is available when a k=1 275 Jojoo
handoff call arrives. Then the probability of an incomplete call (1=t XL AR
(i.e., the call is connected but is eventually forced to terminate) rs) / o
p; is 1 —p, — p., which can be expressed as 1_ o4joo [ 00
) ) po pf f 1 _ —1
1 —p, — p. = Pr(call is not blocked, makingk — 1) / /U joo [Z i ( pf ]
handoffs and blocked dith handoff
o *”ds[/ /e dt]dt
=) (I=p)(1=pp)'p :
;;( e _ (d=po)ps /°° /”““’
Pr(ty 4+t + -+t <t.) 27y 0 o—joo
= Z(l—pa(l—pf)k-lpf/o Ji(0) - [Z ﬁ(l—f*(s))[f (s >]‘”-1<1—pf>’“”]
k=1

tllqg

T | s

r (. > t) dt (independency)

<1—po><1—pf>’“-1pf/o f ) //”[ s

(1—po Pf77

w
ekl

ég

k:[lfom fe(T) dr] dt 1 (s) (1= pp))F ]
- i {7 a-mnoa-pm =, [/ raya] a
[ tm fc(tc)dtc] dt} (4) 1—po (L= po)pin 0°° /”“m 1= f*(s)



FANG et al: CALL PERFORMANCE FOR PCS NETWORK 1571

Theorem 1: The probability that a call is completed is given

e | ] by

_ (L=po)psn [T 1— f*(s) oy
s =l M = e ) = (1-p) |1 Res ] L @

' {/0 e [/t fc(tc)dtC] dt} ds. (5) whereRes,;—, denotes the residue at pade= p.
_ - Remark: Since f*(s) is analytic and bounded by unity in
Assume that the, is such that”*" [ f.(t.)dt. < M < o0 the right half complex plane, thél — f*(s))/s?[1 — (1 —
for any? (this will be true for most mterestmg distributions Sp;)f* (s)] is analytic in the right half plane; hence, the function

with finite mean); then, choosing < ¢, we have

/000 /Oo fo(t.) dr,

dt

0|1 — 0O

Moreover, we have

/ e’ / f-(t.) dt. dt
0 t
1 st ~ ~
== 6 ’ fc(tc) dtc
t 0
/ Fo(t,) dt. dt

s s

= +—/ e”fc(t)dtzm.

Taking this into (5), we obtain

1—po)p oFijoo 1—f*(s
S g

27y
. fc (_5) -1 ds

S

g+joo
= =11 = po)ps 2— /

=rE - )
2= (=) )]

S.

Since f*(s) has no poles in the right half complex plane;
|(1—ps)f*(s)] < 1. Leto. denote the set of poles ¢f (—s
in the right half complex plane (i.eso. = {—z|z € o} is

—jeo SL=(L=ps)f(s)]

(1= f*(s)fr(—=s)/s*[1 = (1 — ps)f*(s)] has the same poles
(including muiltiplicities) as the functiorf; (—s) in the right
half complex plane. In the computation of the residue in
Theorem 1, we only need to consider the poles and their
corresponding multiplicities.

Next, we show how to compute. for a few specific cases.
If the call-holding times are exponentially distributed with
density functionf.(t) = pe™"*, then its Laplace transform
is given by f= (s) = 1/(s + 1) which has a simple polg in
the left half plane. From Theorem 1, we obtain

I (L= f*(sDI2(=5)

1+ npy ;?ZS s2[L— (1—p;)f* (8)]]
N (L= (s)p/(=s + )
=(1=po)|L+mups Res $7[L— (1= ps)f(s)] ]

=1 -p) -1 + lim (s — p) (1= f(s))p/(—s +N)]

~—

Pe :(1—]?0

| ST (1 - p)f* (9]
oo (L= ()
==p)|! Ml—(l—pf)f*(m]]' ®)

This is obtained in [12] using a different approach.
Assume now that the call-holding times are Erlang dis-
tributed with the following density function:

t m—1
fc(tC): %ae_(”c: m:1;2;"'

(m—1)!
wherem is the shape parameter and= mpu is the scale
parameter. This density function has the following Laplace

transform:
o= ()

and f*(—s) has a unique pole at in the right half complex
plane. Let

1—f(s)
71— (L= ps)f~(s)]

9(s) =

the set of poles of (s) in the left half plane). Choosing the As we remarked before, this function is analytic in the right
contour that includes the vertical line= o and the semicircle half complex plane. From Theorem 1, we obtain

Cr ={z =0+ Re'?| —x/2 < 6 < 7/2}, noticing that the
integrand in (6) is on the order df/R2 as R — oo, and using

the Residue theorem [11], from (6), we obtain

1_p0 — Pe :_77(1 _po)pf

.{_ res (L= 1)) (1 —f:(—)?)}

I (R RTRE

p€oc

from which, and the fact that the residue of an analytic function

is zero, we finally arrive at the following.

=(1=po) [1 +p; s@gw(@(_i a>m]

Py dm~’
=(1—-p,)|1 lim
=)+ 2 tim 2

==L+ o )|
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Thus, we have the following. Since we have(s)h(s) = 1— f*(s), differentiating both sides
Corollary 1: For a PCS network with Erlang call-holdingand applying (12), we obtairp (> 0)

times, the probability of a call completion is given by v

PY () (g\p0=1) (g) = — px(p)
. > (1) m0=6) = =)
pe=(1-p,) [1 + (—a) ﬁg( 1)(oz)] 9 5 ?
From this, we obtain the following recursive algorithm to

whereg(™=")(«) denotes the derivative ¢fn — 1)th order. computeg™=1(a):

Whenm = 1, we have

1= f(«)
Mgy =4 \7/
= (1= p)[1 = npsag(o)] 9 =5
ofl— (L= p) (@1 ) o +Z()g<> Jhr=)(a)
this is the same as (8f(= 4 in this case), which is not ¢ (a) = — h(a) (p>0).
surprising because the Erlang distribution is exponential when (14)
m = 1.
Whenm = 2, note that Thus, using (13) and (14), we can easily compyite~")(a)
s) d ( 1— f*(s) ) and hencep. from Corollary 1.
g(s)=—
ds \5[L— (1= ps)f*(5)]
B SO (s) - 2(1 — f*(s)) lll. THE EXPECTED EFFECTIVE-CALL HOLDING TIMES
s2[1—(1—=pe)f(s)]  s*1—(1—ps)f(s)] In the preceding section, we discussed the probability for
(1—ps) (1= f(s)) ) (s) a ca_II to complete. However, this quanUFy doe_s not address
+ S —p) O the time needed for a call to complete. It is desirable to know
! how much time is needed for a complete call to finish, and
Thus, from Corollary 1, we obtain how much time an incomplete call spends using the resource
_ (bandwidth) so that an appropriate pricing scheme can be
pe = (1=po)lL+npsa’y ()] § devised. In this section, we present a solution to this problem.
=(1- po){l _ (= (@) } Similar to the argument in [12], the density function for the
afl = (1= ps)f(e)] effective call-holding time of an incomplete call that is forced
D)/ a4 (1= f* o? to terminate is given b
—a(l—po)npf{ (1)/ : (1= f*(a))/a given by
— (L =pp)f*(a)
* * k-1
P IES SO iV 0=(5) [Z Ao (1= p) (1= )"
(1= (1 =pp)f* ()]
(10) / fC(tC) dt;|
It is observed that as: increases, the computation becomes !
much more involved. We will give a recursive algorithm for (1 4
the computation of("™ () which is needed in Corollary 1. 1_pp P Z_: Fe@) (L =ps)" s
Let
hs) = (L= (L= p)f* (5] ) TS dtc] 15)
Using the formula wherep; = 1 — p, — p. denotes the probability of a call to be
P incomplete ang. is computed in the last section. In the first
(uv)®) = Z ( > ulylr =1 (12) equation, the term under the summation is the density that the
i=0 call is forced to terminate aftg¢ handovers.
we obtain Next, we want to find the Laplace transform gfz) from
which the expected value can be easily obtained. From (15),
RO (a) =a”[L = (1= ps) f* ()] we have
KO () == (1= pp) V(o) oo
Rl i) = [
+ 201 = (1= pp)f*(a)] 0
K () = —a?(1 = pp) () — da(l = ps) £ (a) _a —mpf /m S ) (1 py )
+ 21— (1= p)f* (@)

WP (@) = —a” (1= ps ) P (@) = 2pa(l — ps ) £~ (a) / £.(t,) dt, dt
—pp—1)(L—pp)f P~ (a), p>3. (13)
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(1 — Do )Pf Z Hiee Jr(s)estd plane are those of*(—s + z), i.e., {z + p|lp € 0.}. As in the
: 271'_] . RAS)E A8 last section, we obtain the following.
Theorem 2:

(1— (1) dt . 1—p,
b [ it ] AL

_(d=po)p T | & _ . (_ _

Sit f/ / S Fi(s) (1= py)t! Res LSO s+ =1
piT] - k - =t s(s = 2)[L = (L=ps)f*(s)]
=2t g [/ £, dtc] dt Now, assume that the call-holding times are Erlang dis-
tioo tributed with parametefrn, ). Then f7 (s) = (a/(s + «))™.
(A =pops / ! Let
T 2y o— 1— f*(s)

s) = . 19
R T () 19

~ [Z T p s >]’“-1<1—pf>k-1]

Then, from Theorem 2, we have

I:I_lz t - () = _77(1 - po)pf
el >ds[/ fc(tc)dtc] dt 6 (7)== T ppstif.;g()
_ (L=po)psn T a .
a 2pﬂf.7f / / <—5+Z+a> !
| [Z 1_{:*(8) [f*(s)(l—f’f)]k_1] (1 —p,)p
= oo =—(-1)" @ L~ Po)Py
L=t g |:/ fc(tc)dtc] dt pi
- Res 91(5)
(1—1’0 Pfﬂ/ /UHOO = f* 1—f(s) s=zta (s —2)[s — (24 a)]™
2p;my o—joo :(_1)m_1w i jm—1
et ds m—Dlp;  s—zta dsm—1
T 1—Pf)f*() N PR 0 (s)
| e ] o= or e
c c ) (] — 0)p
' Rl (it 20
_ (L=po)psn 1— f*(s) (m—1)lp;  s—sta

otjoo
2y /a_joo s[L—(L—ps)f(s)]

{/Om (5=t [/100 (1) dtc] il ds.  (6)

Similar to the argument in the last section, we have

/ e<‘—2>f/ fo(t.) dt, dt
0 t

1 1 o
-1y / (= g
s—z s5—Z Jy

_ f*(—s—i—z)—l.

5§ —Z

Taking this into (16), we obtain

SR CE 5 O A S 0
9 (2) = 27 /U_].OO s[1—=(1—=ps)f(s)]
. Md (17)
Note that
lim 2L i)

s0s = z is a removable singular point [11] of the integrand of

[ 1
Tt [T g <5>]
m—1

ol =popr .
=(-1m ! A 22
e T N DD

i=0

7))

m—1
( 1)m 1« 77(1 p'(’)pf lim
( )p s—z4+a izo
m=1\ (=17 m-1-p)
() e

= (—1)"" el

(m —1'pzpfz< )

7=0
RCRIF Ly
aj+1 1

—Po)Py Z CV)’” - <1m—1—j>(z+oz)

(= +a)

1—p,, Py (¢
g g z+a. 20
= _]' 1 ) ( )

(17). Thus, the poles of the integrand in the right half compldxinally, we arrive at the following.
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Fig. 2. Timing diagram for the effective call times of a complete call: the call completes faftemdovers.

Theorem 3:For a PCS network with Erlang-distributed _ (1 = po)ps
call-holding times, the Laplace transform of the density func- a(l=po —pe)[1 = (1 = ps)f(a)]
tion of the effective call-holding time of an incomplete call 1— f(a) pff*m(a) ”
's given by { z 1—(1—pf>f*<a>}' N
1 _
0 (2) = Po)Ps Z (]) (z + ) (21) This is the same as in [12], where a different approach is
1—190 Pe 25 used. Using (8) in (24), we obtain
the expected effective call-holding time of an incomplete call T 1 pr (@)
s given by e T F@Il = (= )]
T = _ = popy Z (@) (22) Since f*("(a) < 0 and0 < f*(a) < 1, we haveT} < 1/a,
L=po —pe =0 i.e., the expected effective call-holding time of an incomplete

call is less than the expected noninterrupted call-holding time.

and the variance of the effective incomplete call-holding times
SForm > 1, we can also give a recursive algorithm as before

's given by ) to computeggp)(a) which is needed in (22). Let
= doe (_ﬁ)] 5+ e) (s) = sl = (1= )" () @5)
: o
o= pops 1 (]+1) 2 Then, we have
T S S| @ o —an e

() = —afl — (1) 1—(1— *
Proof: Equation (22) can be obtained by noticing that . (@) all=p)f™ () + {1 = (1 =pr)f (e)]

T, = Z( )(0). Equation (23) can be proved by the following h(e) = =a(l = py)f ()
relationship:var (X) = E(X?) — E(X)? for any random —p(l=p) 7" (),  p>2 (26)
variable X. and
Remark: In fact, from (21), we can easily find all moments 0,  _1—=f"(a)
of the effective call-holding time of an incomplete call, which g (@)= hy (o)
is easily given by letl; (k) denote thekth moment p—1 \
kﬂ(l—po pf Oé)] (]+k) f*(P)(OZ)‘i‘Z( > ()( )h(P Z)( )
S h A TP U
k>1. (p>0). (@7
Whenm = 1, the Erlang distribution is the exponentialthys, using (26) and (27), we can easily compyfe ' (o)
distribution. In this case, we have (p =1,2,---,m), and henc&; from Theorem 3.
. n(1 —po)py Next, we study the expected effective holding time for a
HOE T—p, —p. 1(z +a) complete call. The timing diagram is shown in Fig. 2, in
and ’ which the call is completed when the portable is in déll

t. represents, as before, the effective call-holding time for a

7, = M= Po)py 1(0) complete call. If = 1,0 < t. < t;, while if k' > 1,
- l=p,—p. tidtotFtp_y <t.<t,+to+ -+t Letk =k —1;



FANG et al: CALL PERFORMANCE FOR PCS NETWORK

then we have

for k =0,
for k > 0,

b+ttt
<t. <ty +ilo+-Flpg.

Using a similar argument in [12] (or a simple cond|t|0na}c
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—fktc/ £(7) dr—/ RO f(t — 1) dt

= filte) = fulte) * f(t.)

(29) where * denotes the convolution operator; hence,
Laplace transform off fk

) [io_y F(r)drdt. s (fi(s) —

f*(s)/s = (1 - ( ))fk( )/s. From (32) and the

probability argument), we can obtain the density funCt'ORe3|due theorem, we have

g.(t.) of the effective call-holding time of a complete call

given by W (2)

g:(1,) = U(t,) + W(t,) (30)

vie) = (22) [0 [ m| e

w [ ]

Se®) (1 - pf)kf(r) dr dt] . (32)

U(t.) corresponds to (28) and(¢.) corresponds to (29),
where(1—p,) is the probability of nonblocking, and — py)
is the probability of no forced termination. Equation (30) can
be derived fromP(t. < z) = X2, P(t. < z,k) where
P(t. < x, k) denotes the probability that the call is completed
in cell k41 and the effective call-holding time does not exceed
z. Rigorous derivation can be obtained following a similar
argument in [13].

We first find the Laplace transforms éf(¢.) and W(t.).
From (31) and the Residue theorem, we have

U (z) = /000 e~*eU(t,) dt

1 _ o (o) (o)
= ( p ) / e—ﬁcfc(tc)(/ T(t]) dt]> dt(.
Pe 0 te
_ 1- po) /OO —zte 1
B ( Pe /) Jo Jolte) 525 27y
. /0-+]00 ﬂeStc ds dt
og—joo s ‘
_(l=p) L /°° L—r(s)
B Pe 27Tj o—joo s
([ ) as
0

C(1=po\ L [THT s — (1 f(s)
_< Pe ) 27Tj ~/a—joo 5
fi(z—s)ds

:_<1 —po) Reg * 11— f(s))
Pe s=z24p 52

pPE€ETe

fi(=s+ ). (33)
Note that

d;lc [/01 Ji (1) t: f(r) dr dt]

= / e e W(t,) dt
0

1 —p, . - e—7te
( );1 pr) /0 ft)

. [/0 fu () - f(r)dr dt] dt,

= (22) St
p. ) &
1 o4joo 1— f*( ) etc
. [% /Hm 2 (s)e ds] dt,

-(“) /f e [
=L [i fi(s
- (M) [ s [

[ L) [i[(l ) <s>]k-1]

k=1

1 —pf _1] e'le ds di,

et ds dt,

- <n(1 _%EE—% | e
otjoo _ p(e)]2
I

1 t
. e*'e ds di,
L—(1—ps)f(s)

_ (n(1=po) 1—pf 7 (5)]°
=) L

0']00

/ em(mrHe f (t,) dt, ds
0

1 1—Pf )f*(s
_< n(1 = po) 1—Pf> 7
N 27Tp€.] o— ]oo

[L—f(s)]

'52[1—<1—pf>f*<>]f( sz)ds

:_<77(1_P0)(1_Pf)> Res
pe ot
Lt ) VRIS (34)

s? 1= (L=p)f*(s)]

From (33) and (34), we finally obtain the following.
Theorem 4: For a PCS network, the Laplace transform of
the density function of the effective call-holding time of a
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complete call is given by . [gg’”“)(a) +(1 —pf)nggm“)(a)]
1- s = (L= f(s)) O P 4 () 4 (1 ™ (@) (40)
gﬂ@=‘< p%>lﬁ?'_JL§r———fbf+@ [(m = 1)tpc]? =7 ’
‘ "peoe

Remark: In fact, all moments of the effective call-holding
time of a complete call can be obtained from (38), and are
given as follows (letl;.(k) denote thekth moment):

_ L= f ()2 (=s+2)
+n(1—py) sfﬁ? s2[1 — (1 — py)f*(s)]

PE€T.

. (35)

Suppose now that the call-holding times are Erlang T(k):(—l)m+k_1am(1—l>o)
distributed with paramete(m, o) with Laplace transform ‘ (m—1)lp.

fo(s) = (a/(s + a))™. Let g (@) 4+ (1= pp)ngd D (),
s—n(l—f*
s = LD (36) b2t
[1—f*(s)]? Whenm =1, i.e., the call-holding times are exponentially
g3(s) = S —(1—p)f~(9)] (37) distributed, we have
Then, we have ) T = _a(lp— Po) [ggl)(a) + (1 — p; )gél)(a)]
28— S _ (= po)o—afafVa) +2(1— £(@)))
‘ m pea?
~ Res w(#) 11— po) (L= ps)[1 — *()]
T e T pall= (= p) (@)
((—c)v)ﬂfzzEg LoEra | { )+ 1—ﬁf— Pf()f1 @ }
~ —QJT”NwHw This i ined i i i i
m : is is obtained in [12] using a different approach. This
and formula can be further simplified using (8) as follows:
res L= F (O fr(=s+2) *
s=otr s [L=(1=ps)f*(s)] T, = (1;71’0) {l _n [f*m(a) 4 w] }
N .3(5) e « « «
= (—a)” Res — % ___ a(l—p,) [ P
oy ) LB -
S e AR e D) z 4+ a). — *((a
(1)1 % (z+a) . {2[1 C/: ()] + () + 1_zxf_p ()fl(a)}
From these and Theorem 4, we obtain the following. l—p, (1 p !
Theorem 5:For a PCS network with Erlang-distributed = . {— Tal-a _f V7 (@)]
call-holding times, the Laplace transform of the density func- pe O; “ pfm “
tion of the effective call-holding time of a complete call is .[2(1 — f(a)) p 7 ]}
given by o L—(L=pp)f ()
m—1,m _1l-p nps (1= 1" () }
-1 La™(1 —p, = —
1) = AT
_ ‘ . 1—p, 1= f*(a *(1) (@
e () @y -G LS L), et
the expected effective call-holding time of a complete callis 1 (1 —p,)nps [(1 = f*())
given by Ta P o
T, =—¢"(0 4wl ] (41)
= G0 = 20) 1) ) (1 = py ™ (o) e
(m = 1)ipe (39) It is observed from simulation in [12] th&f. < (1/«) when

the cell residence times are Gamma distributed. Using this

and the variance of the effective complete call-holding timéluation, we can prove this analytically for general cell-
is given by residence distribution. We want to show that the tdrrin

the last equation of (41) is nonnegative. Let
O ey

’ (m—=1)lp, Afa) = [1= F(@)][L = (1= pp)f ()] + ap; ().
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Since f*(0) = 1, A(0) = 0. Also, we have with the following density function and Laplace transform:
d ()=t
@ —9(] — P D) =2 = >0,
7o M) =2(1 = pp)(1 = S (@)= ()] ® )
(2) "
+aps f7(@) >0 f*(s):( 2] >
s+

where we have used that< f*(a) < 1, £V (a) <0, and
f*®(a) > 0. Thus, A(«) is an increasing function; hence
A(a) > A(0) = 0, from which we conclude that the terf
in the last equation of (41) is nonnegative. Thus, for any ce
residence distribution, the expected effective call-holding time

which have mear /5 and variance” = 1/(y5?). The call-
'holding times are Erlang distributed with the following density
]’antion and Laplace transform:

B (mﬂ)mtm—le—mut

of a complete call is always less than the expected call-holding f(t) = (m—1)! ’ 120,
time. . mu
When m > 1, the closed-form formula may be quite fi(s)= (5 T mﬂ>

involved. However, as before, recursive formulas can be easily

developed for the computation of”’(e) and g{’(a). For Which have meari /5 and variancel” = 1/(mpu?). We will
ggp)(a)’ we have investigate how the probability of a call completion and the

expected effective call-holding times are affected by some

0y,  _a—n(l—=f(a)) parameters such as the means and variances. In this section, we
g> (e) = a2 use the commonly used average call-holding titjig = 1.76
M 1+ () — QQQ;O)(Q) min [10]; we usem = 2 when we varyv, while we use
g3 (o) = o? v = 1.5 when we varym.
S0 (a) — 2™ (o) — RO As mentioned earlier, the lognormal distributions have been
ggp)(a) = nf" () — 2pag; ((;) p(p = Dgs () . proved to be a good approximation to the wireline call-holding
«

(42) time distribution [1]. Statistically, both the lognormal distribu-
tions and Gamma distributions (including Erlang distributions)

For ggp)(a)’ let h(s) = s2[1 — (1 — ps)f*(s)] as defined in have the same gapamty to apprommat_e the_z measured data
}{]; the assumption of Erlang call-holding times seems to

be a reasonable replacement of the lognormal distributions

As observed earlier, we can analytically prove that idpr the performance analysis. An important advantage of the

exponentially distributed call-holding times, the expected e_lf:__rlang/Gamma distribution ‘?VGT the Iognormal distribution
fective call-holding times for both a complete call and afp that the Erlang/Gamma distribution has a simple Laplace
migansform, which is a desired property in our modeling.

We first consider the probability of a complete call.

Fig. 3 shows the probability of a call completion versus
inverse of the expected cell-residence time normalized

by p, i.e., the mobility /u, for different values of the

argument can be used to prove this: the effective call-holdiﬁaaping parametey in_ th_e_ Gamma distribution,_while Fig. 4
times are just the “interrupted” call-holding times, and hen monstrates the variability of the call-completion probability

should be “smaller” than the “noninterrupted” call-holdin&‘gainSt the mobilityn/u for various values of the shaping

times. We will verify this observation in the next section. parameterm in the Erlang distribution of the call-holding
times. Whem, is fixed, the variance of the cell-residence times

(the call-holding times, respectively) is uniquely determined
IV. ILLUSTRATIONS AND DISCUSSIONS by the shaping parameter (m). From Figs. 3 and 4, we can
In this section, we present an example to show how gpserve the following properties.
apply our results to analyze the effective call-holding times 1) The call-completion probabilityp. decreases as the
and attempt to draw some general conclusions. In this section, expected cell-residence timé /) decreases. This is
we assume that the cell-residence times are Gamma distributed reasonable because, for a fixed mobile route, i.e., the

p=>2

(11), h?)(«) can be computed as in (13), and as shown
(43), found at the bottom of the page.

incomplete call are less than the expected call-holding ti
However, it is difficult to analytically prove from the formula
for m > 1 that the expected effective call-holding times
for both a complete and an incomplete call are less th
the expected call-holding timé&/x. The following intuitive

o _ [L=Ff (o))
93 - h(a)

—2£40) () + Zi% (1;) PO (a) =9 (a) — pz;é <§> 9§ (@) h0=9) (o)

g = p>1 (43)

h(«) ’
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Fig. 4. Probability of a call completion: varying.. Fig. 5. Effective call-holding time of an incomplete call: varying

2)

3)

distribution of the cell-residence time is fixed, then the 4) There is a significant difference between the for
expected cell-residence time is fixed, and the longer the ' = 1 and that form > 1; this may be due to the
expected call-holding time, the more often the handovers ~ fact that the exponentially distributed call-holding times
happen, and the greater the chance the call will be (m = 1) are memoryless.

dropped. This is equivalent to saying that for a fixed call- We remind readers that the above properties hold when the
holding time pattern (or the fixed expected call-holdingew call-blocking probability, and the handoff call-blocking
time), the probability of dropping the call increases asrobability p; are fixed (the second-level modeling); this is
the expected cell-residence time becomes smaller; henite situation when one is asked to compute the call-completion
the probability of a call completion decreases as tigrobability for a PCS network already in operation. Of course,
expected cell residence time increases. call-completion probability is also dependent on some other
The call-completion probability decreases as the vafactors such as the number of channels and carried traffic; this
ance of the cell-residence times or the variance of tldependency is implied in the new call-blocking probabifity
call-holding times decreases (i.e.,/a®r m increases). andp;. By varying the values of, andp;, we can observe
When the expected cell-residence time is large (i.e¢he properties of call-completion probability.

wheny is small), the effect of the variance of the call- Next, we study the effective call-holding times.

holding times on the call-completion probability is not Figs. 5 and 6 show the expected effective call-holding time
significant. This is why the call-completion probabilityof an incomplete call. From these figures, we obtain the
p. alone is not a good evaluation measure for a PG8llowing observations for the expected effective call-holding
network, and the effective call-holding times are needetimes of an incomplete call.
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Normalized expected value Normalized expected value
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Fig. 6. Effective call-holding time of an incomplete call: varying Fig. 7. Effective call-holding time of a complete call: varying

1) Tip <1, ie.,T; < 1/p. This implies that the expected 5) There is a big difference between the casesfor: 1 (the
effective call-holding time for an incomplete call is no exponential distribution case) and the case for> 1
more than the expected noninterrupted call-holding time, which may be contributed from the memoryless property
which is consistent with the observation we made based of the exponential distribution

5 ;n.Ol:jr Intuition. th bilit _ 6) The variance of the effective call-holding time of an
) Ti is decreases as the mobility paramefén increases. incomplete call decreases as the mobility increases; for

This is intuitive because whem/u increases, the small mobility 5/p, it increases as the variance of

cell-residence times decrease, more handovers are . .
o the cell-residence times decreases, however, for large
undertaken, more often the call is incomplete, and . : .
. . . mobility 7/, it decreases as the variance of cell-
hence the incomplete call-holding times tend to be . :
residence times decreases. It always decreases as the

shorter. variance of the call-holding times decreases
3) For small mobilityr/x, the expected incomplete call- 9 '

holding time decreases as the variance of the cell resi-Finally, we observe the expected effective call-holding time
dence times increases, while for large mobiljfiy., this 0f @ complete call.

4)

is reversed.

(which may be an impractical range).

Figs. 7 and 8 show the results for the effective complete
T; decreases as the variance of the call-holding timé&8ll-holding times. We have the following observations.

decreases for a longer range of mobility. This relation- 1) T.x < 1, i.e., 7. < 1/u. This implies that the expected
ship will be expected to reverse for very large mobility

effective call-holding time for a complete call is no
more than the expected noninterrupted call-holding time,
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Fig. 8. Effective call-holding time of a complete call: varying.

As mentioned in the Introduction, the study of the effective
call-holding times can support the provider’s billing activity.
Lin and Chlamtac [12] investigated the billing problem for
the case when call-holding times are exponentially distributed.
Similar conclusions can be drawn for our cases here. For
details of this application of our results to pricing strategies,
the interested reader is referred to [12].

V. CONCLUSIONS

All previous performance studies of PCS channel alloca-
tion assumed that the call-holding times are exponentially
distributed. While this assumption can be justified for ex-
isting cellular systems where the wireless calls are charged
based on the lengths of the call-holding times, future PCS
systems may exercise flat-rate billing programs, and therefore
a more general distribution is necessary for modeling the call-
holding times. In this paper, we use a general distribution
to model the call-holding times, and derive general formulas
for the probability of a call completion and the expected
effective call-holding times of both complete and incom-
plete calls. By specifying the call-holding time distribution
to be Erlang, we obtain easy-to-compute recursive formulas
to compute the above performance metrics. Our results can
be directly applied to pricing strategies for the emerging PCS
networks.
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