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Abstract—This paper studies the optimization problem of
minimizing resource rental cost for running elastic applications
in cloud while meeting application service requirements. Such a
problem arises when excessive generated data incurs significant
monetary cost on transfer and inventory in cloud. The goal of
planning is to make resource rental decisions in response to
varying application progress in the most cost-effective way. To
address this problem, we first develop a Deterministic Resource
Rental Planning (DRRP) model, using a mixed integer linear
program, to generate optimal rental decisions given fixed cost
parameters. Next, we systematically analyze the predictability
of the time-varying spot instance prices in Amazon EC2 and
find that the best achievable prediction is insufficient to provide
a close approximation to the actual prices. This fact motivates
us to propose a Stochastic Resource Rental Planning (SRRP)
model that explicitly considers the price uncertainty in rental
decision making. Using empirical spot price data sets and realistic
cost parameters, we conduct simulations over a wide range of
experimental scenarios. Results show that DRRP achieves as
much as 50% cost reduction compared to the no-planning scheme.
Moreover, SRRP consistently outperforms its DRRP counterpart
in terms of cost saving, which demonstrates that SRRP is highly
adaptive to the unpredictable nature of spot price in cloud
resource market.

Index Terms—Cloud Computing; Amazon EC2; Spot Instance;
Resource Rental Planning; Stochastic Optimization

I. INTRODUCTION

With the rapid progress of computing, storage and network

technologies, distributed computing paradigms have under-

gone profound changes in the past decade. Such a revolution

enables application service providers (ASPs) to deploy teras-

cale or even petascale applications for production purpose.

For example, utilizing cluster or grid computing facilities,

scientists are able to run large-scale weather forecast models

with a large amount of data generated from the most advanced

scientific instruments, and routinely publish the forecast results

to the general public [1], [2]. However, due to the huge

computational complexity and high volume of data, such

applications require demanding resource usage and put a heavy

economic burden on the organization who setups, maintains

and operates these resources.

In the realm of large-scale distributed computing, the

emerging cloud computing concept, with its virtually infinite

The work presented in this paper is partially supported by National Sci-
ence Foundation (grants CCF-0953371, CCF-1128805, OCI-0904938, CNS-
0709329, and CNS-0916391).

resources and elasticity, is being adopted with the promise

to liberate ASPs from the up-front setup and maintenance

cost of the infrastructure. Under such a “pay-as-you-go” cost

model, the major issue faced by the ASP is how to minimize

the resource rental cost while meeting service demand. In

particular, the following aspect of the cost optimization prob-

lem draws significant attention from researchers, leveraging

resource elasticity, how to optimally provision cloud resources

to meet service requirements (avoid the cost due to over-

provisioning and the penalty due to under-provisioning) [3]–

[6]. However, little work has been devoted to studying how

to leverage application elasticity to optimally provision cloud

resources from the application’s perspective, for example, how

to control the data generation progress of a running application

to meet the service demand and minimize resource rental

cost, given resource pricing and valuation to the application

over time. Complementary to autonomic resource scaling, this

work opens tremendous new research opportunities, coined as

autonomic application scaling, and aimed to minimize resource

cost without compromising service-level agreements from the

application’s perspective. We believe that a complete solution

of resource rental planning should leverage both resource

elasticity and application elasticity to achieve optimal resource

provisioning in cloud market.

In addition to cost tradeoff, another obstacle lies in the

uncertainty of computational resource cost. Such a challenge

is encountered in the spot resource market [7], [8] emerged

in recent years. In spot market, the cost of the resource is

fluctuating all the time depending on the resource supply and

demand levels. For example, Amazon implements an auction

mechanism to determine instance pricing in its spot market.

Since resources in spot market are typically idle resources

on the on-demand market, they are auctioned off in a price

much lower than the regular on-demand price. As a result,

the market for Amazon’s spot instance grows rapidly. Yet

very few research studies have examined how to model the

randomness of the spot instance price, and more importantly,

how to improve resource usage for achieving cost-effective

cloud services under this price uncertainty.

In this paper, we first develop an optimal resource rental

planning model for elastic applications in a cloud environment.

In particular, given known demand patterns over a specific time

period, the ASP needs to periodically review the application
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progress so that no cost is wasted on excessive computation,

data transfer and storage. Our first major contribution is

the formulation of a deterministic optimization model that

effectively solves the resource rental planning problem. We

show that our proposed planning model is especially useful

for high-cost Virtual Machine (VM) class. This is because

cost saving from the proposed planning model primarily

comes from eliminating unnecessary data generation cost by

decreasing VM rental frequency over the planning horizon.

From this perspective, our formulation of the deterministic

planning problem is consistent with the dynamic lot-sizing

problem commonly met in the field of production planning.

The solution to this deterministic optimization model is useful

for autonomic resource rental control that balances resource

tradeoffs in meeting application goals.

The second major contribution of this paper is that we

further address the challenge of price uncertainty in our

optimization model. With respect to resource rental planning,

the price uncertainty leads to a variety of new research

possibilities. In particular, two possible solutions are jointly

explored in this paper. We first systematically analyze the

predictability of spot price in Amazon EC2 and show that the

prediction results cannot provide adequate approximation to be

used in the deterministic optimization model. Having shown

the limitation of prediction, we propose a multistage recourse

model for stochastic optimization. The model decomposes

the stochastic process into sequential decision processes with

learning of the random data at various stages. As such, the

stochastic optimization problem is transformed into a large-

scale linear programming problem solvable by commercial

optimization packages. The solution to this multistage refor-

mulation takes full advantage of the specific structure of the

stochastic planning problem, and thus provides a near-optimal

cost for resource rental under stochastic cost parameters.

In summary, the key contributions of this paper are listed

as follows:

• A new planning perspective on achieving cost-effective

resource rental in cloud market.

• A MILP formulation for determining the optimal resource

rental over a fixed planning horizon.

• A systematic analysis of the predictability of spot prices

using real price traces of Amazon’s spot instances.

• A stochastic optimization solution to deal with spot price

uncertainty in resource planning.

The rest of the paper is organized as follows. Section II

surveys the related work. In Section III, we present the system

model, clarify key assumptions and formulate the deterministic

resource rental planning problem. In Section IV, we analyze

the predictability of the price of Amazon’s spot instance,

and propose a stochastic optimization model to solve the

problem. The results for performance evaluation are presented

in Section V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

Nowadays, a wide variety of computational and data in-

tensive applications utilize cloud to their benefit. For exam-

ple, enterprise users deploy their applications to provide on-

demand customer service, and the scientific community uses

cloud resources to solve advanced computational problems.

As a result, it becomes imperative to understand the cost-

benefit of running applications in cloud in order to make cost-

efficient resource rental decisions. Compared with running

applications on conventional platforms such as grid, cloud

eliminates up-front setup and operational cost for distributed

resources. However, moving and storing large data set in cloud

incur significant cost comparable to the computing cost [9],

and efforts have been made to mitigate such cost in cloud [10],

[11]. In this paper, we present a planning model that optimizes

resource usage for elastic applications with comprehensive

cost considerations.

Finding an optimal resource utilization strategy is challeng-

ing for both resource providers and users. From the perspective

of the resource provider, the target is to reduce the operational

cost and maximize leasing revenue. Most existing research has

focused on this aspect. The general problem on minimizing

resource while meeting job demand is NP-hard [12], and var-

ious optimization models based on (non-)linear programming

were proposed in the current literature. For example, Goudarzi

and Pedram [13] formulated the multi-dimensional SLA-based

resource allocation problem as a mixed integer non-linear pro-

gramming problem, and provided a heuristic solution based on

force-directed scheduling. Qian and Medhi [14] presented an

optimization model for minimizing server operational cost in

data center. Resource scheduling for the emerging spot market

was proposed in [15]. The proposed framework includes: (1) a

market analyzer periodically forecasting supply and demand,

(2) a capacity planner determining the spot price based on

the forecast results, and (3) a VM scheduler maximizing the

revenue by solving a NLIP model for the scheduling problem.

Different from these works, our paper minimizes the rental

cost for resource users. The most relevant work to our research

can be found in [16], where the authors presented an optimal

VM placement algorithm that minimizes the cost of resource

provisioning in a multiple cloud providers environment. Simi-

lar to our work, a stochastic optimization model was provided

to handle parameter uncertainties. Our work differs from [16]

in both application scenario and model formulation. Moreover,

our models are formulated and evaluated in a more realistic

setting that takes Amazon’s cost model and spot price history

into account.

The stochastic optimization model proposed in this paper is

used to deal with the price uncertainty in the spot resource

market. Such a spot market is either formed by multiple

resource providers [17] or a single resource provider. The

most successful example for the latter is the Amazon’s EC2

spot market. Due to its low cost, researchers have proposed to

utilize spot instances to temporarily add capacity to dedicated

clusters during peak periods [18]. The biggest concern for

utilizing spot instances is that it is hard to guarantee resource

availability. Recent publications [19], [20] addressed this prob-

lem using statistical analysis. However, the effectiveness of

such approaches is still in question because the future spot
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price is jointly affected by the aggregate bidding behaviors and

Amazon’s resource supply level. This paper simply assumes

that users will bid according to their true valuations on the

spot instances.

III. DETERMINISTIC RENTAL PLANNING FOR

ON-DEMAND RESOURCE MARKET

Resource rental planning entails the acquisition and alloca-

tion of computational and storage resources to applications

so as to satisfy demand over a specified time horizon. In

this section, we present the system model and formulate the

deterministic rental planning problem in the context of this

model.

A. System Model

Consider an ASP provides data services to customers over

a network. Instead of using ASP’s local resources, the tasks

of computing and intermediate data storage are completely

outsourced to a shared resource pool operated by some

Infrastructure-as-a-Service (IaaS) provider(s), as shown in

Figure 1. Such a system model covers a wide range of

practical examples in today’s IT environment. For example, the

proposed system model could be mapped to a Software-as-a-

Service (SaaS) provider providing on-demand data analysis to

its customer firms, or an academic institution offering scientific

research data processing and accessing to the general public.

All resources used to provide the service are rented from a

cloud market formed by a single IaaS provider, e.g., Amazon,

or a coalition of multiple IaaS providers, e.g., a federation of

private clouds resided in distributed data centers belonging to

different administrative domains.
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Fig. 1. System model for the problem of resource rental planning

The use of the resources rented from the cloud market

incurs certain cost to the ASP. As illustrated in Figure 1,

the resource rental cost presents in various forms, depending

on the specific resource involved in the rental process. The

complete rental cost model is illustrated in the following use

case. First, input data is injected into the cloud from local

storage media, introducing network transfer-in cost. Next, ASP

needs to pay for the launched VM instances to complete the

computing tasks. After these tasks are finished, the output data

including results and logs is stored in the storage space rented

from the cloud market, incurring storage cost for the data

accommodation. The storage cost also applies to the input

data fetched into the cloud. In addition to the storage cost,

reading from and writing to the cloud storage also bring in

I/O cost. Finally, transferring data outside of the cloud to meet

the demand from the customers results in network transfer-

out cost billed to the ASP. In our system model, one needs to

consider all costs listed above in order to perform a complete

cost/benefit analysis.

B. Resource Rental Planning for Elastic Applications

In general, resource rental planning is conducted over a

specified time horizon T . We first target at an on-demand

cloud market to present our rental planning strategy. An on-

demand cloud market consists of compute instances that can

be accessed instantly. Each instance is associated with a fixed

rental cost depending on the specific VM class. As such,

all cost parameters are deterministic throughout the planning

horizon. We assume that the application deployed on the cloud

platform is elastic [21], i.e., it can opportunistically adjust

its resource usage during the planning horizon T , based on

the principle of balancing cost/benefit tradeoffs in meeting

application goals. The planning horizon T is divided into fixed

time slots t = 1, ..., T . We refer the start of each time slot as

a decision point. At each decision point, the application needs

to use the most cost-effective resources available to meet the

demand emerged in the current slot.

Considering an ASP rents n compute instances of the same

VM class from the cloud market, each serving 1/n of the

total demand. Since this paper does not consider resource

rental under demand uncertainty, we simply assume that the

arrival of the total demand at each time slot is known to the

ASP, and these n instances are sufficient to satisfy the total

demand throughout the planning horizon. Otherwise, the ASP

has to decide when to scale up resources to cope with spiky

workload, which leads to another set of problems that are out

of the scope of this paper. Based on these assumptions, the

overall resource cost is calculated as n times the rental cost

associated with a single compute instance rented from the

cloud market, a.k.a. per-instance cost. The cost per instance

includes computing, storage, and data transfer cost spent on

dealing with the assigned workload on a single VM instance.

Since n for each instance class is fixed, our proposed resource

rental planning scheme is conducted on a per-instance basis.

The design of the planning strategy focuses on changing the

work an application plans to do, based on the most cost-

effective resources that are available to them. As such, the

problem is inherently an optimization problem. We introduce

its formulation in the next subsection.
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TABLE I
NOTATION BOX

Variables

αi,t
data generated by one

class-i instance in time slot t

βi,t
space for storing data generated by

one class-i instance at the end of slot t

χi,t
binary decision variable representing rental decision

of one class-i instance in time slot t

Parameters

T Set of time slots

I Set of VM classes

Cp(i, t) Instance rental cost (per class-i instance · slot length)

Cs(t) Data storage cost (per data unit · slot length)

Cio(t) Data I/O cost (per data unit · slot length)

C
+

f
(t) Network transfer-in cost (per data unit · slot length)

C
−

f
(t) Network transfer-out cost (per data unit · slot length)

D(i, t)
Request volume for one class-i

instance in time slot t

P(i)
Average bottleneck resource consumption rate (per data unit

generated) for one class-i instance (application specific)

Q(i, t)
Bottleneck resource available for one class-i

instance in time slot t

Φi
Average input-output ratio for one

class-i instance (application specific)

C. Problem Formulation

Let I denote the set of VM classes, and let T be the set

of all time slots. The goal of the resource rental optimization

is to minimize total rental cost for |I| VM classes over the

planning horizon. In order to accomplish this goal, three sets of

variables are devised to identify the rental decisions to be made

for each VM class at every time slot. Recall that our target

application is elastic, the first set of variables, αi,t, denotes

the amount of data units to be generated by the application

on a single class-i instance during time slot t. In practice,

the implementation of αi,t can be achieved by controlling

the number of input tasks to class-i instance in t (assuming

BoT applications). Next, at the end of slot t, we use βi,t to

represent the request cloud storage space to hold the generated

data. Finally, let binary decision variables χi,t denote if class-

i instance is needed at time slot t. αi,t and χi,t specify how

to make use of the computational resources to control the

application progress, while βi,t defines the rental decisions

for the storage resources in cloud market. If all these variables

are determined, a control policy is formed to guide the rental

decisions in the cloud market for optimal resource usage.

A number of cost parameters are associated with our re-

source rental optimization. Specifically, the compute instance

rental cost (processing cost) for class-i instance in time slot

t is Cp(i, t), and the storage rental cost per data unit for

slot t is Cs(t). As presented earlier in Section III-A, data

transfer incurs nontrivial cost in a cloud environment. For

each time slot t, let Cio(t) be the I/O cost for data transfer

from and to the cloud storage, and let C+
f (t) and C−f be the

cost for transferring into and out of the cloud, respectively.

In addition to the cost parameters, we assume the customer’s

demand function is D(·), where D(i, t) denotes the requested

data volume for class-i instance during slot t. For readers’

reference, we summarize the notation used throughout the

paper in Table I.

We also observe that almost all IaaS providers adopt a linear

cost model to implement the “pay-as-you-go” scheme, i.e., the

cost is linearly proportional to the amount of the requested

resources as well as the length of the rental period. The total

cost per instance is defined as the summation of costs spent on

all possible consumed resources associated with the instance.

In particular, it consists of three parts, each following the linear

cost model, as illustrated in Figure 2:
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Fig. 2. Cost decomposition associated with a single instance unit

Naturally, our objective function aims at minimizing the to-

tal cost of |I| VM classes over the entire planning horizon. At

each decision point, a fixed rental cost of Cp(i, t) is incurred if

the ASP decides to rent one class-i instance (χi,t = 1). Now,

given the presence of this fixed rental cost, the ASP may want

to make full use of the compute instance to run applications so

as to meet the demand over a number of future slots. However,

doing so will increase the storage and I/O cost as more demand

is satisfied earlier in time. As such, the planning problem arises

as the ASP needs to carefully control the application progress

in order to balance computing, storage, and data migration

cost. This problem is well recognized as the dynamic lot-sizing

problem in production planning. The model used to solve the

dynamic lot-sizing problem determines the optimal frequency

of setups so as to minimize the total cost within the resource

and service constraints. In the context of cloud computing,

we present the complete formulation for the Deterministic

Resource Rental Planning (DRRP) as follows:

min
∑
i∈I

∑
t∈T

(C+
f (t) · Φi · αi,t + (Cs(t) + Cio(t))

· βi,t + C−f (t) ·D(i, t) + Cp(i, t) · χi,t) (1)

s.t.

βi,t−1 + αi,t − βi,t = D(i, t), i ∈ I, t ∈ T (2)

P(i) · αi,t ≤ Q(i, t), i ∈ I, t ∈ T (3)

αi,t ≤ B · χi,t, i ∈ I, t ∈ T (4)

βi,0 = ε, i ∈ I (5)

αi,t, βi,t ∈ R+, i ∈ I, t ∈ T (6)

χi,t ∈ {0, 1}, i ∈ I, t ∈ T (7)

Note that we have not considered I/O and storage cost

for input data in the objective function (1). This is because

we choose to fetch input data into the cloud on the fly to

complete the application. Another option is to transfer all input

data once and store them in cloud throughout the planning

horizon. The choice on which option is better depends on
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the specific data access pattern and the duration of planning.

This transfer/storage tradeoff problem was noticed by Juve et

al. [22] in their investigation on running scientific workflow

applications on Amazon EC2. In this paper, we assume that

input data is not reused often. Hence, adopting the “transfer-

on-demand” approach is more cost-effective.

Constraint (2) is called the inventory balance constraint. It

simply specifies that customer demand should be satisfied at

any time slot. At slot t, the data stored at the previous time

slot βi,t−1, and the data generated in the current slot αi,t,

are combined together to serve customer demand emerged in

the current time slot, i.e., βi,t−1 + αi,t ≥ D(i, t). The over

provisioning amount becomes the storage amount βi,t at the

end of t to serve future demand. The initial storage amount

is set to be some constant ε in constraint (5), depending on

the specific planning scenario. Next, let P(i) be the average

bottleneck resource consumption rate for one class-i instance,

and let Q(i, t) denote the bottleneck resource available for one

class-i instance in slot t, constraint (3) ensures that the data

generation does not exceed the available bottleneck resource.

For example, for data-intensive applications, I/O bandwidth

becomes the bottleneck resource. During slot t, the total output

data at class-i instance cannot exceed the aggregate throughput

volume on that instance.

Constraint (4) is often referred to as the forcing constraint.

It states that there will be no data generated in slot t if no

rental decision is made (χi,t = 0). B is set to be a very

large constant that exceeds the maximum possible value of

αi,t. Finally, constraints (6) and (7) specify domains of the

variables.

The formulation of DRRP is a mixed integer linear pro-

gramming (MILP) problem that is NP-complete in nature.

With reasonable input size, this problem can be solved using

the branch-and-bound (B&B) method in most optimization

software packages.

IV. DEALING WITH COST UNCERTAINTY IN SPOT

RESOURCE MARKET

In this section, we extend the resource rental planning model

by including cost uncertainty. Such uncertainty is introduced

by the spot resource market created by many IaaS providers

willing to sell their idle resources at discounted prices. Exam-

ples are Amazon’s spot instance [7] and SpotCloud [8]. The

price fluctuation of spot instances over time forms a time series

data. We first show that the standard time series forecasting

does not produce satisfying results for deterministic resource

rental planning. Based on this observation, we formulate the

problem of Stochastic Resource Rental Planning (SRRP) as

a stochastic optimization problem, and build a multistage

recourse model to solve this problem.

Before we proceed, a few assumptions need to be clarified.

First, we assume that ASPs will bid truthfully in the spot

instance acquisition process. This assumption is in line with

the assumption made in [20]. Under this assumption, an ASP

will bid according to their true valuation rather than bid

strategically. In addition, whether a strategic bid approach,

such as intentional overbidding, i.e., to bid more than one

can expect to win, achieves a desired level of availability is

still in question. It only works when no strategic changes

are performed by other bidders participating in the auction.

From a game theoretic perspective, intentionally overbidding

(or underbidding) is not dominant (if every bidder overbids, the

spot price is pushed up and only benefits the IaaS provider).

Second, an out-of-bid event occurs when an ASP’s bid price

is lower than the spot price. If such an event happens, the

ASP needs to rent the desired number of instances from

the regular on-demand instance market in order to meet the

demand requirement.

A. Price Prediction in Spot Market

1) Background: In this paper, we use Amazon’s spot in-

stance market as the target market for price prediction and

cost optimization. Launched at December 2009, spot market

offers a new way to purchase Amazon EC2 instances. It allows

cloud customers to bid on unused Amazon EC2 capacity and

use them as long as their bid exceeds the current spot price,

which is updated periodically by Amazon based on supply and

demand. Payment in spot instance auction is uniform, meaning

that all winners in the auction will pay a per unit price equal

to the lowest winning bid (a.k.a the spot price), regardless

of their actual bids. While running spot instances saves huge

cost (typically over 60% according to [23]), it also presents

significant uncertainty to cloud customers because of the risk

of losing the spot instances unexpectedly if their bid prices

are lower than the current spot price. As a result, previous

formulation of DRRP is insufficient since the actual cost of

resource rental relies on the realization of the random spot

price.

If one is able to predict spot prices with relatively high

accuracy, then these prediction values could be fed into the

DRRP optimization model presented in Section III-C to obtain

an approximated optimal solution. However, such a prediction

is challenging to cloud customers because there is little, if

any, information on the underlying operating mechanism of

the spot market. In [15], the authors attempted to predict

demand for spot market from the view of an IaaS provider.

They proposed a simple auto-regression model for prediction

but no prediction results were reported due to the lack of

realistic demand data. The only work we found for predicting

Amazon’s spot price was presented in [20]. Their work focused

on achieving availability guarantee with spot instances, and

used a quantile function of the approximate normal distribution

to predict when the autocorrelation of current and past price

is weak. When the autocorrelation is strong, a simple linear

regression prediction model was adopted. However, we found

that such an approximation is inaccurate in some test cases

that cannot be taken as a generic approach. In the subsequent

subsections, we will assess the predictability of spot instance

price. Our predictability analysis is based on an auto-regressive

moving average model, and explores the minimum prediction

error over a specified prediction time interval using empirical

data set of Amazon EC2.
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2) Methodology: We have collected the historical data

(published on [24]) for spot price variation from February

1, 2010 to June 22, 2011. The data source represents spot

price variations for linux instances in us-east-1 region. The

first step in our investigation is to identify the outliers in the

original data set. Figure 3 plots the box-and-whisker diagram

for the spot price data sets corresponding to 4 different

linux VM classes. The outliers are identified as those points

beyond the whiskers (1.5 IQR (interquartile range) of the

upper quartile). We can see that more outliers present in more

powerful VM class, indicating increasing price dynamics in

more powerful types. However, even for the most powerful

instance (c1.xlarge), the number of outliers still contributes a

trivial amount to the overall data set (< 3%).

m1.large m1.xlarge c1.medium c1.xlarge
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Fig. 3. Box-and-Whisker diagram for spot price data sets

Having trimmed out the outliers, we still cannot apply

standard time series analysis techniques because the derived

data set is unequally spaced with inconsistent sampling in-

terval, as shown in Figure 4. It plots the daily spot price

update frequency for instance of class linux-c1-medium. For

that reason, we further convert the data into equally spaced

time series data with a regular update frequency of 24 times

per day. At the start of each hour, the spot price is set to be the

most recent updated price in the last hour. If no update appears

in the last hour, the spot price is considered unchanged.
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Fig. 4. Variation of daily spot price update frequency for VM class linux-
c1-medium

We have performed various experiments on this converted

data set, each with different time scale of prediction (both

short-term and long-term). Due to the space limit, we only

show a representative prediction result for instance of class

linux-c1-medium over a period of two months. Specifically,

we use the data ranging in [12/1/2010, 1/31/2011] as the

estimation data set, and data in 2/1/2011 as the validation

data set. In other words, the data collected from the two-

month historical records is used to provide the next-day price

forecasting. The daily update frequency throughout this period

is relatively stable. In Figure 5, we plot the histogram and

density of the selected data set. We also randomly generate the

same number of data points from a normal distribution with

the same mean and variance, and plot the curve in Figure 5.

Apparently, normal distribution is inadequate to approximate

the selected data set. This conclusion is further supported by

the Shapiro-Wilk test for normality (results are omitted).
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Fig. 5. Histogram plot for the selected spot price history (linux-c1-medium).
Black line depicts the density, and the red line depicts the approximate normal
distribution sampled from the same mean and variance of the series.

In order to identify patterns in the selected series and

forecast, we use the ARIMA approach developed by Box and

Jenkins [25], which retains great flexibility in recognizing data

patterns and is relatively lightweight compared to machine

learning techniques. Two common processes are used in

ARIMA to identify time series patterns. The first process is the

Auto-Regressive (AR) process that decomposes an observation

into a random error component and a linear combination of

prior observations. The second process is called the Moving

Average (MA) process. In MA, each observation is made up of

a random error component, and a linear combination of prior

random errors. Given a time series of data Xt, the general

form of an ARIMA process is given as follows:

(1−

p∑
i=1

φiL
i)(1− L)dXt = (1 +

q∑
i=1

θiL
i)εt, (8)

where L is the lag operator, φi and θi are the parameters

for AR and MA process, respectively, and εt are error terms.

The key to ARIMA modeling is to identify parameters p
(AR parameter), d (differencing pass), and q (MA parameter)

correctly. This is achieved through a series of steps. First, we

verify that our test series is statistically stationary (statistical

properties such as mean and variance are constant over time),

and does not require further differencing. The decomposition
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of the selected series is presented in Figure 6, where the

original time series is decomposed into three parts: trend,

seasonal, and random noise. We can see that the target series

does not exhibit clear trend, but advertises certain cyclic

pattern as shown in the seasonal decomposition. For that

reason, we employ a Seasonal ARIMA (SARIMA) model

which takes the seasonal component into account. It can be

expressed as SARIMA(p, d, q)×(P,D,Q)24 further including

the seasonal parameters for price prediction.

0.
05

7
0.

06
0

0.
06

3

da
ta

−
4e

−
04

2e
−

04

se
as

on
al

0.
05

90
0.

06
00

tr
en

d

−
0.

00
4

0.
00

0
0.

00
4

0 10 20 30 40 50 60

re
m

ai
nd

er

time

Fig. 6. Data decomposition for the selected data series

The next step for identifying the SARIMA model parame-

ters is to plot the correlograms for autocorrelation function

(ACF) and partial autocorrelation function (PACF), as dis-

played in Figure 7. These two functions help to detect trend

and seasonality of the selected series. Note that the x-axis

is normalized by frequency so that 1.0 corresponds to lag

= 24. From the graphs we can observe that, the selected series

has certain degree of correlation with its past at certain lag

value, e.g., lag = 3, because these values exceed the 95%
confidence limit. However, such a correlation is not strong

enough because its value is greatly deviated from 1 (1 indicates

perfect correlation).
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Fig. 7. ACF and PACF for the selected series

Finally, the identification of the most appropriate model

parameters is achieved by the forecast package in R [26]. In the

forecast package, the calling of auto.arima function will return

the best model according to Akaike information criterion

(AIC) or Bayesian information criterion (BIC) values. The

function conducts a search over possible models within the

order constraints provided. Through extensive trials, we found

that most test series fit SARIMA(2, 0, 1 or 2) × (2, 0, 0)24
best. The prediction result for the selected series is shown

in Figure 8. The blue solid points and the red hollow points

represent the predicted and the actual prices on February 1st,

2011. The black lines represent spot price variation in the

past 48 hours. We observe that the predicted prices are mostly

hanging over the average price line. While this model returns

the least prediction error compared to other models, its mean

squared prediction error (MSPE) is only slightly better than the

simple prediction using the expected mean value. Therefore,

it does not yield satisfactory accuracy and is hardly useful in

parameterizing DRRP in practice.
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Fig. 8. Day-ahead prediction for the selected series: black line shows the
past 48-hour price variation, red solid and blue hollow points represent predict
and real prices respectively, purple dashed line denotes the average price in
the selected data series.

3) Discussion: Due to the insufficiency of price approxima-

tion achieved by the prediction method, we turn our attention

to an alternative approach that takes the stochastic nature

of the spot price into account. In order to model the price

uncertainty, it is useful to set up the probability distribution of

the actual prices. Compared to the fixed-price approximation,

such a distribution considers all possible scenarios in the

actual realization, including the risk of losing the auction

(an out-of-bid event occurs). In addition, planning using price

distributions is more adaptive to the uncertain availability of

the spot instance than deterministic planning. This is because

the approximation errors introduced by the bid prices are

“diluted” by scenario division at each decision point. This

fact motivates us to propose a stochastic optimization model

utilizing the bid-based probability distribution. The details of

the model are presented in the following subsections.

B. Solution Overview

We model the fluctuation of the spot instance rental cost

Cp(i, t) as a stochastic process Cp with state space S. Cp is a

collection of S-valued random variables on a probability space

Ω indexed by the time slot set T , i.e., Cp for class-i instance is

a collection: {Cp(i, t) : t ∈ T }. The true valuation of the spot

prices over the planning horizon is represented by: {Ĉp(i, t) :
t ∈ T }. The goal of the stochastic resource rental planning is

to optimize the expected overall cost over the complete state
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and probability space. In particular, the objective function (1)

in DRRP can be reformulated as follows:

δexp = ECp
{
∑
i∈I

∑
t∈T

(C+
f (t) · Φi · αi,t + (Cs(t) + Cio(t))

· βi,t + C−f (t) ·D(i, t) + Cp(i, t) · χi,t},
(9)

where δexp is the expected total cost for |I| types of instances.

The optimization model for SRRP now becomes to mini-

mize (9), subject to constraints (2), (3), (4), (5), (6), and (7).

We summarize our solution to the SRRP problem as follows:

1) Generate bid prices Ĉp(i, t) for each class-i instances at

every t ∈ T , based on the true valuations of ASP.

2) Calculate the base probability distribution in the selected

price history.

3) Derive new probability distributions at all t ∈ T accord-

ing to the base distribution and the bid price.

4) Formulate SRRP using a multistage recourse approach,

based on the newly generated distributions.

5) Solve the deterministic equivalent reformulation of SRRP.

C. Bid-Dependent Dynamic Sampling

Let Si be the finite state space for the spot price of class-

i instance. A base probability distribution is the summarized

discrete probability distribution over a selected historical price

series: Pr(Cp(i, t) = si), si ∈ Si. This distribution cannot

be used in our stochastic optimization model because it does

not include the risk of the out-of-bid event. Therefore, we

propose to use the following approach to dynamically generate

the probability distribution at every decision point t. The

values in the finite state space Si is sorted in the ascending

order (no equivalent values are present in Si). Suppose the

fixed on-demand cost is λi. At each decision point, we keep

all the probability distributions for those prices in the base

distribution whose values are less than the bid prices, i.e.,

si ≤ Ĉp(i, t). The rest part of the distributions is substituted

by the following probability representing the likelihood of the

out-of-bid event:

Pr(Cp(i, t) = λi) = 1−
∑

si≤Ĉp(i,t)

Pr(Cp(i, t) = si) (10)

Note that it is impossible to generate the precise distribution

at each decision point because we do not know the actual

realization of the spot price in advance. Therefore, the dynam-

ically generated distribution based on the ASP’s bid price is

merely an approximation to the actual spot price distribution.

However, stochastic planning using this approximated distri-

bution outperforms deterministic planning using fixed cost

parameters. We will illustrate this point as well as the impact

of approximation precision to SRRP in Section V.

D. A Multistage Recourse Model for SRRP

This subsection presents a multistage resource model to

solve SRRP. Such a model allows the application planner to

adopt a decision policy that can respond to random events

as they unfold. Initially, decisions are made given present

resources. As time evolves, possible adjustments (recourse

actions) become available to the application planner. As to

SRRP, rental planning decisions at various decision points are

recourse variables.

The dynamic stochastic spot prices are represented in a

multistage scenario tree, G = (V , E), presented in Figure 9. A

scenario tree has T +1 stages (or levels). The first stage repre-

sents the current state of the world, and all subsequent stages

correspond to the future time slots when new information is

available to the application planner. A vertex v in stage t ∈ T
stands for the state of the system that can be distinguished by

information available up to stage t. Each vertex v ∈ V , except

the root vertex (indexed as v = 0), has a unique parent vertex

π(v). The probability associated with the state represented by

vertex v is pv . Let τ(v) denote the time stage of vertex v in

the tree, we have:
∑

τ(v)=t pv = 1. Each non-leaf vertex v is

the root of the subtree: G(v) = (V ′ ∈ V , E ′ ∈ E) containing

all descendants of vertex v. The complete tree is represented

by G = G(0).

����� ����� ����� �����

Fig. 9. An example of multistage scenario tree: each leaf vertex represents a
scenario, and each non-leaf vertex represents an intermediate state within the
planning horizon. A probability is associated with each branch representing
the likelihood of state transition.

Let the set of leaf vertices of G(0) be L, and let the set

of vertices on the path from the root to vertex v be P(v).
If v ∈ L, then P(v) represents a scenario of the problem

describing a joint realization of the stochastic parameters over

all stages. Otherwise, P(v) denotes a partial realization of the

problem up to the stage τ(v). With the notations defined above,

a decision variable Xi,t defined in the deterministic problem

is replaced by a set of scenario-dependent decision variables

(recourse variables) presented below:

Xi,t ⇒ {Xi,v|τ(v) = t}, t ∈ T (11)

The multistage scenario tree is perfectly balanced because

each path from root to leaf vertex has the same length T .

However, the numbers of possible states appeared in each stage

are not necessarily equal because of the bid-based dynamic

sampling process presented in Section IV-C. Given a scenario

tree with a set S scenarios, the ASP wishes to set a policy

that makes different resource rental decisions under different

scenarios. For a scenario Sj ∈ S, decisions made at stage t if

encountered by scenario Sj is a vector:
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{αi,v, βi,v, χi,v}, v ∈ Sj (12)

The solution of the decision variables must conform to the

flow of available information (non-anticipativity). It guaranties

that decisions do not rely on information that is not yet

available.

E. Deterministic Reformulation of SRRP

Having built the multistage recourse model, we derive a

deterministic equivalent formulation of SRRP. In the reformu-

lation, the time-dependent decision variables are eliminated.

The new formulation introduces a set of new variables that

are indexed by the vertices presented in G(0). Each variable

indexed by vertex v is associated with a probability pv . As

such, the goal of resource rental planning is to solve MILP

for all nodes of the scenario tree. The complete deterministic

equivalent formulation of SRRP is given below:

min
∑
i∈I

∑
v∈V

pv · (C
+
f (τ(v)) · Φi · αi,v + (Cs(τ(v))+

Cio(τ(v))) · βi,v + C−f (τ(v)) ·D(i, τ(v))+

Cp(i, τ(v)) · χi,v) (13)

s.t.

βi,π(v) + αi,v − βi,v = D(i, τ(v)), i ∈ I, v ∈ V (14)

P(i) · αi,v ≤ Q(i, v), i ∈ I, v ∈ V (15)

αi,v ≤ B · χi,v, i ∈ I, v ∈ V (16)

βi,0 = ε, i ∈ I (17)

αi,v, βi,v ∈ R+, i ∈ I, v ∈ V (18)

χi,v ∈ {0, 1}, i ∈ I, v ∈ V (19)

Solving SRRP is equivalent to solving a large-scale MILP.

There exists a number of standard techniques to solve this

problem, for example, branch-and-cut [27] and Benders de-

composition [28]. Compared to the fixed-parameter determin-

istic planning model, the stochastic model is more accurate

in decision making because it adapts to the price uncertainty

better. Its advantage on rental cost reduction is presented in

the next section.

V. PERFORMANCE EVALUATION

A. Parameter Setting

We consider three VM classes I = {c1.medium,m1.

large,m1.xlarge} and conduct two sets of simulations to

evaluate the performances of DRRP and SRRP, respectively.

The rental planning decisions for both models are made in

an hourly basis, spanning over short-term planning horizons.

In particular, the decision model is solved for a planning

horizon of 24 hours for DRRP, and 6 hours for SRRP.

Using this setting, the computational complexity of solving

rental planning does not become exorbitant for the ASP.

The MILP formulations in both problems are solved using

the CPLEXTM [29] solver integrated in AIMMS 3.11 [30].

We sample the hourly data service demand from a normal

distribution N (0.4, 0.2) (in the unit of GB and is always

positive). It is assumed that the software required by the

application services has been configured on VMs rented from

the cloud market. Therefore, we do not consider the initial

VM-image setup process.

The cost parameters used in model formulations are

set according to Amazon’s EC2 pricing policy. Specifi-

cally, the hourly on-demand compute instance rental cost is

{$0.2, $0.4, $0.8} for the three VM classes. Using Elastic

Block Store (EBS), the storage cost is $0.1 per GB/month,

and 0.1 per million I/O operations. The inbound and outbound

transfer cost is $0.1 and $0.17 per GB. In order to provide

realistic parameter estimates in our proposed models, we refer

to a recent paper by Berriman et al. [31] studying the cost

and performance of running scientific workflow applications

on Amazon EC2. Based on the 3-year cost of a mosaic service

(generated by an astronomical application Montage, see [32]

for details) hosted on EC2, we normalize the I/O cost to

$0.2 per GB, and set the average input-output ratio Φi to

0.5 for all i ∈ I. According to the data provided in [31]

(runtime, input and output volume, etc.), the VMs are able to

offer sufficient resources for serving the randomly generated

demand. Therefore, constraint (3) in DRRP and constraint (15)

in SRRP are omitted.

B. Results for Deterministic Rental Planning

 0

 5

 10

 15

 20

 22

c1.medium m1.large m1.xlarge

D
ai

ly
 P

er
-in

st
an

ce
 C

os
t No-Plan

DRRP

 0

 20

 40

 60

 80

 100

c1.medium m1.large m1.xlarge

P
er

ce
nt

ag
e 

of
 T

ot
al

 C
os

t

%16

%33

%49

Transfer
I/O+Storage

Compute

Fig. 10. Cost comparison for DRRP and resource rental without planning

We first show the cost advantage of the DRRP model over

resource rental without planning. The results are shown at

the upper side of Figure 10. In our simulation, per-instance

costs over an 24-hour planning horizon for both schemes are

compared. From the results, we can observe that cost derived

by DRRP is significantly lower than that of the no-planning

solution. As the compute instance becomes more powerful,

the cost reduction becomes more significant. Especially, the
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cost reduction for VM of class m1.xlarge achieves nearly fifty

percent drop-off. This is because compared to the no-planning

solution, the cost reduction primarily comes from the saving

of computing cost (compute instances are turned off in cloud

when the current storage meets demand). Therefore, more

saving is expected for high-cost VM classes. For DRRP, the

cost structure for each VM class is presented in the lower side

of Figure 10. The proportion of computing cost is relatively

stable in all three classes. However, we observe that more

money is spent on I/O and storage as VM instance becomes

more powerful. This is because more powerful VM class

incurs higher instance rental cost each time the rental decision

is made. As a result, an ASP tends to utilize inventory data

more often to serve the customer demand and uses compute

instance less frequently.

Next, we conduct a sensitivity analysis to the proposed

DRRP model and plot the results in Figure 11. We define

cost ratio as the cost of DRRP to the cost of resource rental

without planning. The base ratio (67%) is set to the cost ratio

of VM class m1.large derived in the last simulation. From

this base ratio, we first vary the weights of I/O and computing

cost gradually. In one direction, we keep the I/O cost fixed and

increase the computing cost with a fixed step of 0.1, and we

increase the I/O cost in the other direction similarly. The result

showed in the left part of Figure 11 clearly demonstrate that

the cost reduction achieved by DRRP becomes more salient for

expensive computational resources. This conclusion confirms

the analysis we previously provided. The impact of demand

is investigated in the right part of Figure 11. In particular, we

alter the mean of the distribution for demand from 0.2 to 1.6
GB/hour. As more demand is generated, the processors tend

to be kept busy all the time because the current storage cannot

meet the demand. As a result, cost reduction is not noticeable

for heavy service demand.
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Fig. 11. Sensitivity analysis for DRRP

C. Results for Stochastic Rental Planning

The second set of simulations evaluates the performance

of SRRP model. Imagine an oracle who knows all the future

realization of spot instance price in advance, and takes them as

input to the DRRP model. We denote the cost generated by this

method as the ideal case cost for resource rental planning in

spot market, and compute the overpay percentages of all other

evaluated approaches. The price distribution is drawn from

the same representative data set described in Section IV-A2,

paragraph 3. The results are plotted in Figure 12(a). Here, we

use the prediction values obtained from the approach described

in Section IV-A as the bid prices, because they are the best

approximation values we can get using statistical analysis

of past price history. The cost of SRRP using predicted

values is labeled as “sto-predict”, and the cost of its DRRP

counterpart and the cost of using on-demand instances are

labeled as “det-predict” and “on-demand”, respectively. It is

not surprising to see that the on-demand scheme yields the

most overpay. In addition, SRRP model is more cost efficient

than its DRRP counterpart for all three VM classes. This is

because SRRP model better adapts to the spot price dynamics

and thus generates more accurate plans for resource rental.

By considering the price distributions at every decision point,

SRRP better hedges against the risk of the unexpected out-of-

bid event compared to rental planning based on fixed bid in

DRRP. We also mimic a common bid strategy that ASPs bid a

fixed price equal to the expected mean price of the historical

data, and compare its cost derived by DRRP and SRRP. The

results shown on Figure 12(a) yield the same conclusion that

SRRP outperforms its DRRP counterpart.

Finally, we investigate the impact of bid price approximation

precision to the SRRP model with regard to cost reduction for

VM class c1.medium. This evaluation is necessary because

according to Section IV-B, the solution quality of the SRRP

model is closely related to the true valuation Ĉp(i, t), which is

inaccurate in nature with respect to the actual spot price. Tak-

ing the cost derived by actual realization of spot price as the

baseline cost, we create artificial bid prices that are +/−2% to

10%1 deviated from the actual price realizations, and measure

the cost deviation from the baseline cost introduced by the

approximation errors. The results converted to percent errors

to the baseline cost are plotted in Figure 12(b). Clearly, the

errors increase as approximation becomes less accurate. We

use the mean squared prediction error (MSPE) to measure the

approximation errors. The MSPE of our best approximation

achieved based on the method presented in Section IV-A

falls between that of 2% and 4% deviation of the model.

However, the actual percent error using our approximation

is −12% from the baseline cost. This is probably because

our approximations present a mixture of over- and under-

estimations of the actual price realizations, thus are different

from the pattern of the artificial approximated bid prices we

created in the simulation. In conclusion, if one bids according

to the best approximation result in practice, the percentage

error introduced by approximation is generally acceptable.

D. Further Discussion

In the simulations, we demonstrate the performance advan-

tage of our proposed planning models. In practice, the resource

rental planning is often conducted in a rolling horizon fashion,

1prices that are more than +/− 10% from the actual prices are out of the
price range
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Fig. 12. Performance evaluation for stochastic resource rental planning

i.e., a revised plan is issued periodically (after a few slots of

the whole planning horizon) to include the new information.

This is reasonable especially for the SRRP model. Due to

the high complexity of computation associated with the large

problem size, SRRP is more suitable for short-term rather than

long-term planning. Another concern is that SRRP performs

significantly better than DRRP only when the chance of losing

the spot instance auction is nontrivial. This is because SRRP

explicitly includes this risk into its model evaluation while

DRRP does not. If a bidder is capable of winning the auction

all the time, the performances of both models are expected

to be close. In this paper, we simply assume ASPs will bid

based on their true valuations, and develop the SRRP model

independent of the specific bidding strategy.

VI. CONCLUSION

In this paper, we investigated the problem of optimizing

resource rental planning in a cloud environment. Our opti-

mization model is based on a thorough rental cost analysis

of running elastic applications in cloud. Considering the cost

tradeoff between data generation and storage, we developed a

deterministic optimization model that minimizes the unit rental

cost of covering customer demand over a planning horizon.

This model works well with deterministic cost parameters but

not suitable for the emerging spot instance market in cloud

computing. By analyzing the predictability of spot price in

Amazon EC2, we show that the spot instance price cannot

be well approximated to be used in the deterministic model.

Based on this observation, we further designed a stochastic

optimization model that seeks to minimize the expected re-

source rental cost given the presence of spot price uncertainty.

Simulations based on realistic settings clearly demonstrate

the advantages of our proposed optimization solutions in

rental cost reduction. Moreover, we investigated the impact

of various parameter settings on the performance of both

models. We believe that the proposed optimization models

and solutions offer effective means for resource rental plan-

ning in practice. Our future work will investigate stochastic

optimization solutions for cloud resource provisioning with

time-varying workloads.
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