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Abstract—Data classification is a widely used data mining
technique for big data analysis. By training massive data collected
from the real world, data classification helps learners discover
hidden data patterns. In addition to data training, given a trained
model from collected data, a user can classify whether a new
incoming data belongs to an existing class; or, multiple distributed
entities may collaborate to test the similarity of their trained
results. However, due to data locality and privacy concerns, it
is infeasible for large-scale distributed systems to share each
individual’s datasets with each other for data similarity check.
On the one hand, the trained model is an entity’s private
asset and may leak private information, which should be well
protected from all other non-collaborative entities. On the other
hand, the new incoming data may contain sensitive information
which cannot be disclosed directly for classification. To address
the above privacy issues, we propose a privacy-preserving data
classification and similarity evaluation scheme for distributed
systems. With our scheme, neither new arriving data nor trained
models are directly revealed during the classification and similar-
ity evaluation procedures. The proposed scheme can be applied
to many fields using data classification and evaluation. Based
on extensive real-world experiments, we have also evaluated the
privacy preservation, feasibility, and efficiency of the proposed
scheme.
Index terms— Privacy Preservation, Data Classification, Sim-

ilarity Evaluation, Machine Learning

I. INTRODUCTION

Tremendous amount of data has surrounded us and affected
every aspect of our daily life. To discover hidden data struc-
tures from collected data, many data mining techniques have
been developed in recent years, which help people dig out
useful information from massive messages [1]. For example,
by analyzing customers’ behaviors, supermarket owners can
discover the association among different items and reflect
customers’ shopping habits, such as Bestmart [2]. By training
patients’ health records, hospitals can build disease classifi-
cation models to diagnose or prognosticate new diseases. As
an important analytical method, in all kinds of data mining
approaches, machine learning based data classification plays a
significant role. Generally speaking, data classification mainly
consists of two parts, data training and testing. During the
training process, the training entity (trainer) applies learning
methods to learn the data structure and divides the data into
various classes according to different data features. In the
testing phase, a subset of data not used in training process
will be used to test for the data classification generality, i.e.,
to test the accuracy of new data classification. After training
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and testing are done, trained model can be used to classify the
future data to the corresponding classes.

To better articulate our intuition behind the proposed
scheme, we consider a practical application scenario that
highly relies on the success of data classification for distributed
systems. With the growth of online shopping, data classifica-
tion techniques have been widely adopted in electronic com-
merce (e-commerce). Every e-commerce company (trainer)
has huge amount of online sale records containing customers’
information. From the records, data classification techniques
can be applied to figure out the relationship between the
quantity and features of sold items. Taking clothing sale as an
example, companies can utilize its online sale records to iden-
tify the sale trend. By applying it, clothes sellers (clients) can
test whether their design follows the popular trend, which help
sellers stay competitive with the sale fashions by following
the direction of customer requirements. Besides, since the sale
trending model is unique for each company from its own sale
records, it can also be used to evaluate the market similarity
across different companies. When a company wants to find a
business partner, it can firstly compare its sale trending model
with others’ to have a basic understanding of their market
similarities. Then, if two companies have similar sale trends,
they may cooperate with each other to start new business
activities.

Unfortunately, stumbling block is the privacy issue that
apparently exists in the above data classification and similarity
evaluation process. On the one hand, since the sale records are
only stored and possessed by each company, no matter how
the sale trending model is used, it should be kept undisclosed
to other entities. On the other hand, the sellers’ designs are
also private and should be protected properly. As a result, it is
necessary to preserve the privacy of both the trained models
and clients’ data in data classification and similarity evaluation
processes. However, most works [3]–[13] focus on preserving
the privacy in the data training process, where the training
data are protected, but the trained models are published to
everyone. Only a few works pay attention to the privacy
issues of trained model [14]–[17]. However, their schemes
are either inefficient or lack of practical applications. In this
paper, we propose a practical and efficient privacy-preserving
distributed data classification and similarity evaluation scheme
to address the aforementioned issues. We mainly rely on the
oblivious evaluation of multivariate polynomials approach and
the oblivious transfer protocol between the trained model and
the new arriving data to hide the private information by using
different random polynomials.

In summary, we have made the following major contribu-
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tions:

• Our proposed privacy-preserving data classification
scheme ensures that the trainers can conduct data classifi-
cation successfully without exposing their trained models
to the clients, while the clients keep their data in private.

• We propose privacy-preserving geometric metric to assess
the closeness of different trained models. The proposed
scheme can privately compute data similarities between
different trainers without exposing their trained models
to each other.

• As a basic data classification approach, Support Vector
Machine (SVM) is used to analyze the main challenges
in both linear and nonlinear data distribution scenarios.

• Two different privacy levels are analyzed in our scheme
for both data classification and similarity evaluation.

The rest of this paper is organized as follows. The related
works are briefly reviewed in Section II. In Section III,
we provide preliminaries for better understanding. Then, our
proposed schemes are explained in Section IV and Section V
for different scenarios. The privacy analysis and experimental
evaluation are provided in Section VI. Finally, we conclude
this paper in Section VII.

II. RELATED WORK

A. Privacy Preservation in Data Classification
Privacy issues in data classification can generally catego-

rized into training and classification (testing) privacy. The
issues raised in training process are about how to protect
the training data and privately compute the trained models.
Randomization approaches are applied in the early time. In
[3]–[6], they mix the training data by using random rota-
tion perturbation or random matrix. The training process is
manipulated on the randomized data and the correct trained
model can be acquired after the de-randomization. Other
approaches are based on the cryptographic methods. Several
systems [7]–[10] propose solutions by solving the training
process on the encrypted training data. The homomorphic
cryptosystem is applied so that the optimization problems
can still be solved from the homomorphic properties in the
ciphertext. Liu et. al. apply the secret sharing scheme to
protect the privacy by requiring all users’ communication
and cooperation in [5], which is inefficient and impractical.
Recently, most research works move further steps to the
distributed data systems. For fully distributed systems in [11]–
[13], the Alternating Direction Method of Multiplier (ADMM)
are combined with the SVMs to achieve private data training
among individual users. ADMM is one solution to augmented
lagrangian multiplier method which achieve the separable
iterative optimization problem. This property can be used on
the SVM for private training process and each individual
user only trains with their own data. Xu et. al. [18]–[20]
analyze the distributed privacy preserving SVMs in both the
horizontally and vertically partitioned data by modifying the
ADMM schemes. The assumption behind all these papers is
that the training data are private but the trained model can be
public.
However, the trained model should also be protected as a

reflection of the data structures. To solve this privacy problem,
Lin et. al. [14] reorganizes the expansion of RFB kernel func-
tion, and a polynomial format is expressed as an approximate

value. It puts all the support vectors into one number such
that each support vector cannot be retrieved. However, the
real polynomial coefficients are still revealed to the receivers.
Rahulamathavan et. al. [15] propose a scheme where the
Paillier cryptosystem is applied to transform the SVM decision
function into an encrypted form. The classification sample
is also encrypted. All the computations are operated on the
ciphertext and only the clients who holds the private key can
decrypt the classified result. It achieves the protection of both
trained models and classification samples. Unfortunately this
cryptographic approach introduces too much complexity for
the computations and it is not practical to be used in the real
application. The most related work to our approach is [17].
Raphael et. al. introduced the privacy-preserving classification
schemes over hyperplane decision, Naive Bayes, and decision
trees classifiers. They implement several homomorphic cryp-
tosystems in different steps of data classification to protected
the privacy of trained model and clients inputs. However, the
multiple cryptosystems would introduce additional procedures
such as different key management. Compared to their ap-
proach, we apply a uniform OMPE method without additional
procedures for the classifications and we also provide the
similarity evaluation to different trained models.

B. Privacy Preservation in Data Similarity Evaluation

Our privacy-preserving similarity evaluation is close to
matching systems. Privacy-preserving matching system has
been applied in finding the best matched pair of users that have
most similar interests or behaviors on social networks. Many
elegant and efficient matching systems have been proposed.
In [21], [22], they propose coarse-grained privacy-preserving
matching systems. In their descriptions, the matching attribute
are derived from a big public set so that the matching
problems become to the Private Set Intersection problems. In
[23], Zhang et. al. propose a fine-grained matching system,
where all attributes are graded in different values. The fine-
grained matching process can get the matching result with the
detail value comparison. However, the grading process is not
described clearly in this paper. Users can input any values they
want for the matching purpose, and this subjective inputs can
lead to a totally mismatched result. In our proposed solutions,
the similarity evaluation is based on the trained models, which
are the reflections of inherent behaviors, and it is an objective
comparison result.

III. PRELIMINARIES

A. Support Vector Machine

Support Vector Machine (SVM) is a supervised machine
learning scheme that divides the data space into two different
parts by finding out a binary classifier based on the training
data [24]. Here, we assume data x ∈ Rn is an n dimensional
vector, and each dimension xi, 1 ≤ i ≤ n, is one feature of
the data. For each training data x, it has a label y ∈ {+1,−1}
indicating which class it belongs to. The training process is to
find a hyperplane that divides the data space with the largest
margin distance between different data label groups.

1) Linear Classification: For linear classification problem,
it is possible to find a linear hyperplane divides the data into
two classes in training process. Then, an unlabeled data sample
t can be categorized into label yt = +1 (if wT t + b > 0) or
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yt = −1 (if wT t+ b < 0). The trained decision function d(t)
can be summarized as

d(t) = wT t+ b

where w and b are acquired by solving the optimization
problem on maximizing margin distance, and they indicate the
division direction and position of the hyperplane. Normally,
the decision function can be reformulated as

d(t) = wT t+ b =
∑
s∈S

αsysxTs t+ b (1)

where S is the set of support vectors. Specifically, support
vectors xi, 1 ≤ i ≤ |S| are the vectors located at the margin
of the data classes, and yi, 1 ≤ i ≤ |S| are the corresponding
labels of the support vectors. Here, αi, 1 ≤ i ≤ |S| are
the Lagrangian multiplier parameters. A class label can be
assigned to the sample t by computing the classification
function, where the sign(·) is the sign function,

D(t) = sign(d(t)) = sign(wT t+ b) = sign(
∑
s∈S

αsysxTs t+ b)

Fig. 1: Kernel Method

2) Nonlinear Classification: In the nonlinear classification,
as shown in Fig. 1, the data is distributed nonlinearly and it
can hardly find a linear hyperplane to divide the data perfectly
in original dimension. To solve this problem, kernel methods
are applied [24]. Generally, kernel functions can map the low
dimensional data to a higher dimensional space. In the higher
dimensional space, the data become more separated or better
structured, in which the linear SVM method can be applied.
For the nonlinear SVM decision function, the dot product xT t
term is substituted by kernel functions as a mapped higher
dimensional dot product. The change is

xT t⇒ K(x, t) =< ϕ(x), ϕ(t) >

where ϕ : Rn → R
n′
, n < n′ is a high dimensional mapping.

Then, the nonlinear classification function can be expressed as

D(t) = sign(d(t)) = sign(< ϕ(w), ϕ(t) > +b)

= sign(
∑
s∈S

αsysK(xs, t) + b)

B. Oblivious Transfer Protocol

Oblivious transfer is one important cryptographic primitive
protocol to provide a secure scheme for data transfer among
different parties. Normally, there are two parties in the protocol
[25]–[27], receiver and sender, for transmitting messages. By
executing this protocol, the receiver only gets one part of
information from the sender without knowing other parts,
while the sender does not know which part is known by the

receiver. The oblivious transfer protocol is developed in three
steps:

1) 1-out-of-2 protocol: The sender has two messages
{m1,m2}. The receiver has one bit b. The receiver
wants to get message mb without exposing b to the
sender. While the sender can ensure that only one of
two messages is delivered to the receiver .

2) 1-out-of-n protocol: It is a generalization of 1-out-of-2
protocol. The receiver has an index σ and wishes to get
the σth message among the message set {m1, ...,mn},
while the sender can ensure only one of the messages
is sent without knowing the index σ.

3) k-out-of-n protocol: In this case, the receiver has a group
of indices {σ1, ..., σk}. After this protocol, the receiver
only gets the corresponding messages {mσ1 , ...,mσk}
from {m1, ...,mn}, while the sender will not know
about the indices.

C. Oblivious Evaluation of Multivariate Polynomials

Oblivious Evaluation of Multivariate Polynomials (OMPE)
is introduced in [28]. It is a secure multi-party computation
protocol that can securely compute the multivariate polynomial
functions. The proposed scheme assumes that the sender has
r variates with d-degree polynomial P (·), and the receiver has
the input vector α = (α1, ..., αr). The protocol can ensure that
the receiver can get the polynomial computation result P (α)
without exposing α to the sender, while the polynomial P (·)
is still kept secret from the receiver. The OMPE procedures
run as follows,

1) The sender generates a random univariate masking poly-
nomial M(x) with degree sd, where s is a secure
parameter and M(0) = 0. Then, the sender hides
real polynomial P (·) by defining a (r + 1) variates
polynomial Q(x, y) = M(x) + P (y).

2) The receiver generates r random univariate masking
polynomials Si(·) and ensures that Si(0) = αi. Then,
the receiver collects the Si(·) and defines a tuple S(x) =
(S1(x), ..., Sr(x)).

3) The receiver generates N = nm random inputs
x1, ..., xN , where n = sd+1 and m is a secure random
number. The receiver also selects n positions among
the inputs to compute yi = S(xi) as covers. For other
positions, y are just randomly selected.

4) The receiver sends N pairs value {xi, yi} to the sender,
the sender calculates the corresponding values Q(xi, yi).

5) The receiver and sender execute the n-out-of-N proto-
col, and the receiver gets n selected position values as
R(xi) = Q(xi, S(xi)).

6) The receiver interpolates the acquired values to get
R(x), and the function result is P (α) = Q(0,α) =
Q(0, S(0)) = R(0).

D. Threat Model

To illustrate the privacy challenges in our scheme, we put
forward two assumptions for the threat model. On the one
hand, we assume all users in our system are honest-but-curios,
i.e., they will try to learn more information than allowed by
inferring from the results, but they will honestly follow the
schemes. On the other hand, we assume the collusion may
happen among trainers or clients. A trainer/client may collude
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with other trainers/clients to speculate more messages on one
client/trainer. However, the trainers should not collude with the
clients. Besides, we suppose clients are not powerful enough
to manipulate the training process, which means they cannot
retrain an imitative model from their classified data.

IV. PRIVACY PRESERVING DATA CLASSIFICATION

In this section, we propose a privacy-preserving data clas-
sification scheme for computing the classes of the clients’
samples. Assuming Alice is the trainer who holds the training
dataset and has derived a classifier, while Bob is the client
who wants to figure out which class his data sample belongs
to. As shown in Fig. 2, the black curve in (a) can be reviewed
as the trained model of Alice, it divides the data space into
two different classes. The circle in Fig. 2 (b) is representing
Bob’s sample which is unlabeled. To acquire the class label
for the sample, our proposed scheme guarantees that Bob can
get the data classification result, while it also achieves the
trained models’ and classification samples’ privacy preserva-
tion during the computation. Basically, we firstly analyze the
SVM decision functions. Then we apply the OMPE protocol
to securely compute the classification result. Finally, the class
can be classified from the sign of decision function result.
To elaborate our scheme, both linear and nonlinear data
classification problems are described.

(a) Trained Pattern (b) Testing Data

Fig. 2: Data Classification

A. Privacy-preserving Linear Data Classification
In linear data classification problem, the data is located

linearly in the data space. Alice has trained a linear classifier
d(t) from her dataset, and Bob wants to get the classification
result for his sample t̃. In this scenario, the classifier is a linear
hyperplane that divides the data space into two different parts.
To protect its privacy, we can start the analysis with the linear
SVM decision function.

d(t) = wT t+ b =
∑
s∈S

αsysxTs t+ b

=
∑
s∈S

αsysxs1t1 + ...+
∑
s∈S

αsysxsntn + b

It is an n variates polynomial with degree 1. To privately get
the classification result of the decision function, Alice and Bob
execute the following steps.

1) Trained Model Randomization: Alice is holding the
trained model d(t) as an n variates polynomial function with
degree 1. Bob initiates the request with Alice for privately
computing the classification result. Then, Alice generates a
random univariate polynomial, h(u), with degree of q, where
q is a security random parameter. She also makes sure that
h(0) = 0, such that,

h(u) =
∑

1≤j≤q

aju
j

where the aj ∈ R is a random coefficient of uj . After gener-
ating h(u), Alice selects a random number ra > 0, ra ∈ R

to amplify her decision function as d′(t) = rad(t). Then,
she combines the random polynomial and decision function
together to reach an (n+ 1) variates polynomial as follows,

A(u, t) = h(u) + d′(t)

=
∑

1≤j≤q

aju
j + ra

∑
s∈S

αsys(xT t+ b)

=
∑

1≤j≤q

aju
j + (ra

∑
s∈S

αsysxs1)t1 + ...

+ (ra
∑
s∈S

αsysxsn)tn + rab

(2)

which forms an (n+ 1) variates polynomial of degree q with
inputs (u, t1, ..., tn).

2) Classification Data Randomization: Given classification
sample t̃ = {t̃1, ..., t̃n}, Bob generates n random univariate
polynomials of degree q to hide each component. Let the
polynomials be {gi(·)}1≤i≤n, Bob needs to make sure that
gi(0) = t̃i as well,

gi(v) =
∑

1≤j≤q

bjv
j + t̃i

where bj are the random numbers from R. After generating
above parameters, Bob combines the polynomials together to
get a vector G(v), such that,

G(v) = (g1(v), ..., gn(v))

Then, Bob computes a global number M = mk, where m =
q+1 and k is a secret random number. He generates M non-
zero random numbers v1, ..., vM ∈ R, and selects m indices
from these random numbers as a subset I . Assume the selected
indices are I = {σ1, ..., σm}, 1 ≤ σ1 < ... < σm ≤ M , for
these selected numbers, Bob computes zσi := G(vσi), σi ∈ I .
In this way, m selected terms are hided in allM numbers with
partial information of G. For any other indices j /∈ I , zj are
randomly selected from R

n as disguise values. Finally, Bob
sends these M pair values {(vi, zi)}1≤i≤M to Alice.

3) Classification Result Retrieval: After receiving M pairs
from Bob, Alice computes A(vi, zi) in Eq. (2) for all received
values. Then, Alice and Bob can execute an m-out-of-M
oblivious transfer protocol. Bob can only get the value of
his selected indexes, while Alice does not know which values
are delivered to Bob. Therefore, Bob only learns the value
{A(vi, zi), i ∈ I}, and Alice learns nothing because she cannot
reveal the real values of ti in feasible polynomial time [28].
If we examine the received values of Bob,

A(vi, zi) = A(vi,G(vi)) = h(vi) + d′(G(vi)), i ∈ I

it is a univariate q-degree polynomial of variate v. Bob
redefines this function as B(v), B(v) = A(v,G(v)). As a
q-degree univariate polynomial, it can be reconstructed by
(q + 1) pair values of inputs and outputs. Since we have
chosen |I| = m = q + 1 pairs of value {A(vi, zi), i ∈ I}.
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The Lagrange interpolation can be implemented to reconstruct
B(v). The interpolation can be done as follow,

B(v) =
m∑
j=1

Bj(v)

Bj(v) = B(vj)
m∏

i=1,i �=j

v − vi
vj − vi

.

(3)

Once Bob gets B(v) from the interpolation, he can get the
d′(̃t) by computing the B(0). This is because

B(0) = A(0,G(0)) = h(0) + d′(G(0)))
= d′(t̃1, ..., t̃n) = d′(̃t) .

Finally, to decide which class is correct for the classification
sample t̃, Bob just needs to get the sign of d(̃t). Since it has
been amplified with a positive random number ra, d

′(t) keeps
the same sign as d(t). So, the classification result is

D′(̃t) = sign(d′(̃t)) = sign(rad(̃t)) = sign(d(̃t)) = D(̃t)

Hence, Bob gets the classification result without exposing his
values to Alice, while Alice still keeps her decision function
undisclosed.

B. Privacy-preserving Nonlinear Data Classification

In nonlinear data classification scenario, the data is dis-
tributed nonlinearly in the data space and it is impossible to
divide the original data with a linear hyperplane. In such case,
the decision function is changed by the kernel methods,

d(t) =
∑
s∈S

αsysK(xs, t) + b

In this decision function, kernel function is used to map the
lower dimensional vectors to a higher dimension. For different
data distribution, various kernel functions can be applied to
train a more accurate model. Here we list three most popular
kernel functions:

• Polynomial kernel: K(x, y) = (a0xT y+ b0)
p

• Radial Basis Function Kernel: K(x, y) = e||x−y||
2

• Sigmoid Kernel: K(x, y) = tanh(xT y+ c0)

Among them, if the polynomial kernel is applied, the nonlinear
decision function can still be seen as an n variates polynomial
function of degree p. For the radial basis function or sigmoid
kernel, we can apply the Taylor Expansion to transform
them into polynomials. Therefore, the corresponding nonlinear
decision functions are reformed as below,

• Polynomial kernel:

d(t) =
∑
s∈S

αsys(xT t)p + b

• Radial Basis Function Kernel:

d(t) =
∑
s∈S

αsys

∞∑
i=0

(x− t)2i
i!

+ b

• Sigmoid Kernel:

d(t) =
∑
s∈S

αsys

∞∑
i=0

[
B2i4

i(4i − 1)

2i!
(xT t)2i−1] + b

In real applications, we can use a large number p to ap-
proximate the infinity. In doing so, no matter what kind of
kernel function is used in the nonlinear SVM, it can always be
transformed into p-degree polynomials. Taking the nonlinear
polynomial kernel function as an example, with a0 = 1,
b0 = 0, and c0 = 0, the data classification processes should
be updated to the nonlinear scenario and the corresponding
decision function is,

d(t) =
∑
s∈S

αsys(xT t)p + b

=
∑
s∈S

αsys(x1t1 + ...+ xntn)
p + b

=
∑
s∈S

αsys(
∑

k1+...+kn=p

(
p

k1, ..., kn

) ∏
1≤i≤n

xkii tkii ) + b =

∑
k1+...+kn=p

{[
∑
s∈S

(αsys

(
p

k1, ..., kn

) ∏
1≤i≤n

xkisi )][
∏

1≤i≤n
tkii ]}+ b

In this case, d(t) is an n′ =
(
n+p−1
n−1

)
variates polynomial, and

input terms
∏

1≤i≤n t
ki
i are the combination multiplications

of original variates ti. If we treat each term as a variate τj ,
τj =

∏
1≤i≤n t

ki
i , 1 ≤ i ≤ n, 1 ≤ j ≤ n′, we can rewrite

d(t) as d(τ ), where d(τ ) is just an n′ variates p-degree poly-
nomial. Similarly, we can apply the OMPE approach to this
transformed polynomial to achieve the secure computation.
In the trained model randomization step, instead of original
(n + 1) variates, Alice computes an (n′ + 1) variates with
pq-degree polynomial A(u, τ ),

A(u, τ ) = h(u) + d′(τ )

where h(u) is a pq-degree random univariate polynomial with
zero constant term. Then, in the data randomization step,
Bob transforms his t̃ to τ̃ , and G(v) is changed to an n′
terms vector, G(v) = (g1(v), ..., gn′(v)). The gi(v) are still
generated randomly by Bob to hide his data. In the retrieval
part, m equals to (pq+1). As shown in Eq. (3), to interpolate
the function B(v), (pq+1) different value pairs are obliviously
transmitted between Alice and Bob. Finally, Bob still gets the
classification result by acquiring d′(τ̃ ) as,

B(0) = A(0,G(0)) = h(0) + d′(G(0)))
= d′(τ̃1, ..., τ̃n′) = d′(τ̃ )

Therefore, for the nonlinear case, Bob’s data can still securely
classified in our nonlinear privacy-preserving data classifica-
tion scheme. During the whole process, both Alice’s trained
model and Bob’s classification sample are protected.

V. PRIVACY PRESERVING DATA SIMILARITY EVALUATION

As we mentioned earlier, data similarity evaluation is to
calculate the similarities among different trainers. As shown
in the Fig. 3, since trainers have different training data, their
trained models could be different from each other. In order
to compare two different models, we propose a privacy-
preserving data similarity evaluation scheme. To evaluate the
similarity, the first step is to find a metric that can properly
represent the closeness of different trained models. In our
scheme, we combine both factors of the direction and position
of trained models as a metric. Then, we explain how to

694



compute this metric with the privacy preservation of different
trainers. Similarly, our scheme will be elaborated in both linear
and nonlinear scenarios.

(a) Trained Pattern 1 (b) Trained Pattern 2

Fig. 3: Data Similarity Evaluation

A. Similarity Metric

1) Cosine Similarity: Considering the geometry concepts
in SVM, the decision function d(t) is a hyperplane that
divides the data space Rn for classification. Different decision
functions will give various hyperplanes that dividing the data
space in different directions and positions. By doing so, the
similarity evaluation can be seen as the problem of comparing
different hyperplanes. The intuitive way of comparing two
high dimensional hyperplanes is to measure the included angle
of them. If the data space is unlimited and the hyperplane is
unbounded, the comparison can be done by calculating the
cosine value of two hyperplanes’ included angle. This cosine
value can also be calculated by the normal vectors. If v and
w are the coefficients vector of the high dimensional decision
function, the cosine value, or called cosine similarity, can be
calculated as follows,

cos θ =
v · w√||v||2 × ||w||2

However, only comparing the hyperplanes by the angle
could be far away from the real similarity of data models.
In particular, the data will not be distributed in the infinite
space. Normally, they are limited in a certain area of the n
dimensional data space. Two hyperplanes may have different
angles and locations in the data space. As shown in Fig.
4, the red line is located at the upper region of the data
space and has a relatively horizontal direction, while the blue
line is located at the central region of the data space and
has a relatively vertical direction. Apparently, only comparing
their directions cannot truly reflect the real closeness. For
this reason, the decision function of trained model should
be considered as bounded hyperplane with different direction
angle and boundary points in the limited data space. So,
we need to find a metric that can give an assessment of
the closeness for two high dimensional bounded hyperplanes
instead of two unbounded ones.

2) Isosceles Triangle Area: To protect the bounded planes
as well as give a reasonable metric for the closeness, we
propose a novel approach to privately compute the closeness of
two bounded hyperplanes with the combination of the centroid
distance and cosine similarity. The included angle should be
kept as a reflection of the directions. To reflect the distance
of two bounded planes, we choose to compute their centroid
distance. Here, We assume the included angle is θ and the
centroid distance is L. By combining these two elements, as
shown in Fig. 4, we can construct an isosceles triangle with

Fig. 4: Bounded Data Space and Isosceles Triangle Construc-
tion

vertex angle equals to θ and legs equals to L. Hence, we can
get the area of this isosceles triangle T = 1

2L
2 sin θ, where

sin θ =
√
1− cos2 θ. Apparently, the area T is relative to the

sine value of θ and the square value of L, which reflects how
close the two bounded plane is in both views of direction
and position. To avoid the square roots, we can compute the
square of the area as T 2 = 1

4L
4 sin2 θ. However, two extreme

situations should be considered. One is the two hyperplanes
are parallel, the other one is their centroid locate at a same
position. In these cases, the area becomes to null and it is
impossible to differentiate which one causes the null area. So,
to avoid this problem, we can add two small constant values
as angle θ0 << 90◦ and distance L0 on the original terms.
These two values can be public, and the square area value
becomes to follows,

T 2 =
1

4
(L4 + L4

0)(sin
2 θ + sin2 θ0) (4)

Note that only when the two bounded planes are parallel and
the centroid are coincident, the area T can get the smallest
value 1

2L
2
0 sin θ0. After acquiring the T 2, T can be computed

by computing its square root. This area value T can be an
evaluation of trained models. Smaller square area value means
two different models are closer, and vice versa. Notice that
even we analysis this metric for similarity from the linear
decision function and geometric way, it still can be a reflection
of the nonlinear situation by kernel method. The nonlinear
decision function can be mapped to a higher dimensional data
space as a linear hyperplane, and still the centroids and cosine
similarity can be found in the higher dimensional space.

B. Privacy-preserving Linear Data Similarity Evaluation
To privately compute this metric triangle area, we continue

to use Alice and Bob as an example to compare their trained
models. In the linear distributed data scenario, their decision
functions are

dA(t) = wT
At+ bA, dB(t) = wT

Bt+ bB

where wA ∈ R
n := (wA1

, ..., wAn
), and wB ∈ R

n :=
(wB1 , ..., wBn).

1) Angle and Distance Computation: We assume the data
space is limited within [α, β]. The boundary points of Alice or
Bob can be found by solving all feasible solutions of wT t +
b = 0, α ≤ ti ≤ β. As shown in Eq. (5), it should treat
one dimension value as a variable at each time, and the other
dimensions should be arranged as different combinations of
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α and β. So, for each variate, there are 2n−1 equations to be
solved and all the feasible solutions are the boundary points.
For example, if we treat t1 as a variable u, the equations are

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w1u+ w2α+ ...+ wnα+ b = 0

w1u+ w2α+ ...+ wnβ + b = 0

...

w1u+ w2β + ...+ wnα+ b = 0

...

w1u+ w2β + ...+ wnβ + b = 0

(5)

All the feasible u in these equations, where α ≤ u ≤ β,
can make up the first dimension boundary points with the
corresponding α and β. After this computations, we sup-
pose {mA1

, ...,mAγ
} are the boundary points of Alice and

{mB1 , ...,mBδ
} are the boundary points of Bob, where γ, δ

are the numbers of boundary points. Then, the bounded plane’s
centroid mA of Alice and mB of Bob are

mA =

∑γ
i=1mAi

γ
mB =

∑δ
i=1mBi

δ

The Euclidean distance L of these two centroids is

L =
√
|mA|2 + |mB |2 − 2mA ·mB

Based on the cosine similarity and centroid distance, the
square area value for Eq. (4) between Alice and Bob can be
written as follows,

T 2 =
1

4
(L4 + L4

0)(sin
2 θ + sin2 θ0)

=
1

4
[(|mA|2 + |mB |2 − 2mA ·mB)

2 + L4
0]

[(1− (wA · wB)
2

|wA|2 × |wB |2 ) + sin θ20]

(6)

2) Area Computation: As so far, the privacy-preserving
similarity evaluation problem has been transformed to a
problem on privately computing the square area value. We
continue to apply the OMPE protocol to achieve the design
objective. However, instead of directly expand the Eq. (6) as
a multivariate polynomial, we take some steps to simplify the
computations.
To get rid off the fraction part, Bob can send |mB |2 and

|wB |2 to Alice directly. Since these two terms are the vector
module squares, Alice cannot reveal any specific dimension’s
value of them. To decrease the number of variates, instead
of computing the whole square area value as a 2n variates
polynomial for mA and wB , Bob computes mA · mB and
wA · wB as two input variates. Actually, by similarly run-
ning the OMPE protocol, Bob will get the amplified values,
ram(mA ·mB) and raw(wA ·wB). In these values, the random
amplifiers ram and raw are used to prevent Bob to retrieve the
real polynomial coefficients of Alice. However, one exception
is the value wA ·wB could be zero so that Bob will know Alice
is vertical with his plane. He can get the centroid distance by
deduce the final result and find out the plane of Alice. To avoid
this problem, Alice adds another random value rb ∈ R on the
hidden polynomial, such that d′(t) = rawd(t) + rb. Without
knowing this additional value, Bob cannot retrieve anything
from his obtained values.

Then, to simplify the whole function, we let c1 = ||mA||2+
||mB ||2, c2 = L4

0, c3 = (||wA||2×||wB ||2)−1, c4 = 1+sin θ20 ,
and let d1 = r−1

am, d2 = r−1
aw , d3 = −rb be the constants. In

addition, Alice lets x1 = ram(mA ·mB), x2 = rawwA ·wB+rb
be the variates delivered by Bob. The square area value can
be calculated as a two variates polynomial function of x1 and
x2 as follows,

T 2(x1, x2) =
1

4
[(c1 − 2d1x1)

2 + c2][c4 − c3d2(d3 + x2)
2]

(7)
where the degree is 4. This is a simple two-variate polynomial
function. All the constants ci, i = 1, 2, 3, 4, dj , j = 1, 2, 3 are
only known by Alice and the variates x1, x2 are just delivered
form Bob. Applying the OMPE approach again, Alice and Bob
can simply get square area value from this simplified function.
Finally, Bob can get T as the similarity evaluation result, while
all the privacy of Alice and Bob are protected.

C. Privacy-preserving Nonlinear Data Similarity Evaluation

We apply the same idea in the nonlinear data distributed
scenario. The square area value can still be a metric of
the nonlinear data models. The difference is that we need
to map the metric to a higher dimensional form, and seek
a higher dimensional solutions for computing θ and L. To
address this mapping, the whole process should be considered
with the kernel functions. Instead of using the Eq. (5), the
equations with nonlinear form

∑
s∈S αsysK(xs, t) + b = 0

for computing the boundary points should be listed. The new
square area value of nonlinear data similarity evaluation can
be expressed as follows,

T 2 =
1

4
[(K(mA,mA) +K(mB ,mB)− 2K(mA,mB))

2 + L4
0]

[(1− K2(wA,wB)

K(wA,wA)×K(wB ,wB)
) + sin θ20]

where the terms K(wB ,wB) and K(mB ,mB) can be directly
sent to Alice from Bob. The other steps are basically similar
to the linear process, but all the dot products should be
replaced by the kernel functions. The simplified function is
similar as Eq. (7), and it is a polynomial function of x1, x2.
However, these two values can be obtained by computing
x1 = ramK(mA,mB) and x2 = rawK(wA,wB) + rb
from Bob, and other constants are also updated. Finally, by
mapping the nonlinear data to higher dimensional space with
the kernel functions, the similarity evaluation result T can still
be obtained by Bob with privacy preservations.

VI. PERFORMANCE EVALUATION

A. Privacy Analysis

As we assumed, the users in this system are honest-but-
curious. All the users honestly perform the steps in our
scheme. But they are curious and try to deduce additional
knowledge from what they obtained. Also, one user may
collude with other users during the process. Under such
assumptions, there are two different level privacy objectives
will be considered in our proposed schemes.

• Level 1 objective: During the computation between the
trainers and clients, their private values should not be
exposed to each other in each step.
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Fig. 5: Model Estimation

• Level 2 objective: After the computation process, even
other participants are colluded, the private value of the
trainers or clients should not be exposed.

1) Data Classification Privacy: For Level 1 privacy, each
step in our proposed scheme needs to be considered. On the
one hand, from Bob’s point of view, he hides all the input
values into n different random polynomials gi, and each time
the random polynomial is different. If Alice wants to get t̃i,
she has to collect at least (pq + 1) different values from one
stable gi. However, gi are different in each time, and they are
hidden with random numbers among all the M values. Since
the oblivious transfer is implemented, it is impossible for Alice
to find out the specific positions of gi in a feasible time. So,
Bob’s private value t̃ is protected. On the other hand, Alice
hides her p-degree polynomial into a pq-degree polynomial.
Although Bob can use the (pq + 1) terms to reconstruct the
univariate polynomial B(v). The coefficients of d(G(v)) have
been added up to the random polynomial h(v). So, Bob cannot
get the coefficients back from the interpolation function B(v)
and Alice’s information is protected.

Fig. 6: Decision Function Retrieval

For the Level 2 privacy issue, our proposed system can also
prove the information of Alice and Bob is secure. On the
Alice side, after the whole process, since it is not feasible
to deduce gi, what she gets are just random numbers. Even
Alice colludes with other trainers, she cannot reveal anything
from them due to the embedded randomness in the training
process. On Bob’s side, he gets a random value rad

′(̃t) after
the computation process. If this the random value ra is not

applied, Bob can get the real distance from his points to
the decision plane. In this way, it is easy to retrieve the n
dimensional linear classifier d(t) by just collecting (n + 1)
different distance values. Geometrically, as shown in Fig. 6,
we can draw a circle at each data point with radius equals to
the distance. Between each two circles, there are four tangents
can be found. So, in the linear two dimensional data space,
by finding the common tangent line of distance circles, only
three points are enough for the reconstruction of the linear
decision function. However, since Bob has no idea about ra
in our proposed scheme, what he gets is just a randomized
value with same sign as the original one. No matter how many
other clients Bob colludes with, he cannot find out the exact
decision function of Alice. Therefore, theoretically, both Alice
and Bob cannot retrieve any information from what they get,
from which their privacy of them are preserved.

To illustrate above issue, we simulate a model by setting
up a linear two dimensional binary classifier as the decision
function of Alice with 1000 training samples as the training
inputs. Then, Bob colludes with other users and he directly
uses randomized classification results to estimate the decision
function. As shown in Fig. 5, the line in figure (a) is Alice’s
decision function based on all the training data. The solid line
in other figures, Fig. 5 (b)-(f), represents an estimation for
decision function based on different classified results. We can
see that the estimations are different from the original one, and
the solid lines are randomly lying on different directions and
positions in the data space. No matter how many classification
results obtained by Bob, the estimation is still irregular and
keeps rambling.

2) Similarity Evaluation Privacy: Level 1 privacy in data
similarity evaluation scheme can be achieved with the same
analysis in the data classification. Both Alice and Bob’s
classifier information will not be revealed to each other during
the evaluation process.

For Level 2 privacy, we consider what values Alice and Bob
get after the process. In terms of nonlinear scenario, Alice only
gets K(mB ,mB) and K(wB ,wB). Since these two values are
not separable, Alice learnings nothing about Bob. From Bob’s
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perspective, beside the final result, all the values he gets have
been randomized, so that they cannot help him retrieve Alice’s
information. For the final evaluation, the area value T , it is
not helpful for decision function’s retrieval. Because the area
value has factors of both the included angle sine value and the
centroid distance. Except the two trained models are exactly
same, which is unlikely to happen, Bob cannot differentiate
these two factors from the final result. Since all the values
obtained by Bob or Alice are randomized or integrated, there
is no valuable information can be deduced and the privacy is
protected.

B. Experiment Result
In the experiments, we apply the LIBSVM [29] as our basic

SVM training process. Both linear and nonlinear polynomial
kernel SVMs are tested in our scheme. The program is written
in C++ programs and is implemented in CentOS 6.7 operating
system with GCC version 4.4.7. The desktop has 4.00 GHz
Intel(R) Core(TM) i7-4790K CPU and 32 GB memory. All
the data have been scaled to [−1, 1] and each dimension value
of data is 8 Bytes.

1) Data Classification: We apply 17 different datasets from
[30] to verify our scheme. In the nonlinear polynomial SVM,
we set a0 = n−1, b0 = 0, and p = 3 as default values.

TABLE I: Data Classification Accuracy

Dataset Linear Polynomial Testing Size Dimensions
splice 58.57% 76.78% 2175 60
madelon 61.6% 100% 2000 500
diabetes 77.34% 80.20% 768 8
german.numer 78.5% 96.1% 1000 24
a1a - a9a 82.51-

84.69%
82.51-
84.69%

1605-32561 123

australian 85.65% 92.46% 690 14
cod-rna 94.64% 54.25% 59535 8
ionosphere 95.16% 96.01% 351 34
breast-cancer 97.21% 98.68% 683 10

TABLE I shows all the accuracy of the original LIBSVM
scheme on the data classification. The data size and feature
dimensions are different between datasets. For each dataset,
we analyze the performance of both linear and nonlinear
SVM. Then, our scheme are implemented on these datasets
to illustrate the functionality. As shown in Fig. 7 and Fig.
8, comparing with the original SVM, our proposed scheme
predicts the classes with same accuracy for each dataset. It
proves that our scheme can guarantee the same prediction
functionality as the original SVM scheme.
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Fig. 7: Accuracy of Linear Data Classification

To analyze the efficiency of our proposed scheme, we take
the datasets “a1a” to “a9a” as samples. Since they have same
feature dimensions and an increment of data size, we can
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Fig. 8: Accuracy of Nonlinear Data Classification

assess their time cost. Fig. 9 shows the time cost for the
original SVM and our proposed privacy-preserving approach
on both linear and nonlinear schemes. The horizontal axis
is the classification data size and the vertical axis is the
time cost for different SVM schemes. The relations between
linear and nonlinear SVMs are similar in original scheme and
our approach. Since we add the random polynomial to the
process, our schemes take more time than the original scheme.
According to the experiment result, it is about 4 times more
than the original schemes. We can further reduce the time cost
by generating random polynomials before the scheme.
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Fig. 9: Computational Cost Comparison of Classification

2) Similarity Evaluation: In order to show the correctness
of our similarity evaluation, we split 4 subsets from the dataset
“diabetes” as Si, 1 ≤ i ≤ 4 and each subset has 192 items of
data. The Two-sample Kolmogorov-Smirnov test [31] method
is used as a comparison of similarity measurement for our
scheme. Kolmogorov-Smirnov test is a statistic test method to
see whether two data samples have the same distribution. It has
a test output result as the degree for describing the similarity.
Since this test can only work for two vectors, we test it on
each data feature dimension for the split subsets. Then, we get
the average value over the 8 dimensions’ K-S test results as
the measurement. We also evaluate the similarity of different
subset pairs by our scheme. Because the data boundary is
[−1,+1], the area value of metric triangle T will be too small.
So, we amplify the value with 103 as the final result. As shown
in TABLE II, the scale of K-S test results and our similarity
T are different, but they show the same trend of comparisons
between the subsets, which means our similarity evaluation
scheme can provide a correct measurement on the dataset.
The privacy-preserving similarity evaluation takes more
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TABLE II: Privacy-preserving Data Similarity Evaluation

Subset Pair K-S Test Average Our Scheme 103T
S1 vs S2 8.557 30.646
S1 vs S3 7.578 27.736
S1 vs S4 3.231 9.470
S2 vs S3 6.264 13.786
S2 vs S4 1.539 5.858
S3 vs S4 2.757 8.171

computation cost than the ordinary evaluation. Fig. 10 com-
pares one evaluation cost of the ordinary and privacy-
preserving similarity evaluation schemes. It also shows the
time cost growth with the increment of data space dimensions.
Since one additional dimension requires more random polyno-
mials to hide the information than a simple multiplication in
the ordinary scheme, we can find that the changing of dimen-
sions has more impact on the privacy-preserving evaluations
in terms of the computation time.
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Fig. 10: Computational Cost Comparison of Similarity Eval-
uation

VII. CONCLUSION

In this paper, we propose privacy-preserving schemes for
data classification and data similarity evaluation. In the data
classification scheme, by applying the oblivious evaluation of
multivariate polynomial approach, the classification data and
trained models are protected between the training parties and
clients. In the data similarity evaluation scheme, a novel metric
is proposed for representing the closeness between different
trained models with privacy-preserving scheme. We also show
the correctness, feasibility, and efficiency of our proposed
scheme via extensive experiments.
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