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ABSTRACT: In this paper, we study the global properties of a class of asymmetrical Hopfield-type
neural circuits. We first present a result for the existence and uniqueness of an equilibrium point;
this result does not assume smoothness of the neural activation functions. Then we give some testable
sufficient conditions for the global stability of such neural circuits. These results generalize a few
previous known results and remove some restrictions on the neural circuits. © 1997 Published by
Elsevier Science Ltd

1. Introduction

Hopfield-type neural circuits have been intensively studied in the past decade and
have been applied to optimization problems and specific problems of A/D converter
design (14 and references therein). However, a problem normally encountered in this
approach is the existence of more than one equilibrium point, which may correspond
to local minima. Global properties are hard to extract and a global minimum is difficult
to achieve. To overcome this dilemma, it is desirable to design neural circuits which
have only one unique equilibrium point and are globally stable (or attractive) so that
the global property can be extracted. In this case, we do not need to specify the initial
conditions of the neural circuits, since all trajectories starting from anywhere will settle
down to the same unique equilibrium. This equilibrium depends only on the external
stimuli. In fact, if the interconnection among individual neurons, the time constants of
the circuits and the activation functions are fixed, we obtain a mapping from the
external stimuli space to the activation space. Moreover, unlike the Winner-Take-All
circuits where resetting of activations has to be made whenever input stimuli change,
if the neural circuits are globally stable for each external stimulating input, we need
not reset the activations when changing inputs. This is convenient for a neural circuit
running in real time.

The qualitative properties of dynamical neural networks (notably Hopfield-type
neural networks) have been intensively investigated by Michel and his colleagues (3—
6). They applied large-scale system techniques to obtain a large set of sufficient con-
ditions for local asymptotic (exponential) stability for a few classes of dynamical
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neural networks. Hirsch (7) pointed out the importance of global stability or global
attractiveness, and obtained a few sufficient conditions using Gershgorin’s circle
theorem. Kelly (8) applied the contraction mapping technique to obtain some sufficient
conditions for global stability. Matsuoka (9) generalized some of Hirsch’s and Kelly’s
results using a new Lyapunov function. Recently, Kaszkurewicz and Bhaya (10) proved
that the diagonal stability of the interconnection matrix implies the existence and
uniqueness of an equilibrium and global stability of the equilibrium. Forti et al. (11)
showed that the negative semidefiniteness of the interconnection matrix guarantees the
global stability of the Hopfield network with a certain robustness property.

In this paper, we consider a class of asymmetrical Hopfield-type networks whose
activation functions are not necessarily continuously differentiable, whose inter-
connection matrix is not necessarily symmetric or stable. We obtain a more general
sufficient (‘almost’ necessary) condition for the existence and uniqueness of a global
equilibrium point, then show that diagonal semistability of a certain matrix implies the
global stability of the neural circuits. Some sufficient conditions for global stability are
discussed.

II. Notation and Preliminaries

Before we present our main results, we first give some notation and preliminary
results which will be used in the sequel. For any matrices 4 and B, let 4 < .B(4 < .B)
denote the elementwise inequalities. For any symmetric matrices 4 and B, let
A < B(A < B) denote that B— A is positive semidefinite (definite) matrix. 1,(4) denotes
the eigenvalue of a matrix 4. A' denotes the matrix transpose for any matrix 4. tr(4)
and det(4) denote the trace and determinant of A, respectively. A matrix A4 is said to
be stable if the real parts of its eigenvalues are negative. diag{d,, ..., d,} denotes the
diagonal matrix with diagonal entries d,, . . ., d,. If all diagonal entries of A are positive
numbers, we call 4 a positive diagonal matrix. Let R” be the n-dimensional real
Euclidean space. For a, be R', let I(a, b) denote the interval between a and b. For a
function (mapping) F, let F~! denote the inverse function (mapping).

Definition 2.1: For each positive integer n and each pair of n-vectors « and  whose
components o; and f; lie in the extended real number system, with « < .8 (i.e. with
—o <y <pi<oofori=1,2,...,n),let F*(a, f; R") denote the set of functions from
I(oy, By) % -+ xI(a,, B,) onto R* defined by: Fe F"(a, f; R") if and only if there exist
continuous strictly monotonically increasing functions f;(x;) from I(«;, f;) to R' such that
for each x =(xy,...,x,) €l(ay, By) x - x I(ay, B,), F(x) =(fi(x),...,[,(x,)". Define
similarly the set of functions from R" onto I(x;, f;) X -+ x I(a,, B,) as ZF (R"a, B):
Fe # (R a, p) if and only if F~'e # (a, f; R"). In fact, Z"(R"; a, f) can be defined to be
the following set:

fi1(x1)
: fi(x;) is continuous, strictly increasing, f; = max fi(v), o; = minfi(v),.

veR veR
Ja(x2)

Definition 2.2: (12) 2, (respectively, 2) denotes the class of square matrices 4 all of
whose principal minors are nonnegative (positive).
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Lemma 2.1: [Sandberg and Wilson (12)] For n-vectors o < . whose components
lie in the extended real number system, if A is nxn real matrix, then the equation
F(x)+ Ax = B has a unique solution for each Fe #"(a, f; R") and each Be R" if and
only if 4 € 2. O

Definition 2.3: A square matrix A4 is diagonally semistable (respectively, stable) if
there exists a positive diagonal matrix P such that the matrix PA+ A'P is positive
semidefinite (definite), i.e. there exists a positive semidefinite (definite) matrix Q such
that the Lyapunov equation PA+ A'P = —Q has a positive diagonal matrix solution
P.

III. Existence and Uniqueness of the Equilibrium

The circuit model we study in this paper is described as (10)

uo _
——+ 2 Tygw)+1I; i=12,....n 1)
RTA

Cay,; =
where #; denotes the derivative (we always use overdot to denote the differentiation in
this paper), C; > 0 are the neuron amplifier input capacitances, R; > 0 are the resist-
ances, T = (T};) is the n x n network interconnection matrix, /;are the (constant) external
stimulating currents, u; = u,(f) are the neural voltages representing the activity of
the i-th neuron, g(u) are the neural activation functions satisfying:
G =(g,(wy), . .., gn()) € F (R"; , B) for certain n-vectors o and . Let B =(1y,..., L),
G() =(i(x), . ...ga(x)), C=diag{C,...,C,}, R=diag{R,,..., R,} and
u=u(f) =@ (1),...,u,1)". Obviously, when T is a symmetric matrix, the network
model is the well-known Hopfield circuit. Here, we are not restricted to this case.

For a dynamical system to be globally asymptotically stable, a necessary condition
is an existence and uniqueness of the equilibrium point. It is useful, therefore, to give
some sufficient conditions for the model to have a unique equilibrium point. When the
activation functions g,(*+) are continuously differentiable and their derivatives are
positive, Forti et al. (11) obtained a result regarding this issue. Their proof can not be
easily applied to the case when the activation functions are not continuously differ-
entiable. However, applying the results of Sandberg and Wilson (12), we generalize
their result to this case. We have:

Theorem 3.1: Given any n-vectors o < . whose components lie in the extended
real number system, the neural circuit (1) has a unique equilibrium point for any
G(u) =(g:(wy), . . . ,gn(U,)) € F"(R% o, f) and any Be R" if and only if —Te€ Z,.

Proof: Redefine the state variables: x;= R;'w; and h(x,) = g.(u;) = g(Rx),
H(x) =(h(x), ..., h(x,)". Obviously, H(x)eZF"(R"a,p) if and only if
G(u)e F"(R";a, B), and the neural network (1) has a unique equilibrium point if and
only if the following algebraic equation has a unique solution:

—x+TH(x)+B=0. )

This equation can be rewritten by the following variable substitution y = H(x) as the
following equivalent form:
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H™'(»)+(=T)y=B. ©)

It is easy to verify that there exists a unique solution of Eq. (2) if and only if there
exists a unique solution of Eq. (3) [applying the strictly monotonically increasing
property of the activation functions]. Also notice that G(x) e #"(R"; «, ) if and only if
H™'(y)eF"(a, B; R"). From Lemma 2.1, there exists a unique solution of Eq. (3) for
any H'(y) e #"(a, B; R") and any Be R" if and only if — T e #,. From this, the proof
of Theorem 3.1 is easily completed. O

Remarks:

(1) In (11), it is proved that a mapping is a diffcomorphism under the smoothness
condition. However, when the activation function is not differentiable or if g,(x;)
is not positive, the proof there is not valid. One simple example is g/(x;) = x;, this
is a continuously differentiable strictly: monotonically increasing function.
However, ¢,(0) = 0, not positive. We can not use Forti et al.’s result (11). However,
Theorem 3.1 is still applicable.

(2) The proof for the existence and uniqueness of an equilibrium point in (10) used
the condition that T is invertible. Theorem 3.1 does not imply this assumption.
The activation functions are much more general than in (10). In particular, the
activation functions in Theorem 3.1 are not required to be bounded, therefore,
they can be linear functions.

(3) As we mentioned in the Introduction, the condition for existence and uniqueness
of an equilibrium point is “‘almost” necessary as we witnessed in Theorem 3.1. It
is not necessary in the sense that when the activation functions and external inputs
are given, the network (1) may have a unique equilibrium point although — 7" not
2, matrix. For example, for one neuron case (i.e. n=1), let R=1, B= -2,
G(x) = 1/(1+e ™) and T = 1. It is obvious that the circuit (1) has a unique equi-
librium — 1.866, however, — T is not 2, matrix. The reason for this is because the
necessary and sufficient condition is independent of any activation functions and
any external inputs, which can be regarded as a kind of robustness property: If
—Te?,, then there exists a unique equilibrium point no matter what kind of
continuous strictly increasing activation functions and external inputs are chosen,
this may be very helpful in practical designs.

If more general sufficient conditions for the uniqueness of the equilibrium are desired,
it must be related to the specific property of the activation functions, as well as the
interconnection matrix. In this case, we obtain the following result.

Theorem 3.2: Suppose that the activation g;(x;) are bounded continuous mon-
otonically nondecreasing functions satisfying the following condition:

Ogyisgi(xi)_gt(%)<
Xi—Yi

w;,<oo, i=1,2,...,n

for certain nonnegative numbers y; and w, and any x,€ R' and y,e R' satisfying x; # y..
Let T’ = diag{y,,...,7,} and Q = diag{w,, ..., w,}. Then the neural network (1) has a
unique equilibrium point if det(/— RTD) # 0 for any nonnegative diagonal matrix D
satisfying I < .D < Q. If the activation functions are assumed to be strictly mon-
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otonically increasing, the sufficient condition can be substituted by: det (/ —RTD) #0
for any positive diagonal matrix D satisfying I’ < .D < Q.

Proof: Let | - || denote the Euclidean norm. Since the activation functions are all
bounded, there exists positive number M >0 such that IG(x)|| < M. Let
A= |RT|M+|RB|, O={x|x| <A} and ¢(x) = RTG(x)+RB. Since
[é(x) | < IRT| |G(x) [+ | RB| < A, ¢(*) is a continuous mapping from O into O, and
O is a convex bounded closed set in R". Then, from Schauder’s Fixed Point Theorem
(13), there exists a fixed point for ¢(x) = x, hence an equilibrium point of (1).

Next, we need to prove that the equilibrium point of (1) is unique. If there exists x
and y in R" such that they are both the equilibrium points of the system (1), i.e.
—R'x+TG(x)+B=0and —R'+TG(x)+B =0, subtracting the second from the
first, we obtain ‘

=R '(x=»)+ T(G(x)—G(»)) = 0. @
Define a new diagonal matrix D = diag{d,, ..., d,}:
9:(x)—g:(»;)

di = Xi —Ji
T; otherwise

, ifx; #y;

where 7, is any number satisfying y, < 7, < w,. Then, obviously, I' < .D < Q. From Eq.
(4), we can easily obtain (x—y)—RT(G(x)—G(y)) = [[—RTD)(x—y) = 0, thus, if
det(/—RT) # 0, which is guaranteed by the assumption, then x = y. This proves the
uniqueness of the equilibrium point.

If the activation functions are all strictly monotonically increasing, from the choice
of D above, we know that D is a positive diagonal matrix, thus the second part of the
theorem is straightforward. O

Remarks:

(1) This thecrem does not assume that the activation functions are strictly mon-
otonically increasing, therefore Theorem 3.2 can be applied to some interesting
cases like hardlimiting neural circuits. If — T'e ,, then for any positive diagonal
matrix A, det(A—T) #0, therefore, det(/—RTD) = det(R)det((RD)~'—T)
det(D) # 0. This shows that Theorem 3.2 is a better tool for determining the
uniqueness of an equilibrium point.

(2) The boundedness and continuity of the activation functions is not needed for the
uniqueness proof. Thus, for the network (1) with monotonically nondecreasing
(respectively, strictly increasing) activation functions, if det(I— RTD) # 0 for any
nonnegative (positive) diagonal matrix D satisfying I' < .D < ., then the network
(1) has at most one equilibrium point.

(3) The sufficient conditions developed in Theorem 3.2 are also independent of the
external input B. It seems that global properties such as the global stability and
uniqueness of an equilibrium point are generically independent of such additive
external (constant) stimulating input, and that it only affects the location of the
equilibrium point.
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We use the following simple example to illustrate our results.
Example 3.1. Consider the one-neuron model:
X=—x+Tg(x)+b %)

where R = 1, T and b are constant scalers and g(x) is the activation function.

If g(x) is a sigmoidal function given by g(x) = 1/(1 + exp(—Ax)), this is a smooth
strictly monotonically increasing function. We have 0 <@ —g)/(x—y) <
max,.z1f(v) = A/4. From Theorem 3.2, if T < 4/2, the system (5) has a unique equi-
librium point. It can be graphically observed that this condition is the necessary and
sufficient condition for (5) to have a unique equilibrium point. Notice that when 7 = 1
and 4 = 1, Theorem 3.2 is applicable. However, — T is not 2, matrix, i.e. Theorem 3.1
can not be applied.

If g(x) = Ax* = Amax(0,x), where A > 0. This function is unbounded and not
differentiable. It is obvious that 0 < (9(x)—g(»)/(x—y) < A. From Theorem 3.2, we
obtainif 7' < 1/4, the system (5) has at most one equilibrium point. It can be graphically
verified that this is the necessary and sufficient condition for (5) to have a unique
equilibrium point. From this example, we can also see that the boundedness for
existence of an equilibrium point can not be removed in general, for example, when we
choose T = A = B = 1, then there is no equilibrium of (5) [of course, here, the sufficient
condition in Theorem 3.2 is violated].

If g(x) = 4/2(Ix+1|—|x—1|) where 1> 0, this is a bounded continuous non-
decreasing function and not differentiable. This activation function is often used in the
cellular neural circuits (14). It is easy to show that 0 < @(x)—g(»)/(x—y) < A. From
Theorem 3.2, the system (5) has a unique equilibrium point if 7' < 1/A. In fact, this
condition is also necessary.

1V. Global Stability of the Equilibrium

In the last section, we presented the conditions for the existence and uniqueness of
the equilibrium point. A natural question to ask is whether the equilibrium point is
asymptotically (globally) stable or not. In (11), Forti et al. obtained a global stability
result for symmetric neural network. For asymmetrical neural network (1), Kasz-
kurewicz and Bhaya (10) gave another sufficient condition: the interconnection matrix
T'is diagonally stable. A necessary condition for diagonal stability is the stability of 7T,
therefore, their results can not be applied to the popular case where there are no self-
interactions in the network (for example the Hopfield network), this is because that
the trace of T in this case is zero, which implies that T'is not even stable. We generalize
their result to include this important case. We have

Theorem 4.1: If the interconnection matrix 7T is diagonally semistable, then for any
R;>0, any C; , any external inputs I, and any continuous strictly monotonically
increasing activation functions g,(1;) on R!, the neural circuit (1) is globally asymp-
totically stable.

Proof: The proof follows the same approach as in (10) with some modification. Let
0; = infz1g,(v) and B; = sup,.z1g,(v), the infimum and supremum of g,(u,), respectively,
i=1,2,...,n, then G(u) =(g9:(w), . ..,g,(u,))' € F"(R" 0, B).
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First, we want to prove that —Te%,. If Tis diagonally semistable, then there exists
a positive diagonal matrix P and a positive semidefinite matrix Q such that

PT+T'P=—0Q. 6)

For any positive number 7, we have (we reserve I to denote the identity matrix with
appropriate dimension):
P(T—tl)+(T—t)P = —Q—21P = —(Q+21P),

and Q+2tP is positive definite, hence T—1/ is diagonally stable. From (15),
—(T—1l) = —T+tle 2. let t go to zero, then it is easy to verify that — T'e 2.

From Theorem 3.1, the neural network (1) has a unique equilibrium point, say u*,
thus the system (1) is equivalent to the following system:

171 n
xf=a[f,.xf‘j;T"f¢f("f)]’ (i=12,...,n) M

where x; = u;—u¥, ¢:(x;) = gdx;+uf) —g(u}) and the new activation function ¢(*) is
continuous, strictly monotonically increasing. Moreover, di(x)x; = [g{x;+udH—
g{uH] x [(x;+up)—u}] > 0forx; # 0. Let O(x) =(¢1(x1), - - - » Pa(x,))", then Eq. (7) can
be written as the following matrix form:

x=—(RC)™'+C7'TD(x). ®)

It suffices to prove that Eq. (8) is globally asymptotically stable. Let the positive
diagonal matrix IT = diag{n,,..., m,}, where 7; > 0 is to be determined. Let

Vix)=2 i ; r ¢:() dr.

Obviously, since ¢,(t) is strictly increasing and ¢,(0) =0, [ ¢i(r)dz > 0 for x; # 0,
hence V(x) > 0 for x # 0. If |x,| = M > 0, then we have

) jM¢,~(r)dr+¢i(M(x,.—m, >0
Jl¢i(1)dt> ’
' £.0) drt bi(—M)(u+ M), %, < 0.

0
We conclude that lim . V(x) = 0, i.e. ¥(x) is radially unbounded. Moreover,
V(x) = O (x)[II(C ' T)+ (C~' T)'I]®(x) — 20" (x)II(CR)~ 'x. O]

From Eq. (6), PC(C™'T)+(C~'T)(CP) = —Q. Let II = PC, noticing that C and P
are both diagonal, we have II(C~'T) +(C~'T)'Tl = —Q and IT is a positive diagonal
matrix. Let II(CR) ™" = diag{r,, . ..,r.}, where r; > 0 (in fact, r, = p/R), from Eq. (9)
we obtain

V(x) = —® (x)Q®(x) — 20" (x)TI(CR) ' x

S
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< =2) rigi(x)x; <0 (forany x # 0),
i=1

because ¢,(x;)x; > 0 for any x; # 0. From Lyapunov stability theorem (16), the system
(8), hence the system (1), is globally asymptotically stable. This completes the proof.
O

Remark: Notice that in this theorem, the boundedness of the activation functions
are not required. Therefore, the choices of activation functions are much more flexible.
A few previously known results can be obtained from Theorem 3.1.

Corollary 4.0:

(i) [Kaszkurewicz and Bhaya (10)] If the interconnection matrix 7'is diagonally stable,
then neural network (1) is globally asymptotically stable for any external inputs /,
and any continuous strictly monotonically increasing activation functions g,(«;) on
RY;

(ii) [Forti et al. (11)] If the interconnection matrix 7'is symmetric negative semidefinite,
then neural network (1) is globally asymptotically stable for any external inputs I;
and any continuous strictly monotonically increasing activation functions g,(#;) on
R

Proof: (i) Since diagonal stability implies diagonal semistability, the proof'is straight-
forward. (ii) If T is symmetric negative semidefinite, then it is diagonally semistable

from the fact that IT+ T = —(—2T) where —2T > 0. From Theorem 3.1, the proof
can be easily completed. O

Next, we use a few examples to illustrate some applications of Theorem 4.1.

Example 4.1:
Let

(11 o)

Obviously, Te 2,. Moreover, IT+ T'I = 0, thus, T is diagonally semistable, Theorem

4.1 implies that the network (1) is globally asymptotically stable. However, T is not

diagonally stable, therefore, the results in (10) and (11) can not be applied.
Motivated by this example, the following result is obtained.

Corollary 4.1: If the interconnection matrix 7 is skew-symmetric, i.e. 7' = —T, the
neural network (1) is globally asymptotically stable. O
Example 4.2:

<— 1 0
T= .
00
Since — T'e 2,, from Theorem 3.1, the network (1) is globally asymptotically stable for
any Ge #"(R"; o, ). However, T is not invertible.
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For two-neuron case, the following stronger result is obtained.

Theorem 4.2: For two-neuron case (i.e. n = 2), if —Te 2, then the system (1) is
globally asymptotically stable for any Ge # %(R* a, B), any capacitances C,; > 0, any
resistances R; > 0 and any external inputs I,.

Proof: Let —Te?, we have T;; >0, Ty, > 0 and Ty, T, — T1,T5, > 0. We want to
show that T is diagonally stable. In fact, let P = diag{A,, A,} where 4,> 0 is to be
determined. In order to guarantee PT+ T'P <0, since the diagonal elements of
PT+ T'P are negative, it suffices to have det(PT+ T*P) > 0 for two-dimensional case.
It is easy to obtain

det(PT+ TlP) = 4).1).2T11T22—().1T12 +22T21)2
= 211)'2(]-‘11 T22 - T12T2l)+ll(12T11 T22 _Al T%Z)-I—AZ(AI Tll T22 _/12T%|) (10)
If T12T21 > 0, Setting ).leszz—llez = 1 and l]T]]Tzz_lzTgl = 1, we have
_ T, T+ T35 _ Ty To+Th
= N 2 = .
(T11T22)2_(T12T21)2 (T11T22)2——(T12T21)2

From 0 < T},T; < T1,T», A; > 0 and 4, > 0. Taking this into Eq. (10), we obtained
det(PT+ T'P) = 22 /o(T Toy— T1uTo)) + A+ 4, > 0. If T,T5 <0, we choose such
positive number A, and 4, that A,| T, = 45| Ty, thus 4, Ty, + 4,75 = 0. Taking this into
Eq. (10), we have det(PT+ T'P) = 44,4,T,,T», > 0. Therefore, T is diagonally stable.
From Theorem 4.1, the system (1) is globally asymptotically stable. O

1

We conjecture that when — T'e 2 and T is stable, then the system (1) is also globally
asymptotically stable. However, we have not been able to prove or disprove it yet.

Theorem 4.1 can be extended to apply to a special class of large-scale neural networks.
suppose that T (upper) block triangular form:

Ay, A, ... A,
0 Ay ... Ay
0 0 ... 4,

where A4, is an n, x n, matrix (i = 1,2,...,r). We first give the following property of this
block matrix.

Lemma 4.1: (15) Let T be an upper block triangular matrix in the above form with
square diagonal blocks 4y, ..., 4,. Then T is diagonally semistable if and only if for

i < j, the matrix
Ay Aij
0 4,
is diagonally semistable.

Applying this lemma and Theorem 4.1, we obtain the following result.
Theorem 4.3: Suppose that the interconnection matrix 7 can be written as a triangular
block matrix form with square diagonal blocks 4,,, .. ., 4,,. If the matrix
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Ai A”) (1<i<j<n)
KI<]<Kn
0 4, /

for upper triangular case or

(Aﬁ 0) G<i<i<n
<i<j<n
Aﬁ Ajj

for lower triangular case are diagonally semistable, then the network (1) is globally
asymptotically stable for any Ge #"(R" o, f). O

Using this theorem, global stability of high dimensional neural network (1) can
be reduced to the global stability of some smaller networks. One interesting special
application of this result is to solve the global stability of triangular neural networks.
These networks have been found applications in 4/D conversion or quantization area
3, 17).

Corollary 4.2: For the network (1) with continuous strictly monotonically increasing
activation functions, if 7 is in a triangular form with negative diagonal elements, i.e.
T; < 0, then it is globally asymptotically stable.

Proof: We only prove the lower triangular case, i.e. T; = 0 if i <j. From Theorem
4.3, it only suffices to prove that for any i > j, the matrix

(5, =)
Ty T;
is diagonally stable. From Theorem 4.2, it suffices to show that
—-T, O
e,
-7, ~T,
this is obvious because T; < 0 for any i = 1, ..., n. This completes the proof. O
In the above, the sufficient conditions for global stability we developed are inde-
pendent of the shapes of activation functions, C;, R; and I,. This may be conservative
for certain applications. The next result is the relaxed version of Theorem 4.1.
Theorem 4.4: Suppose that the activation functions g,(x;) are bounded continuous
and strictly monotonically increasing ones which have the following property:
O<W<wi for any x,yeR'. 11
Let Q = diag{w,, ..., ,}. If the matrix RQT —I is diagonally stable, then the neural

network (1) is globally asymptotically stable for any capacitance C; and any external
input 7.

Proof: As in the proof of Theorem 3.2, applying Schauder’s Fixed Point Theorem
(13), we know that there exists at least one equilibrium point, say, u* = (uf, ..., u})"
Following a similar procedure in the proof of Theorem 4.1, we obtain (9). Because
¢:(x;) is strictly monotonically increasing, from (11), we can easily deduce
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@;x;P,(x;) = o7 (x,). (12)
Let [TI(CR) ™! = diag{r,,...,r,}, which is a positive diagonal matrix, from (12) we have

n

POTICR) 'x = 3, rbC)x, > 3, o 97 (x)

= O'(X)[I(CR)'Q™'D(x).
Taking this into (9), we obtain the following:
V(x) < O ()[I(CH(T—(RY) ™) +[C™H(T— (RQ)~H]'TIO(x). (13)

Suppose that RQT—1 is diagonally stable, and RQ is a positive diagonal matrix,
T—(RQ)™!is also diagonally stable. So there exists a positive diagonal matrix P and a
positive matrix Q such that P(T—(RQ)™")+(T—(RQ)™")'P = —Q. From this and
(13) by letting IT = PC, we obtain

V(x) < —0'(0)Q0P(X) < — Anin(Q)P' () P(x) <0

for any x # 0 due to the fact that ¢(x,) is strictly monotonically increasing. Also V(x)
is radically unbounded, from Lyapunov stability theorem (16), the system (1) is globally
asymptotically stable. This completes the proof. O

Remarks:

(1) If R, = w; = C; = 1 and g,(x,) is continuously differentiable, Theorem 4.4 reduces
to the main result in (9).

(2) If T is diagonally semistable, then there exists a positive diagonal matrix P such
that PT+ T'P < 0, therefore,

P(T—(RQ) ™'+ (T—(RQ)~")'P=PT+T'P-2(RQ)"' <0,

this means that T—(RQ)~! is diagonally stable, so is RQT—1I. So Theorem 4.4
implies Theorem 4.1 for the case when the slopes of activation functions have the
bounds (11).

(3) Notice that the sufficient condition in this theorem is also independent of the
capacitances and external inputs.

Applying Theorem 4.2 and Theorem 4.4, we can obtain the following simpler testable
result for two-neuron case.

Corollary 4.3: For the two-neuron network (1) [i.e. n» = 2] as in Theorem 4.4, if
I— RQTe 2, then the network (1) is globally asymptotically stable.

Proof: From the proof of Theorem 4.2, if I— RQTe %, then RQT—1I is diagonally
stable. From theorem 4.4, the neural network (1) is globally asymptotically stable. []

A similar result to Theorem 4.3 can be formalized for Theorem 4.4. We have:

Theorem 4.5: The assumptions about the network (1) are as in Theorem 4.4. Let T
be in a lower triangular block matrix form, say, T =(A4;) where 4;; is an »; X n; matrix
for 1 <i,j<r,A;=0forall i <j. Let (RQ)™' =(E;) where E; is also n; x n; matrix,

Mor




174 Y. Fang and T. G. Kincaid

E; #0if iej and E; is also a diagonal submatrix of (RQ)™". If forany 1 <i<j<r,

the matrix
(A i—E; 0 )
Aj; A;—E;

is diagonally stable, then the system (1) is globally asymptotically stable. A similar
result is true for the upper triangular case.

Proof: This can be proved by the following fact: For lower triangular matrix X = (X )
where X, is an n, x n; matrix and X;; = 0 for i < j, if for any i < j,

X; 0
X X,

is diagonally stable, then X is also diagonally stable. In fact, if

X,“ 0
in iji

is diagonally stable, then for sufficiently small

X: 0
>0, + el
X X,

is diagonally stable, and is also diagonally semistable. From Lemma 4.1, X +e&l is
diagonally semistable, i.e. there exists a positive diagonal matrix P and a positive
semidefinite matrix Q such that P(X +el) + (X +el)' = —Q,s0 PX+X'P = —(Q+2¢l).
Since Q+2¢P is positive definite, X is diagonally stable (from this procedure, we can
see that when the “‘semistable” is replaced with “stable” in Lemma 4.1, the result is
still valid). Applying this fact to matrix T— (RQ) ™!, we can easily complete the proof.

O

From this result, Corollary 4.2 can be generalized in the following:

Corollary 4.4: for the network (1) satisfying the assumptions in Theorem 4.4, if T is
in triangular form with nonpositive diagonal elements, i.e. 7, <0 (i=1,...,n), then
it is globally asymptotically stable.

Proof: Notice that T— (RQ) ™! is also in the triangular form with negative diagonal
elements, then the proof is straightforward. O

Remark: In (17), the result for T; = 0 was obtained, which is a special case of
Corollary 4.4. Michel and Gray (3) obtained a generically similar result, but for local
asymptotic stability.

An nx n matrix 4 =(a;) is said to be a H-matrix if the matrix M(4) defined by

Iaiila l=.]9

M(A))]; =
[ ()]U {_laijla i #J,

is an M-matrix, i.e. the eigenvalues of M(A4) have positive real parts. It is known (15)
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that for a H-matrix A, A is diagonally stable if and only if 4 is nonsingular and the
diagonal elements of A are negative. From this and the fact that M(4) is an M-matrix
if and only if M(4) e 2 (18), the following is straightforward.

Corollary 4.5: For the network (1) with bounded continuous strictly monotonically
increasing functions g,(x;) satisfying (11), define H = (H;)) where

T,—1/(Rw)|, i=],
H,,.={ T VRl i=)
_lnjla l#]

If He#?, det(I—RQT) # 0 and T, < 1/(Rw,) (i =1,2,...,n), then the network (1) is
globally asymptotically stable. O

Remark: Using M-matrix property (18), many Gershgorin-type sufficient conditions
(7,9) can be derived from this corollary. This approach has been intensively investigated
by Michel et al. (3, 4) who obtained a similar result for local asymptotic stability,
however, Corollary 4.4 claims a similar condition for global asymptotic stability.

Example 4.3: Consider the example in Hopfield and Tank (1) which is also studied
in Michel e? al. (6) for multiple equilibria case. For this model:

0 1 2 i
T= (1 0), and g,-(x,-)—;tan <7xi>,

where 4 > 0.Let C;=R,=1and ], is any constant, the network (1) becomes

X = —Xx;+g2(x2)+1,

Xy = =Xy 4+g:(x)+ 1. (14)
Since max, cx1g:(x;) = A, the matrix Q = AI. Applying Corollary 4.3, if

1 -2
I—RQT =
-4 1
is 2 matrix, i.e. 0 < A < 1, then the network (1) is globally asymptotically stable. In
fact, for this model, the range for / is the best we can hope for global asymptotic

stability. For illustration, we choose I, = I, = 0, the origin (0,0)" is one equilibrium
point, the linearized system matrix is

-1 2
G

which is not asymptotically stable for A > 1, therefore the system (1) will never be
globally asymptotically stable. Notice that, however, — T itself is not a 2, matrix,
Theorem 4.1 can not be applied.

As we noted in the last section that when T is skew-symmetric, the equilibrium of
(1) is unique. For the stability of this equilibrium, we have the following result.

Corollary 4.6: For the network (1) with bounded continuous strictly monotonically
increasing activation functions g,(x;) satisfying (11), if T is skew-symmetric, i.e.
T' = —T, then it is globally asymptotically stable.



176 Y. Fang and T. G. Kincaid

Proof: Since
I(T—(RQ) N+ (T—(RQ) NI=T+T"—-2(RQ)'= -2(RQO)' <0,

we obtain that T— (RQ) ' is diagonally stable, so is RQT—I. From Theorem 4.4, the
network (1) is globally asymptotically stable. O

V. Conclusions

In this paper, we have developed a set of sufficient and ““almost necessary’ conditions
for the existence and uniqueness of an equilibrium point for a class of asymmetrical
Hopfield-type neural networks, and provided some new sufficient conditions for the
global asymptotic stability of the networks. Future research will be directed to the
applications of these global results to the practical problems such as the nonlinear
optimizations and Winner-Take-All circuit designs. The results are perfect for a neural
circuit running in real time and resetting is not necessary for changing external sti-
mulating inputs.
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