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Abstract—This paper addresses the throughput maximization
problem in wireless mesh networks. For the case of cooperative
access points, we present a negotiation-based throughput max-
imization algorithm which adjusts the operating channel and
power level among access points automatically, from a game-
theoretical perspective. We show that this algorithm converges
to the optimal channel and power assignment which yields the
maximum overall throughput with arbitrarily high probability.
Moreover, we analyze the scenario where access points belong to
different regulation entities and hence non-cooperative. The long-
term behavior and corresponding performance are investigated
and the analytical results are verified by simulations.

Index Terms—Wireless mesh networks, potential games, equi-
librium efficiency, pricing

I. INTRODUCTION

METROPOLITAN wireless mesh networks gain enor-
mous popularity recently [1]. The deployment of wire-

less mesh networks not only facilitates the data communica-
tion by removing cumbrous wires and cables, but also provides
a means of Internet access scheme, which is a further step
towards the goal of “communicating anywhere anytime”. No
matter where the location is or the purpose that the wireless
mesh network is deployed, the same conceptual layered archi-
tecture is utilized. Figure 1 illustrates the hierarchical structure
of wireless mesh networks. The peripheral nodes are the access
points (AP) which provide wireless access for the end users,
or clients. Each AP is associated with a mesh router. They
can be manufactured in a single device with two separate
functional radios [2] [3], or simply connected with Ethernet
cables [4]. The mesh routers are capable of communicating
with each other via the wireless backbone. The central node
is a gateway mesh router which functions as an information
exchange between the wireless mesh access network and other
networks such as the Internet. Both the routing algorithmic
design and channel assignment for backbone mesh routers are
interesting issues and attract tremendous attention [5]–[7].
In this paper, we investigate an important issue which needs

to be solved in wireless mesh networks. As in Figure 1, the
AP and its associated clients form a regular WLAN cell,
which operates with the de facto IEEE 802.11 standards. The
throughput of one cell depends on the signal-to-interference-
plus-noise ratio (SINR) experienced at the receiver where the
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Fig. 1. Hierarchical structure of wireless mesh access networks.

interference mainly comes from the other operating cells. For
example, if each of the cells operates with IEEE 802.11b
standard, we can utilize a different frequency band such as
IEEE 802.11a or WiMAX [8], for the inter-cell communica-
tion among mesh routers and hence causes no interference to
intra-cell transmissions. However, the co-channel interference
from other operating cells is inevitable due to the limitation
of available transmission channels, e.g., 3 non-overlapping
channels in our example. Most current off-the-shelf APs are
capable of adjusting the transmission rate according to the
measured channel condition which is indicated by transmis-
sion bit error rate (BER). Given a particular modulation
scheme, BER is uniquely determined by the SINR experienced
by the receiver of the link. Generally speaking, higher SINR
value yields lower BER and higher data rate. Therefore, the
mutual interference dramatically degrades the transmission
rate of each cell and the aggregated throughput of the whole
network [9]. Each AP attempts to tune the physical parameters
such as operating frequency1 and transmission power in order
to maximize the SINR and hence the throughput. In our work,
we investigate the issue of maximizing the overall throughput
of the network, defined as the summation of throughput of all
cells, by finding the optimal frequency and transmission power
allocation strategy. Also, due to the concern of scalability and
computational complexity, we prefer a decentralized solution
to the throughput maximization problem.
Unfortunately, the throughput maximization problem is

challenging. For example, the frequency and power selected
by one AP affects the SINR of other APs, and vice versa.
Worse yet, if the APs belong to different regulation entities,
the non-cooperative APs may only want to maximize their own

1We will use frequency and channel interchangeably.
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cell’s throughput rather than the overall one. Therefore, the
throughput maximization problem is coupled and finding the
optimum solution is not straightforward. Moreover, traditional
site-planning methods in cellular networks are not feasible
either. For example, the network administrator may want to
add more APs when more users are joining the network or
disable some APs where the associated users fail to pay the
bill. The network topology is not static, although the changes
take place slowly. Therefore, the demand for adaptability and
light computation burden requires a decentralized solution for
the throughput maximization problem.
In this paper, we analyze the throughput maximization

problem for both cooperative and non-cooperative scenarios.
In the cooperative case, we model the interaction among all
APs as an identical interest game and present a decentralized
negotiation-based throughput maximizing algorithm for the
joint frequency and power assignment. We show that this
algorithm converges to the optimal frequency and power
assignment strategy, which maximizes the overall throughput
of the wireless mesh access network, with arbitrarily high
probability. In the cases of non-cooperative APs, we prove
the existence of Nash equilibria and show that the overall
throughput performance is usually inferior to the cooperative
cases. To bridge the performance gap, we propose a linear
pricing scheme to combat with the selfish behaviors of non-
cooperative APs.
The rest of this paper is organized as follows. Section

II outlines the system model we considered in the paper.
The cooperative wireless mesh access networks and the non-
cooperative counterpart are investigated in Section III and Sec-
tion IV, respectively. An extension of our model is discussed
in Section V and the performance evaluation is provided in
Section VI. Finally, Section VII concludes this paper.

II. SYSTEM MODEL

In this paper, we consider a wireless mesh access network
illustrated in Figure 1. Each AP and corresponding clients
form a cell. Without loss of generality, we assume that all the
cells operate with IEEE 802.11b standard and the interference
exclusively comes from the cells with same frequency. Fur-
thermore, the distance between cells are sufficiently large in
the sense that the accumulated interference experienced at the
receiver only affects the SINR value and not block the whole
transmission. We assume that the channels are slow-varying
additive white Gaussian noise (AWGN) channels. The channel
gains of each pair of nodes are assumed to be constant over the
time period of interest. As we are interested in the maximum
achievable throughput, we consider the worst case where all
APs are saturated. In other words, the APs always have packets
to transmit and they can communicate with each other via the
backbone mesh routers with negligible delay. Also, we assume
that the APs are transmitters and clients are receivers due to
the dominance of downlink traffic, as assumed2 in [11] [12]
and [13]. We only focus on the joint frequency and power
allocation where the contention behavior is less relevant and
thus omitted. Therefore, we can simplify our model as that

2The dominance of the downlink traffic is verified by the experimental
measurements in [10] as well.

all the APs are transmitting data to the associated clients
consistently. We assume that each AP is capable of adjusting
the operating frequency and power as well as acquiring the
SINR values measured at the client by short ACK messages.
Let us first consider the simplest case where there is only

one cell in the wireless mesh access network, i.e., a single
WLAN. In the following two sections, we assume that the
APs have pre-determined and fixed modulation and coding
schemes. In other words, upon receiving the SINR value3

measured by the client, denoted by γ, the AP tunes the
physical parameters in order to maximize the throughput,
which is defined as

R∗(γ) = max
Ri

Ri × (1 − Pe(γ, Ri)) (1)

where Ri is the raw data rate specified by the IEEE 802.11
standard and R∗, i.e., the throughput of this cell, is a non-
decreasing function of received SINR γ. Pe is the error
probability of the transmission channel, which is a function
of SINR value providing the modulation and coding scheme
[14]. Apparently, if there is only one cell in the mesh access
network, the AP will boost the power as much as possible to
increase the value of γ and thus the throughput is maximized.
We now consider the cases where N cells coexist in the

wireless mesh access network. Let pi and fi denote the
power and frequency for the i-th AP, respectively. We use
p = [p1, p2, · · · , pN ] and f = [f1, f2, · · · , fN ] to represent the
power and frequency assignment vector for all N APs. There-
fore, for each cell i, the value of SINR4, i.e., γi, is a function
of (p, f). The throughput of one cell depends not only on the
power level and frequency of itself, but also those of other
APs in the network. Therefore, the throughput maximization
problem is coupled and by no means straightforward.
In the following two sections, we will discuss the sce-

narios where the APs are cooperative and non-cooperative,
respectively, under the assumption that the modulation and
coding schemes of APs are pre-loaded and fixed. In Section
V, we will extend our analysis by considering the scenario
where the APs are capable of adaptive coding and modulation.
The performance evaluation of all scenarios are provided by
simulations in Section VI.

III. COOPERATIVE ACCESS NETWORKS

In this section, we consider the scenarios where all APs
in the wireless mesh access network are cooperative. The
transmission power of APs are quantized into discrete power
levels for simplicity. From the system point of view, we want
to find a joint frequency and power level assignment such that
the overall throughput in the whole network is maximized. Our
objective function can be written as

Unetwork(p, f) =
N∑

i=1

R∗
i (γi) =

N∑
i=1

R∗
i (p, f) (2)

where R∗
i is defined in (1).

3Although there is no interference in this case, we adopt SINR instead of
SNR for notation consistency.
4Throughout the paper, the term SINR of the cell represents the average

SINR among all the clients in the cell, which can be obtained by a moving
average of the reported SINR value.
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However, finding the optimal frequency and power assign-
ment which maximizes (2) is non-trivial. The interdependency
makes the problem coupled and difficult to solve by traditional
optimization methods [15]. A combination of (p, f) is named
a profile and a naive approach to solve the problem is to inves-
tigate all profiles exhaustively. However, this is impossible in
practice. For example, in a medium-size wireless mesh access
network with 20 APs where each has 3 frequency channels
and 10 power levels, the search space is (3 × 10)20 profiles!
Obviously, the centralized algorithms are not favorable in the
wireless mesh access network due to the scalability concern.
Next, we will introduce a decentralized negotiation-based
throughput maximization algorithm, from a game-theoretical
perspective.

A. Cooperative Throughput Maximization Game

The APs in the wireless mesh access networks are consid-
ered as players, i.e., decision makers of the game. We model
the interaction among APs as a Cooperative Throughput Max-
imization Game (CTMG), where each player has an identical
objective function Ui, as

Ui(p, f ) = Unetwork(p, f) =
N∑

j=1

R∗
j (p, f) , ∀i. (3)

For each player i, all possible frequency and power level
pairs form a strategy space Φi which has a size of c×l, where
c is the number of frequency channels available and l is the
number of feasible power levels. Define

Ω = Φ1 × Φ2 × · · · × ΦN . (4)

Then, the N players autonomously negotiate about the joint
frequency-power profile in Ω in order to find the optimal
profile which maximizes (3). However, due to the interde-
pendency among N players caused by mutual interference,
one question of interest is that whether this negotiation will
eventually meet an agreement, a.k.a., a Nash equilibrium. The
importance of Nash equilibria lies in that a possible steady
state of the system is guaranteed. If the game has no Nash
equilibrium, the negotiation process never stops and oscillates
in an everlasting fashion. In addition, we are concerning about
what the performance of the steady states would be, if exist, in
terms of overall throughput of the whole network. We provide
answers to these questions in the following.
Lemma 1: The CTMG is a potential game.
A potential game is defined as a game where there exists a

potential function P such that

P (a′, a−i)−P (a′′, a−i) = Ui(a′, a−i)−Ui(a′′, a−i) ∀i, a′, a′′

(5)
where Ui is the utility function for player i and a′, a′′ are two
arbitrary strategies in Φi. More specifically, we have a′ =
[p′i, f

′
i ] and a′′ = [p′′i , f ′′

i ]. The notation of a−i denotes the
vector of choices made by all players other than i. Potential
games have been broadly applied in modeling the interactions
in communication networks [16]. The popularity is on account
of the nice properties of potential games, such as

– Potential games have at least one Nash equilibrium.

A DB C

1 2 12

1 2 21

Fig. 2. An illustrative example of multiple Nash equilibria.

– All Nash equilibria are the maximizers of the potential
function, either locally or globally.

– There are several learning schemes available which are
guaranteed to converge to a Nash equilibrium, such as
better response and best response [17] [18].

For detailed description about potential games, readers are
referred to [17] and [19], which investigate the potential game
theory in engineering context.
We observe that in the cooperative case, each player has the

same utility function as in (3), which is the overall throughput
of the network. Apparently, one potential function of the game
is the common utility function itself, i.e.,

P = U1 = U2 = · · · = UN . (6)

In fact, the games where all players share the same utility
function are called identical interest games [20], which is a
special case of potential games and hence all the properties of
potential games can be applied directly.
In the literature, both best response and better response

are popular learning mechanisms that have been utilized in
potential games [21]–[23]. At each step of the best response
approach, one of the players investigates its strategy space and
chooses the one with maximum utility value. This updating
procedure is carried out sequentially. The primary drawback
of the best response is the computational complexity, which
grows linearly with the cardinality of the strategy space.
An improvement of the best response is the so-called better
response, where at each step, the player updates as long as the
randomly selected strategy yields a better performance. The
dramatically reduced computation is the tradeoff with the con-
vergence speed. Both the best response and the better response
dynamics are guaranteed to converge to a Nash equilibrium
in potential games [16]. However, there may be multiple
Nash equilibria in a potential game and the performance of
different equilibria may vary dramatically. Therefore, although
the best response and the better response could guarantee the
convergence, they may reach an undesirable Nash equilibrium
with inferior performance.
Let us consider an illustrative example in Figure 2. There

are four labeled APs in the network. A and B are close to
each other, and so are C and D. Without loss of generality,
we assume that the APs have the same power and only adjust
the operating frequencies in an order of A → B → C → D
to avoid the interference. The adaptation continues with the
best response mechanism until a Nash equilibrium is reached.
Suppose that there are two frequency channels available, say
1 and 2. First, A randomly selects one channel, say 1. B will
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pick 2. Next, C has the chance to update. Since C is closer to
B than A, channel 1 will be selected. Finally, D will choose
channel 2. By inspection, we claim that profile 1 − 2− 2− 1
is a Nash equilibrium since no player is willing to update
its strategy unilaterally. Meanwhile, we observe that another
profile 1 − 2 − 1 − 2 is also a Nash equilibrium. Obviously,
the second Nash equilibrium generates much less interference
than the first Nash equilibrium and hence yields superior
performance in terms of overall throughput. However, the best
response only leads to the less desirable Nash equilibrium.
In fact, the existence of multiple Nash equilibria is observed

in [21] by simulations. However, the authors fail to specify
which one would be the steady state of their game due to the
limitation of the best response, even in a statistical fashion.
Recall that the Nash equilibria are the maximizers of the
potential function in potential games, converging to an inferior
Nash equilibrium analogously indicates being trapped at a
local optimum of the potential function. However, it is the
global optimum, i.e., the optimal Nash equilibrium, that is the
desirable steady state which we are yearning for.
Next, we introduce a negotiation-based throughput max-

imization algorithm (NETMA) which can converge to the
optimal Nash equilibrium with arbitrarily high probability.

B. NETMA- NEgotiation-based Throughput Maximization Al-
gorithm

We assume that the APs are homogeneous and each has
a unique ID for routing purpose. Each AP maintains two
variables Dpre and Dcur. The AP has the knowledge of its
current throughput and records it in Dcur. Whenever there is a
change of throughput caused by exterior interference5, the AP
sets Dpre = Dcur and resets Dcur with the newly measured
throughput. When the wireless mesh access network enters
the negotiation phase6, NETMA is executed. The detailed
procedure of NETMA is provided as follows.

NETMA:

– Initialization: For each AP, a pair of frequency and
power level is randomly selected. Set Dpre = Dcur, the
current throughput.

– Repeat:
1) Randomly choose one of the AP, say k, as the
updating one, i.e., each AP updates with probability
1/N .

2) For the updating AP k:

a) Randomly chooses a pair of frequency and
power level, say f ′ and p′, from the strategy
space Φk. Then the AP computes the current
throughput with f ′ and p′ and records it into
Dcur.

b) Broadcasts a short notifying message which
contains its unique IDk to all the other APs
in the mesh access network.

5We assume the channel is slow-varying and the change of throughput for
a single cell is due to the mutual interference only.
6To reduce the negotiation overhead, a negotiation phase can be initiated

by the network administrator after a new contracted user joins or a current
user terminates the service, or on a daily basis.

3) For each AP other than k, say j:

a) If the γj value changes, records the previous
throughput into Dpre and the current throughput
into Dcur. Remains unchanged otherwise.

b) Upon receiving the notifying message, a three-
value vector of [Dpre, Dcur, IDj] is sent back
to the k-th AP.

4) After receiving all the three-value vectors by count-
ing the identifiers IDj , the k-th AP computes the
sum throughput before and after f ′ and p′ are
selected, which are denoted by Ppre and Pcur.

5) For a smoothing factor τ > 0, the k-th AP keeps
f ′ and p′ with probability

ePcur/τ

ePcur/τ + ePpre/τ
=

1
1 + e(Ppre−Pcur)/τ

(7)

6) The k-th AP broadcasts another short notifying mes-
sage, which indicates the end of updating process
and a specific number δ, to all the other APs.

– Until: The stopping criteria Γ is met.
Note that in step 6, the specific format of δ depends on the

predefined stopping criterion Γ. For example,
• If the stopping criterion is the maximum number of
negotiation steps, δ is a counter which adds one after
each updating process.

• If the stopping criterion is that no AP has updated for a
certain number of steps, δ is a binary number where 1
means updating.

• If the stopping criterion is that the difference between
sum throughput obtained in consecutive steps are less
than a predefined threshold ε, δ is the calculated sum
throughput after each updating process.

We can have other stopping criteria Γs and corresponding
formats of δ as well.
The NETMA algorithm is inspired by the work in [24],

where a similar algorithm was first introduced in the context
of stream control in MIMO interference networks. The distin-
guishing feature of this type of negotiation algorithms, from
the better response and the best response, is the randomness
deliberately introduced on the decision making in step 5. The
rationale can be illustrated in Figure 2 intuitively. If there is no
randomness in decision making , i.e., τ = 0, the four APs may
get trapped at a low efficiency Nash equilibrium 1−2−2−1.
However, with the randomness caused by nonzero τ , they may
reach an intermediate state 1 − 2 − 2 − 2 and arrive at the
optimum Nash equilibrium 1−2−1−2 eventually. Moreover,
the updating rule in step 5 also implies that if f ′ and p′ yield
a better performance, i.e., Ppre − Pcur < 0, the k-th AP will
keep them with high probability. Otherwise, it will change
with high probability.
The steady state behavior of NETMA is characterized in

the following theorem.
Theorem 1: NETMA converges to the optimal Nash equi-

librium in CTMG with arbitrarily high probability.
Proof: The proof of Theorem 1 follows similar lines of

the proof in [24] and [25].
First, we observe that the joint frequency-power negotiation

generates an N-dimensional Markovian chain. Figure 3 illus-
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Fig. 3. Markovian chain of NETMA with two players.

trates the Markovian chain introduced by NETMA with two
players, say A and B. Let x and y be the choices for each
player , where x ∈ ΦA and y ∈ ΦB . In other words, player A
can choose a frequency-power pair from [x1, · · · , xc×l] and
player B can choose from [y1, · · · , yc×l]. Note that at an
arbitrary time instant, only one of the players can update. In
Figure 3, for example, state (x1, y1) can only transit to a state
either in the same row or the same column, not anywhere else.
This is true for every state in the Markovian chain. Let Si,j

denote the state of (xi, yi). We have

Pr(Sm,n|Si,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eP (Sm,n)/τ

2×c×l×(eP(Sm,n)/τ+eP (Si,j )/τ )
,

if m = i or n = j
0,
otherwise.

(8)

where τ is the smoothing factor in step 5 of NETMA and
P (Si,j) is the value of the potential function, i.e., (6), at the
state of Si,j .

Let us derive the stationary distribution Pr∗ for each state.
We examine the balanced equations. Writing the balance
equations [26] at the dashed line, we obtain

c×l∑
k=2

Pr∗(S1,1)×Pr(S1,k|S1,1) =
c×l∑
k=2

Pr∗(S1,k)×Pr(S1,1|S1,k).

(9)
By substituting (9) with (8), we have

∑c×l
k=2 Pr∗(S1,1) × eP (S1,k)/τ

eP (S1,1)/τ +eP (S1,k)/τ

=
∑c×l

k=2 Pr∗(S1,k) × eP (S1,1)/τ

eP (S1,1)/τ+eP (S1,k)/τ . (10)

Observing the symmetry of equation (10) as well as the
Markovian chain, we note that the set of equations in (10) are
all balanced if for arbitrary state S̃ in the strategy space Ω,

the stationary distribution is

Pr∗(S̃) = KeP (S̃)/τ (11)

where K is a constant. By applying the probability conserva-
tion law [27] [26], we obtain the stationary distribution for the
Markovian chain as

Pr∗(S̃) =
eP (S̃)/τ∑

Si∈Ω eP (Si)/τ
(12)

for arbitrary state S̃ ∈ Ω.
In addition, we observe that the Markovian chain is irre-

ducible and aperiodic. Therefore, the stationary distribution
given in (12) is valid and unique.
Let S∗ be the optimal state which yields the maximum value

of potential function P , i.e.,

S∗ = argmaxSi∈ΩP (Si). (13)

From (12), we have

lim
τ→0

Pr∗(S∗) = 1 (14)

which substantiates that NETMA converges to the optimal
state in probability.
Finally, the analogous analysis can be straightforwardly

extended to an N-dimensional Markovian chain and thus
completes the proof.
In NETMA, there is no central computational unit required.

The joint frequency-power assignment is achieved by nego-
tiations among cooperative APs and the maximum overall
throughput is achieved with arbitrarily high probability. The
autonomous behavior and decentralized implementation make
NETMA suitable for large scale wireless mesh access net-
works. Moreover, NETMA has fast adaptability for the topol-
ogy change of the wireless mesh access networks. NETMA
does not depend on any rate adaption algorithms, nor on any
underlying MAC protocols. In our simulation in Section VI,
we use IEEE 802.11b as the MAC layer protocol. However,
it can be easily extended to arbitrary MAC protocol with
multi-rate multi-channel capability, such as IEEE 802.11a.
In addition, even with the existence of exterior interference
source, such as coexisting WLANs, NETMA works properly
as well since the objective of NETMA is to maximize the
overall throughput of the network in the current wireless
environments. The tradeoff between algorithmic performance
and convergence speed is controlled by parameter τ in step
5, where large τ represents extensive space search with slow
convergence. On the contrary, small τ represents limited space
search with fast convergence. Note that the smoothing factor
τ here is analogous to the concept of temperature in simulated
annealing [28]. Therefore, it is advisable that at the beginning
period of the negotiation, the value of τ is set with a large
number and keeps deceasing as the negotiation iterates. We
choose τ = 10/k2 in our simulations, where k denotes the
negotiation step.
In step 1, we require that each AP updates with a proba-

bility of 1/N . For example, we can utilize a random token
mechanism where each updating AP randomly selects an AP
as the next updating AP, i.e., passing the token. Note that in
NETMA, even an erroneous operation happens, for example,
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two APs update at the same time in our case, it only prolongs
the convergence time for NETMA yet does not affect the final
output of NETMA. This is because that such an error, as
verified in [22] via extensive simulations, has no influence on
the statistically monotonic-increasing tendency of the potential
function.

IV. NON-COOPERATIVE ACCESS NETWORKS

In the previous section, we discuss the scenarios where all
APs in the wireless mesh access network are cooperative, and
the overall throughput is maximized by negotiations among
autonomous APs using the NETMA mechanism. However,
cooperation is not always attainable. Although the function-
ality of relaying packets for each other can be achieved by
incentive mechanisms such as [29], the adjustable parameters
inside each cell cannot be enforced and effectively controlled.
The N APs may belong to distinct self-interested users and
they care about exclusively their own throughput rather than
the overall aggregated throughput. In other words, the utility
function of each selfish user is

Ui = R∗
i (γi) (15)

where R∗
i is the throughput of the i-th cell, defined in (1).

Analogous to CTMG, we can formulate the interaction among
N selfish APs as a Non-cooperative Throughput Maximizing
Game (NTMG) where each AP is attempting to find the
frequency-power pair which maximizes its own SINR value
as well as the corresponding throughput. As in the cooperative
case, each player’s utility function depends on the frequency
and power of itself as well as those of others. However, NTMG
is no longer an identical interest game.
Lemma 2: In NTMG, all the APs will transmit with the

maximal power at the Nash equilibrium, if exists.
Proof: The proof of Lemma 2 is straightforward. For a

single player, we have

γi =
pigii∑

k∈Fi(fi)
pkgki + Ni

. (16)

where gij is the channel gain from cell i’s transmitter to j’s
receiver andNi is the Gaussian noise at the i’s receiver. Fi(fi)
denotes the set of cells which operate at the same frequency
fi other than cell i. Note that given other players’ strategies,
γi is a monotonic increasing function of pi and so is Ui.
Assume at a Nash equilibrium of NTMG, the k-th AP has
a power level of pk satisfying 0 ≤ pk < pmax, where pmax

denotes the maximum power defined by MAC layer. The k-th
AP is inclined to increase its power pk in order to yield a
higher value of Ui, which contradicts the definition of Nash
equilibrium. Thus, at the Nash equilibrium of NTMG, if exists,
all the APs will operate at the same power level, i.e., pmax.

Based on Lemma 2, the NTMG can be viewed as a sim-
plified game where each player has the same power and only
adjusts the frequency to minimize the interference. Moreover,
according to (15) (16) and the assumption of uniform envi-
ronment, the NTMG is equivalent to the following simplified

game where each player has the utility function7 as

Ui = −(
∑

k∈Fi(fi)

pmaxgki + Ni) (17)

and Ui is a function of frequency assignment vector f exclu-
sively.
As in the cooperative case, the frequency selection among

N players is mutually dependent. The question arises that
whether this frequency adjusting dynamic converges, or equiv-
alently, whether NTMG has a Nash equilibrium. We provide
the answer of this question in the following theorem.
Theorem 2: There exists at least one Nash equilibrium in

NTMG.
The proof of Theorem 2 can be found in [30].
As shown in Lemma 2, at the equilibrium, the non-

cooperative APs will always transmit at the maximum power
level. This seem to be the best choice for each one of the
APs. However, it is usually not a favorable strategy from a
social-welfare point of view. To bridge the performance gap,
we propose a linear pricing scheme to combat with the selfish
behaviors, i.e., the players are forced to pay a tax proportional
to the utilized resources. For example, we could impose a price
to all selfish APs for the power they utilize. Hence for each
AP, the utility function becomes

Ui = R∗
i (γi) − λi

ppi (18)

where λi
p represents the power utilization price specific for

the i-th AP and pi is its transmission power. Therefore, the
more power AP uses, the more tax it has to pay. By imposing
power prices properly, a more desirable equilibrium may
be induced, from a social-welfare point of view. We define
the corresponding game as a Non-cooperative Throughput
Maximization Game with Pricing (NTMGP).
Let us first investigate the impact of prices on the behaviors

of players. If λi
p = 0, where no price is imposed, the i-

th AP will transmit at the the maximum power and causes
extra interference to other APs. However, if we impose an
unbearably high price, say λp

i = ∞, the AP would rather not
to transmit at all. Based on these observations, we propose
a heuristic linear pricing scheme to improve the overall
throughput in non-cooperative wireless mesh access networks.
To enforce the scheme, we introduce a pricing dictator

unit (PDU) into the network which determines the prices for
all APs and informs them timely. In addition, we assume
that the PDU has the monitoring capability and is aware of
the operating frequencies of each cell. There are two prices
charged by the PDU for each non-cooperative AP. Besides
the power utilizing price λi

p, a frequency switching price λi
f

is imposed on the i-th AP whenever it changes the operating
frequency. The price setting process is described as follows.

Price setting process:

Phase I:
– The PDU sets λ1

f = · · ·λN
f = 0 and λ1

p = · · ·λN
p =

0 and all APs play NTMG until converges, i.e., a

7The negative sign comes from the convention that utility functions are the
ones to be maximized.
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Nash equilibrium is reached.
– The PDU collects the current throughput information
from each cell, denoted by Mi, where i is the index
of the cell.

Phase II:

– The PDU sets λ1
f = · · ·λN

f = ∞.
– For each AP indexed by i = 1, · · · , N :
1) The PDU sets λi

p = ∞ for the i-th AP and let
the APs play the NTMGP. Upon convergence, the
PDU collects the overall throughput, say Vi, in
the current price setting.

2) Calculate the power utilizing price for the i-th
AP as

λ̃i
p =

Vi −
∑N

j=1,j �=i Mj

pmax
(19)

3) Reset λi
p = 0.

Output:

– Power utilizing price vector λ̃p = [λ̃1
p, · · · , λ̃N

p ]
– Frequency switching price vector λ̃f = [∞, · · · ,∞]

In the price setting process above, the PDU imposes zero
prices for all APs initially. As a consequence, all APs will
transmit with pmax at the equilibrium, as shown in Lemma
2. Upon convergence, the PDU fixes the frequency switching
price to infinity which discourages the non-cooperative APs
from switching channels thereafter. In (19),

∑N
j=1,j �=i Mj is

the sum throughput for all cells other than i, when the i-th
AP transmits with the maximal power due to the zero power
price. Similarly, Vi is the sum throughput of other cells when
the i-th AP is silent due to the unaffordable power price.
Therefore, in (19), the power utilization price charged for
the i-th AP, a.k.a., λ̃i

p, can be viewed as a compensation to
the impact it causes on the overall throughput of other cells.
The more power it utilizes, the more severe it affects the
other players and thus the more it pays, as illustrated in (18).
Hence, by imposing taxes deliberately, the selfish behaviors
of non-cooperative APs are effectively discouraged and a
more desirable equilibrium can be induced, in term of overall
throughput of the whole network. The proof of existence of
Nash equilibrium in NTMGP is straightforward. Note that
the utility function of (18) is quasi-concave with respect
to power. The existence of pure strategy Nash equilibrium
follows directly from the results of [31]. We will present
the detailed performance evaluation of CTMG, NTMG and
NTMGP in Section VI.

V. AN EXTENSION TO ADAPTIVE CODING AND

MODULATION CAPABLE DEVICES

So far, we have assumed that the throughput of a cell is
given in the form of (1), which is not a continuous function.
To be precise, in both Section III and Section IV, we are
confined to the traditional IEEE 802.11 family devices where
the modulation and coding schemes are pre-determined and
fixed. For example, Table I provides a mapping between
SINR values and corresponding rates [32], the feasible data
transmission rate is a discrete set and is usually much less

TABLE I
DATA RATES V.S. SINR THRESHOLDS WITH MAXIMUM BER = 10−5

Rate(Mbps) Minimum SINR (dB)

1 -2.92
2 1.59
5.5 5.98
11 6.99

than the theoretical channel capacity. We name such devices
as legacy IEEE 802.11 devices.

However, thanks to the advance of coding techniques, the
maximum data transmission rate can be largely closed to
the theoretical Shannon capacity in AWGN channels [33].
Note that achieving this requires variable-rate transmissions
by matching to the instantaneous SINR, which can be imple-
mented in practice through adaptive coding and modulation
(ACM) techniques [34]. This motivates us to extend our
results to ACM-capable devices. More specifically, we are
considering more advanced and powerful APs which attempt
to tune the frequency and power in order to maximize

Ci(γi) = Wi log2(1 + γi) (20)

where Ci is the Shannon capacity of the i-th cell, andWi is the
bandwidth. Note that in this scenario, the maximum achievable
transmission rate, as denoted by the Shannon capacity, is a
continuous variable with respect to γi, rather than discrete,
as exemplified in Table I. It is worth noting that the only
difference in this scenario is the alternative objective function
of each AP. Therefore, all the results we have obtained so far
are extendable8 to this special scenario with merely a change
of the objective function.
Furthermore, due to the continuity of the objective function

in (20), the aforementioned heuristic pricing scheme in Section
IV can be improved. Without loss of generality, we assume
that all the cells have unity bandwidth. Restated, we assume
that the PDU is a centralized device which knows the channel
environment sufficiently by greedy acquiring. In addition, the
PDU is assumed to have monitoring capability and is aware
of the operating frequency of each cell. The tailored pricing
scheme for this ACM-capable scenario is described as follows.

• First, the PDU sets λ1
f = · · ·λN

f = 0 and λ1
p = · · ·λN

p =
0 and all APs play selfishly, until a Nash equilibrium is
achieved.

• The PDU sets λ1
f = · · ·λN

f = ∞.
• For each AP indexed by i = 1, · · · , N , the PDU sets

λi
p = |

∑
k∈Fi

∂Ck

∂pi
|

= |
∑
k∈Fi

− pk × gkk × gik

ln 2 × (1 + γk) × (
∑

j∈Fk
pj × gjk + Nk)2

|

=
∑
k∈Fi

pk × gkk × gik

ln 2 × (1 + γi) × (pk×gkk

γk
)2

8More specifically, in the cooperative case, we replace (2) with
Unetwork(p, f) =

∑N

i=1
Ci(γi) whereas in the non-cooperative case, (15)

and (18) are replaced by Ui = Ci(γi) and Ui = Ci(γi)−λi
ppi, respectively.

Authorized licensed use limited to: University of Florida. Downloaded on October 30, 2008 at 16:54 from IEEE Xplore.  Restrictions apply.



1156 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 7, SEPTEMBER 2008

=
∑
k∈Fi

gik × γ2
k

ln 2 × (1 + γk) × pk × gkk
. (21)

Then the PDU informs each AP the corresponding prices, i.e.,
λi

f = ∞ and λi
p calculated in (21).

Note that the major difference in this pricing scheme lies in
(21), where the λi

p charged for the i-th AP is the Pigouvian
price levied to discourage its reckless power increase.
After obtaining the prices imposed by the PDU, each AP

fixes the operating frequency and calculates the optimum
power p∗i , which maximizes Ui = Ci − piλ

i
p, according to

the following steps.

∂Ui

∂pi
=

∂Ci

∂pi
− λi

p (22)

where
∂Ci

∂pi
=

gii

ln 2 × (
∑

k∈Fi
pk × gki + Ni) × (1 + γi)

. (23)

By setting (22) equal to zero, we have

p∗i =
[

1
ln 2 × λi

p

−
∑

k∈Fi
pk × gki + Ni

gii

]pmax

pmin

. (24)

where [x]ba denotes max{min{b, x}, a} and pmax, pmin rep-
resent the maximum and minimum power of the device,
respectively. Note that

∑
k∈Fi

pk × gki + Ni can be easily
measured when the i-th AP sets its transmission power to zero.
Therefore, finding the optimum power of each AP requires
only local information and can be implemented in a distributed
fashion.
In (21), we observe that the prices imposed on APs depend

on the power vector p, and vice versa. Therefore, after each
AP optimizes its power according to (24), the PDU measures
the new value of power, adjusts the price following (21),
and then announces the new price again. The pricing setting
process in (21) and the utility maximization process in (24)
are executed in an iterative manner, until convergence. The
whole pricing scheme is summarized as follows.

Pricing Scheme:

1) The PDU initially sets zero prices. As a consequence, all
APs will converge at a Nash equilibrium with maximum
power.

2) The PDU sets infinity for the frequency switching price
which prevents the whole network from unstable fre-
quency oscillations.

3) The PDU sets and announces the power prices for each
AP according to (21).

4) Informed by the PDU, each AP optimizes its transmis-
sion power following (24).

5) Go back to step 3 until the iteration converges.
The performance evaluation of this tailored pricing scheme is
illustrated in the next section.

VI. PERFORMANCE EVALUATION

A. Legacy IEEE 802.11 devices

In this subsection, we first investigate the performance of
NETMA, NTMG and NTMGP with legacy devices, i.e., the
scenarios we considered in Section III and Section IV. We
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Fig. 4. Performance evaluation of the wireless mesh access network with N
= 5 and c = 3.

assume the wireless mesh access network has N homogeneous
APs. The other simulation parameters are summarized as
follows.

• Each AP has a maximum power pmax = 100mW and a
minimum power pmin = 10mW and 10 different power
levels as [10mW, 20mW, · · · , 100mW ].

• The noise experienced at each receiver is assumed iden-
tical and has a power of 2mW .

• All APs use IEEE 802.11b standard as the MAC protocol.
In other words, each AP has four feasible data rate,
1, 2, 5.5, 11 Mbps and 3 non-overlapping channels, i.e.,
c = 3.

• Without loss of generality, we assume that the received
power is inversely proportional to the square of the
Euclidian distance.

• The smoothing factor τ decreases as τ = 10/k2, where
k is the negotiation step.

• The stopping criteria for NETMA and NTMG are the
maximum number of iterations, denoted by ω.

For the sake of simplicity, we utilize a table-driven rate
adaption algorithm provided in Table I. Note that our results
can also be applied to arbitrary propagation models, rate
adaptation algorithms and underlying multi-channel multi-rate
MAC protocols.
1) Example of Small Networks: We first consider a small

wireless mesh access network with 5 APs, i.e., N = 5.
All APs are randomly located in a square of 10-by-10 area.
The global optimum solution is obtained by enumerating all
feasible strategies, i.e., (3× 10)5 profiles, as the performance
benchmark. We first investigate the cooperative scenario where
NETMA mechanism is applied. Next, the non-cooperative
scenario is considered and each AP operates at the maximum
power and adjusts the frequency only. The stopping criteria
for both NETMA and NTMG are the maximum number of
iterations where ω = 200. The performance comparison is
shown in Figure 4.
As indicated by the OP curve, the global optimum obtained

by enumeration approach functions as the upper bound of
the overall throughput. In Figure 4, we observe that NETMA
gradually catches up with the global optimum as negotiations
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Fig. 5. The trajectory of frequency negotiations in NETMA when N = 5
and c = 3.
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Fig. 6. The trajectory of power negotiations in NETMA when N = 5 and c
= 3.

go. As expected, the non-cooperative APs yield remarkably in-
ferior performance in terms of overall throughput, depicted by
the NTMG curve. The inefficiency is due to the selfish behavior
that APs transmit at the maximum power and are regardless
of the interference. The existence of Nash equilibrium in both
CTMG and NTMG are substantiated by the convergence of
curves in Figure 4. Figure 5 and Figure 6 depict the trajectories
of frequency negotiations and power level negotiations in
NETMA, respectively. At the initialization, each AP randomly
picks a frequency and a power level and negotiates with
each other following NETMA mechanism, until the optimum
Nash equilibrium is achieved. Note that when the frequency
vector and power vector converge in Figure 5 and Figure 6,
the corresponding overall throughput obtained by NETMA
catches the global optimum in Figure 4 simultaneously.
2) Example of Large Networks: We now consider a large

wireless mesh access network with 20 APs. The enumeration
approach is no longer feasible in this scenario due to the
enormous strategy space. The 20 APs are randomly scattered
in a d-by-d square, where the side length d is a tunable param-
eter in simulations. We investigate both cooperative and non-
cooperative cases represented by NETMA and NTMG curves,
where the maximum number of iterations is set to ω = 1000.
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Fig. 7. Performance evaluation of the wireless mesh access network with N
= 20 and c = 3.

Figure 7 pictorially depicts the performance inefficiency of
NTMG caused by the non-cooperative APs which transmit
at the maximum power. The average throughput per AP is
calculated by averaging the results of 50 simulations, for each
value of the side length d. In Figure 7, it is worth noting that
as the side length d gets bigger, the performance gap between
NETMA and NTMG reduces. The reason is that when the
area is large, the impact of mutual interference is less severe
and so is the performance deterioration. However, when the
network is crowded, i.e., d is small, the selfish behaviors are
remarkably devastating.
To alleviate the throughput degradation by the non-

cooperative APs, we implement the linear pricing scheme
introduced in Section IV. The throughput improvement is
illustrated as NTMGP in Figure 7. It is noticeable that
by utilizing the proposed pricing scheme, the efficiency of
Nash equilibrium is dramatically enhanced, especially for
crowded networks. Therefore, the selfish incentives of the non-
cooperative APs have been effectively suppressed.

B. ACM-capable devices

In this subsection, we investigate the performance of our
model with ACM-capable devices. Since the major difference
lies in the improved pricing scheme tailored for this specific
scenario, we will only provide the performance evaluation of
the tailored pricing scheme, i.e., NTMGP, in order to avoid
duplicate results. We consider a populated network where 30
APs are randomly scattered in an 100m-by-100m square, i.e.,
N = 30. All other simulation parameters are the same as in
the previous subsection except that the power is a continuous
variable in this scenario. We first investigate the performance
in terms of overall achievable rate of the network when
no pricing scheme is applied, as a performance benchmark.
Afterwards, the tailored pricing scheme is implemented to
improve the equilibrium efficiency, a.k.a., the overall perfor-
mance at the equilibrium. As shown in Figure 8, the overall
achievable rate of the network is dramatically improved by
the pricing scheme. The PDU adapts the announced price for
each AP according to the optimum power, which is calculated
by the previous announced price, in an iterative fashion.
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The aggregated achievable rate converges as the price setting
iteration goes, as depicted by Figure 8.
Figure 9 shows the trajectories of the power utilization

prices for each AP. The counterpart of actual utilized power
is illustrated in Figure 10, where the curves start at pmax and
evolve with the announced price in Figure 9.
As observed in Figure 8, to achieve a better performance,

the price setting process needs to be executed iteratively,
comparing with the “one shot” heuristic pricing scheme pro-
posed for legacy devices. Therefore, the further improvement
of the equilibrium efficiency is achieved as a tradeoff of
communication overheads. However, it is worth noting that
even at the first iteration, where the prices are determined
by pmax, the induced equilibrium yields remarkable superior
performance than the case where no pricing scheme is applied.

VII. CONCLUSIONS

In this paper, we investigate the throughput maximization
problem in wireless mesh networks. The problem is coupled
due to the mutual interference and hence challenging. We
first consider a cooperative case where all APs collaborate
with each other in order to maximize the overall throughput
of the network. A negotiation-based throughput maximiza-
tion algorithm, a.k.a., NETMA, is introduced. We prove that
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Fig. 10. The trajectories of actual power utilized by each ACM-capable AP.

NETMA converges to the optimum solution with arbitrarily
high probability. For the non-cooperative scenarios, we show
the existence and the inefficiency of Nash equilibria due to
the selfish behaviors. To bridge the performance gap, we
propose a pricing scheme which tremendously improves the
performance in terms of overall throughput. The analytical
results are verified by simulations. In addition, we extend
our model and analytical results to the scenarios where more
advanced APs are utilized, i.e., the devices with the adaptive
coding and modulation capability. In this scenario, we propose
a tailored pricing scheme which remarkably improves the
overall performance in an iterative fashion.
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