
Preserving Model Privacy for Machine Learning in
Distributed Systems

Qi Jia∗, Linke Guo∗, Zhanpeng Jin∗, Yuguang Fang†
∗Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902, USA
†Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

Email: {qjia1, lguo, zjin}@binghamton.edu, fang@ece.ufl.edu

Abstract—Machine Learning based data classification is a
widely used data mining technique. By learning massive data
collected from the real world, data classification helps learners
discover hidden data patterns. These hidden data patterns are
represented by the learned model in different machine learning
schemes. Based on such models, a user can classify whether
the new incoming data belongs to an existing class; or, multiple
entities may test the similarity of their datasets. However, due
to data locality and privacy concerns, it is infeasible for large-
scale distributed systems to share each individual’s datasets for
classifying or testing. On the one hand, the learned model is an
entity’s private asset and may leak private information, which
should be well protected from all other non-collaborative entities.
On the other hand, the new incoming data may contain sensitive
information which cannot be disclosed directly for classification.
To address the above privacy issues, we propose an approach
to preserve the model privacy of the data classification and
similarity evaluation for distributed systems. With our scheme,
neither new data nor learned models are directly revealed during
the classification and similarity evaluation procedures. Based on
extensive real-world experiments, we have evaluated the privacy
preservation, feasibility, and efficiency of the proposed scheme.

Index terms— Machine Learning, Privacy Preservation, Data
Classification, Model Evaluation

I. INTRODUCTION

Tremendous amounts of data has surrounded us and affected
every aspect of our daily life. To discover hidden data struc-
tures from collected data, many data mining techniques have
been developed in recent years, which help us figure out useful
information from massive messages [1]. As an important
analytical method, among all data mining approaches, machine
learning based data classification plays a significant role.
Generally, data classification mainly consists of two parts,
data learning and predicting. During the learning phase, the
learning entity applies different methods to learn the dataset
and divides the data into various classes according to different
data features. Such division can be seen as a learned model
which reflects the data structure. Then, in the predicting phase,
this model plays as a classifier to classify the incoming test
data into the corresponding class. With the growing demands
of machine learning techniques, many online machine learning
services are also created to remotely handle the learning
process for the data owner and provide APIs to predict the new
test data, such as BigML, Amazon ML, Google ML, etc [2].
However, although the machine learning and data classification
has been making a lot of benefits to our life, it still has some
limitations. One major concern is the privacy problem.

The work of L. Guo was partially supported by the National Science
Foundation under grants IIS-1722731 and ECCS-1710996. The work of Z.
Jin was partially supported by the National Science Foundation (NSF) under
grants CNS-1422417 and ECCS-1462473. The work of Y. Fang was partially
supported by National Science Foundation (NSF) under grants IIS-1722791.

Many applications of machine learning are related to the
sensitive or private data. For instance [3], as shown in Fig. 1,
with or without the help of learning services, patient databases
containing clinical and genomic data can be learned to con-
struct a supervised model. Then, this learned model can guide
medical treatments based on the genotype and background of
different patients in the predicting process. Moreover, since
different models reflect the structure of different databases,
the comparison of such genomic models can be used to
realize the medical genetic similarity of various patient groups.
Apparently, these applications of data classification and model
evaluation can improve the accuracy and efficiency of disease
prevention and diagnosis.

Dataset Learning & Model Test Data

Data Owner Learner Tester

Learning Privacy

PredictingLearning

Model Privacy

Dataset 1

Dataset 2

Model 1

Model 2

Test Sample A

Test Sample B

Comparing

Data Classification

Model Similarity
Evaluation

Data Classification

Fig. 1: Data Classification and Model Similarity Evaluation

Unfortunately, the stumbling block is the privacy issue
existing in the above classification and evaluation process.
• First, since the original data is possessed by each data

owner, no matter how the model is used, the data should
be kept confidential to other entities. This is a learning
privacy problem. Most existing works [4]–[14] focus on
solving this problem, where the learning data is protected,
but the learned models are published to everyone.

• Second, the learned model is valuable and private to
the learner, it should be kept secret in the predicting
or comparing process. The leakage of a model result in
the loss of interests of data owner or even breach the
original data. This is a model privacy problem. Without
any protection, the predicting results can be utilized
to reversely compute the model and even retrieve the
original data in recent adversarial studies [15]–[20].

• Third, the test data is also private and should be protected
properly in the predicting phase. Since the test data are

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

predicted by the learned model, it also belongs to the
model privacy problem. Few works pay the attentions to
this part [21]–[24], but their schemes are either inefficient
or lack of practical applications.

As a result, it is necessary to preserve the privacy of learning
data, learned models and test data among the data classification
and model evaluation processes. In this work, we put our
efforts to the model privacy issues. We propose a practical
and efficient privacy-preserving data classification and model
similarity evaluation scheme to address the aforementioned
issues. We guarantee that both learned model and the test data
are well protected in the predicting phase of data classification,
and we invent a new similarity evaluation metric with privacy
preservation for the model closeness comparison.

In summary, we have the following major contributions:
• Our proposed privacy-preserving data classification

scheme ensures that the learners can conduct data classifi-
cation successfully without exposing their learned models
to the tester, while the testers keep their data in private.
The Oblivious Evaluation of Multivariate Polynomial
(OMPE) approach is applied to the Support Vector Ma-
chine (SVM) decision function to provide the privacy
preservation of learned model and test data.

• We propose a privacy-preserving geometric metric to
evaluate the closeness of different models. The proposed
scheme can privately evaluate model similarities between
different learners without exposing their models to each
other. Both distance and angle of different model hyper-
planes of high dimensional data space are considered for
the similarity evaluation.

• Two different privacy levels are elaborated in our scheme
for both data classification and model similarity evalua-
tion. The possible attacks and corresponding countermea-
sures are analyzed in various situations. Our correctness,
feasibility, and efficiency are shown by the extensive
simulations and experiments on the real-world data.

The rest of this paper is organized as follows. The related
works are briefly reviewed in Section II. In Section III, we
provide the preliminaries of our scheme. Then, we explain the
adversarial model and possible threats in Section IV. After that,
our proposed schemes are elaborated in Section V and Section
VI for different scenarios. The privacy analysis is discussed
in VII. The experimental evaluations are provided in Section
VIII. Finally, we conclude this paper in Section IX.

II. RELATED WORK

A. Privacy Preservation in Data Classification
Privacy issues in data classification can be categorized into

learning and model privacy. The issues raised in the learning
process are about how to protect the learning data and privately
compute the learning models. Randomization approaches are
applied in the early time. In [4]–[7], they mix the learning
data by using random rotation perturbation or random matrix.
The learning process is manipulated on the randomized data
and the correct learned model can be acquired after the de-
randomization. Other approaches are based on the crypto-
graphic methods. Several systems [8]–[11] propose solutions
by providing the learning process on the encrypted data. The
homomorphic cryptosystem is applied so that the optimization
problems can still be solved by the homomorphic properties
in the ciphertext. Liu et. al. apply the secret sharing scheme to

protect the privacy by requiring all users’ communication and
cooperation in [6]. Recently, most research works move further
steps to the distributed data systems. The proposed approaches
such as [25]–[29] guarantee the universal optimization value
for the learning target over the whole distributed system, while
will not require the actual data information for each individual
data owner. The privacy concerns in such systems usually
concentrate on the passing gradient values instead of the real
data [12]–[14]. In [25], Xie et. al. provide an asynchronous
update model to solve the secure learning problem for the
general class of multi-task learning (MTL). Xu et. al. [30]–
[32] analyze the distributed privacy preserving SVMs in both
the horizontally and vertically partitioned data by modifying
the Alternating Direction Method of Multiplier (ADMM)
schemes. The assumption behind all these works is the learning
data is private but learned models can be publicly known.

However, the learned model should also be protected.
Fredrikson et. al. [16] analyze the feasibility to retrieve origi-
nal learning data from the known model. They successfully
reconstruct the face images from the Neural Network face
recognition model. In [17], Tramèr et. al. implement the model
stealing to several popular learning algorithms and show that
only the test results can be used to recover the model informa-
tion. To prevent such privacy leakages, Rahulamathavan et. al.
[22] propose a scheme to transform the SVM decision function
into an encrypted form by the Paillier cryptosystem. The
classification sample is also encrypted. All the computations
are operated on the ciphertext and only the tester who holds the
private key can decrypt the classified result. The other related
work to our approach is [24]. Raphael et. al. introduced the
privacy-preserving classification schemes over hyperplane de-
cision, Naive Bayes, and decision trees classifiers. They imple-
ment several homomorphic cryptosystems in different steps of
data classification to protect the privacy of learned model and
tester inputs. However, the homomorphic cryptosystems would
introduce complicated encryption procedures. Compared to
their approach, we apply a uniform OMPE method without
additional encryption for the classifications and provide the
similarity evaluation to different learned models.

B. Privacy Preservation in Data Similarity Evaluation
Our privacy-preserving model evaluation is close to the

matching system, which has been applied in finding the best-
matched pair of users that have most similar interests or
behaviors on social networks. Many elegant and efficient
matching systems have been proposed. In [33], [34], they
propose coarse-grained privacy-preserving matching systems.
In their descriptions, the matching attributes are derived from a
public set so that the matching problems become to the Private
Set Intersection problems. In [35], Zhang et. al. propose a
fine-grained matching system, where all attributes are graded
in different values. However, the grading process is not clear
in this paper. Users can input any values for the matching
purpose, and this arbitrary inputs could lead to a totally
mismatched result. In our proposed solutions, the evaluation is
based on the learned models, which is the reflection of inherent
behaviors as an objective comparison result.

III. PRELIMINARIES

A. Support Vector Machine
Support Vector Machine (SVM) is a supervised machine

learning scheme that divides the data space into two different

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

parts by a binary classifier based on the learning data [36].
Assuming data x ∈ Rn is an n dimensional vector, and it
has a label y ∈ {+1,−1} indicating its class. The learning
process is to find a hyperplane that divides the data space
with the largest margin distance between different data label
groups.

In a linear classification problem, an unlabeled data sample
t can be categorized into label yt = +1 (if wT t + b > 0)
or yt = −1 (if wT t + b < 0) with a linear hyperplane. The
learned decision function d(t) can be summarized as

d(t) = wT t + b =
∑
s∈S

αsysxTs t + b (1)

where w and b are the optimized model parameters. S is the set
of support vectors, xs, 1 ≤ s ≤ |S| are the support vectors, and
ys, 1 ≤ s ≤ |S| are the corresponding labels. Here, αs, 1 ≤
s ≤ |S| are the Lagrangian multiplier parameters. Then, a
class label will be assigned to the test sample t by finding the
sign of the decision function output as follow,

D(t) = sign(d(t)) = sign(wT t + b) = sign(
∑
s∈S

αsysxTs t + b).

In the nonlinear classification, data is nonlinearly distributed
and it can hardly find a linear hyperplane to divide the data
in the original data space. Therefore, kernel functions [36] are
used to map the low dimensional data to a higher dimensional
space, where the linear SVM method can be applied. For
the nonlinear SVM decision function, the dot product xT t is
substituted by kernel functions. The change is

xT t⇒ K(x, t) =< ϕ(x), ϕ(t) >

where ϕ : Rn → Rn′
, n < n′ is a high dimensional mapping.

Then, the nonlinear classification function can be expressed as

D(t) = sign(d(t)) = sign(< ϕ(w), ϕ(t) > +b)

= sign(
∑
s∈S

αsysK(xs, t) + b)

B. Oblivious Transfer Protocol
Oblivious transfer is one important cryptographic primitive

protocol to provide a secure scheme for data transfer among
different parties. Normally, there are two parties in the protocol
[37]–[39], receiver and sender, for transmitting messages. By
executing this protocol, the receiver only gets one part of
the information from the sender without knowing other parts,
while the sender does not know which part is obtained by the
receiver. Generally, the protocol is developed in three steps:

1) 1-out-of-2 protocol: The sender has two messages
{m1,m2}. The receiver has one bit b. The receiver
wants to get message mb without exposing b to the
sender. While the sender can ensure that only one of
two messages is delivered to the receiver.

2) 1-out-of-n protocol: It is a generalization of 1-out-of-2
protocol. The receiver has an index σ and wishes to get
the σth message among the message set {m1, ...,mn},
while the sender can ensure only one of the messages
is sent without knowing the index σ.

3) k-out-of-n protocol: In this case, the receiver has a group
of indices {σ1, ..., σk}. After this protocol, the receiver
only gets the corresponding messages {mσ1 , ...,mσk}
from {m1, ...,mn}, while the sender will not know
about the indices.

C. Oblivious Evaluation of Multivariate Polynomials
Oblivious Evaluation of Multivariate Polynomials (OMPE)

is introduced in [40]. It is a secure multi-party computation
protocol that can securely compute the multivariate polynomial
functions. The proposed scheme assumes that the sender has
r variates with d-degree polynomial P (·), and the receiver has
the input vector α = (α1, ..., αr). The protocol can ensure that
the receiver can get the polynomial computation result P (α)
without exposing α to the sender, while the polynomial P (·)
is still kept secret from the receiver. The OMPE procedures
run as follows,

1) The sender generates a random univariate masking poly-
nomial M(x) with degree sd, where s is a security
parameter and M(0) = 0. Then, the sender hides
real polynomial P (·) by defining a (r + 1) variates
polynomial Q(x, y) =M(x) + P (y).

2) The receiver generates r random univariate masking
polynomials Si(·) and ensures that Si(0) = αi. Then,
the receiver collects the Si(·) and defines a tuple S(x) =
(S1(x), ..., Sr(x)).

3) The receiver generates N = nm random inputs
x1, ..., xN , where n = sd+1 and m is a secure random
number. The receiver also selects n positions among
the inputs to compute yi = S(xi) as covers. For other
positions, y are just randomly selected.

4) The receiver sends N pairs value {xi, yi} to the sender,
the sender calculates the corresponding values Q(xi, yi).

5) The receiver and sender execute the n-out-of-N proto-
col, and the receiver gets n selected position values as
R(xi) = Q(xi,S(xi)).

6) The receiver interpolates the acquired values to get
R(x), and the function result is P (α) = Q(0,α) =
Q(0,S(0)) = R(0).

IV. ADVERSARIAL MODEL

In this section, we present the basic privacy assumptions in
our design and explain possible privacy breaches during the
classification process.

A. Adversarial Assumptions
To illustrate the privacy challenges in our scheme, we put

forward two assumptions for this system. First, we assume all
users in our system are honest-but-curios, i.e., they will try
to learn more information than allowed by inferring from the
results, but they will honestly follow the schemes. Second,
we assume the collusion may happen among learners and/or
testers. A learner/tester may collude with other learner/tester
to speculate more messages on one tester/learner. However,
learners should not collude with the tester. Based on such
assumptions, we bring out two different privacy threats in the
proposed scenario.

B. Privacy Breaches
1) Explicit Leakage: Generally, the normal classification

process requires the participation of both learned model and
test data. For example, the test data will be sent to the learner
for predicting its class, which violates the privacy requirement
of the test data. Therefore, the test data or learned model
should not be directly exposed to the other parties during the
predicting phase, which means the model parameters should
be kept secret on the learner side, while test data vectors are
in private on the tester side.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2) Implicit Leakage: The information should be prevented
from indirectly obtaining of learner or tester. In other words,
after the classification, neither learner nor tester should retrieve
the test data or model parameters from their classification
results. On the tester side, the test data are different in
each classification request, such that the learner can hardly
retrieve the test data just from one specific result. However,
on the learner side, the learned model is the same in every
classification requests. Multiple test results could be utilized
to retrieve the original model. Based on the above models, we
consider three different attack strategies in this work.

C. Attacking Strategy
1) Model Rebuild Attack: Obtaining the accurate output

values of the classification results, this attack can solve a group
of equations from the test results to reconstruct the model.
For example, for an n dimensional classification model, only
n+1 singularity equations are sufficient to reconstruct all the
model parameters. As shown in Fig. 2, for a visual 2-D data
space, only knowing three points and corresponding distances
is enough to rebuild a decision function by finding the common
tangent.

w·x+b=0
A

B

C

Tangents

Fig. 2: Model Rebuild Attack

2) Data Fitting Attack: Knowing the distribution of the
classification results, this attack can use data fitting algorithms
to retrieve the original information. As shown in Fig. 3, the
Least Square (LS) approach is applied to a bunch of data
points. These points have been randomly biased from the
correct outputs. However, the LS attack can still reconstruct
a similar division to the original model. Comparing with the
model rebuild attack, it computes a statistical average such that
the randomization influence of an individual point is reduced.

0-10 10 20 30

5

10

15 LS Ack
Original

Rnd Points

Fig. 3: Data Fitting Attack

3) Retraining Attack: Having the labels of the classification
results, this attack directly applies the learning method to the
test data to obtain a new model. As long as the test data covers
all the output classes, the rebuilt model can be similar to the
original model with increasing test results. Due to the exposure

of the final output labels, this attack is inevitable from the
predicting process. However, the difficulty of retraining attack
equals to have a new learning process, which requires more
classification results than the model rebuild or data fitting
attacks.

V. PRIVACY PRESERVING DATA CLASSIFICATION

In this section, we propose a privacy-preserving data clas-
sification scheme for computing the classes of the tester’
samples. Assuming Alice is the learner who holds the learning
dataset and has derived a classifier, while Bob is the tester
who wants to figure out which class his test data sample
belongs to. As shown in Fig. 4, the black curve in (a) can
be reviewed as the learned model of Alice, it divides the
data space into two different classes. The circle in Fig. 4(b)
represents Bob’s sample which is unlabeled. To acquire the
class label for the sample, our proposed scheme guaran-
tees that Bob can get the data classification result, while it
also achieves the learned models’ and classification samples’
privacy preservation during the computation. Basically, we
firstly analyze the SVM decision functions. Then we apply
the OMPE protocol to securely compute the classification
result. Finally, the class can be classified from the sign of
decision function result. To elaborate our scheme, both linear
and nonlinear data classification problems are described.

+ -
+

+++
+

+
+

+
+

+

-
-

-
-

- -
- -

(a) Learned Pattern

?

+

-

(b) Test Data

Fig. 4: Data Classification

A. Privacy-preserving Linear Data Classification

In the linear data classification problem, the data is located
linearly in the data space. Alice has learned a linear classifier
d(t) from her dataset, and Bob wants to get the classification
result for his sample t̃. In this scenario, the classifier is a linear
hyperplane that divides the data space into two different parts.
To protect its privacy, we can start the analysis with the linear
SVM decision function.

d(t) = wT t + b =
∑
s∈S

αsysxTs t + b

=
∑
s∈S

αsysxs1t1 + ...+
∑
s∈S

αsysxsntn + b

It is an n variates polynomial with degree 1. To privately get
the classification result of the decision function, Alice and Bob
execute the following steps.

1) Trained Model Randomization: Alice has the learned
model d(t) as an n variates polynomial with degree 1. Bob
initiates the request with Alice for privately classifying his test
data. Then, Alice generates a random univariate polynomial
h(u) with the degree of q, where q is a security random
parameter. She also makes sure that h(0) = 0, such that,

h(u) =
∑

1≤j≤q

aju
j

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

where the aj ∈ R is a random coefficient of uj . After gener-
ating h(u), Alice selects a random number ra > 0, ra ∈ R
to amplify her decision function as d′(t) = rad(t). Then,
she combines the random polynomial and decision function
together to reach an (n+ 1) variates polynomial as follows,

A(u, t) = h(u) + d′(t)

=
∑

1≤j≤q

aju
j + ra

∑
s∈S

(αsysxT t + b)

=
∑

1≤j≤q

aju
j + (ra

∑
s∈S

αsysxs1)t1 + ...

+ (ra
∑
s∈S

αsysxsn)tn + rab

(2)

which forms an (n+ 1) variates polynomial of degree q with
inputs (u, t1, ..., tn).

2) Classification Data Randomization: Given test sample
t̃ = {t̃1, ..., t̃n}, Bob generates n random univariate polyno-
mials of degree q to hide each component. Let the polynomials
be {gi(·)}1≤i≤n, Bob makes sure that gi(0) = t̃i as well,

gi(v) =
∑

1≤j≤q

bjv
j + t̃i

where bj are the random numbers from R. After generating
parameters, Bob combines the polynomials together to get a
vector G(v), such that,

G(v) = (g1(v), ..., gn(v))

Then, Bob computes a global number M = mk, where m =
q+1 and k is a secret random number. He generates M non-
zero random numbers v1, ..., vM ∈ R, and selects m indices
from these random numbers as a subset I . Assume the selected
indices are I = {σ1, ..., σm}, 1 ≤ σ1 < ... < σm ≤ M , for
these selected numbers, Bob computes zσi := G(vσi), σi ∈ I .
In this way, m selected terms are hided in all M numbers with
partial information of G. For any other indices j /∈ I , zj are
randomly selected from Rn as disguise values. Finally, Bob
sends these M pair values {(vi, zi)}1≤i≤M to Alice.

3) Classification Result Retrieval: After receiving M pairs
from Bob, Alice computes A(vi, zi) in Eq. (2) for all received
values. Then, Alice and Bob can execute an m-out-of-M
oblivious transfer protocol. Bob can only get the value of
his selected indexes, while Alice does not know which values
are delivered to Bob. Therefore, Bob only learns the value
{A(vi, zi), i ∈ I}, and Alice learns nothing because she cannot
reveal the real values of ti in feasible polynomial time [40].
If we examine the received values of Bob,

A(vi, zi) = A(vi,G(vi)) = h(vi) + d′(G(vi)), i ∈ I
it is a univariate q-degree polynomial of variate v. Bob
redefines this function as B(v), B(v) = A(v,G(v)). As a
q-degree univariate polynomial, it can be reconstructed by
(q + 1) pair values of inputs and outputs. Since we have
chosen |I| = m = q + 1 pairs of value {A(vi, zi), i ∈ I}.
The Lagrange interpolation can be implemented to reconstruct
B(v). The interpolation can be done as follow,

B(v) =
m∑
j=1

Bj(v)

Bj(v) = B(vj)

m∏
i=1,i6=j

v − vi
vj − vi

.

(3)

Once Bob gets B(v) from the interpolation, he can get the
d′(̃t) by computing the B(0). This is because

B(0) = A(0,G(0)) = h(0) + d′(G(0)))

= d′(t̃1, ..., t̃n) = d′(̃t) .

Finally, to decide which class is correct for the classification
sample t̃, Bob just needs to get the sign of d(̃t). Since it has
been amplified with a positive random number ra, d′(t) keeps
the same sign as d(t). So, the classification result is

D′(̃t) = sign(d′(̃t)) = sign(rad(̃t)) = sign(d(̃t)) = D(̃t)

Hence, Bob gets the classification result without exposing his
values, while Alice keeps her decision function undisclosed.

B. Privacy-preserving Nonlinear Data Classification

In nonlinear data classification scenario, the data is dis-
tributed nonlinearly in the data space and it is impossible to
divide the original data with a linear hyperplane. In such case,
the decision function is improved by the kernel methods,

d(t) =
∑
s∈S

αsysK(xs, t) + b

In this decision function, the kernel function is used to map
the lower dimensional vectors to a higher dimension. Various
kernel functions can be applied to different data distribution.
Here we list three most popular kernel functions:
• Polynomial kernel: K(x, y) = (a0xT y + b0)

p

• Radial Basis Function Kernel: K(x, y) = c0e
||x−y||2

• Sigmoid Kernel: K(x, y) = tanh(xT y + d0)

Among them, if the polynomial kernel is applied, the nonlinear
decision function can still be seen as an n variates polynomial
function of degree p. For the radial basis function or sigmoid
kernel, we can apply the Taylor Expansion to transform
them into polynomials. Therefore, the corresponding nonlinear
decision functions are reformed as below,
• Polynomial kernel:

d(t) =
∑
s∈S

αsys(xT t)p + b

• Radial Basis Function Kernel:

d(t) =
∑
s∈S

αsys

∞∑
i=0

(x− t)2i

i!
+ b (4)

• Sigmoid Kernel:

d(t) =
∑
s∈S

αsys

∞∑
i=0

[
B2i4

i(4i − 1)

2i!
(xT t)2i−1] + b

In real applications, we can use a limited number p to
approximate the infinity. Actually, in most cases, only a
small number of p is sufficient to obtain enough classification
accuracy. In doing so, no matter what kind of kernel function is
used in the nonlinear SVM, it can always be transformed into
p-degree polynomials. For the nonlinear polynomial kernel
function, if we set a0 = 1, and b0 = 0, the data classification
processes should be updated to the nonlinear scenario and the
corresponding decision function is,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

d(t) =
∑
s∈S

αsys(xT t)p + b

=
∑
s∈S

αsys(x1t1 + ...+ xntn)
p + b

=
∑
s∈S

αsys(
∑

k1+...+kn=p

(
p

k1, ..., kn

) ∏
1≤i≤n

xkii t
ki
i) + b =

∑
k1+...+kn=p

{[
∑
s∈S

(αsys

(
p

k1, ..., kn

) ∏
1≤i≤n

xkisi)][
∏

1≤i≤n

tkii]}+ b

In this case, d(t) is an n′ =
(
n+p−1
n−1

)
variates polynomial, and

input terms
∏

1≤i≤n t
ki
i are the combination multiplications

of original variates ti. If we treat each term as a variate τj ,
τj =

∏
1≤i≤n t

ki
i , 1 ≤ i ≤ n, 1 ≤ j ≤ n′, we can rewrite d(t)

as d(τ), where d(τ) is just an n′ variates p-degree polynomial.
For the RBF kernel function, if we set c0 = 1, the

corresponding decision function in polynomial form is,

d(t) =
∑
s∈S

αsys

p∑
i=0

(x− t)2i

i!
+ b

=
∑
s∈S

αsys

p∑
i=0

1

i!
(x2 + t2 − 2xt)i + b

Since x2 and t2 are the norm squares of the learner and tester,
we can let a constant c = x2 + t2 be a shared public value.
This value cannot be used to retrieve the correct value of x
and v. Then, the above function can be written as,

d(t) =
∑
s∈S

αsys

p∑
i=0

[
∑

k1+...+kn=i

(
i

k1, ..., kn

) ∏
1≤j≤n

x
kj
j t

kj
j] + b

=

p∑
i=0

∑
k1+...+kn=i

{[
∑
s∈S

(αsys

(
i

k1, ..., kn

) ∏
1≤j≤n

x
kj
sj)]

[
∏

1≤j≤n

t
kj
j]}+ b

Compared to the polynomial kernel, the RBF kernel function
is a summation of multiple polynomial kernels. Theoretically,
p controls the approximate performance of the Taylor trans-
formation. However, larger p will introduce the higher degree
polynomials, which causes more computation loads. Fortu-
nately, in the real classification tasks, the data is normalized
to a range that close to the 0 point, such that smaller p can
perform a sufficient approximation.

Based on such polynomial transformation, we can apply the
OMPE approach to this transformed polynomial to achieve the
secure computation. In the learned model randomization step,
instead of original (n+1) variates, Alice computes an (n′+1)
variates with pq-degree polynomial A(u, τ),

A(u, τ) = h(u) + d′(τ)

where h(u) is a pq-degree random univariate polynomial with
zero constant term. Then, in the data randomization step, Bob
transforms his t̃ to τ̃ , and G(v) is changed to an n′ terms
vector, G(v) = (g1(v), ..., gn′(v)). The gi(v) is still generated
randomly by Bob to hide his data. In the retrieval part, m
equals to (pq + 1). As shown in Eq. (3), to interpolate the
function B(v), (pq + 1) different value pairs are obliviously

transmitted between Alice and Bob. Finally, Bob still gets the
classification result by acquiring d′(τ̃) as,

B(0) = A(0,G(0)) = h(0) + d′(G(0)))

= d′(τ̃1, ..., τ̃n′) = d′(τ̃)

Therefore, for the nonlinear case, Bob’s data can still be
securely classified in our nonlinear privacy-preserving data
classification scheme. During the whole process, both Alice’s
learned model and Bob’s classification sample are protected.

VI. PRIVACY PRESERVING MODEL SIMILARITY
EVALUATION

As we mentioned earlier, model similarity evaluation is to
calculate the similarities among different models. As shown
in the Fig. 5, since learner has different learning data, their
learned models could be different from each other. In order
to compare two different models, we propose a privacy-
preserving model similarity evaluation scheme. To evaluate the
similarity, the first step is to find a metric that can properly
represent the closeness of different learned models. In our
scheme, we combine both factors of the direction and position
of learned models as a metric. Then, we explain how to
compute this metric with the privacy preservation of different
learners. Similarly, our scheme will be elaborated in both
linear and nonlinear scenarios.

+ -
+

+++
+

+
+

+
+

+

-
-

-
-

- -
- -

(a) Learned Model 1

+
+

+

+

+

+
+

+
+

-
-
-
-
-
-
-
-
-

- -

(b) Learned Model 2

Fig. 5: Model Similarity Evaluation

A. Similarity Metric
1) Cosine Similarity: Considering the geometry concepts of

SVM, the decision function d(t) is a hyperplane that divides
the data space Rn for classification. Different decision func-
tions will give various hyperplanes that dividing the data space
in different directions and positions. Therefore, the model
similarity evaluation can be seen as the problem of comparing
different hyperplanes. The intuitive way of comparing two
high dimensional hyperplanes is to measure the included angle
of them. If the data space is unlimited, the comparison can
be done by calculating the cosine value of two hyperplanes’
included angle. This cosine value can also be calculated by
the normal vectors. If v and w are the coefficient vectors of
the high dimensional decision functions, the cosine value, or
called cosine similarity, is calculated as follows,

cos θ =
v · w√
||v||2||w||2

However, only comparing the hyperplanes by the angle
could be far away from the real similarity of data models.
In particular, the data will not be distributed in the infinite
space. Normally, they are limited in a certain area of the n(n′)
dimensional data space. Two hyperplanes may have different
angles and locations in the data space. As shown in Fig. 6,
the red line is located at the upper region of the data space

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

and has a relatively horizontal direction, while the blue line
is located at the central region of the data space and has a
relatively vertical direction. Only comparing their directions
cannot truly reflect the real closeness. For this reason, the
decision function of the learned model should be considered
as bounded hyperplane with different direction angle and
boundary points in the limited data space. So, we need to
find a metric that can give an assessment of the closeness
of two high dimensional bounded hyperplanes instead of two
unbounded ones.

+ + +
+ +
+

+

+

-
- - - -

-
- -

-
-
--

β

α
α β

β

α
α β

+

+

+
+

+

+

+

+

+ +
+-

-

-

-

-

-

-

-

--

β

α
α β

θ

L
L

θ

Fig. 6: Bounded Data Space and Isosceles Triangle Construc-
tion

2) Isosceles Triangle Area: To protect the bounded planes
as well as give a reasonable metric for the closeness, we
propose a novel approach to privately compute the closeness of
two bounded hyperplanes with the combination of the centroid
distance and cosine similarity. The included angle should be
kept as a reflection of the directions. To reflect the distance
of two bounded planes, we choose to compute their centroid
distance. Here, We assume the included angle is θ and the
centroid distance is L. By combining these two elements, as
shown in Fig. fig:bds, we can construct an isosceles triangle
with vertex angle equals to θ and legs equal to L. Hence,
we can get the area of this isosceles triangle T = 1

2L
2 sin θ,

where sin θ =
√
1− cos2 θ. Apparently, the area T is related

to the sine value of θ and the square value of L, which reflects
how close the two bounded plane is in both views of direction
and position. To avoid the square roots, we can compute the
square of the area as T 2 = 1

4L
4 sin2 θ. However, two extreme

situations should be considered. One is the two hyperplanes
are parallel, the other one is their centroid locate at the same
position. In these cases, the area becomes to null and it is
impossible to differentiate which one causes the null area. So,
to avoid this problem, we can add two small public constant
values as angle θ0 << 90◦ and distance L0 on the original
terms. Then, the square area value becomes as follows,

T 2 =
1

4
(L4 + L4

0)(sin
2 θ + sin2 θ0) (5)

Note that only when the two bounded planes are parallel and
the centroid are coincident, the area T can get the smallest
value 1

2L
2
0 sin θ0. After acquiring the T 2, T can be computed

by computing its square root. This area value T can be an
evaluation of learned models. Smaller square area value means
two different models are closer, and vice versa. Notice that
even we analysis this metric for similarity from the linear
decision function and geometric way, it still can be a reflection
of the nonlinear situation by kernel method. The nonlinear
decision function can be mapped to a higher dimensional data

space as a linear hyperplane, and still the centroids and cosine
similarity can be found in the higher dimensional space.

B. Privacy-preserving Linear Model Similarity Evaluation
We continue to use Alice and Bob as an example to compare

their learned models. In the linear distributed data scenario,
their decision functions are

dA(t) = wTAt + bA, dB(t) = wTBt + bB

where wA ∈ Rn := (wA1
, ..., wAn), and wB ∈ Rn :=

(wB1
, ..., wBn).

1) Angle and Distance Computation: We assume the data
space is limited within [α, β]. The boundary points of Alice or
Bob can be found by solving all feasible solutions of wT t +
b = 0, α ≤ ti ≤ β. As shown in Eq. (6), it should treat
one dimension value as a variable at each time, and the other
dimensions should be arranged in different combinations of α
and β. So, for each variate, there are 2n−1 equations to be
solved and all the feasible solutions are the boundary points.
For example, if we treat t1 as a variable u, the equations are

w1u+ w2α+ ...+ wnα+ b = 0
w1u+ w2α+ ...+ wnβ + b = 0
...
w1u+ w2β + ...+ wnα+ b = 0
...
w1u+ w2β + ...+ wnβ + b = 0

(6)

All the feasible u in these equations, where α ≤ u ≤ β,
can make up the first dimension boundary points with the
corresponding α and β. After this computations, we sup-
pose {mA1 , ...,mAγ} are the boundary points of Alice and
{mB1

, ...,mBδ} are the boundary points of Bob, where γ, δ
are the numbers of boundary points. Then, the bounded plane’s
centroid mA of Alice and mB of Bob are

mA =

∑γ
i=1 mAi

γ
mB =

∑δ
i=1 mBi

δ

The Euclidean distance L of these two centroids is

L =
√
|mA|2 + |mB |2 − 2mA ·mB

Based on the cosine similarity and centroid distance, the
square area value for Eq. (5) can be written as follows,

T 2 =
1

4
(L4 + L4

0)(sin
2 θ + sin2 θ0)

=
1

4
[(|mA|2 + |mB |2 − 2mA ·mB)

2 + L4
0]

[(1− (wA · wB)2

|wA|2|wB |2
) + sin θ20]

(7)

2) Area Computation: As so far, the privacy-preserving
similarity evaluation problem has been transformed into a
problem on privately computing the square area value. We
continue to apply the OMPE protocol to achieve the design
objective. However, instead of directly expanding the Eq. (7)
as a multivariate polynomial, we can simplify the computa-
tions.

First, Bob can send |mB |2 and |wB |2 to Alice directly. Since
these two terms are the vector squares, Alice cannot reveal
any dimension’s value of them. To decrease the number of
variates, instead of computing the whole square area value
as a 2n variates polynomial for mA and wB , Bob computes
mA · mB and wA · wB as two input variates. By similarly

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

running the OMPE protocol, Bob will get the amplified values,
ram(mA ·mB) and raw(wA ·wB). In these values, the random
amplifiers ram and raw are used to prevent Bob to retrieve the
real polynomial coefficients of Alice. However, one exception
is the value wA ·wB could be zero so that Bob will know Alice
is vertical with his plane. He can get the centroid distance by
deduce the final result and find out the plane of Alice. To avoid
this problem, Alice adds another random value rb ∈ R on the
hidden polynomial, such that d′(t) = rawd(t) + rb. Without
knowing this additional value, Bob cannot retrieve anything
from his obtained values.

Then, to simplify the whole function, we let c1 = ||mA||2+
||mB ||2, c2 = L4

0, c3 = (||wA||2||wB ||2)−1, c4 = 1 + sin θ20 ,
and let d1 = r−1am, d2 = r−1aw , d3 = −rb be the constants. In
addition, Alice lets x1 = ram(mA ·mB), x2 = rawwA ·wB+rb
be the variates delivered by Bob. The square area value can
be calculated with following polynomial of x1 and x2,

T 2(x1, x2) =
1

4
[(c1 − 2d1x1)

2 + c2][c4 − c3d2(d3 + x2)
2]

(8)
where the degree is 4. This is a simple two-variate polynomial
function. All the constants ci, i = 1, 2, 3, 4, dj , j = 1, 2, 3 are
only known by Alice and the variates x1, x2 are just delivered
form Bob. Applying the OMPE approach again, Alice and Bob
can simply get square area value from this simplified function.
Finally, Bob can get T as the similarity evaluation result, while
all the privacy of Alice and Bob are protected.

C. Privacy-preserving Nonlinear Data Similarity Evaluation

The same idea can be applied in the nonlinear case. The
square area value can still be a metric of the nonlinear data
models. The difference is that we need to map the metric
to a higher dimensional form, and seek a higher dimensional
solutions for computing θ and L. To address this mapping, the
whole process should be considered with the kernel functions.
Instead of using the Eq. (6), the equations with nonlinear form∑
s∈S αsysK(xs, t)+b = 0 for computing the boundary points

should be listed. We take the nonlinear polynomial as an exam-
ple, the new boundary computation should computed from the∑
s∈S αsys(

∑
k1+...+kn=p

(
p

k1,...,kn

)∏
1≤i≤n′ x

ki
i t

ki
i)+b = 0.

Then, the dimension is changed from n to n′ =
(
n+p−1
n−1

)
,

and w′i =
∑
s∈S αsys

(
p
ki

)
. Similarly to the linear case, these

arguments can still be applied into Eq. (6) to compute the
boundary points for the mapped high dimensional data spaces,

w′1u+ w′2α+ ...+ w′n′α+ b =

∑
s∈S αsys

(
p
k1

)
u+∑

s∈S αsys[
∑

k1+...+kn=p

(
p

k2,...,k′
n

)∏
2≤i≤n′ w

′ki
i {α, β}

ki
i]

+b = 0
...
w′1u+ w′2β + ...+ w′n′β + b = 0

Similarly, the centroids of the higher dimensional space
can be computed from the boundary points as mA and mB .
Combine with the decision function coefficients vectors, the
new square area value of nonlinear data similarity evaluation
can be expressed as follows,

T 2 =
1

4
[(K(mA,mA) +K(mB ,mB)− 2K(mA,mB))

2 + L4
0]

[(1− K2(wA,wB)
K(wA,wA)K(wB ,wB)

) + sin θ20]

where all computation of kernel functions can be transformed
as the inner products of the expanded polynomials. Following
with the procedures of linear case, the terms K(wB ,wB)
and K(mB ,mB) can be directly sent to Alice from Bob.
The simplified function is similar as Eq. (8), and it is a
polynomial function of x1, x2, where x1 = ramK(mA,mB)
and x2 = rawK(wA,wB)+rb from Bob. Finally, by mapping
the nonlinear data to higher dimensional space with the
kernel functions, the similarity evaluation result T can still
be obtained by Bob with privacy preservations.

VII. PRIVACY ANALYSIS

As we assumed, the users in this system are honest-but-
curious. All the users honestly perform the steps, but they
are curious to deduce additional knowledge from what they
obtained. Under such assumptions, two different level privacy
objectives should be considered in the proposed schemes.
• Level 1 objective: To prevent the explicit privacy leakage,

during the computation between the learners and testers,
their private values should not be exposed.

• Level 2 objective: To prevent the implicit privacy leakage,
after the computation process, the private value of the
learners or testers should not be exposed.

A. Data Classification Level 1 Privacy

We consider each step in our proposed scheme to ensure the
level 1 privacy requirement. On the one hand, from Bob’s point
of view, he hides all the input values into n different random
polynomials gi, and the random polynomial is different at each
time. If Alice wants to get t̃i, she has to collect at least (pq+1)
different values from one stable gi. However, gi are different
at each time, and they are hidden with random numbers among
all the M values. Since the oblivious transfer is implemented,
it is impossible for Alice to find out the specific positions of
gi in a feasible time. So, Bob’s private value t̃ is protected. On
the other hand, Alice hides her p-degree polynomial into a pq-
degree polynomial. Although Bob can use the (pq+1) terms to
reconstruct the univariate polynomial B(v). The coefficients of
d(G(v)) have been added up with a random polynomial h(v).
So, Bob cannot get the coefficients back from the interpolation
function B(v), and thus Alice’s information is protected.

B. Data Classification Level 2 Privacy

The main privacy challenge of the level 2 privacy exists in
the possible retrieval of the learned model. In what follows,
we analyze the privacy prevention of model rebuild and data
fitting attacks on the learned model.

1) Model Rebuild Attack Prevention in the Basic Scheme:
On the Alice side, after the whole process of our scheme, since
it is not feasible to deduce gi, what she gets are just random
numbers. Even Alice colludes with other learners, she cannot
reveal anything from them due to the embedded randomness
in the learning process. On Bob’s side, he gets a random
value rad

′(̃t) after the computation process. Since Bob has
no idea about ra in our proposed scheme, what he gets is
just a randomized value with the same sign as the original
one. No matter how many classification results Bob gets, he
cannot find out the exact decision function of Alice. Therefore,
both Alice and Bob cannot retrieve any information from what
they get by the model rebuild attack, from which their privacy
is preserved.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2) Data Fitting Attack Prevention in the Improved Scheme:
Unfortunately, the simple positive random scaler ra cannot
prevent the data fitting attack. No matter the classification
result is positive or negative, the outputs of classification will
keep same data distribution. From the geometric perspective,
the randomization only blurs the distance from the test data
point to the division plane. Because there is no randomization
difference for positive or negative results, both two sides data
points of the division plane have the same statistical average
distance as the non-randomized ones. Thus, the data fitting
attack can successfully retrieve the learned model.

In order to prevent this issue, we present an improvement
to the basic scheme, where ra is modified for different
classification results. We reverse the roles of Alice and Bob,
and let Alice become the receiver to receive the randomized
classification result, and let Bob be the sender to obliviously
compute the polynomial from his test data t. At the end of the
computation, Alice will obtain the randomized classification
value rad(t). Then, according to different signs of this value,
Alice resizes the value by multiplying it by a different number.
For example, if the result is positive, it will be resized with
a multiple from [103, 105]. Otherwise, it will multiply with a
number from [10−3, 10−5]. Finally, Alice sends this resized
value to Bob. As a consequence, the model parameters or test
data information is still protected, but the classification results
received by Bob is resized with different scale of random
numbers. As a result, the output value distribution will be
deviated, such that the data fitting attack can only retrieve a
biased model and the privacy of original model is preserved.

C. Model Similarity Evaluation Privacy
Level 1 privacy can be achieved in model similarity eval-

uation scheme as the same as in above. Due to the privacy
preservation of the secure computation protocols, both Alice
and Bob’s model information will not be revealed to each other
during the evaluation process.

For Level 2 privacy, we consider the values Alice and
Bob get after the process. In terms of linear scenario, Al-
ice only gets |mB |2 and |wB |2. In the nonlinear case, she
gets K(mB ,mB) and K(wB ,wB). Since these values are
not separable, Alice learns nothing about Bob. From Bob’s
perspective, beside the final result, all the values he gets have
been randomized, such that they cannot help him retrieve
Alice’s information. For the final evaluation, the area value T
is not helpful for decision function’s retrieval. Because the area
value has factors of both the included angle and the centroid
distance. Except the two learned models are exactly same,
which is unlikely to happen, Bob cannot differentiate these
two factors from the final result. Since all the values obtained
by Bob or Alice are randomized or integrated, nothing can be
deduced and thus the privacy is protected.

VIII. PERFORMANCE EVALUATION

In this section, three different experiments are designed to
show the performance of our scheme in both simulation and
real-world datasets. The effectiveness of privacy preservation,
the correctness of protected classification, the efficiency and
feasibility of computation are evaluated in the experiments. We
apply the LIBSVM [41] as our basic SVM learning process.
Both linear and nonlinear polynomial kernel SVMs are tested.
The program is written in C++ programs and Python 2.7. It
is implemented in CentOS 6.7 operating system with GCC

version 4.4.7. The desktop has 4.00 GHz Intel(R) Core(TM)
i7-4790K CPU and 32 GB memory. All the data have been
scaled to [−1, 1] and each dimension value of data is 8 Bytes.

A. Simulation-based Evaluation of Privacy Preservation

We first illustrate the effectiveness of privacy preservation in
the proposed protection scheme. Specifically, we implement a
simulation on the crafted data with different attack and protec-
tion schemes to demonstrate the Level 2 privacy preservation
of the model. To have a better observation, we simulate the
model by setting up a linear two-dimensional binary classifier
with 1000 training samples. As shown in Fig. 7(a), these 1000
training samples are generated from two central points with
the normal distribution. One central point (−1.5,−1.5) is used
to generated 500 negative samples, the other point (1.5, 1.5) is
used to generate the rest 500 positive points. The black line is
the linear SVM decision function. Based on the outputs of this
decision function, different attack approaches are applied for
retrieving the original model. Fig. 7(b)-(g) show the effects
of different attack approaches and corresponding protection
schemes in different test data size. From the results, we can
summarize the attack and protection performance as follow.

1) Without any protection, the model rebuild attack can ac-
curately reconstruct the original model from few output
values. As shown in Fig. 7(b), only 4 test data samples
can rebuild the nearly same model as the original one.

2) After applying the protection of our basic scheme,
the model rebuild attack retrieves the incorrect model
parameters with its test data samples. The rebuilt mod-
els randomly stay in the data space for the incorrect
classification.

3) With the increasing number of the test data samples,
the reconstructions from the data fitting attack gradually
close to the original model. From Fig. 7(b)-(c), the re-
built model is disparate to the original model. However,
with more information from the growing classification
results, the rebuilt model become more similar to the
original one.

4) After the protection of our improved scheme, the recon-
structions from the data fitting attack are biased to the
original model. As shown in Fig. 7(e)-(g), the rebuilt
model is deviated to the correct classification model.

5) The retraining attack is also evaluated in the simulation.
Compared to other attacks, our approach cannot prevent
this attack. However, it requires more test data samples
to rebuild the original model, which becomes more
difficult to be deployed.

B. Experimental Results of Privacy-preserving Data Classifi-
cation

In this experiment, we apply 17 different real-world datasets
from [42] to evaluate the classification correctness, efficiency,
and feasibility of our scheme. As a comparison, the Paillier
additive homomorphic cryptosystem [22] is also implemented
with a 128 bits key pair generator for evaluating the com-
putational costs. In the nonlinear polynomial SVM, we set
a0 = n−1, b0 = 0, and p = 3. We set c0 = 1 as default value
for nonlinear Radial Basis Function (RBF) SVM.

1) Classification Accuracy: TABLE I shows the accuracy
of original LIBSVM scheme on data classification from dif-
ferent datasets. At the same time, our scheme is implemented

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

-5 0 5
-5

0

5

(a) Original Data & Model

−5 0 5
−5

0

5

(b) 4 Samples

−5 0 5
−5

0

5

(c) 10 Samples

−5 0 5
−5

0

5

(d) 100 Samples

−5 0 5
−5

0

5

(e) 200 Samples

−5 0 5
−5

0

5

(f) 500 Samples

−5 0 5
−5

0

5

(g) 1000 Samples

Fig. 7: Model Attacks & Protection

TABLE I: Data Classification Accuracy

Dataset Linear Polynomial RBF Data Data
Size Space

splice 58.57% 76.78% 63.17% 2175 60
madelon 61.6% 100% 54% 2000 500
diabetes 77.34% 80.20% 79.56% 768 8
german
.numer

78.5% 96.1% 82.6% 1000 24

a1a -
a9a

82.51-
84.69%

82.51-
84.69%

84.23-
85.08%

1605-32561 123

australian 85.65% 92.46% 86.81% 690 14
cod-rna 94.64% 54.25% 87.63% 59535 8
ionosphere 95.16% 96.01% 96.58% 351 34
breast-
cancer

97.21% 98.68% 97.51% 683 10

on these datasets to verify whether the classification correct-
ness will be impacted by the additional process of privacy
preservation in linear, polynomial, and RBF SVM. As shown
in Fig. 8(a) and Fig. 8(b), compared with the original SVM,
our proposed scheme predicts classes with almost the same
accuracy for each dataset in both the linear and polynomial
SVM. However, due to the approximation of Taylor expansion,
our scheme has different classification accuracy than the
original one in the RBF model. As shown in Fig. 8(c), we take
the p = 2 for the approximation, which means we only take
the first two terms of the Taylor expansions. In this figure,
most approximated models keep the close accuracy as the
original ones. The only exception is the dataset “cod-rna”,
which has a lower accuracy than the original model. This is
because the “cod-rna” dataset has the most support vectors, i.e.
about 19600. When we compute the Taylor expansion in Eq.
(4), the value of cumulated support vectors will be far from
the point 0. Therefore, only first two terms of the Taylor series
cannot approximate the real value closely. To solve this issue,
on the one hand, we can increase the value of p to take more
terms from the expansion for approaching the real exponential
value. On the other hand, we can decrease the scale of learning
data. As shown in TABLE II, with the increase of p, the
accuracy of the approximate classifier is improved. However,
the required computation data space is also exponentially
increased. TABLE III reflects the influence of decreasing the

Splice Madelon Diabetes German.numer Australian Cod−rna Ionosphere Breast−cancer
50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Original Scheme
Privacy−preserving Scheme

(a) Linear

Cod−rna Splice Diabetes Australian Ionosphere German.numerBreast−cancer Madelon
50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Original Scheme
Privacy−preserving Scheme

(b) Polynomial

madelon splice diabetes german.numer australian cod−rna ionosphere breast_cancer
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Privacy−preserving Scheme
Original Scheme

(c) RBF (p = 2)

Fig. 8: Classification Accuracy

data range. The performance of the approximated model can
be improved with smaller normalization range of data. But
if the range is smaller than [−0.1, 0.1], the accuracy of RBF
classifier will have a sharp decline. As a result, we can slightly
decrease the data range for improving the performance of
approximated classifiers from Taylor expansion in the practical
use.

2) Computational Cost: To analyze the efficiency and fea-
sibility of the proposed scheme, we evaluate the computational

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TABLE II: RBF Approximate Terms (Data Range [−1, 1])
p Normal SVM Acc. PP SVM Acc. Data Space
2 87.63% 39.34% 64
3 87.63% 68.95% 512
4 87.63% 75.73% 4096
5 87.63% 84.02% 32768

TABLE III: Data Range (p = 2) of RBF

Range Normal SVM Acc. PP SVM Acc. Data Space
[−1, 1] 87.63% 39.34% 64

[−0.5, 0.5] 87.63% 87.64% 64
[−0.2, 0.2] 87.50% 87.50% 64
[−0.1, 0.1] 87.40% 87.40% 64

[−0.08, 0.08] 79.33% 79.33% 64
[−0.06, 0.06] 66.79% 66.79% 64

time cost in the datasets with different classification schemes.

TABLE IV: Computational Time Costs of Linear SVM (ms)

Dataset Normal SVM PP SVM Paillier Cryptosystem
splice 90 1008 194553

madelon 1687 15897 1532880
diabetes 57 175 12556

german.numer 79 482 34040
a1a 198 3163 317741
a2a 356 4561 413906
a3a 573 6443 611233
a4a 1063 9437 968391
a5a 1737 12693 1195762
a6a 4726 22197 2212696
a7a 9424 32488 2916193
a8a 18819 45762 4697164
a9a 36825 64670 6517410

australian 53 225 15732
cod-rna 14660 43389 1079965

ionosphere 26 223 18269
breast-cancer 50 178 12881

First, we compare the time costs of the normal SVM clas-
sification, our approach, and the Paillier homomorphic cryp-
tosystem on all the datasets. The results are shown in TABLE
IV and they are evaluated from the linear SVM classifications,
where the security parameters of our scheme are set as q = 2
and k = 2. From this table, our privacy-preserving scheme
takes more time than the normal SVM classification process.
This difference is an inevitable trade-off between the efficiency
and the privacy preservation, which is mainly caused by the
polynomial randomizations and oblivious transfers. However,
compared to the results of Paillier cryptosystem, our approach
prevents the huge computation loads from the complicated
encryption, homomorphic addition, and decryption of model
parameters and test data. To illustrate such difference, we plot
the computational time costs of the datasets “a1a” to “a9a”
in logarithm in Fig. 9, where they have same data feature
dimensions but different test data volumes. From the figure, we
can see that our approach requires much less time cost than the
Paillier cryptosystem. Specifically, our approach takes about
65s to finish the privacy-preserving classification for 32MB
data from dataset “a9a”. However, the Paillier cryptosystem
takes 6517s on the same dataset, which becomes infeasible to
be practically applied in real applications.

Then, to evaluate the influence of security parameters in our
scheme, we implement our privacy-preserving classification
on the “a1a” dataset with different kernel functions. The
security parameter q decides the degree of the randomization
polynomials in our scheme, where larger q means that real
information of the model will be hidden into the higher degree

0 10 20 30
2

3

4

5

6

7

Dataset Size (MB)

T
im

e
C

os
t (

 lg
(m

s)
)

Normal SVM
Our Privacy−preserving SVM
Paillier Cryptosystem SVM

Fig. 9: Computational Cost Comparison of Different Schemes

polynomials. Meanwhile, since the test data is disguised by
mk (m = pq+1) different values, the vector G(v) will become
larger. Thus, with the growing of q, the time cost of our scheme
will be increased. We keep k = 2 and evaluate the time costs
of security parameter q, and the results are presented in Fig.
10(a). Due to the expansion terms of 3-degree polynomials,
we can see that the change of q has a stronger influence on the
computation of polynomial kernel. For example, from q = 8 to
q = 9, it takes 22.6s to 32.4s for the polynomial kernel SVM,
but it only needs 6.5s to 8.4s for the RBF kernel SVM. After
that, we keep q = 2 and evaluate the influence of security
parameter k in Fig. 10(b). Compared to q, the parameter k
only participates in the generation of the vector G(v), which
introduces fewer impacts on the computation.

2 3 4 5 6 7 8 9 10
0

100

200

300

400

Security Parameter q

T
im

e
C

os
t (

s)

Linear
Poly
RBF

(a) q (k = 2)

2 3 4 5 6 7 8 9 10
0

25

50

75

100

125

Security Parameter k

T
im

e
C

os
t (

s)

Linear
Poly
RBF

(b) k (q = 2)

Fig. 10: Computational Cost with Different Security Parameter

Although the increase of security parameters q and k
requires more computational costs, it is not necessary to take
large values of them to guarantee the privacy preservation.
As analyzed in Section VII, the vector G(v) is randomly
generated in each computation. The reconstruction of the test
data cannot be achieved since it requires at least (pq + 1)
different values for each stable gi. Also, it is infeasible to
separate the h(v) from B(v) only from the (pq+ 1) terms of
A(v,G(v)). Therefore, as long as the condition (pq + 1) > 1
and mk > m are satisfied, the privacy of data and model can
be preserved. As a result, the selections of small values on q
and k are sufficient to guarantee the privacy preservation.

3) Privacy Preservation: To illustrate the effectiveness of
our privacy-preservation data classification scheme, we eval-
uate the performance of data fitting attack and corresponding
protection schemes. The number of test samples we used is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

as twice as the data space dimension in the attack. As shown
in Fig. 11, without the protection, most attacked model have
the close accuracy of the original model. After implementing
the privacy-preserving schemes, the accuracy of most attacks
is decreased. To analyze the further effects, we also test the
accuracy of the polynomial SVM on the “cod-rna” dataset
with different test data samples. As shown in Fig. 12, with the
growing number of test data, the accuracy of the data fitting
attack is increased, but our protection scheme can still deviate
the data fitting model and decrease its attack accuracy on the
protected model.

cod−rna diabetes german.numer australian ionosphere splice breast−cancer
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Data Fitting Attack on Protected Model Data Fitting Attack Original Model

(a) Linear

cod−rna diabetes german.numer australian ionosphere splice breast−cancer
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Data Fitting Attack on Protected Model Data Fitting Attack Original Model

(b) Polynomial

cod−rna diabetes german.numer australian ionosphere splice breast−cancer
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Data Fitting Attack on Protected Model Data Fitting Attack Original Model

(c) RBF (p = 2)

Fig. 11: Data Fitting Attacks & Protection

1 2 3 4 5 6 7 8
0

20

40

60

80

100

Test Data Number (N times of Data Space Dimension)

A
cc

ur
ac

y
(%

)

Original Model
Data Fitting Attack
Data Fitting Attack on Protected Model

Fig. 12: Attack & Protection with Different Test Data

C. Experiments of Model Similarity Evaluation
To validate the effectiveness of our proposed model simi-

larity evaluation approach, we implement the similarity com-

putation in two different kinds of datasets.
1) Statistical Analysis: To evaluate the similarity, we need

to compute the model with the same data feature dimen-
sions. We split the dataset “diabetes” into 4 subsets as Si,
1 ≤ i ≤ 4 and train different models of each subset. Then, the
Kolmogorov-Smirnov test [43] (KS test) is used as a statistical
benchmark to support the correctness of our results for the
similarity evaluation. KS test is used to see whether two data
samples have the same distribution, where its evaluation result
can be seen as the degree for describing the similarity from
data statistical analysis. Since KS test can only work for two
vectors, we test it on each data feature dimension for the split
subsets. We get the average value over the 8 dimensions’ KS
test results as the final measurement. After that, we compute
the cosine similarity and our approach between different model
pairs to compare the similarity evaluation result. As shown
in TABLE V, the scales of KS test results and our metric
T are different, but they show the same trends of similarity
evaluation in different pairs. However, the results of cosine
similarity evaluation have a narrow range of output values
and do not follow the value changes of KS test. Therefore,
based on the statistical comparison, our similarity evaluation
scheme provides a closer similarity measurement than the
cosine similarity evaluation.

TABLE V: Privacy-preserving Data Similarity Evaluation

Subset Pair KS Test Average Cosine Our Metric T × 103

S2 vs S4 1.539 0.9552 5.858
S3 vs S4 2.757 0.9126 8.171
S1 vs S4 3.231 0.9417 9.470
S2 vs S3 6.264 0.9824 13.786
S1 vs S3 7.578 0.9814 27.736
S1 vs S2 8.557 0.9827 30.646

2) Empirical Analysis: As an empirical validation, we eval-
uate the similarity on the classification system of a real face
image dataset, “Labeled Faces in the Wild” [44]. It includes
about 19100 faces of 5749 different people with 250*250
pixels images stored in JPEG format. Before the evaluation,
each image is tailored and resized into a 50× 37 matrix. The
classification model is built on the processed data in the RBF
kernel SVM with the Eigenfaces [45] of Principal Component
Analysis (PCA) transformation. The learned model includes
multiple binary classifiers to construct a multi-class classifi-
cation system with the one-to-all approach. Each person has
its own binary classifier to predict whether the incoming data
belongs to its own class.

Instead of directly comparing the images, our similarity
evaluation compares the models that learned from the face im-
ages of the different person. We apply our similarity evaluation
scheme to classifiers of 158 people in the dataset, where each
of them has more than 10 face images. After the evaluation,
the similarity results have a range of [0.00021, 0.01673], and
the example images of the most similar or different pairs are
shown in Fig. 13. For the data of these images, it is difficult
to assess the effectiveness of similarity evaluation statistically,
but we can empirically validate the similarity from the present
of figures. The similar pairs of face images have closer facial
expression and feature, while the different pairs include the
difference of expression, angle, and wear.

3) Computational Cost: Since the computation of privacy-
preserving model similarity evaluation only calculates the
parameters of decision functions, the cost actually equals

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

(a) Evaluation = 0.00021 (b) Evaluation = 0.00022

(c) Evaluation = 0.01645 (d) Evaluation = 0.01673

Fig. 13: Most Similar and Different Pairs

to a simplified one-time classification. Also, compared to
larger requests for data classification, the requirement of
model similarity evaluation is negligible. Therefore, instead of
investigating the computational cost with different volumes of
similarity comparison requests, we observe the evaluation of
different data space dimensions. The results are shown in Fig.
14, which evaluate on the linear SVM of different datasets.
With the increase of data dimensions, there is a significant
increment for the required time cost of our approach. This is
because one additional dimension requires more random poly-
nomials to hide the information than a simple multiplication in
the normal scheme. For example, one-time privacy-preserving
similarity evaluation requires 0.26ms in 10-dimensional data
space, while it takes 7.94ms in the 500-dimensional data space.
Fortunately, in the real applications, the requests on the model
similarity evaluation are usually limited and it will not require
much time cost in total.

1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

lg(Dimension)

T
im

e
C

os
t (

m
s)

Normal Evaluation
Privacy−preserving Evaluation

Fig. 14: Computational Cost of Similarity Evaluation

IX. CONCLUSION

In this paper, we propose an approach to preserve the model
privacy for the distributed system in both data classification
and model similarity evaluation. In the data classification
scheme, by applying the oblivious evaluation of multivariate
polynomial approach, the classification data and learned mod-
els are protected between the learning parties and testers. In
the model similarity evaluation scheme, a novel metric is pro-
posed for representing the closeness between different learned
models with the privacy-preserving scheme. We also show the
correctness, feasibility, and efficiency of our proposed scheme
via extensive experiments.

REFERENCES

[1] N. Padhy, D. Mishra, R. Panigrahi et al., “The survey of data mining
applications and feature scope,” arXiv preprint arXiv:1211.5723, 2012.

[2] E. Alpaydin, Introduction to machine learning. MIT press, 2014.
[3] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,

“Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing.” in USENIX Security, 2014, pp. 17–32.

[4] K. Chen and L. Liu, “Privacy preserving data classification with rotation
perturbation,” in Data Mining, Fifth IEEE International Conference on.
IEEE, 2005, pp. 4–pp.

[5] O. L. Mangasarian and E. W. Wild, “Privacy-preserving classification of
horizontally partitioned data via random kernels.” in DMIN, 2008, pp.
473–479.

[6] B. Liu, Y. Jiang, F. Sha, and R. Govindan, “Cloud-enabled privacy-
preserving collaborative learning for mobile sensing,” in Proceedings
of the 10th ACM Conference on Embedded Network Sensor Systems.
ACM, 2012, pp. 57–70.

[7] O. L. Mangasarian, “Privacy-preserving linear programming,” Optimiza-
tion Letters, vol. 5, no. 1, pp. 165–172, 2011.

[8] S. Laur, H. Lipmaa, and T. Mielikäinen, “Cryptographically private
support vector machines,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2006, pp. 618–624.

[9] C. C. Aggarwal and S. Y. Philip, A general survey of privacy-preserving
data mining models and algorithms. Springer, 2008.

[10] C. Orlandi, A. Piva, and M. Barni, “Oblivious neural network comput-
ing via homomorphic encryption,” EURASIP Journal on Information
Security, vol. 2007, p. 18, 2007.

[11] J. Vaidya, H. Yu, and X. Jiang, “Privacy-preserving svm classification,”
Knowledge and Information Systems, vol. 14, no. 2, pp. 161–178, 2008.

[12] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” The Journal of Machine Learning
Research, vol. 11, pp. 1663–1707, 2010.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[14] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal
parameter selection for the alternating direction method of multipliers
(admm): quadratic problems,” Automatic Control, IEEE Transactions on,
vol. 60, no. 3, pp. 644–658, 2015.

[15] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 641–647.

[16] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[17] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in USENIX Security, 2016.

[18] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 506–519.

[19] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for
formalizing model-inversion attacks,” in Computer Security Foundations
Symposium (CSF), 2016 IEEE 29th. IEEE, 2016, pp. 355–370.

[20] “Data leakage in healthcare machine learning,” https://healthcare.ai/
data-leakage-in-healthcare-machine-learning/, accessed: 2017-05-22.

[21] K.-P. Lin and M.-S. Chen, “Releasing the svm classifier with privacy-
preservation,” in Data Mining, 2008. ICDM’08. Eighth IEEE Interna-
tional Conference on. IEEE, 2008, pp. 899–904.

[22] Y. Rahulamathavan, R. C.-W. Phan, S. Veluru, K. Cumanan, and
M. Rajarajan, “Privacy-preserving multi-class support vector machine
for outsourcing the data classification in cloud,” Dependable and Secure
Computing, IEEE Transactions on, vol. 11, no. 5, pp. 467–479, 2014.

[23] M. Wilber, T. E. Boult et al., “Secure remote matching with privacy:
Scrambled support vector vaulted verification (s 2 v 3),” in Applications
of Computer Vision (WACV), 2012 IEEE Workshop on. IEEE, 2012,
pp. 169–176.

[24] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data.” IACR Cryptology ePrint Archive, vol.
2014, p. 331, 2014.

[25] L. Xie, I. M. Baytas, K. Lin, and J. Zhou, “Privacy-preserving distributed
multi-task learning with asynchronous updates,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2017, pp. 1195–1204.

[26] K. Lin, S. Wang, and J. Zhou, “Collaborative deep reinforcement
learning,” arXiv preprint arXiv:1702.05796, 2017.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

[27] S. K. Gupta, S. Rana, and S. Venkatesh, “Differentially private multi-
task learning,” in Pacific-Asia Workshop on Intelligence and Security
Informatics. Springer, 2016, pp. 101–113.

[28] X. Jin, P. Luo, F. Zhuang, J. He, and Q. He, “Collaborating between local
and global learning for distributed online multiple tasks,” in Proceedings
of the 24th ACM International on Conference on Information and
Knowledge Management. ACM, 2015, pp. 113–122.

[29] S. Liu, S. J. Pan, and Q. Ho, “Distributed multi-task relationship
learning,” in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2017,
pp. 937–946.

[30] K. Xu, H. Yue, L. Guo, Y. Guo, and Y. Fang, “Privacy-preserving
machine learning algorithms for big data systems,” in Distributed
Computing Systems (ICDCS), 2015 IEEE 35th International Conference
on. IEEE, 2015, pp. 318–327.

[31] K. Xu, Y. Guo, L. Guo, Y. Fang, and X. Li, “My privacy my decision:
Control of photo sharing on online social networks,” IEEE Transactions
on Dependable and Secure Computing, no. 1, pp. 1–1.

[32] K. Xu, H. Ding, L. Guo, and Y. Fang, “A secure collaborative machine
learning framework based on data locality,” in 2015 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2015, pp. 1–5.

[33] M. Von Arb, M. Bader, M. Kuhn, and R. Wattenhofer, “Veneta:
Serverless friend-of-friend detection in mobile social networking,” in
Networking and Communications, 2008. WIMOB’08. IEEE International
Conference on Wireless and Mobile Computing,. IEEE, 2008, pp. 184–
189.

[34] R. Lu, X. Lin, X. Liang, and X. Shen, “A secure handshake scheme with
symptoms-matching for mhealthcare social network,” Mobile Networks
and Applications, vol. 16, no. 6, pp. 683–694, 2011.

[35] R. Zhang, J. Zhang, Y. Zhang, J. Sun, and G. Yan, “Privacy-preserving
profile matching for proximity-based mobile social networking,” Se-
lected Areas in Communications, IEEE Journal on, vol. 31, no. 9, pp.
656–668, 2013.

[36] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[37] M. O. Rabin, “How to exchange secrets with oblivious transfer.” IACR
Cryptology ePrint Archive, vol. 2005, p. 187, 2005.

[38] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 2001, pp.
448–457.

[39] C.-K. Chu and W.-G. Tzeng, “Efficient k-out-of-n oblivious trans-
fer schemes with adaptive and non-adaptive queries,” in Public Key
Cryptography-PKC 2005. Springer, 2005, pp. 172–183.

[40] T. Tassa, A. Jarrous, and Y. Ben-Ya’akov, “Oblivious evaluation of
multivariate polynomials,” Journal of Mathematical Cryptology, vol. 7,
no. 1, pp. 1–29, 2013.

[41] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[42] J. Platt et al., “Fast training of support vector machines using sequen-
tial minimal optimization,” Advances in kernel methodssupport vector
learning, vol. 3, 1999.

[43] H. W. Lilliefors, “On the kolmogorov-smirnov test for normality with
mean and variance unknown,” Journal of the American Statistical
Association, vol. 62, no. 318, pp. 399–402, 1967.

[44] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, Tech.
Rep. 07-49, October 2007.

[45] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in
Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91.,
IEEE Computer Society Conference on. IEEE, 1991, pp. 586–591.

Qi Jia received his B.E. degree in Communica-
tion Engineering from Beihang University (Bei-
jing University of Aeronautics and Astronautics) in
2014. He received the MS degree electrical and
computer engineering from Binghamton University
and is continuing his work towards the PhD. degree.
His research interests include security and privacy
issues in machine learning and data mining. He is
a co-recipient of Best Paper Award of Globecom
2015, Symposium on Communication and Informa-
tion System Security. He is a student member of the

IEEE.

Linke Guo (M14) received the BE degree in elec-
tronic information science and technology from the
Beijing University of Posts and Telecommunications
in 2008. He received the MS and PhD degrees
in electrical and computer engineering from the
University of Florida in 2011 and 2014, respectively.
Since August 2014, he has been an assistant profes-
sor in the Department of Electrical and Computer
Engineering, Binghamton University, State Univer-
sity of New York. His research interests include
network security and privacy, social networks, and

applied cryptography. He is currently serving as the editor of IEEE Transac-
tions on Vehicular Technology. He serves as the publication chair of IEEE
Conference on Communications and Network Security (CNS) 2016 and 2017.
He was the symposium co-chair of Network Algorithms and Performance
Evaluation Symposium, ICNC 2016. He has served as the Technical Program
Committee (TPC) members for several conferences including IEEE INFO-
COM, ICC, GLOBECOM, and WCNC. He is the co-recipient of Best Paper
Award of Globecom 2015, Symposium on Communication and Information
System Security. He is a member of the IEEE and ACM.

Zhanpeng Jin (SM15) received the Ph.D. degree
in electrical engineering from the University of
Pittsburgh in 2010. He was a Postdoctoral Research
Associate with the University of Illinois at Urbana-
Champaign. He is currently an Associate Profes-
sor in the Department of Electrical and Computer
Engineering at the Binghamton University, State
University of New York (SUNY). His research in-
terests include mobile and wearable computing in
health, biometrics, neural engineering, neuromorphic
computing, and low-power sensing. He is a senior

member of IEEE and a member of ACM.

Yuguang Fang (F’08) received an MS degree from
Qufu Normal University, Shandong, China in 1987,
a PhD degree from Case Western Reserve University
in 1994, and a PhD degree from Boston University
in 1997. He joined the Department of Electrical
and Computer Engineering at University of Florida
in 2000 and has been a full professor since 2005.
He held a University of Florida Research Founda-
tion (UFRF) Professorship (2017-2020, 2006-2009),
University of Florida Term Professorship (2017-
2019), a Changjiang Scholar Chair Professorship

(Xidian University, Xian, China, 2008-2011; Dalian Maritime University,
Dalian, China, 2015-2018), Overseas Academic Master (Dalian University of
Technology, Dalian, China, 2016-2018), and a Guest Chair Professorship with
Tsinghua University, China (2009-2012). Dr. Fang received the US National
Science Foundation Career Award in 2001, the Office of Naval Research
Young Investigator Award in 2002, the 2015 IEEE Communications Soci-
ety CISTC Technical Recognition Award, the 2014 IEEE Communications
Society WTC Recognition Award, and the Best Paper Award from IEEE
ICNP (2006). He has also received a 2010-2011 UF Doctoral Dissertation
Advisor/Mentoring Award, a 2011 Florida Blue Key/UF Homecoming Dis-
tinguished Faculty Award, and the 2009 UF College of Engineering Faculty
Mentoring Award. He was the Editor-in-Chief of IEEE Transactions on
Vehicular Technology (2013-present), the Editor-in-Chief of IEEE Wireless
Communications (2009-2012), and serves/served on several editorial boards
of journals including IEEE Transactions on Mobile Computing (2003-2008,
2011-2016), IEEE Transactions on Communications (2000-2011), and IEEE
Transactions on Wireless Communications (2002-2009). He has been actively
participating in conference organizations such as serving as the Technical
Program Co-Chair for IEEE INFOCOM2014 and the Technical Program Vice-
Chair for IEEE INFOCOM’2005. He is a fellow of the IEEE and a fellow of
the American Association for the Advancement of Science (AAAS).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2809624

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

