Journal of

Estimation

Mathematical Systems,

and Control

ISSN 1052-0600

Printed on acid-free paper

Birkhauser

Boston « Basel « Berlin




d Cbntrol

-thesis); that is not under consideration
jat its publication has been approved
well as by the responsible authori-
he work has been carried out; that,
pt is accepted for publication, the
transfer of the copyright to the pub-
will not be published elsewhere in
consent of the copyright holders;
1 of the copyright holder is obtained
als used from other copyrighted

his journal are protected by copy-
clusive rights to reproduce and dis-
offprints), as well as all translation
1ed in this journal may be repro-
stored on microfilm, in electronic
, without first obtaining written per-
T

ive names, trade names, trademarks,
en if not specifically identified, does
s are not protected by the relevant

rmation in this journal is believed to
e date of its going to press, neither
or the publisher can accept any legal
ors or omissions that may be made.
warranty, express or implied, with
ntained herein.

e for personal or in-house use be-
slated under Section 107 or 108 of
vided a fee is paid. The fee is $6.00
of the number of pages in the article.
to the Copyright Clearance Center,
/e, Danvers, MA 01923, USA, stat-
, the volume, and the first and last
ticle copied. The copyright owner's
copying for general distribution, pro-
sale. In these cases, specific written
obtained from the publisher.

nue

USA

33

Kostant/Elizabeth Hyman

)95
ites of America

> of address to Springer-
333 Meadowlands Pkwy.,

Contents

Stability of Discrete Time Jump Linear Systems
Yuguang Fang, Kenneth A. Loparo, and Xiangbo Feng 275

Unique Identification of Coefficient Matrices, Time Delays
and Initial Functions of Functional Differential Equations
Shin-ichi Nakagiri and Masahiro Yamamoto 323

Necessary Condition and Genericity of Dynamic Feedback Linearization
P. Rouchon 345

Summary: A Measure Change Derivation of Continuous
State Baum-Welch Estimators
Lakhdar Aggoun, Robert J. Elliott, and John B. Moore 359

Summary: Splitting Subspaces and Acausal Spectral Factors
Gyorgy Michaletzky and Augusto Ferrante 363

Summary: A Hamiltonian Formalism for Optimization Problems
Leonid Faybusovich 367

Summary: Control System Radii and Approximation: A Case
Study for the 1-D Heat Equation
J.A. Burns and Gunther Peichl 371

Summary: Lowering the Orders of Derivatives of Controls
in Generalized State Space Systems
E. Delaleau and W. Respondek 375

Summary: Time Minimal Synthesis for Planar Systems
in the Neighborhood of a Terminal Manifold
of Codimension One
B. Bonnard and M. Pelletier 379




Journal of Mathematical Systems, Estimation, and Control @ 1995 Birkhiuser-Boston
Vol. 5, No. 3, 1995, pp. 275-321

Stability of Discrete Time
Jump Linear Systems*

Yuguang FaungTL Kenneth A. LoparoJr Xiangbo Femg‘L

Abstract

In this paper, we study almost sure and moment stability
of discrete time jump linear systems with a finite state iid or
Markovian jump form process. A necessary and sufficient con-
dition for almost sure stability for a special class of jump linear
systems and a sufficient condition for almost sure stability of gen-
eral jump linear systems are presented. We also prove that the
concepts of §—moment stability, exponential §—moment stability
and stochastic 6 —moment stability are equivalent, each of which
implies almost sure stability. Also for sufficiently small §, al-
most sure stability and §—moment stability are equivalent and
the §—moment stability region monotonically converges to the al-
most sure stability region as § | 0. This generalizes the result
in [18]. The top Lyapunov exponent and §—moment Lyapunov
exponent are also studied and some relationships between them
are presented.

Key words: jump linear systems, almost sure stability, §—moment stability,
Lyapunov exponent

1 Introduction

Consider the discrete-time jump linear system in the form

Th+1 = H(O’k) Ty (1.1)

or the continuous-time jump linear system

*Received November 30, 1992; received in final form J anﬁary 4, 1993.

JfThis research was supported by the Scientific Research Laboratories at the Ford
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where o, is a finite state independent identically distributed (iid) random
process or a time homogeneous discrete time Markov chain, and {{:} is a
finite state time homogeneous continuous time Markov chain. The models
(1.1) and (1.2) can be used to analyze the closed-loop stability of control
systems with communication delays ([1],{2]) or the stability of control sys-
tems subject to abrupt phenomena such as component and interconnection
failure ([3]). The stability analysis of (1.1) or (1.2) is therefore very impor-
tant in the design and analysis of such control systems. Stability analysis
of systems of this type can be traced back to the work of Rosenbloom ([4]),
who was interested in the moment stability properties. Bellman ([5]) was
the first to study the moment stability of (1.1) with an iid form process
using the Kronnecker matrix product. Bergen ([6]) used a similar idea to
study the moment stability properties of the continuous time systems (1.2)
with piecewise constant form process {o:}. Later, Bhuracha ([7]) used
Bellman’s idea developed in [5] to generalize Bergen’s results and stud-
ied both asymptotic stability of the mean and exponential stability of the
mean. Darkhovskii and Leibovich ([8]) investigated second moment stabil-
ity of system (1.2) where the time intervals between jumps are iid and the
modes of the system are governed by a finite state Markov chain with a
stationary probability transition matrix. They obtained necessary and suf-
ficient conditions for second moment stability in terms of the Kronnecker
matrix product for the second moment stability, which is an extension of
Bhuracha’s result.

There is an alternative approach to the study of stochastic stability.
Kats and Krasovskii ([9]) and Bertram and Sarachik ([10]) used a stochastic
version of Lyapunov’s second method to study almost sure stability and
moment stability. Unfortunately, constructing an appropriate Lyapunov
function is difficult in general, this is a common disadvantage of Lyapunov’s
second method. Also, in many cases, the criteria obtained from this method
are similar to moment stability criteria, which are often too conservative.
For certain classes of systems, such as (1.1) or (1.2), it is possible to obtain
testable stability conditions. Ji et al. ([11]) and Feng et al. (112],[18])
used Lyapunov’s second method to study the stability of (1.1) or (1.2)
where {o},} or {&} is a finite state Markov chain. Necessary and sufficient
conditions are obtained for second moment stability of both discrete time
(1.1) and continuous time (1.2) jump linear systems.

As Kozin ([13]) pointed out, moment stability implies almost sure sta-
bility under fairly general conditions, but the converse is not true. In
practical applications, almost sure stability is more than often the more
desirable property because we can only observe the sample path behavior
of the system and the moment stability criteria are sometimes too conser-
vative to be practically useful.

Although Lyapunov exponent techniques may provide necessary and
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sufficient conditions for almost sure stability ([12],[14],[15],[18],[26]-[30}), it
is very difficult to compute the top Lyapunov exponent or to obtain good
estimates of the top Lyapunov exponent for almost sure stability. As a
result, testable conditions are difficult to obtain from this theory.

Arnold et al. ([21]) studied the relationship between the top Lyapunov
exponent and the §—moment top Lyapunov exponent for a diffusion pro-
cess. Using a similar idea, Leizarowitz ([25]) obtained similar results for
(1.2). A general conclusion was that d—moment stability implies almost
sure stability. Thus sufficient conditions for almost sure stability can be ob-
tained through §—moment stability, which is one of the motivations for the
study of i—moment stability. There are many definitions for moment sta-
bility: é—moment stability, exponential §—moment stability and stochas-
tic §— moment stability. Ji et al. ([11]) proved that all second moment
(6 = 2) stability concepts are equivalent for the system (1.1). Feng et al.
([18]) showed that all the second moment stability concepts are equivalent
for the system (1.2), and also proved that for a one dimensional system of
type (1.2), the region for §—~moment stability is monotonically converging
to the region for almost sure stability as 6 | 0. This is tantamount to
concluding that almost sure stability is equivalent to §—moment stability
for sufficiently small §. This is a significant result because the study of
almost sure stability can be reduced to the study of 6—moment stability.

This paper is a continuation of our research work reported in [19]. In
[19], some testable sufficient conditions were obtained for moment stability
and for almost sure stability for systems of type (1.1), especially for the iid
case, although most of the results also hold for the Markovian case. For
one dimensional systems, the conditions obtained in [19] are also necessary.
Also in [19], we studied the almost sure stability of system (1.1), when the
individual system matrices commute, and obtained some necessary and
sufficient conditions for almost sure stability. For the one dimensional case,
the relationship between (6—)moment stability and almost sure stability
was obtained.

In this paper, a necessary and sufficient condition for almost sure sta-
bility of a class of systems of type (1.1) are obtained, this completely solves
the almost sure stability problem for these systems with commuting struc-
tures, from which we prove our conjecture in [19]. A sufficient condition
for almost sure stability and §—moment stability for the general class of
systems (1.1) is also presented, this generalizes our previous results ([19]).
Next we study the properties of §—moment stability for (1.1) with arbitrary
dimension. We show that §—~moment stability, exponential §—moment sta-
bility and stochastic §—moment stability are equivalent and the region for
d—moment stability is monotonically converging to the region for almost
sure stability. This is a generalization of Feng et al.’s result ([18]) to dis-
crete time systems. As a special case, a simpler proof of Ji et al.’s result
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is given. We also study the top é—moment Lyapunov exponent and the
top Lyapunov exponent for the system (1.1), and develop some properties
of the top 6—moment Lyapunov exponent and the relationship between
the top 6—moment Lyapunov exponent and the top Lyapunov exponent.
Finally, some illustrative examples are given.

2 Definitions

Throughout the rest of the paper, we study the discrete time jump linear
system given by
Tpy1 = H(op)ze, k20; (2.1)

where o, is either a finite state independent identically distributed process
with state space N = {1,2,..., N} with probability distribution P{o¢ =
j} = p;j for j € N or a finite state and time homogeneous Markov chain
with state space IV, transition probability matrix P = (pij) Nxn and initial
distribution p = (p1,...,pn) (Certainly, the iid process is a particular
Markov chain where each row of P is the same as the initial distribution
p). For simplicity, assume that the initial state zo € R™ is a (nonrandom)
constant vector. Let (2, F,P) denote the underlying probability space
and let = be the collection of all probability distributions on N. Let e; €
= be the initial distribution concentrated at the ith state, i.e., given by
P{o¢ = i} = 1. Sometimes, we need to signify that some properties are
dependent on the choice of the initial distribution of the Markovian form
process {ot}. If so, for each £ € &, let P; denote the probability measure
for the Markov chain {0} induced by the initial distribution ¢ and E¢
the expectation with respect to P¢. Let m = (71,...,7n) be the unique
invariant probability distribution for the Markov chain {ok}, if the chain
possesses a single ergodic (indecomposable) class. For a matrix C = (¢i5),
let [C| = (|ci;]). Some definitions of different stability concepts for jump
linear systems are presented next.

Definition 2.1 Let ® be a subset of Z. The jump linear system (2.1) with
a Markovian form process {o} as specified above is said to be
(I). (asymptotically) 6—moment stable with respect to (w.r.t.) ®, if for
any o € R and any initial probability distribution ¢ € ® of oy,

i 5
kl:rroloE{ka(l‘o,w)H }=0,

where zx(zo,w) is a sample solution of (2.1) initial from zy € R™.
If§ = 2, we say that the system (2.1) is asymptotically mean square
stable w.r.t. ®. If § = 1, we say that the system (2.1) is asymp-
totically mean stable w.r.t. ®. If ® = E, we simply say the system
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(2.1) is asymptotically §-moment stable. Similar statements apply
to the following definitions.

(IT). exponentially 6—moment stable w.r.t. ®, if for any o € R™ and
any initial distribution 9 € & of oy, there exist constants o, >0
independent of o and v such that

E {“:vk(zg,w)||6} < allzol|®e %, k> 0.

(III). stochastically §—moment stable w.r.t. ®, if for any zy € R™ and
any initial distribution 1) € ® of oy,

> E {lls(z0,w)[1°} < +co.
k=0

(IV). almost surely (asymptotically) stable w.r.t. ®, if for any 2y € R"
and any initial distribution v € E of oy, ’

P{ lim (|zg(zo,w)|| = 0} =1.
k—oo

(V). mean value stable w.r.t. ®, if for any zy € R™ and any initial
distribution ¢ € ® of oy,

klim E{zr(zo,w)} = 0.

In the case when {0} is actually an iid process with distribution p =

(p1y-..,p0N), all the above definitions hold with ® being the singleton set
=90 ={p}.

The above definitions are consistent with those given in [11] and [18],
and we want to remind the reader of the dependence on the initial prob-
ability distribution of the form process {o+} for the Markovian case. The
“state” for the jump linear system is the joint process (zx, o), even though
the initial distribution of the form process may not be known. Thus, it is
reasonable that the stability properties as given are independent of the ini-
tial distributions. Of course, for a Markov chain with a single ergodic class,
the almost sure (sample) stability only depends on the probability measure
P, with the initial distribution . Then, if the system is P,-almost surely
stable, then it is also almost surely stable (or P;-almost surely stable for
any { € Z). However, this may not be the case for d-moment stability.
The following simple example illustrates this point and justifies the practi-

cal importance of having the stability definitions independent of the initial
distribution.
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Example 2.2 Consider the scalar system (2.1) with H(1) = h; > 0 and
H(2) = hy with 0 < hg < 1. The form process {o}} has a transition matrix

P= (pll D12 - (05 05)
P21 P22 0 1
and initial distribution & = (£;,&;). Clearly, the unique invariant distribu-

tion is given by 7 = e3 = (0,1) and the system is P;-almost surely stable,
regardless of £. However, for any § > 0 and z¢ # 0, we have

E§|zn(w,x0)|5 =E¢|H(op-1)-.. H(ao)x0|5
2 5 (2.2)
=" &GE,|H(on1) ... H(oo)zo|’.
i=1
Also, we have

E. |H(op-1)--. H(ao)xo|6

= Z PriyPizip «+ - Pin_gin_1 |H‘(iﬂ—1)'5 s IH(i1)|6|H(1)|6l$0|6 (2 3)
21 yeeerbn—1 )

1 1
> (5)”h?6liﬂt)|‘s = (§hf)”|$0|ﬁ,
and
E,|H(opn-1)--- H(ao)x0|6

= > P2iPisis - Pin_gin_a [ Him—1)I’ .. |H (i) °|H(2)°|z0}? (2.4)

= hPao|® = (RY)™|zol® — 0, 7n — +oo.
From (2.2), (2.3) and (2.4), we see that

. 5 .
nEr_l{loo Erlzp(w,z0)|° = nll)riloo Ee,|zn(w, o))’ = 0.

However, for any & = (&,£&2) with & > 0, as long as k¢ > 2, we have

nkr-}-loo Eﬁlzn((*)’x(])l& 2 nEI-II-loo é‘lEellmn(wamo)lg = +00.

In this case, the system is “6-moment stable”, if ¢ = «, i.e., if the chain {o}}
is stationary, and the system is not “§-moment stable” for any other initial
distribution £. Therefore, §-moment stability with respect to ® = {n} is
not a good criteria to be used in practice because a small perturbation of
¢ from 7 will make the system unstable. The §-moment stability definition
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should therefore be “independent” of the initial distribution as given in
Definition 2.1.

In the above example, the form process has a single ergodic class {2}
as well as a transient state, namely 1. If the form process is irreducible,
i.e., satisfies the property that each pair of states communicates, or that
the unique invariant distribution = is strictly positive, then, the definitions
in 2.1 are equivalent to the usual stability definitions for a system with a
stationary form process. This result is formalized next.

Lemma 2.3 For system (2.1) with a finite state and time homogeneous
form process, if the chain is irreducible (or indecomposable) with o unique
invariant distribution m, then the system is stable in any of the above senses
if and only if the system is stable in the same sense with respect to ® = {r}.

Proof: The proof of necessity is trivial. For sufficiency, notice that since
m > 0, it is easy to see that P << P, (P is absolutely continuous with re-
spect to Py ) for any ¢ € Z. Thus, P,-almost sure stability implies P;-almost
sure stability. For moment properties, say, §-moment stability, notice that
for any é = (gla"'7§N)a

N
Eellzk(w, 2)lI° = ) & Ee,l|zi (w, )|
=1

=

Since m = (m1,...,mn) > 0, limp_ 1o Ex|lzr(w,20)]° = 0 implies that
img_, o Ee, || 71 (w, zo)||® =0forallic N. This implies that

kEI}—loo E¢||zr(w, z)]|® =0

for all ¢ € E. O

We conclude that if we are dealing with an irreducible Markov chain

form process, then it is only necessary to study stability with respect to
® = {x}.

3 Almost Sure Stability

In [19], we developed many criteria for the stability of the jump linear
system (2.1) predominantly for the case when {o+} is an independent iden-
tically distributed finite state processes. Most of these results can be gener-
alized to the case when {o+} is a finite state Markov process. For systems of
type (2.1) where the state matrices commute, we gave some necessary and
sufficient conditions for certain special cases. Here, we prove a more gen-
eral result which gives necessary and sufficient conditions for almost sure
stability of (2.1) with an iid form process and commuting state matrices.
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Theorem 3.1 For the system (2.1) with {o+} a finite state independent
identically distributed random process with {p1,p2,...,pN} the common
probability distribution, assume that each of the n X n matrices
H(1),H(2),...,H(N) can be simultaneously transformed by o similarity
transformation to upper triangular form with the diagonal elements
ALjsA2,4y---, An,j for j € N. Then, a necessary and sufficient condition
for almost sure stability is

DPIARS A% <1 Vi=1,2,...,n. (3.1)

In particular, if H(1), H(2),..., H(N) pairwise commaute, then there ezists
o unitary matriz T such that

/\1"7' * *
-1 X _ /\2,]‘ * .
TTH(HT = . Vi=1,2,...,N,
.. *
)‘n,j

and (3.1) is a necessary and sufficient condition for almost sure stability.

To prove this theorem, we need the following lemma, which infers sta-
bility of (2.1) from the stability of a dominating system.

Lemma 3.2 For (2.1) with an iid form process, let (p,, ... ,DN) be the
common probability distribution of {o}.
(i) Let H(r) = (his(r)) and H(r) = (his(r)) with [hiy(r)] < Fis(r) for
all T € N. If the dominant system defined by

Tpy1 = ]:_I(O'k) Iy, .'1,‘(0) =Ty (32)

is almost surely stable, then the system (2.1) is almost surely stable.
(i) Let |H(r)| = (Jhij(r)]) for r = 1L,2,...,N. If

E|H(00)] = prlHQ)| + pal H(2)| + -+ + py | H(IV)|

is a stable matriz, then the system (2.1 ) is almost surely stable. In
particular, if H(1),H(2),...,H(N) are nonnegative matrices, then
the system (2.1) is almost surely stable if

EH(oo) = p1H(1) + p2H(2) + - -- + py H(N)
1s a stable matriz.

Proof: To show (i), it is sufficient to prove that if H(op)H(op—1) - H(ay)
converges to zero almost surely, then H(oy)H(op_1)---H (01) also con-
verges to zero almost surely. However, |H(op)H (Or-1)...H(op)| <
H(o)H (o)1) H(0o) and the result follows directly.
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For (i), let G, = |H (o) - [H(ag)|. If E|H(oy)| is stable, then by
the iid property, EG, = (E|H(op)[)*+1 €xponentially converges to zero,
Thus, with ¢ = (9ij(k)), there exists an M>0and0<r<1g that
Egi;j(k) < Mr*. Let 9i; = limy_, 9ij(k), since Gy, is nonnegative matrix,
9:;(k) > 0. Hence, g;; > 0. For any positive ¢ > 0, by Chebyshev’s
inequality,

Ploy > e} =Pinz_, Uz {9:5(n) > e} < P{U., {g1(n) > c}

<D Play(n) > ¢} < - > Bgij(n) = " > M
n=m n=m n=m
and letting m go to infinity, we obtain that P{gi; > ¢} =0 for any ¢ > (.
From this, we can obtajn that P{g;; = 0} =1. Hence, limy,_, o, 9i;(k) =0
almost surely. This means that Tpy1 = |H (ok)|zr is almost surely stable.
From (i), we conclude that (2.1) is almost surely stable. In the case when
H(j) is nonnegative for all j € N, we have (/) = H(j) and the result
follows. (]

and only if (2.1) is mean value stable. Thus, from (ii) we see that for (2.1)
with nonnegative form matrices, mean valuye stability implies (but is not
necessarily equivalent to) almost sure stability, which is not true in general
(see the examples which are given later).

Proof of Theorem 3.1: Without loss of generality, we can assume that
H(1),H(2),... H (N) are all upper triangular matrices. Let p be the upper
bound of the absolute values of the off-diagonal elements of F 1),..., H(N ),
and with a slight abuse of notation, let Ay ;, A2,js-.5An; be the absolute
values of the diagonal elements of H(j)forj e N. To prove the sufficiency,
from Lemma 3.2, it suffices to show that if

/\5’,11/\5’,22""\5,%<1 Vi=1,2,...,n

then the dominating system defined by

Te+1 = ﬁ(Uk) Tk, (3.3)
with
Ay b ... B
_ /\2,_7' . b
H(j): . . b j=1727"'7N’
An,j
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is almost surely stable. Let

ap oy . ¢®

. n a8 .. 95”

Gy = H(on)--- H(o) = o e
g%’;?

The almost sure stability of (3.3) is equivalent to the almost sure conver-
gence of Gy, to the zero matrix. Let A{"), Ale) AL be the diagonal
elements of H(o;). From G, = H (O'k) Gk 1 and the triangular form of

matrices H(oy), we obtain the recursive equations for the last column of
Gk:

gt = AW gl 1 p(glh D 1L gli )
o5 = /\5”")992 D bglh )+ glY)

(3.4)

I 1yn = MA0( 1) + bl

9t = A7)

To proceed, we use induction on the dimension n. If n = 1, it is easy to
show that G, — 0 almost surely and the result is valid. Suppose that it is
true for n — 1. Because of the triangular structure of G; and the induction
hypothesis, it is sufficient to show that when dim G} = n, the elements
of the last column of the matrix G} are converging to zero almost surely.
From the last equation of (3.4), we have

68 = X AP
. 3
- (MERrE e g 6
where I,.( ]) = 0r; is the Kronecker delta (indicator) function. By hypoth-
esis AD! A% - PN < 1 and the Law of Large Numbers, there exists a
O0<pn<1 and Mn(w) > 0, such that for all k,
95| < M(w)ek.

Now, we use an induction argument on the index j of the elements g(’”)
to show that for each 1 < i < n, there exists M;(w) and 0 < p; < 1 w1th
M;(w) a polynomial of finite degree in the variable k so that

|959] < Mi(w)pk. (3.6)
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From this, we can conclude that gg:') goes to zero almost surely for each
1 < i < n. We proceed as follows: Suppose that for some 1 < j < n, there
exists M;(w),..., My(w) > 0 and Pir--+»Ppn < 1, such that

99| < Mi(w)pt Vi=j,j+1,....n.

We show that (3.6) holds for ¢ = j — 1. From the (4 — 1)** equation of
(3.4), we have

(k) —(ox)y(or-1) (e1) (0)
9G-1)n —’\j‘:kl Ajikl ' ""\j—ll 9(i=nt

k-1
T NG bk gl (@)
=1
+b(gin 4+ gll).
We see that the last term in (3.7) almost surely converges to zero at

an exponential rate because of the induction hypothesis. Actually, let
Mj_l(w) = MaXj<i<n Mi(w), and ﬁj—l = maXj<i<n Pi- We have

1b(gn ) + - + gD)| < mbB; (w)ph =} (3.8)

By the Law of Large Numbers, similar to (3.5), we also have for the first
term in (3.7) that there exist M;_;(w) and 0 < pj—1 < 1 such that

SN < X2 1yl < Fra (). (3.9)

For the second term in (3.7), consider that
1 1 o 1 U In(os (k1)
R C =t e e

Again, by the Law of Large Numbers and the hypothesis of the theorem,
there exist M;_1(w) >0 and 0 < 5;_; < 1 such that
)\g-a;kl) v )\gaji"l) S MJ_]_(w)ﬁ;:{ a.s..

Let
Pi—1 = max{p;_y,Pj-1,Pj—1}
and let
M;_y(w) = max{M;_;(w), Mj_; (w)}.
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Then, it follows that the second term in (3.7) satisfies the inequality

k—1
| SoBALR A (g e+ g
=1

k-1
< 3 bW ()BT (M (w)pl + -+ M (w)pr) (3.10)
=1
2 = 2
< nbM';_; (w) Z phi < nbM’j(w)k:p;?_1 a.s.
=1

Combining (3.8), (3.9) and (3.10), we conclude that there exists M;_1(w)
(which is a finite degree polynomial in k) such that

i E—
|9§§11>n| <M (w)phy =50 as.

Induction on the dimension n guarantees that the system (3.1) and hence
the system (2.1) is almost surely stable for arbitrary dimension, if the con-
ditions of the theorem are satisfied. This completes the proof of sufficiency.

Necessity can be proved by observing that if the diagonal elements of
the product of matrices G, converges to zero as k goes to infinity, then the
conditions of the theorem are satisfied (see [19] for a similar proof). O

Remark:

1. We may prove Theorem 3.1 directly from the system (2.1) with an iid
form process using the result in [19] for the one dimensional case, the
procedure will be the same as above. Notice that from the above proof,
under the condition of Theorem 3.1, the system is actually almost surely
exponentially stable.

9. Tt is evident that Theorem 3.1 is also valid for systems with a finite
state and ergodic Markov chain. In this case, p; should be replaced by
;-

Lyapunov’s second method is a very important technique for the study
of stability of dynamical systems. Hasminskii [20] used a stochastic ver-
sion of this theory to study the stability of stochastic systems. Using this
method, we can obtain improved criteria for almost sure stability when
compared to the results we obtained previously in [19]. In what follows,
we use || - || to denote any vector norm on R, |lz|| for z € R™ and for any
induced matrix norm on R*¥", ||A|| for A € R™*™. We use ||- ||z to denote
the 2—norm, i.e., the Euclidean norm.

Lemma 3.3: (Hasminskii [20], pp. 214-215) Let {An} be an iid matriz
sequence, a sufficient condition for

E|lAnAn—y - A] =50
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is that there exists a positive definite function f(z), homogeneous of degree
6, such that the function Ef(Aiz) — f(z) is negative definite of degree 6,
i.e., there exists K > 0 such that Ef(A;z) — f(z) < —K|\z|°.

From this we obtain:

Theorem 3.4: Let {01} be a finite state iid sequence with a common
probability distribution {p;,p,, ... ,pn}. Define

Woz = mmax (Pl HW)z|)® + pa || H2)z||® + - - - +pn||H(N)z|°}

i = i (D) + 2| H@)al + - + pal OVl

Then, the system (1.1) is 6—moment stable if 10 < 1, and the system
(1.1) is 6~moment unstable if uf,, > 1.

Proof: Let f(z) = ||z||%, then

Ef(H(o1)z) - f(z)

=PllHW)a|’ +p2lH2)e|’ + - + py | E(N)e||® ~ ||z

z T
= :1:|5<p NH@) = + - + py || H(N) 5—1)
el (e 2 1N

<Nl (Bnae — 1)-

Then from Lemma 3.3, if uf,, < 1, the system (2.1) is 6—moment stable.

In a similar fashion, we can prove that if Boin > 1, the system is §—moment
unstable. O

We will study the relationship between almost sure and d-moment sta-
bility in the next section. It will be shown that §-moment stability implies
almost sure stability. From this fact, together with the above theorem, we
obtain the following criterion for the almost sure stability of (2.1).

Theorem 3.5: Let {0y} be a finite state independent identically distributed
sequence with common distribution {p;,ps, ..., DN}, then the system (2.1)
is almost surely stable if o gy < 1, where

Tmaz = max {|H(L)z||?* --- | H(N)z|[P~}.
Proof: If o/mes < 1, we claim that there exists a 6 > 0 such that B ae < 1.
Otherwise, for any &, § = %, there exists zy satistying ||zx|| = 1, such that
Pl H@zpl* + - + py | H(N)ex|[ V5 > 1. (3.11)
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Without loss of generality (because the unit sphere is compact and {zx} is
a sequence in the sphere), we can assume that there exists an Zo satisfying
lzoll = 1, such that limy, ., 71, = 4. Hence for any j, img_, o, || H(j)z;, Il =
1 H(5)zo]|. It follows that for any ¢ > 0, and sufficiently large k, we have

IHGaell < I1H(G)aol| + (3.12)

(3.11) and (3.12) gives

LS (Pl 4 ) 12)
< (PUHEm] + P/ 4 (W20 )"

Letting k — 00, we obtain '

1< (I @oll + ) - (| H(N)zo || + v,
and letting ¢ — 0, we obtain

1 (Lol | H (2)eo P2 - - - IH (N)zo | > 1.
This means that Tmaz = 1, which contradicts the assumption. Therefore
there exists § > 0 such that Moz < 1 and from Thereom 3.4, the system

is 6—moment stable. It will be shown that é-moment stability implies

almost sure stability (see Corollary 4.4 in next section). This completes
the proof. 0

The following example illustrates that this criterion is better than those
previously developed in [19].

Example 3.6:
01 0 0
Since ||H(1)[l, = IH(2)ll2 = 1, we can not Buarantee the almost sure

stability of the system using the criteria, given in terms of singular values
in [19]. However,

1
2 - — ] -
Ormaz = “;Iﬁzai{l ”H(].)II:”2”H(2)$”2 - Ogg’gw , sin 6 cos 0, < 9’

and from Theorem 3.5 the system is almost surely stable.
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4 ¢{—Moment Stability

6—MOMENT STABILITY AND ITS RELATIONSHIP WITH A.S. STABILITY

In this section, we will study various types of §—moment stability for
the jump linear system (2.1). For 6§ =2, Jiet al. ([11]) proved that for the
system (2.1) with a finite state Markov form process, second moment sta-
bility, second moment exponential stability and second moment stochastic
stability are equivalent, and all of these stability definitions imply almost
sure stability. Feng et al. ([18]) obtained the same result for continuous-
time jump linear systems ( 1.2) and further proved that for one dimensional
Systems, almost sure stability is equivalent to §—~moment stability for suf-
ficiently small §. In [19], we have proved that for one dimensional discrete-
time systems (2.1), almost sure stability is also equivalent to §—moment
stability for sufficiently small §. In this section, we will prove that for
any positive §, 6—moment stability, exponential §—moment stability and
stochastic §—moment stability are also equivalent, and all of these stability
definitions imply almost sure stability. Additionally, a much simpler proof
of the results for § = 2 in Ji et al.’s work ([11]) is provided. We will also
prove that almost sure stability of (2.1) is equivalent to §—moment stability
for sufficiently small §, thus the conjecture given in Feng ([12]) and Feng
et al. ([18]) is proved for discrete-time systems. For diffusion processes,
Arnold et al. ([21]) obtained a relationship between the Lyapunov expo-
nents and the §—moment Lyapunov exponents. We obtain a similar result
for systems of the type (2.1).

We shall work on the system (2.1) with a Markov form process exclu-
sively. The iid case is a special case, except for the following consideration:
Recall that in the Markovian case, we require the stability properties are
independent of the initial distributions ¢ € =, Thus, we have to Jjustify thag
when {0} is indeed an iid sequence with a common probability distribu-
tion p= (p1,...,px) and is interpreted as a Markov chain with transition
matrix P = (p,p'...,p'), the seemingly strong stability concepts (with
respect to arbitrary initial distributions) for the Markovian case are coinci-
dent with the results for the iid case. This, however, directly follows from
the observation that stability is an asymptotic property, and if {ﬂk};:i?)
is a Markov chain with the transition matrix P = (p,p',...,p') and any
initial distribution, then {M+1}12% is an iid sequence with the common dis-
tribution p. We begin with the equivalence of various §-moment stability
properties:

Theorem 4.1: For system (2.1) with a Markov form process (which
is finite state and time-homogeneous), §—moment stability, exponential
d—moment stability and stochastic §—moment stability are all equivalent.

289




Also, there exists an M > 0 such that fo
have

In arriving at (4.2),

Y. FANG, K.A. LOPARO, AND X. FENG

Proof: It is easy to show that exponential §—moment stability implies
stochastic §—moment stability which then implies §—moment stability.
Thus, to prove the equivalence, it is sufficient to show that d—moment
stability implies exponential §—moment stability.

According to the definition in 82, if (2.1) is 6—

moment stable, then for
any initial distribution ¢ € &,

Aim_ BellH(on) - H(oo)| =,

where E¢ denotes the expectation with res
sure induced by ¢ for {g},}.

Let & = (py, ... »PiN) be the i—th row of the matrix P. This defines a
probability distribution for the process {o}. Let & be any initial distri-

bution in & with ¢ = {p1,p9,..., pn}. From the §~moment stability, we
have

pect to P, the probability mea-

- . § =
Jim, max B [H (o) H(ao)|? = 0.

Then for any 0 < r < 1 given, there exists an integer m so that

LY 6
DB, B | H(0nm) - H(g0)|° < v (41)

rany0§q<mandanyk,we
o2, B¢ | H(0k+q) - H(ow)|) < M. (4.2)

we have used the time homogeneous property of {o}.

Let k¥ = pm + ¢, where 0 < ¢ < m, then we obtain, using the time
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homogeneous property again,

Eg||H(ow) - - H(oo)||®
< By, ”H(Upm+q) T H(UPM)”ts”H(Upm—l) T
H(op-1ym)l® - | H(om—1) - -- H(00)|)*

= E PigPivir " Dippugg—1ipmaq “H(ipm+q) T H(ipm)”6
io,...,‘ipm+q

X [ H (Gpm—1) - H{igp1ym)|° - | H (im1) - - - H (30)|°

= Z PioPigiy - - “Pipm—2ipm—1 ”H(ipm—l) e H(i(p—l)m)”5

20, ypm—1

X || H (im—1) - - - H(io)|)°

X Z Pipm _18pm ™ 'pipm+q—lipm+q ”H(me‘l'q) Tt H(zpm)”6

pm serripmag

= D PioPioir Pipmsips H (ipm—1) - - - H (i(p—1ym)|I°

205+ yipm—1
X || H (ém—1) - - - H(io)||°
X B, |H(oq)- - H(oo)]

< . s
< 22 B lH(og) - H(ao)|

XD PioPigir  Dipmsipms | H (ipmor) - H(ip—1ym)|I°

10,5--yipm—1

X |H (ém—1) - - H(io)||°

<o < max Be||H(o,) - H(oo)|"

H(am_l)...H(go)”ﬁ X oee

pm—1

x max E|
1<i<N

X max B [|H(om-1) - H(oo)|’

D
= 5 5
=, 10ax B, [|H(oq) - H(o0)]|’ x LlsniaéxNE&”H(Um_l) H(oo)]| J

< MrP = M(rt/mpm < gk

where My = Mr=9/™ and 7, = r'/™. We conclude from this that (2.1) is
exponentially —moment stable. This completes the proof.

The above theorem establishes the equivalence of various §-moment
stability properties. This is a generalization of the result of Ji et al. [11] for
second moment stability (§ = 2). Next, we study the relationship between
moment and almost sure stability. First of all, we prove some basic results
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for the general nonlinear stochastic system
ZTr1 = flw,z), =z € R™. (4.3)

All the stability concepts for (4.3) are similarly defined as for the jump
linear system, in a obvious way. Furthermore, we make the following defi-
nition:

Definition 4.2: The stochastic system (4.3) is said to be weakly expo-
nentially stable in probability, if for any € > 0, there exist M(e) > 0 and
0 <y <1 (independent of €) such that for all k > 0,

P{l|lzx(w, o)l > €} < M(e)y*, Vao € R™

Proposition 4.3: The following statements hold for the stochastic system
(4.3).
(i) If (4.3) is exponentially 6-moment stable, then it is stochastzcally -
moment stable, which in turn implies that (4.8) is almost surely stable.
(it) If (4.8) is exponentially 6-moment stable, then, it is weakly exponen-
tially stable in probability. Furthermore, suppose that there exists N > 0
such that ||z (w, zo)|| < ||zol|N* almost surely for all zo and k. Then, (4.3)
is weakly ezponentially stable in probability implies that (4.3) is §'-moment
stability for some §' > 0.

Proof: If the system is exponentially §—moment stable, then there exists
M > 0and 0 < v < 1, such that E||z||® < M+*. Thus,

ZE”M”& < ZM’Y = 7o, <t

ie., the system is stochastically §-moment stable. Now, assume (4.3) is
stochastically -moment stable. Let £ = limp_, o ||zx||, then from Markov’s
inequality, we have that for any ¢ > 0, the following holds:

P§2c)= P( Nnz1 Umen (12wl 2 €)) < P Uz, (llzmll 2 ©))

1 & s
< Z P(lemll 2 ¢) < Z Eljzm|l® =5 0.

m=n

Thus with any ¢ > 0, P(£ > ¢) = 0, from which we obtain

P(>0)=P (U(£> %)) <Y PE>)=0 (44)
n=1 n=1
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It follows that P(¢ = 0) = 1. This proves that limy_, o z; = 0 almost
surely and the proof of (i) is complete.

For (ii), suppose (4.3) is exponentially §—moment stable, i.e., there
exists M > 0 and 0 < 4 < 1, such that Ellz||® < M~*. From Markov’s
inequality, we obtain for any € > 0,

1 M,
Pllacll 2 ) < ZBllz])® < =,
which implies that (4.3) is exponentially stable in probability.
Assume [|zg]| < [|zo||N*. If (4.3) is exponentially stable in probability,
then for all € > 0, there exists 0 < 7, < 1 and M (€) > 0 such that

P(llze)l > €) < M(e)yr.
It follows that

Ellay]® = / o1 P(dw) + / 2 1P P(dw)
(lzk)|>¢€) UEN

|kl <e)
< llzoll’ N¥ P(||lzy ]| > €) + €% < M(e)||zo | (N )E + £°.

Since lims_,g Nby, = T < 1, thereis § > 0 and 7Y < 1 such that N§'71 <.
Hence,

Ellze]|” < M(e)llwol|”+* + ¢

Therefore, limy_,oo Bzt ||’ < €7 However, as ¢ > 0 is arbitrary but

fixed, this implies that limy_, , o E|\z¢||® =0, and the system is §'-moment
stable. 0

Theorem 4.1 established that for the jump linear system (2.1), exponen-
tial 6-moment, stochastic §-moment and d-moment stability are all equiva-

lent. A direct consequence of the above proposition is the following corol-
lary:

Corollary 4.4: For the Jump linear system (2.1) with a Markov form
process, weak exponential stability in probability is equivalent to §-moment
stability for some 6 > 0 and they both imply almost sure stability.

To continue the analysis, we briefly discuss the top Lyapunov exponent
for jump linear systems: for the remainder of section 4, the Markovian
form process {7y} is assumed to possess a single ergodic (indecomposable)

class. We let log(-) denote the extended real-valued function from [0, +00]
t0 [~00, +00], defined by

log(z), if z € (0,+00),
log(z) =¢ —00, ifz= 0,
+o00, if £ = +o0.
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For system (2.1), we define the top Lyapunov exponent for each ¢ € = as
the extended real value

— 1

B ag = lim —Eelog|H(on)... H(oo)l| (4.5)
1 3 and 1

| a=ar= lim ~E.log|H(on)...H(oo)l, (4.5
| n—rr+od

if the indicated limit exists.

\ Lemma 4.5: For the system (2.1) with a Markov form process with a
single ergodic class,

| (i) For any £ € B, a¢ € [—00,+00) and ag = —o0 if Pe(A) > 0 with

o A¥ {w e Q3 finite n such that |H(oy,). .. H(oo)|| = 0}.

The limit o = o in (4.5") exzists (possibly infinite). »
(i)
— 1
7}1_)1130 - log |H(oy) - - H(oo)|| = @ P~ a.s.. (4.6)
(iii) For any & € 2 satisfying £ << m, we have a¢ < ay.
Furthermore, if H(j) is nonsingular for all j € N and £ << 7, then
(ii) o = limp_, 100 2E¢log||H(on) ... H(oo)|| is finite and o = o =
Q.
(iv) limp— 4o Llog||H(on) ... H(0o)|| = @, Pr-a.s.. There is a proper
subspace L of R™ such that for any £ << = and x € R™\L, we have

— 1
kl}ﬂr-loo z log||H(ok) - H(oo)zll =,  Pr—a.s..

Proof: (i). Let G = maxi<p<n |[H(K)|| with H(k) = (hsi(k)) for all
ke N. Let x, =log|H(on)- - H(og)|]. Then,
Xn < log | H(on)| -+~ [|H(00)|| < log G™*' = (n +1)log G. (4.7)

It follows that a¢ < logG < 4oo. If P;(A) > 0, clearly, ag = —o0.
Actually, P;(A) > 0 implies that there is a j < +oco such that P;(4;) >0

with 4; ¥ {w e Q: H(oy)--- H(oo) =0, Vk > j). It follows that

1 1 1 1
EEng =E§(EXk)=/EXkPE(dw)'F/EXkPE(dw)
A; As
k+1 1
< T UoEOP(45) + [ paPeldw) = =0, VE>
Aj
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Thus, o = lim_, 4 o0 k™1 Egxp = —c0.

To show the limit o exists, let a, = E, log || H(0n-1) - H(op)|. We
show that a,, is a subadditive sequence, i.e., Gy < ap + a, for all m and
n. Actually, by stationarity,

Untm = Erlog ”H(0'n+m—1) .. H(ao)ll
< Erlog{||H(0n4m—1) ... H(on)|I|H(on-1) . .. H(oo)|)}
= Exlog | H(ontm-1)... H(on)|| + Ex log ||H (0n_1) ... H(so)||

= Qp + Q.
If there exists mq such that @my = —00, then from (4.7), we have a,, = —c0
for n > my, thus a = —c0. Otherwise, for any =, a, is finite. For any
m>0,and n =pm+¢, 0 < ¢ < m, we have
An _ Qpmiq < b Qg
— = < G .
n pm+q~ pm+gq pm+q

It follows that fim,_, % < 9= hence limy,_, o0 %2 <lim,,_,., %=, there-
fore, lim,,_, “—7} exists. In fact, we have

~00 Sa= lim B, log||H(on) - H(oo)|
n—oQ

1
= inf ~E;log||H(oy)--- H(oy)|| < log G < +oo.
n>ln
This proves (i). V
(ii). We need to show (4.6) holds. Suppose that {o} is stationary, i.e.,

with initial distribution 7. For any m > 0 arbitrarily given, let n = pm +¢,
where 0 < ¢ < m, we obtain :

1 1
n 08 I1H(0n) - H(00)|| < ~log | H(0m) - - H{opm)||

(4.8)

p—1
pl
+ np > log 1H (0 (s 1)m1) - - H(oim)||-
=0

With the initial distribution , the process {0} is a stationary and ir-
reducible Markov chain. Therefore, for any m > 0 given, the process
{0 def (O(it1)m—1s-- -, 0im) }7 is also a finite state, time homogeneous, ir-
reducible and stationary Markov chain with a, unique invariant distribution
7. If there exists mg such that E, log |H(0my—1) -+ - H(ag)|| = ~o0, then
H(0mq—1) ... H(0p) = 0 with positive (Pr or Px) probability and a = ~co.
Also, there exists J0sJ1s--+3Jme—1 Such that H(jmo-1) -+ H(jy) = 0 and
the state (jmo—1,...,Jo) is positive recurrent for the chain {7:}. It follows
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that for Pr-almost all w € Q, ||H(o,,)-

n, hence lim,_, o, 2-log||[H (o) - H(og)|| = —00 = @, P,-as. and hence.
forth (4.6) is valid. Suppose the above does not happen, i.e., for any m > 0,
E; log||H(om)--- H(ao)| is finite. From the Law of Large Numbers, we
have

-+ H(oo)|l = 0 for sufficiently large

1
pll{goi Z log ||H(0(z'+1)m—1) e H(‘Tim)”
=0

= Bz log|H(0m—1) - H(0o)|| = Ex log | H(0m—1) - - - H(so)].

: (4.9)
Moreover, log ||H (0n) - - - H(opm)|| < (g + 1)log G is bounded from above.
From (4.8) and (4.9), we obtain
— 1 1
lim —log||H(oy)- - H(oo)|| < —E, log||[H(om—1) - H(og)|| Pr—a.s..
n—co 7 m
Hence,
= 1 N |
Adim | —log ||H (on) - - H(oo)]| < nf o Exlog | H(om-1) - H(ao)]|
= q. Pr —as..
(4.10)
Next, let ‘
1 1
Vo = ;Zlog 1H(o0)]l - ~log || H (o) - - H(o0)].
i=0

Clearly, v, > 0. From the Law of Large Numbers, we have

. =— 1
lm 9, = By log [|H (00)]| - Aim —log [|H(ow) - H{oo)||

and

1< 1
Enyn = — > Exlog|H(ow)l| - o Erlog||H(an) -+ H(av)|
i=0
Nn-—->00

= Erlog||H(ao)]| - a.

From Fatou’s Lemma, we obtain

0< By lim v, = B, log | H(oo)|| - B, fm > log||H(os)--- H(o)|
n—oo n—on

< lim Evy, = E, log ”H(UO)” - Q.

n—00
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) for sufficiently large
, Pr-a.s. and hence-
n, i.e., for any m > 0,
f Large Numbers, we

Om—1) -+ H(o0)l|-
, (4.9)
bounded from above.

.- H(og)|| Pr—as.

(om—1)--- H(oo)||

(4.10)

-+ H(ao)||-

e have

) -+ H(oo)l

on) - H(oo)

3 || H(ow) - - H(ao)|

Q.
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Therefore,
— 1
E; lim ﬁlog”H(crn)---H(ao)H >a. (4.11)
n—o00

From (4.10) and (4.11), we obtain the desired equality

lim llog||H(Un) ---H(og)|| =a.  Pr —as..

n—ooo N

This completes the proof of (ii).
(iii). Since H(j) is nonsingular, the condition of Oseledec’s Theorem
([29]) is satisfied and the limit in (4.6) exists, i.e.,

] 1
nll,TooEIOg ”H(Un)H(JO)“ =a=ay, Pr-—as,

which is finite. We need to show that the limit in (4.5) exists and a¢ = o
However, by the nonsingularity of H(j) and (4.7), we obtain .

1
-0 < —2}logg| < ElogHH(on) -+« H{og)|| £ 2|log G| < +00,

where g = min;<z<n ||[H (k)| ~! > 0. From this, the fact that Py << P;
(since £ << 7), and the Dominated Convergence Theorem, we have

N G
ag = 11141_100 EEg log ||H(ow) - -- H(oo)||

n—

. 1
= Be{ lim _—log|[H(on) - H(oo)[} = o

(v). The first statement follows from Oseledec’s Theorem as in (iv).
The second statement follows from the nonrandom spectrum theorem in

([30)). 0

Remarks:
(1). In (i), we conjecture that the condition P¢(A) > 0 is also necessary
for ag = —oo. If {o}} is not irreducible, o may not be a good

quantity for almost sure stability. For example, let H(1) = 0 and

H(2) = 10, and P = (% 09
—oo < 0. However, the system (2.1) with the above structure is not
almost surely stable. We also conjecture that for any £ << 7, ag =
o, without the invertibility assumption of H (7). Unfortunately, we
have not been able to find a rigorous proof for these conjectures.

(2). The top Lyapunov exponent « is closely related to the almost sure
stability property of (2.1). Clearly, when a < 0, (2.1) is P;-almost

). It is easy to check that o =
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surely stable, and by the fact that there exists a single ergodic class,
this implies that the system is almost surely stable (for any initial
distribution ). When a > 0, it is easy to show that (2.1) is not
almost surely stable. A question arises at the “bifurcation” point
1 ; when a = 0. We conjecture that when o = 0, the system (2.1)
\ | is not almost surely stable. A rigorous proof of this is currently
| ‘ under research. However, the following simple example illustrates

“ ! our intuition that @ = 0 implies that (2.1) is not almost surely
‘ stable.

Example 4.6: Consider a scalar (n = 1) jump linear system with an iid
form process. Assume H(i) # 0 for all i € N. Let (p1,...,pn) be the

‘ | common distribution of . In this case, by the Law of Large Numbers, we
! have

o . 1
v o= nETmﬁlong("”)"'H(UO)l

n N
‘ 1
= lim — ;O log |H(s;)| = Elog |H(o3)| = ; pilog|H(i)| as..

Suppose that a = 0. Define 7 = log |H(oy)|- Then, {n:} is an iid process

with E{n;} = a =0and E{n?} = 0® < +00. Thus, by the Law of Iterated
Logarithm, we obtain

n—1
] L > Mk
3 P{Im —=%  =1}=1
n—=+oo | /202 loglogn
It follows that
i _ n—1 .
| n_lir_lr_loo kz_onk = n—l—{I—ir-loo log|H(op-1)...H(op)| =400 as.

Therefore, we end up with

im |z,(w,z0)] = Lm |H(on_1)...H(00)To| = +o0 as.
n—+o0o n—-+oco

for all 29 # 0. The system is not almost surely stable.

Now, we begin to study the relationship between §-moment and almost
sure stability. The §-moment stability region £ and the almost sure sta-

bility region % in the parameter space of jump linear system are defined
by

¥ = {(H(1),...,H(N)) : (2.1) is § — moment stable.}
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and
2 ={(H(1),...,H(N)) : (2.1) is almost surely stable.},

respectively. From the above, we see that we can decompose %® into a
disjoint union of the form

¢ =xo yxe

with

%2 E RN {(HQ), ..., H(V)) : a < 0}
and

2§ €50 N {(HQ), ..., H(N) : a = 0}

If the conjecture given before Definition 4.6 is true, then we expect 3¢ = ¢,
le., ¥* =%2. The following theorem is one of our main results:

Theorem 4.7: For the system (2.1) with a finite state Markov form pro-
cess, we have

(i) For any 0 < §; < §, B2 C £, 36 C 3o for all § > 0 and %°¢
open set.

(i) If {or} is irreducible, i.e., each pair of states communicates, then

is an

z2 = lim 20 Upnomd C 30,

Before we prove this theorem, some comments are in order. The above
result simply states that, roughly speaking, the §-moment stability region
9 is monotonically increasing to the almost sure stability region ¢ from
the interior as § goes to 0 from above. This is a significant result which
generalizes the results reported in Feng et al. ([18]) and Fang et al. ([19])

To prove the theorem, we establish some fundamental results first.

Lemma 4.8:
(a). For any random variable &, the function F(z) defined by

F(z) = (Bllgl®)=

is nondecreasing on (0, --00) whenever it is well defined.

(b). Suppose {01} is a finite state and irreducible Markoy chain with
probability transition matriz P, let P; denote the submatriz of P
obtained by deleting the 1—th row and the I—th column for some
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1 € N, then the spectral radius p(Ps) of P; is strictly less than one,
i.e., there exzists a B > 0 and 0 < 1 < 1 such that

IPf|l < Bri (¥k > 0).

Proof: (a). For any z and y satisfying 0 < = Svy, let a = y/z, then o > 1,

and ¢(z) = z* is a convex function of z. Using Jensen’s inequality, we
have

o(ElIEN") < E(lEN")

From which, we obtain

(EEIP)F < (BlElY)®,

thus F(z) < F(y), which means that F(z) is nondecreasing.
(b). Let P = (pij)nxn. Without loss of generality, we assume that Ps

is the submatrix of P obtained by deleting the first row and first column
of P, define

1 0 0 0
0 pu P2 -.- DN
= X Y
=| P 0 p2 ... Pov | =
P ?1 : '2 2 (Z Ps)’
pvi 0 Pn2 ... Pyn

where X,Y and Z are block matrices with appropriate dimensions. It is
obvious that P is also a stochastic matrix, thus we can form a new N + 1
state Markov chain {5y} with probability transition matrix P. Since {04}
is an irreducible chain, there exists ¢+ € N\{1} such that p;; > 0, thus
{1} is a Markov chain with the absorbing state 1 and the transient states
2,..., N + 1, therefore there is no cyclically transferring subclass of states
in the ergodic class {1} for the Markov chain {5;}. From [31], we have

10 0
10 ...0
Q=|" - :
10 0
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Moreover, it is easy to prove that

Sk %k *
P = (* *+Psk>’

where * denotes a nonnegative matrix because of the nonnegativity of P.
From the structure of Q and the above discussion, limy_, o, P* = 0, hence

p(P;) < 1. The rest of (b) can be easily obtained (see [17]). This completes
the proof.

Lemma 4.9: (Large Deviation Theorem) Let {0,} be a finite state time
homogeneous and irreducible Markov chain with o unique invariant distri-
bution w. For any fized integer m > 1, let

®((j + 1)m, jm) = H(oG+1ym—1) - H(ojm),
Ap, = Ex{log||®(m — 1,0)]|.

Suppose that for any k, H(U{)H(ak_l) ---H(o1) # 0, then, for any e > 0,
there exist M,6 > 0 such that

154
P7r (5 Zlog “@((] + 1)m7.7m)” Z Am + 5) S Mexp(_ép)'

=0

Proof: The proof is given in the appendix. J

Lemma 4.10: If there exists an € < 0 such that

lim P, (%logHH(an) o H{oo)| > s) ~0,

where the convergence is exponential, then there exists a § such that

. 5 _
kEI-{I-loo E¢||zx(w, zo)|I° = 0,

for any .

Proof: Let 4, A° € F be defined as
1
A= (w € QlﬁlogHH(an)-uH(ao)Il > E) ,
1
A = (w € Q';logHH(a'n) -~ H(oo)| < z-:) .
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With G = max;<j<n [|H(j)|| + 1, we have

1H(on) - H(oo)l| < |H(on)ll--- | H(oo)]| < G™+1.

Notice that for any w € A4¢,

1 .
o 0gllH(on) - H(oo)ll < & = ||H(om) - -+ H(oo)|| < e
and by the hypothesis, there are My > 0 and 0 < v < 1 such that

Py(A) < Myy™.

Therefore,

Eel|H(on) - H(oo)| = /A B () - H(o0) | Pe () +

+ [ IH @) H o) Pe(a)
< GO P (A) + €% < MaG(Goy)™ + e5em,

Since lims_,o G®y = v < 1, there exists a 6 > 0 such that 0 < G < 1.
Moreover, as £ < 0, it follows that

lim E¢||H(oy)--- H(oo)||® = 0.
n—o0

Now, we are ready to prove Theorem 4.7.

Proof of Theorem 4.7:

(i). For any 6, > & > 0, if (H(1),H(2),...,H(N)) € £%, then the
system (2.1) is §,—moment stable, i.e., limj_, oo E¢llzi|®2 = 0 for all ¢ € =.
From Lemma, 4.8, we have

1 1
(Bellzeli™) ™ < (Bellmeli®)® .

Then, im0 E¢llzx[|® = 0 for all £ € Z and (H(1), H(2),. .., H(N)) €
%, Hence, £% C %,

For any 6 > 0, if (H(1), H(2),..., H(N)) € 3%, then (2.1) is 6~moment
stable. From Corollary 4.4, the system (2.1) is almost surely stable, i.e.,
(H(1),H(2),...,H(N)) € . Thus £° C e,

Now, we want to prove that X° is open. For any

(HQ),...,H(N)) ¢
3%, then (2.1) is §—moment stable, i.e., lim,_,q

E||H(on) - H(oo)lI’ =0
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I < G

H(oo)| < e

< 1 such that

e (dw)+
e (dw)
MzG(G’57)" + e&en.

ch that 0 < G¥y < 1.

(N)) € £%, then the
k]|%2 =0forall € € .

1), H(2),...,H(N)) €

en (2.1) is §—moment
ost surely stable, i.e.,

y (H(1),...,H(N)) €
H(0n) -+ H(oo)||I =0
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for any initial distribution. Using the same notations as in the proof of
Theorem 4.1, for 0 < p < 1, there exists an m > 0 such that

max F |
0<i<N

H(om-1) -+ H(oo)|)’ < p.

Here, ¢; is the i-th row of P. For any r > 0 with p < 7 < 1, because the left
side of the above inequality is a continuous function in (HQ1),...,H(N)),
there exists an open neighborhood U of (H(1),...,H(N)) such that for
any (H(1),...,H(N)) e U,

g .. | §
OI_<HZ-%}5VE§5 ”H(Um—l) H(O’o)” <r<l.

Following the same procedure as in the proof of Theorem 4.1, we can prove
that the system (2.1) with the system mode matrices & (1),...,H(N) is
exponentially §—moment stable, hence (H(1),... ,H(N)) € % hence U ¢
0. This implies that X¢ is an open set.

(ii).Recall that the top Lyapunov exponent « satisfies

— 1
Jm = log||H (o) - - H(ao)|

=a= klim %E,r(log NH(or)---H(oo)l|) Pr—as..

Thus, if (H(1),...,H(N)) € £¢ =xen {(HQ),...,H(N)) :a < 0}, then
a < 0. In this case, it is sufficient to show that there exists a § > 0 such
that (2.1) is §—moment stable.

Suppose that a < 0 (o« may be —00), and with a slight abuse of notation,
there exists a finite & and ¢y > 0 satisfying a 4 €y < 0 such that

Am & Er(10g |H(om 1) Hoo)l) < mla + ). (4.12)

Case (a). If there exists an m > 0 such that Ay = —00, with

Am= Y TaPiir Disr_yin 108 || H(im) -~ H(i)|,

i1 )i2)~--1im

there exists ji,ja,...,Jmn such that Pe{0m-1 = jm,...,00 = i} >0,
NH (Gm) - H(G1)|| = 0, ie., H(jm)---H(j1) = 0. In this case, we want to
show that there exists a § > 0 such that (2.1) is §—moment stable. Let
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G =max)cp<y 1H(k)||, we have

Ex||H(0pm-1) - H(oo)||°
= D Tupas " Pigm g | H (ipm) - - - H (31)

i11i2)---7ipm

< Z T4y Piyig * - *Pipm —1%pm ”H(me) e H(i(p—l)m-f-l)nd T

il,ig,...,ipm (*)
H () - - H (i) ||
< Gorm Z T4y Piyig - "Pipm—1ipm -
(irm:~-'7i(r—1)m+l)¢(jm7""j1)
1<r<p

We first prove a special case: m = 1. Without loss of generality, we can
assume that j; = 1, in this case, the summation on the right hand side of
(%) is

7ri1pi1i2 " ‘pipm_li,m
(irm,---,i(r-—1)m+1)¢(jm,---,J'l)
1<r<p

N
—_— . PR ... - . _— m
= E : Tio Pigiy Pipn _tigm = (7['2, ] ”N)Psp ¢

10,61 e yip =2

where ¢ =(1,...,1). From (b) of Lemma 4.8 and (%), there exists B; > 0
and 0 < 71 < 1 such that

EWHH(Upm—l) T H(UO)”6 < Bng&mefm =B (G67'1 .

Note, lim4_,, G5mr1 =71 <1 and there exists a § > 0 such that G%r; < 1.
Thus, for such § > 0, we have

pliglo Er|lH(opm) - - “H(oo)lI’ =0

form=1. Following a similar procedure as given in the proof of Theorem
4.1, we can conclude that (2.1) is 6—moment stable, thus

(H(1),---,H(N)) € 3°.

For m > 1, define T, = (apm,...,a(p_l)m+1). Because {04} is an
irreducible finite state Markoy chain, z, is also a finite state irreducible
Markov chain and (j,,,... »J1) is one state of {z»}. Following a similar
procedure as given for the m = 1 case, there exists § > 0 such that (2.1) is
é—moment stable, i.e., (H(1),...,H(N)) € 2°.
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(@)ll°

(ep-ymr)lI° - -

(%)
ipm—lipm .

ss of generality, we can
1 the right hand side of

Lipm

.., 7N )PP™e,
(*), there exists B; > 0

= B1(GPry )P,

- 0 such that G%r; < 1.

1 the proof of Theorem
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finite state irreducible
. Following a similar
> 0 such that (2.1) is
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Case (b). If for any m, A,, > —00, we wa,

nt to show next that this implies
that for some € < 0,

1
nlingo P, (;log”H(an) -+ H(op)|| > 8) =0, (4.13)

where the convergence is exponential.
For the m > 0 satisfying (4.12), let n =

pm + q, where p > 0 and
0 < g < m, we then have

1 1
5 108 || H(on) - H(oo)]| < o o[l H(om) - H(opm)||

1
+ - log || H(opm—1) - - H(oy)||

1 n
< = ;
<2 3 loglhH(ey)|
i=pm
1224
+ m log ”H(U(j+1)m—1)"'H(Ujm)”-
7=0

We again use the notation G = max

1<j<n ||H(5)]|, then from the inequality
given above we obtain,

1
7 08l1H(n) - o))l < L10gG

2127 (4.14)
tap 2 108 I H (G (11ym1) - H{oym)|
0

For € < 0 to be determined later, we have

P (3 108 [ H(on) -+ H (o)l > )

-1
q pl
<P (E log G + ;5;:310% NH(o (G 41)m, - - H(ojm)]| > E) (4.15)

j=0

122 n
= FPr (;Zlog”H(U(jH)ml o H(ojm)| > ;(5 = %logG)) .

Notice that for fixed m, lim,,_, o % =m, and lim, ,, (e~ 2log G) = me.
Define g; =

(U(j+1)m_1,---,0jm) for j = 0,1,2,.... Since {or} is a
finite state, time homogeneous and irreducible Markov chain, {?f,-};-':"g is

305




Y. FANG, K.A. LOPARO, AND X. FENG

also a finite state, time homogeneous and irreducible Markov chain. Let 7
denote the unique invariant distribution of {c;}. Let Ny %f Nx...xN

and f: N™ — R be defined as
F(6) =l1og||H(6m—1)--- H(so)|l, &= (Gm-1,...,60) € V.
Then, we have

BZf(G0) = E-10g || H(0m—1) - - - H(av) |

(4.16)
= Exlog||H(om-1)- - H(oo)|| = Ap,.

Since a+4¢y < 0, there exists an €1 > 0 such that a+¢, + 21 < 0. Choose
€ = a+¢£g+ 2¢1. Then, there exists a K > 0 such that for any n > K, we
have 2e—Llog@) > m(e — g1).

Then, from (4.12), (4.15) and (4.16), we obtain for n>K,

P (sl o) 2

-1
“p, (1 > £55) > m(e - el))
Pio
K= (4.17)
= P;r- (5 Zf(EJ) > m(a + €0) + m61>
Jj=0

(4.13),(4.16) Ry
< P-| = 05) > A +mey | .
- (p ‘:; £@5) )

Due to the fact that An, > —oco for any m, it is easy to verify that
H(ak)H(ak_l)---H(ak) # 0 for any k. From the large deviation theo-

rem (Lemma, 4.9), there exists M; >0and 0 < 71 < 1, such that for p
large,

152,
P (1_7 DG > Am+ m61) <Myl (4.18)

=0
Thus, for n large, from (4.17) and (4.18), we obtain
1
P (Liogh (o) (e > ) < iy
= (May ™) (/™ ypmta < ppyym
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e Markov chain. Let 7
t N™ d=efﬂx...xﬂ

—A. (4.16)

-£9 +2¢e3 < 0. Choose
hat for any n > K, we

orn> K,

(4.17)
161)
’LE]_) .

s easy to verify that
large deviation theo-
< 1, such that for p

1177 (4.18)

),11/ mypmtq < Mapy™
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where v = 72/™ and M, = Myt This establishes (4.13) for the case
when o # —o0.

Now, from Lemma 4.10 and (4.13), there exists a § > 0 such that
lim E|lzi(w,z0)]° =0,  Vao € R™. (4.19)
k—+oco

Since {0y} is irreducible and 7 > 0, from Lemma, 2.3, the system (2.1)
is 6—moment stable for any initial distribution e

Summarizing the above, we have proved that if (H(1),...,H(N)) e 2,
then there exists a §y > 0 such that (H(1),...,H(N)) € $%. Notice that
%8 (as a set) is monotonically increasing as § decreases. Therefore we
conclude that

2 C lim %0 = Upsox? C X0,

Next, we will show that the first set containment C can be replaced
by a set equality =. In fact, if (HQ1),...,H(N)) € % for § > 0, then
(2.1) is 6—moment stable. From Theorem 4.1, we know that (2.1) is also
exponentially §—moment stable, i.e., there exists an M > Oand0<p<1
such that E||H(o,)--- H(01)||® < Mp™, thus we have

1
9(8) ¥ lim >log E||H(0y)- - H(oo)|’ < log p < 0.
n—oo n
From Jensen’s inequality, we obtain that

T | 6
bo = lim —Elog|\H(0y,)--- H(oo)|

1
< lim —log B||H(om) - - H(ao)||?
<logp < 0.
Thus, a < 0, i.e., (H(1),...,H(N)) € £%. This completes the proof of
(ii). O

Next, we will investigate the relationship between the top Lyapunov
exponent and the §—moment Lyapunov exponent. Similar results to those
obtained by Arnold et al. ([21],[28]) for stochastic differential equations of
the Ito type are obtained.

Recall that the top Lyapunov exponent as defined in (4.5) is given by
— 1
o = lhim —E¢log||H(on) - H(ao)ll,

which has the properties given in Lemma 4.5. The 6—moment Lyapunov
exponent can be defined as the extended real-valued function B(-,) 1 R x
E — R = [~00, +00] given by
RTINS | 8
B6,6) = lim —log BllH(o) - H(oo)]l, (420)

307

A T —

R R OGRS

oz



Y. FANG, K.A. LOPARO, AND X. FENG
if the indicated limit exists. We may also define

B0 = T~ log BlH(0,) - H(oy)|?

1 (4.20")
B(6,¢) = JUm -~ log Bel|H (o) - H(op)|l.

Define 5(0,¢) = 8(0,¢) = B(o, &) = 0. For simplicity, we assume that
the matrices i () are nonsingular for all j ¢ N. We have the following
properties of the §~-moment Lyapunov exponent(s):

Proposition 4.11: Assume that the H (4) are invertible matrices for all
JE€N. For any £ € &, we have

(1) ~00 < B(6,€) < B(6, ) < +o0.

(i) bag < B(6, £. If¢ <<, then, ba; = o, < B(s,¢).

Proof: (i). Since H (1),...,H(N) are nonsingular, let
OB I 9= min N1, i g1 < k)]

for any k, we have for >0,

=00 < ~20]10g] < ~1og E(lH(0,) - Hou)|’ < 26/ og 6] < +oo,

and for § < 0,
—00 < 26|log G < %logEEHH(an) -« H(a)|]® < —26}log g| < +o0.

These inequalities imply that —oo < B(5,¢) < B(s, §) < +oco.
(ii). logz is a concave function on (0, +00), and using Jensen’s inequal-
ity, we obtain

2 Eeog IH(e,) - (o) < 108 B H (o) - H o).

Taking the limit Superum on both sides, we have bag < B(6,¢). I {<<m,
taking the limit infimum and applying Lemma, 4.5, we have bag = ba, <

B(5,8). O

Lemma 4.12;
(i) Suppose that f(z) is continuous, and for any T1,Ts,

Tit o, _ fl@) + flxs)
f(T) < T
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H(ao)|l?
(4.20")
H(ao)ll°.

plicity, we assume that
We have the following

wertible matrices for all

< B(5,%).
, let

NHT N ®)I < IH R

' < 26|log G| < +o0,

< —26llogg| < +oo.

€) < +oo.
using Jensen’s inequal-

on) - H(oo)lI’.

X¢ < E(‘sv €) If§ <<,
, we have da; = ba,; <

O

Y T1,Z2,

~—r

T2
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holds, then f(z) is convez.

(4) If f(z) is convex and the domain of f is an open set, then f is also
continuous.

Proof: This is a well-known result from calculus. 0

Theorem 4.13: If H(1),. .-, H(N) are invertible, then
(i) For any £ € E fized, B(:,€) is a conver function defined on R.
(it). For any & € E fized, B(6,€)/6 is nondecreasing on R\{0}. Let

B(8,6) = $B(6,), then B(0=,€) < o < B(0+,€) and B(0,€) =

whenever it exists.

(iéi) For any § € R fized, B(8,-) is a concave function defined on =.

Proof: ‘
(i) Define f(z) = log E¢||H(04) - - - H(0o)||®. Then for any z1,z; € R,

(i)

from the Cauchy-Schwartz inequality, we have

(:c1 + 2

EEe)
= log { B¢ [(1H (o) --- Ho))/* (1B (o) -+ H(oo))"/?]}

< log {(Bel|H(0n) - H(@o)|”)"/* (Bell (o) - H(an)|[*)"/*}

_ fm) + flza)
= 5 .
(4.21)
It is easy to show that f(z) is continuous on R from the invertibility
of H(1),...,H(N). From (4.21) and Lemma 4.12, we know that
f(z) is convex. Thus for any 0 < X < 1, we have

f(/\il?l + (1 - )\)11;2) < )\f(l‘l) + (1 - )\)f(xz)

Multiplying both sides of the inequality by 1 /n and taking the limit
supremum, we obtain

E(’\"Dl + (1 - A)-’I"27€) S Aﬁ(xlaf) + (1 - /\)3(372,5),

which implies that 8(z, ¢) is convex.

Since logz is monotonically increasing on (0,+00), from Lemma
4.8, we have that §(6,£)/6 is nondecreasing on (0,+oc0). When &
takes values in (—o0,0), replacing § by —6 and using Lemma 4.8,
we obtain that 8(6, £)/6 is also nondecreasing on (—00,0). By (ii) of
Proposition 4.11, we have for any &, §a; < B(6,€). Thus, for 6 > 0,

we have (s s
B0 o BOD)

309




Y. FANG, K.A. LOPARO, AND X. FENG

Taking the limit § | 0+, we have (ii).
(iii) For A € [0,1] and ¢,¢ € E, it is easy to verify that Pyei1_n) =
AP¢ + (1~ A)P;. Then, since log(-) is concave, we obtain

1
ﬁ IOg E)\£+(1_)\)(“H(Un) Tt ITI’(O'O)”‘S
1
= ~10g(\E¢||H(0w) - H(ao)||°
+ (1= N E||H(oy) - - - H(oo)||)
A
> " log E¢l|H(on) - - H(ao)|?

+

——log E¢||H(on) - - H(ov)||’.

Taking the limit infimum on both sides, we have

B(&, A+ (1= X)) > AB(6,€) + (1 — 1)B(5, ),
i.e., B(6,-) is a concave function. 0

Remark: Theorem 4.13 is also valid for a more general class of systems
as long as the indicated expectations exist. This is evident from our proof.
In the theorem we require that the §—moment top Lyapunov exponent
is differentiable at zero. In fact, we conjecture that it is analytic for the
system (2.1). Details on this aspect of our work will be reported at a later
date. For the one dimensional case, let IH@| = a; (i=1,2,...,N), then
from [19], we obtain '

B(6) = log(plaf +p2ag +--- +pNa}$V).

If at least one of the a; is not equal to zero, this is an analytic function of
6 at 6 = 0. Thus, the conjecture is true for one dimensional jump linear
systems of type (2.1) with an iid form process {or}.

Additional properties of §—moment Lyapunov exponents are still under
research. Parallel stability results for continuous-time jump linear systems
of the type (1.2) will be presented in a separate paper.

5 Examples

Example 5.1: (Almost sure stability does not imply second moment sta-
bility)

Let H(1) = (8 (2)) , H(2) = (g 8) for systems of the type (2.1)
with iid jumps, p; = py = 0.5.
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H(1) and H(2) are nilpotent matrices with & (1 = H(2)? =0, and it
is easy to show that (2.1) is almost surely stable. From the results of Ji et
al. [11], it is easy to check that (2.1) is not second moment stable.

Example 5.2: (Almost sure stability does not imply that the individual
modes are stable)

Let H(1) = (g g) , H(2) = (8 g) for systems of type (2.1) with
an iid form process o}, with P1=p2 =0.5.

For any m,n > 1, H(1)™H(2)" = 0, and the system is almost surely
stable. But H(1) and H(2) are not stable.

Example 5.3: (A general illustrative example)

Let H(1) = & ((1) i) , H2) =« (i g) for systems of type (2.1)
with an iid form process oy with p; = py = 0.5.

In this example, we study the stability properties of the system (2.1)
as & varies in the interval (0, 1].

@. IHD = |H)|s = (@) &, using the result from [19] we

obtain that if & < ‘/52_1, the system (2.1) is almost surely stable.
(ii). Next we use Theorem 3.5 to study the almost sure stability:
Let z = (cos§,sin6)T, and let £(6) = |2 (1))|2)| H(2)z|2. Then

11 cost\[*|l/1 0Y [ cos®

0 1 sind /||, [[\1 1 sinf /||,
= &* ((cos 0 + sin §)2 + sin? 0) (cos? 6 + (cos + sin 6)?) >
=5%(2+ 3sin 20 + gsinz 26)

2

f0) =a

and max f(0) = 2284, 50 oypqy = 2a. From Theorem 3.5, (2.1) is almost

surely stable if & < \/g This is an improved estimate of the almost sure
stability region.

(iii). From the mean value stability criterion ([19]), we know that (2.1)
is mean value stable if and only if P1H(1) 4+ po H(2) is a stable matrix.
From this we obtain that if & < 2/3, (2.1) is mean value stable. By the
remark given after Lemma 3.2, we obtain that (2.1) is almost surely stable
ifa < 2/3.

(iv). Although the proof in (iii) is simple, the following approach seems
to be applicable to more general cases.

Define

Gy G? ~( 1 &
6= (& Gg)=H<ak)---H<ao),H<ok)=a(1_6k ¥).
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where&k=1ifak=1and6k=01fok=2.
Let X is the sum of all the entries of Gy,. Then it is easy to show that

Since {0} is an iid sequence, § and 1 — §,, are independent of Gf;_l (1<
j<4)and E§, = E(1 - 6x) = 0.5. Thus from (6.1), let my, = EXy, we
have

my, =& (EZp_1 + B E(GS_, + G:_)E(1 — ok)E(Gy_, + GE_y))

- 1
—& (mk_l + 5 (B(GL, +Gi_y) + BGL, + Gi_m)

k
~ 1 3. 3.
= a(mk_l + §E2k_1) = Eamk_l = (§a> mov.

Let Fj be the smallest o—algebra generated by oy,...,0q. Then it is
easy to show that

3.
E(Ek.,_l'fk) = (5(1) Ek.

Thus, if & < 2/3, then E(X41]F%) < X, which implies that {, 7} is a

supermartingale. From the Martingale Convergence Theorem ([27]), there

exists a random variable ¥ such that limg_,o ¥ = X, almost surely.
Next, we want to prove that ¥ = 0. In fact, for ¢ > 0, we have

P(Z>0)< P(UR, (S > ) < f: P(oy, > )

=m

oo oo k
1 1 3.
< - ZEZL S E E (501) my.

k=m k=m

(5.2)

If & < 2/3, then 3722, (28)* is a convergent series. In (5.2), let m go to
infinity, we obtain P(X > ¢) = 0. Thus

ad 1
PE>0<) PE>-)=0,
( )_kz:;( k)

s0 P(X > 0) = 0. Since £ > 0, we therefore have
P(Z=0)=1.
From which we obtain that if & < 2/3, then (2.1) is almost surely stable.

312




X. FENG

en it is easy to show that
Gi-1+Giy).  (5.1)

1dependent of G{;_l (1<
(5.1), let my, = EXy, we

S)E(Gy_; + Gi 1 )

1t Gi—1)))
E
) mo.
bY Ok, -..,09. Then it is

nplies that {3z, 71} is a
ce Theorem ([27]), there
= %, almost surely.

r ¢ > 0, we have

:P(U’k > C)

1
k
E) mo.

s. In (5.2), let m go to

(5.2)

s almost surely stable.

JUMP LINEAR SYSTEMS

(v). In [19], we have proved that if EH(01)TH(01) is stable, then (2.1)
is second moment stable. Since

~2
BH (o) Hloy = 3(HO) 8 + B @) = % (] )
and its eigenvalues are 53%/2 and &2/2, if 82/2 < 1, i.e. & < V0.4, (2.1) is
second moment stable, so it is almost surely stable (same as (ii)).

(vi). The Kronecker product is a good tool for studying the second
moment stability. It is easy to show that (2.1) with an iid form process is
second moment stable if and only ifp H(1)® H(1)+- - -+py H(N) ®H(N)
is stable. A variation of this is the following;:

Let Py = Ezizl, (2.1) is second moment stable if and only if P, is a
matrix sequence which converges to zero. For the present example we have
been studying, we have

Poy1 = 1 (HQO)PH)T + H(2)P.H(2)T)

9
a2 11 10 10 11
(G )G DG DG )
1 2
Let P = (plfz pg) and yi = (', pi?, pi®)7, then

P’ pr
A
) Yr = Ryg.

&2
yk+1 = 95 (

(2.1) is second moment stable if and only if R is a stable matrix, ie., all
eigenvalues of R have modulus less than unity. The eigenvalues of R are
~67/2 and S/ITG2 . Thys if Y752 < 1 e g < VEAL (21) is
second moment stable.
Remark: Notice that 4/ 5;%@ < 2, and we know that & < 2 is sufficient
for almost sure stability. Hence, criteria for almost sure stability and sec-
ond moment stability can differ greatly, and almost sure stability does not
necessarily imply second moment stability.

(vii). Let M(G) be the largest entry of a matrix G. Notice that

H(1)™ = gm (é 7{1) and H(2)™ = gm (T}L (1’> then

- N
NN N
| NGRSy

M(H(1)™H(2)") > & mn

and

M(H@)™H(2)") > & mn.
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Let

H@ﬂ)...]{(aﬂ:&"(é lin) (lml—l 2)(3 lll)’

or the variations with I, or [; at the opposite positions in the corresponding
matrices, where I; > 0, 37 I, =n, and m = m(n) is a random sequence
and m — 0o if n — oco. Since {on} is an iid sequence with the probability
distribution (0.5,0.5), {I;} is also an iid sequence with the distribution

P{l; = k} = 0.5% (k > 0). It is also easy to show that

M(H(oy)---H(ay)) > a"lly -1,
Thus

1 1 & 1 & -
ElogM(H(Un)"'H(Ul)) > n—zZlogli + (E le> log a.

i=1 i=1

From the Law of Large Numbers, we have

L = logk
ﬂlgnooZlOgli = FElogl; = Z——

L 2
i=1 k=1 2
1 & * & )
= =

Then, noting that m = m(n), we obtain

So if it is positive, i.e.,

o logk
& > exp (-%;%) = 0.7758,
k=1 2F

then (2.1) is almost surely unstable.

This example shows that although the individual modes are stable, i.e.,
H(1) and H(2) are stable matrices (with & < 1), for @ > 0.7758, the jump
linear system (2.1) is not almost surely stable, let alone second moment
stable. It is well known that it is very easy to construct an example of a
finite state Markov chain jump linear system whose individual modes are
stable, but the system is not almost surely stable. However, it is difficult to
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give a similar example for a jump linear system with an iid form process,
the above example accomplishes this objective.

(viii). Let II(A) denote the product of all the entries of matrix 4 and
let Gy = H(o) - -+ H(oo), where the notation for entries of Gy, is the same
as before, let ITy = II(G}). As before, we can obtain

M1 = &(GL + GG + GE)((1 — 6)GL + 6, G3)((1 — 6,)G2 + 5LG?).

Let 7, be the smallest o—algebra generated by {ok—1,...,00},then from
the inequality a + b > 2v/ab for a,b > 0, we obtain

- 1
E(T 1] F) = 34(C) + GI)(G2 + G) b(GiGi N GzG@]

> 3(2/GL6Y)(2/Gr68) [arazaics
=4a'GyGLG2GE = 4010,

From a similar argument, we also have
BI},, > (4a*)°(EI)%.

Thus, if 4&* > 1, ie, & > V0.5 = 0.7071, limj_,co EIZ = 400 for any
6>0.

If we use the 2—norm, then ||A|| = \/Apas (AT A). Thus for any z € R™,
we have z7 AT Az < ||A||22Tz. Choose z = ¢; = ©,...,0,1,0,...,0)T, we

have Y_7_, a% < ||A)|?, from which we obtain that max; ; a;;| < ||Al|. For
nonnegative matrix A, II(4) < ||A||**. Thus, for our problem, we have
O < [{H(ox)--- H(oy)||*. Therefore, we obtain

(EIIH(ak)---H(al)Il“E)I/& > (Bm)""’ > .- 2 caaty,

from which we have
1

7 08 Bl H(ox)- - H(o)||* 2

§log C + §log(4a*).

ol Rl

Taking the limit supremum, we obtain
B(46,7) > log(4a*),

where (8, 7) is the top 6—moment Lyapunov exponent. From 84, we know

that B(0,7) = -y, where 7 is the top Lyapunov exponent (if the derivative
exists). Thus, if 4a* > 1, i.e., @ > 0.7071, v > 0, which means that (2.1)
is exponentially unstable almost surely.
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This result is better than (vii). The techniques developed in §4 are
potentially important for the study of almost sure stability. This will be a
topic of our future research.

Summarizing the above for this example, we have

(a). (2.1) is second moment stable ifand only if 0 < & < \/ %ﬁ;

(b). (1.1) is mean value stable if and only if 0 < & < &;
(c). (1.1) is almost surely stable if 0 <a< i
(d). (1.1) is almost surely unstable if & > 0.7071.

For % <a< lzé, we have not found a rigorous method to determine
the stability property of the system, this is currently under investigation.

6 Conclusions

We have studied the stability properties of discrete time linear systems
which are subject to abrupt changes in structure or linear feedback control
Systems which have communication delays in the feedback path. Some cri-
teria of almost sure stability of these Systems are obtained. After introduc-
ing the concept of §—moment stability, we have shown that all d—moment
stability properties are equivalent, which is a generalization of the results
for second moment stability. It is then proved that the region of §—moment
stability is monotonically converging to the region of almost sure stability
as 6 | 0F. This provides a new approach to the study of almost sure
stability as the examples show. We have also presented some new results
concerning the relationship between the top Lyapunov exponent and top
d—moment Lyapunov exponent.

. We have used a large deviation principle in our study of almost sure
stability. An interesting future research direction would be a study of the
large deviation properties of a random matrix product. The analyticity
of the top §—moment top Lyapunov exponent may also be of theoretical
interest.

Appendix

Proof of Theorem 4.9:

The large deviation result of Lemma 4.9 is a consequence of Thereom
IV.1 of [32] and we will verify the hypothesis of [32] with the aid of a
similar procedure as in [23]. Let ®((5 + 1)m, jm) be defined as in Lemma
4.9. Define

p—1

Y, = logll®((j + 1)m, jm)||,

J=

cp(6) = 1—1) log E; {exp(6Y,)}.
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Then we have

p—1

cp(8) = log Ex [] 12((j + 1)m, jm)|°.
7=0

We first show that ¢(§) = lim,_, 4 ¢, (6) exists for all § € R (where the
limit is possibly be +c0).

Let S denote the state space of the Markov chain {o}}. For any se-
quence ! = (4g,%1,.-.,%m—1) € S™ and § € R, write

A(l, 6) = A(io,‘il, - ,im_1;6) = ”H(Zm_l)H(’Lm_z) . H(20)|I§

Then, we have A(l;6) > 0 due to the fact that H(o)--- H(op) # 0O for
any k > 0. Since {0y} is irreducible, it follows that the chain 7; =
(0(j+1)m=1,---,05m) for j = 0,1,... is also an irreducible Markov chain
with state space ’

§: {(io,...,im_l) es™ :P,,(ak+m_1 =1y O = io) > 0,
for some k > 0}.

Suppose that |§ | = N and that we have ordered the states in a certain way

so that for k € {1,2,..., N }, A(k;6) is defined accordingly. Now, consider
that

p—1
EAJLI18(G + Dm,im)’Yy = D" WigPisis - Pigmosigmos
J=0

z.01'“1":;7"7!.---1
p—1

x [T12(G + D)m, jm)||°

=0

= E Tio Pigy - - 'pipm—Zipm—lA(i()’ 11y« im—1; 6)

iOy"wipm—l

X A(im:im+17 -eeyb2mo1; 6) s A(i(p—l)m’ Z.(p—l)m-}-la tee ipm—l; 6)
p—1 p—1

= E*{H A(;’TJ’ 6)} = Z 7Ii'loﬁloll .. -ﬁlp_zlp—l H A(la 6)
7=0 loyeenslp—1 =0

E (FjoA(Jo; 6))(Bjosn A(41,6)) - - (ﬁjp—sz—1A(jp——1; 5))

=zT(B(6))"%y.
(A1)
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Where in (A.1) P = (ﬁﬂ)ﬁxﬁ is the transition matrix of 7, # = (F1,...,
#5) is its initial distribution induced by 7, and

def , . . ~
0 #zT = 7r1A(1;6),...,7rﬁA(N; §)>0

vy’ =(1,1,...,1)>0

B(8) = (A 5;:6)) 5, .5 > 0.
Since the transition matrix P is irreducible and A(;6) > 0, we see that
B(6) is an irreducible nonnegative matrix. Next, we show that with cp(6) =
log T B(§)P~2y, ¢(6) = limy_, 0 2¢,(6) exists and is differentiable at any
point where it is defined. Since B(6) is an irreducible nonnegative matrix,
from matrix theory [17], there exists a positive vector v such that B(6)v =
p(B(8))v. Since v and y are positive vectors, there exists positive numbers
L > 0and U > 0 such that Lv < ¥ < Uv and 7y > 0, where the last
inequality follows from the nonnegativity of z # 0. Thus, we have

c}(é) <logzT BP~?(Uy) = log{U:I:Tp(B(é))”—2v}
=logU + (p — 2)log p(B(6)) + log 2T,

from which we obtain thag
T —c,(6) < log p(B(5)). (42)
p—oo P
In a similar way, we have
¢p(6) > log L + (p — 2)log p(B(6)) + log 2T,
from which we have
lim ~¢,(8) > log p(B(5)). (4.3)
p—oo P

(A.2) and (A.3) yield

¢(6) L Jim 1clf,((S) = log p(B(8)).

p—oo p

Due to the continuity of B(6), D(c) & {6 € R:cld < +00} is
a nonempty open interval containing 0, and c¢ is a closed convex function.
Furthermore, because B(6) is irreducible, p(B(6)) is simple [17]. Due to the
differentiability of B(6), it follows that ¢(6) is differentiable [33]. Therefore,
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From Theorem IV.1 of [32], we obtain that there exists T such that for any
e > 0 there is (e) > 0 such that

1
Pr (1%~ 71 2 ¢) < exp(-p) (4.4)
for p large. However, by the Law of Large Numbers, we should have 7 =
Ap,. Thus, Lemma 4.9 follows from (A.4) directly. O
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