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Abstract-In order to capture the essence of PCS network behavior, a good 
mobility model is necessary. This model must be good enough to fit field data 
and make the resulting queueing model still tractable. In this paper, we pro- 
pose a new mobility model, called hyper-Erlang distribution model, which sat- 
isfies the above two requirements. We use this model to characterize the cell 
residence time and obtain analytical results for the channel holding time, the 
distribution of which is of primary importance in teletraffic analysis of PCS 
networks. These results can be used to facilitate the computation together with 
the use of the partial fractional expansion technique. It is expected that the mo- 
bility model and the analytical results for channel holding time presented in 
this paper will play an significant role for field data processing in PCS network 
design and performance evaluation. 

Keywords-PCS, Mobility, Call holding time, Cell residence time, Channel 
holding time. 

I. INTRODUCTION 

Channel holding (occupancy) time is an important quantity in 
teletraffic analysis for PCS networks. This quantity is used to find 
important design parameters such as the new call blocking prob- 
ability and the handoff blocking probability ([ 121). Bolotin ([I]) 
studied the CCS (Common-Channel Signaling) systems and found 
that channel throughput drops significantly more under the expo- 
nential call holding time distribution model than under the actual 
measured call holding time distribution. This observation is ex- 
pected to be true for PCS networks. Thus it is important to realis- 
tically characterize channel holding time in PCS networks and in- 
vestigate how its distribution affects PCS network traffic. In order 
to accomplish this, we need to have an appropriate mobility model 
to reflect the actual traffic situation and the mobility of users. 

Most traffic analyses make the assumption that the channel hold- 
ing time distribution is distributed exponentially ([5], [6], [ 121, 
[20], [28], [29]). However, using a simulation model, Guerin ([ 1 I]) 
demonstrated that when the rate of change of direction is “low”, 
the channel holding time is no longer exponentially distributed. 
Bolotin ([ 11) showed that the channel holding time for CCS (Com- 
mon Channel Signaling) networks is no longer exponentially dis- 
tributed and showed that a mixture of well-known distributions 
provides a better model for the channel holding time. Lin et a1 
([20]) gave a condition under which the channel holding time is 
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exponentially distributed. Namely, they showed that the cell res- 
idence time needs to be exponentially distributed and suggested 
that the cell residence time be modeled directly as a random vari- 
able. Fang et a1 ([8]) presented a necessary and sufficient condition 
under which the channel holding time is exponentially distributed, 
showed the limitation of exponential distribution modeling. Re- 
cently, Jedrzycki and Leung ([ 131) observed through the field data 
that channel holding time distribution for cellular telephony sys- 
tems is not exponential, and statistically showed that the lognormal 
distribution is a better model for the (filtered) data of measurements 
for channel holding time. Orlik and Rappaport ([24]) observed that 
the data profile used in [13] can also be approximately modeled 
by the SOHYP (Sum of Hyper-exponential) distribution. In sum- 
mary, the above research showed that the exponential assumption 
for channel holding time is not appropriate. 

In this paper we deal with channel holding time (i.e., the time a 
call spent in a cell) under realistic assumptions. We observe that 
the channel holding time depends on the users’ mobility, which 
in turn can be characterized by the cell residence time (the time 
that a mobile user stays in a cell, or dwell time). Thus, in order 
to appropriately characterize the channel holding time, it is neces- 
sary to have an appropriate distribution model for the cell residence 
time to reflect the mobility of the users consistent with field data. 
One approach to modeling the cell residence time can be had by 
assuming specific (hexagon or circle) shapes of a cell, combined 
with specific distributions of speed and moving direction of a mo- 
bile user to determine the probability distribution of cell residence 
time ([12], [6]). However, in practical systems, cell shapes are ir- 
regular, and the speed and direction of mobile users may be hard 
to characterize, it is more appropriate to directly model the cell 
residence time as a random variable. Zonoozi and Dassanayake 
([30]) used the generalized Gamma distribution to model the cell 
residence time. Unfortunately, the generalized Gamma distribution 
leads to the loss of Markovian property in the resulting queueing 
model of the cellular networks, which makes the traffic analysis 
difficult. Orlik and Rappaport ([24]) modeled the cell residence 
time as a SOHYP random variable. The advantage of using the 
SOHYP distribution is the guarantee of the Markovian property 
of the queueing network model. It was shown ([25]) that SOHYP 
models can be tuned to have the coefficient of variation (the ratio of 
the standard deviation to the mean) of the cell residence time less 
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than, equal to and greater than unity, while the exponential (even 
Erlang) distribution model for cell residence time can only apply 
to the cases where the coefficient of variation is less than unity. 
However, it is not known whether the SOHYP models have the 
capability of universal approximations. We need a more general 
distribution model which has the universal approximation capabil- 
ity. 

In this work we present a new general distribution model for the 
cell residence time, what we call hyper-Erlang distribution model. 
The hyper-Erlang distribution preserves the Markovian property 
of the resulting queueing networks models ([ 171) and has univer- 
sal approximation properties so field data can be readily used to 
find the model parameters statistically. It is observed that the well- 
known distributions such as exponential distribution, Erlang distri- 
bution and the hyper-Exponential distribution are special cases of 
hyper-Erlang distribution models. It can be shown that the coeffi- 
cient of the hyper-Erlang distribution model can be tuned to be less 
than, equal to and greater than the unity. We also observe that the 
hyper-Erlang model has the attractive property of having rational 
Laplace transforms, hence preserves the Markovian property of the 
resulting queueing networks ([ 17]), so that the multi-dimensional 
Markov chain theory can be applied to find all teletraffic parame- 
ters such as the call blocking probabilities. 

In this paper we first discuss the hyper-Erlang distribution model 
and its universal approximation capability, then we derive formulae 
for the distribution of channel holding time with general cell res- 
idence time distributions, and give an easy-to-compute procedure 
when the cell residence time has rational Laplace transform, in par- 
ticular for the hyper-Erlang models. Using our results, we show 
analytically that when the cell residence time is not exponentially 
distributed, the channel holding time is indeed not exponentially 
distributed. Surprisingly, a counter-intuitive result is observed: the 
low variance of the cell residence time leads to the invalidity of the 
exponential assumption for channel holding time. We observe that 
while for cellular networks the cell size is large, hence the vari- 
ance of the cell residence time is high, the exponential assumption 
for channel holding time may be appropriate for some cellular net- 
works. For the PCS networks, the cell size becomes much smaller, 
the variance of the cell residence time will be lower, hence the ex- 
ponential assumption is not valid anymore. Therefore, if the field 
data for cell residence time shows the low variation, we cannot 
use the exponential assumption for the channel holding time in the 
teletraffic analysis for PCS networks. In this instance, our analyt- 
ical results can be conveniently used to characterize the channel 
holding time. Another observation made in our work ([SI) shows 
that when the cell residence time is not exponentially distributed, 
the handoff traffic is no longer Poisson. This destroys the Poisson 
property of the cell traffic as well, which invalidates most analytical 
results such as the Erlang-B formula in telephony and the product- 
form solution in queueing systems ([ 171). With the mobility model 
for the cell residence time and the analytical results for the channel 
holding time, we can study the queueing system for the PCS net- 
work using the multi-dimensional Markov chain models as illus- 
trated in [ 171, in this way we can investigate the validity of several 
classical analytical results in traffic theory for PCS systems. This 
paper takes the first step towards this goal. 

This paper is organized as follows. In the next section, we 

present the hyper-Erlang distribution model and its approximation 
capability. We then derive in the third section the analytical for- 
mulae for the computation of channel holding time distributions 
(including the conditional channel holding time distributions) for 
general cell residence time. In the fourth section, we show how 
the variance of cell residence time affects the channel holding time 
distribution. Conclusions are given in the last section. 

11. HYPER-ERLANG DISTRIBUTION MODEL 

As we mentioned in the previous section, the cell residence time 
can be used to characterize the users’ mobility. We observe that 
we can treat the cell residence time as a nonnegative random vari- 
able, hence a good distribution model for the random variable will 
be enough to characterize the users’ mobility. In this section, we 
discuss such a good model, the hyper-Erlang distribution model. 

The hyper-Erlang distribution has the following density function 
and Laplace transform: 

where 
M 

ai 2 0, C C V ~  = 1, 
i=l 

and M ,  ml , m2, . . . , m M  are nonnegative integers, 771, 772, . . . , V M  
are positive numbers. 

We next show that these distribution functions provide suffi- 
ciently general models, i.e., hyper-Erlang distributions are univer- 
sal approximators. This can be accomplished by the following re- 
sult (in what follows we will use star * to denote the Laplace trans- 
formation): 
Lemma: ([ 161) Let G(t)  be the cumulative distribution function of 
a positive random variable. Then it is possible to choose a sequence 
of distribution functions Gm(t) , each of which corresponds to a 
mixture of Erlang distributions, so that 

for all t at which G(t)  is continuous. In particular, Gm(t)  can be 
chosen as 

where GL(t)  is the distribution function of an Erlang distribution 
with mean 2 and variance 5 (i.e. the distribution of the sum of 

0 
Let g m ( t )  and g t (s )  denote the density function and Laplace 

transform of G,(t), and g k ( t )  denotes the density function of 
G i ( t ) ,  then we have 

k exponential random variables each with mean l / m ) .  
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The resulting distribution is called the mixed Erlang distribution. 
The advantage using this distribution is that the coefficients can be 
determined from the experimental data. We can use a finite number 
of terms to approximate the distribution function, in this case, the 
resulting distribution approximates the hyper-Erlang distribution. 

In fact, we can intuitively illustrate from the Sampling Theorem 
([26]) why the distribution G, (t) provides the universal approxi- 
mation to general distribution models. Figure 1 shows the density 
function by varying the shape parameter m (see (25)). We ob- 
serve that as the shape parameter m becomes sufficiently large, 
the density function approaches the Dirac 6 function. From signal 
processing theory ([14]) we know that the 6 function can be used 
to sample a function and reconstruct the function from the sam- 
pled data (the Sampling Theorem). We can replace the 6 function 
by the Erlang density functions with sufficiently large shape pa- 
rameters, the resulting approximation is exactly in the form of the 
hyper-Erlang distribution. 

We remark that the hyper-Erlang distribution model is much eas- 
ier to use than the other models. Let t be the generic form for the 
cell residence time ti. If t is modeled by the hyper-Erlang distri- 
bution as in equation (l) ,  we can easily find its kth moment given 
below 

The parameters ai, mi and r]i (i = 1 , 2 , .  . . , M) can be found by 
fitting a number of moments from field data. Moreover, if the num- 
ber of moments exceeds the number of variables, then the least- 
square method can be used to find the best fit to minimize the least 
square error, more importantly, the error function is smooth. 

111. CHANNEL HOLDING TIME 

Channel holding time distribution depends on the mobility of 
users, which can be characterized by the cell residence time. As 
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Fig. 2. The time diagram for call holding time and cell residence time 

the assumption that the cell residence time is exponentially dis- 
tributed is too restrictive for real world systems, we wish to relax 
this assumption. In this section, we will study the channel holding 
time under the condition that the cell residence time is generally 
distributed, in particular, hyper-Erlang distributed. 

Let the call holding time t ,  (i.e., the unencumbered call holding 
time of requested connection to a PCS network for a new call, as 
in wireline telephony) be exponentially distributed with parameter 
p. Let t ,  be the cell residence time, T be the residual life of the 
cell residence time (i.e., the time between the instant a new call is 
initiated and the instant the new call moves out of the cell if the 
new call is not completed), and let T, (m > 1 )  be the residual 
life time distribution of call holding time when the call finishes 
m-th handoff successfully (i.e., the time between the instant that 
the m-th handoff is done and the end of the call life). Let t,h and 
thh denote the channel holding times for a new call and a handoff 
call, respectively. Then, from Figure 2, the channel holding time 
for a new call will be 

tnh = min{t,,T}, (3) 

and the channel holding time for a handoff call is 

thh = min{r,, t,}. (4) 

Lett,, t,, T ,  thh and t,h have density functions fc(t), f(t), fr(t), 
f h h ( t )  and f,h(t) with their corresponding Laplace transforms 
f:(s), f*(s), f:(s), fhh(s) and f7th(s), respectively, and with 
cumulative distribution functions F,(t), F ( t ) ,  F,(t), Fhh(t) and 
Fnh (t), respectively. 

From (4), the independency of T, and t,, and the strong mem- 
oryless property of the exponential distribution of t ,  (See Ap- 
pendix), we can obtain 

f h h ( t )  = f c ( t )  + f(t)  - fc(t) Pr(t, 6 t )  - Pr(tc 6 t)f(t) 

( 5 )  = fdt) Jm f(T)dT + f(t)  lm fc(T)dT. 

fh*h(S) = f*(s) + f,*(.) - im e-""(t) J fC(T)dTdt 
From (5), applying Laplace transform, we obtain 

t 

0 
t 

- i C O  e - s t f c ( t )  J f ( T ) d T d t  
0 

CO t 
= f * ( s )  + fz(s) - p J e - ( s + p ) t  J f ( T ) d T d t  

0 0 



- Jom e - s t ( l -  e-”t) f ( t )dt  

S - -  - + - f * ( s + p ) .  
s + p  s + p  

From this, it is easy to obtain that the expected handoff call chan- 
nel holding time is given by (we will use l ~ ( ~ ) ( z )  to denote the ith 
derivative of any function h(s) at point z in the subsequent devel- 
opment) 

1 

CL 
E [ t h h ]  = - f / p ( O )  = -(1- f*(p)). 

From (3) and a similar argument, we obtain 
00 00 

f n h ( t )  = f c ( t )  / fr(T)dT -/- f r ( t >  fc (T)d7*  
t 

Applying Laplace transform, we have 

and the expected new call channel holding time is 

In the preceding discussion we differentiate new calls from 
handoff calls when considering the channel holding times. If such 
distinction is not made, we need to consider the channel holding 
time distribution for any call (either new call or handoff call), i.e., 
the channel holding time for the merged traffic of new calls and 
handoff calls, as used in current literature. We will simply call this 
the channel holding time without any modifiers such as new call 
or handoff call. Let t h  denote the channel holding time, Ah the 
handoff call arrival rate and X the new call arrival rate. Then, it 
is easy to show that t h  = t,h with probability X/(X + Ah) and 
t h  = thh  with probability Ah/(A + A h ) .  Let fh(t) and fh(s) be 
its density function and the corresponding Laplace transform. It is 
easy to obtain 

Summarizing the above we arrive at: 
Theorem 1: For a PCS network with exponential call holding time 
and Poisson new call arrivals with arrival rate A, we have: 

(1) the Laplace transform of the density function of the new 
call channel holding time is given by 

and the expected new call channel holding time is 

(9) 

(2) the Laplace transform of the density function of the handoff 
call channel holding time is given by 

and the expected handoff call channel holding time is 

(1 1) 

(3) let X and Ah denote the new call arrival rate and the handoff 
call arrival rate, respectively, then the Laplace transform of 
the density function of channel holding time is given by 

1 
LL 

W h h l  = -(I - f*(p)). 

and the expected channel holding time is given by 

0 
When the residual life T is exponentially distributed with param- 

eter p r ,  then its Laplace transform f,*(s) is p r / ( s  + p r ) .  Taking 
this into (8), we obtain 

which implies that the new call channel holding time is exponen- 
tially distributed with parameter p + p r .  Similarly, if the cell resi- 
dence time ti is exponentially distributed with parameter q, then 
the handoff call channel holding time is also exponentially dis- 
tributed with parameter p + 9. In this case, the channel holding 
time is hyper-exponentially distributed. If p,. = q, then the channel 
holding time (see (12)) is exponentially distributed with parameter 
p + q. In fact, since P is the residual life of t l ,  from the Residual 
Life Theorem ([ 17]), we have 

hence the channel holding time is exponentially distributed with 
parameter p + q when the cell residence time is exponentially dis- 
tributed. 

Based on the field data collected for channel holding time, Je- 
drzycki and Leung ([13]) demonstrated that the channel holding 
time is not exponentially distributed, that the log-normal distribu- 
tion provides a satisfactory approximation after the spikes of data 
are removed (the spikes correspond to the handoff calls). Orlik and 
Rappaport ([24]) interpreted the distribution reported in ([ 131) as 
the conditional distribution given that the call completes in its cur- 
rent cell, and derived the results for conditional distributions for 
the channel holding time when the cell residence time is SOHYP 
distributed. We adopt a different approach and use more general 
distribution model for cell residence time. Simple results for the 
conditional distributions for channel holding time when the cell 
residence time is generally distributed are presented next. 

Let f c n h ( t ) ,  f c h h ( t )  and f c h ( t )  denote the conditional density 
functions for the new call channel holding time, for the handoff 
call channel holding time and for the (absolute) channel holding 
time (i.e., without distinguishing the new calls and handoff calls), 
respectively, with Laplace transforms fcnh(s), &(S) and f&(s), 
and with cumulative distribution functions F c n h ( t ) ,  F&h(t) and 
Fch ( t ) .  
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We first study the conditional distribution for the handoff call 
channel holding time. We have 

tion 

We observe that 

f ( t ) [ l -  ept]dt1 - f( t)e-Ptdt = 1 - f*(p). 
= = l o  

Taking this into (14), we obtain 

In a similar fashion, we obtain the following result for the new 
call channel holding time: 

The conditional channel holding time distribution f c h ( t )  
( f & ( s ) )  is the average of the conditional new call channel holding 
time distribution and handoff call channel holding time distribu- 
tion. In summary, we therefore have 
Theorem 2: For a PCS network with exponential call holding time 
and Poisson call arrivals, the conditional distributions for the new 
call channel holding time, the handoff call channel holding time 
and the channel holding time can be characterized by their Laplace 
transforms as follows: 

Let Tcnh, Tchh and Tch denote the expected conditional new call 
channel holding time, the expected conditional handoff call chan- 
nel holding time and the expected conditional channel holding 

time, respectively, then we have 

Ah f*'l)(P) +-. x + Ah 1 - f*(p) * 

0 
When the residual life T is exponentially distributed with param- 

eter p,., from (16) we obtain &(s) = ( p  + p T ) / ( s  + p + /A,.), 

hence the conditional new call channel holding time is also ex- 
ponentially distributed. Moreover, this holding time has the same 
distribution as the unconditional new call channel holding time, 
this contributes to the memoryless property of the exponential dis- 
tribution. Similarly, the handoff call channel holding time is also 
exponentially distributed if the cell residence time is exponentially 
distributed. 

To apply the results above, i.e. Theorem 1 and 2, it remains to 
determine the handoff call arrival rate Ah. This parameter depends 
on the new call arrival rate, the new call blocking probability and 
handoff call blocking probability. Let p, and p f  denote the new 
call and handoff call blocking probabilities, respectively, let H be 
the number of handoffs for a call. The expectation E[H] is also 
called the handoff rate. Using a procedure similar to the one in [8] 
or [9], we obtain 

Since each unblocked call initiates E[H] handoff calls on the aver- 
age, hence the handoff call arrival rate can be obtained 

We observe from the above discussion that as long as f,* (s) and 
f* (s) are proper rational functions, then the Laplace transforms 
of distribution functions of all channel holding times (either con- 
ditional or unconditional) are all rational functions (see Theorem 
1 and Theorem 2). To find the corresponding density functions, 
we only need to find the inverse Laplace transforms. This can be 
accomplished by using the partial fraction expansion ([ 141). To il- 
lustrate the idea, we present the following procedure. Suppose that 
g(s )  is a proper rational function with poles p l , p z , .  . . ,pk with 
multiplicities T I ~ , T I ~ , .  . . ,nk. Then g ( s )  can be expanded as 

where the constants Aij can be found easily by the formula 

dj 
Aij = Z[(S + ~ i ) ~ ' g ( s ) ]  , j = 0 ,1 , .  . . ,i, i 1 1 , 2 , .  . . , k. 
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Notice the relationship (L-l denotes the inverse Laplace transform 
operator) 

dj th 
dt.1 h! 

L- ' [s j f ( s ) ]  = - {L - l [ f ( s ) ] } ,  L- '[l /(s f P)"] = 

Taking this into (24), we obtain the inverse Laplace transform 

We also notice that the inverse Laplace transform of a rational 
function is in fact the impulse response of linear system in which 
the rational function is the system transfer function of the resulting 
linear system ([ 14]), and the cumulative distribution function is the 
step response of the linear system. By studying the impulse re- 
sponse and step response of the linear system, we can characterize 
the properties of the channel holding time. Several ready-to-use 
software packages for the study of the impulse response and step 
response in signals and systems ([14]) are available. In the well- 
known software package Matlab, the commands impulse and step 
can be used to find the density function and the distribution func- 
tion. 

When we apply the hyper-Erlang distribution model for cell res- 
idence time, we can in fact reduce the computation further. As 
an example, we use Theorem 1 (2) to illustrate this point. If we 
substitute f*(s) with fie(s), we obtain 

where f,* (s; mi, vi) corresponds to the handoff call channel hold- 
ing time when the cell residence time is Erlang distributed with 
parameters (mi, vi). Thus, we can concentrate on finding the al- 
gorithm for computing the channel holding time for the case when 
the cell residence time is Erlang distributed. 

As a final remark in this section, we illustrate the relationship 
between f,'(s) and f*(s). If we are interested in all calls for a 
long run (i.e., we have large samples for cell residence time), the 
residual life time T can be regarded as the residual life of the cell 
residence time because it is the time that a mobile user spends in 
the initiating cell (where the call is made). From the Residual Life 
Theorem ([ 17]), we obtain 

where 1/17 is the average cell residence time. If we only have small 
number of samples for cell residence time, then the Residual Life 
Theorem may not be appropriate ([17]), we can only use the best 
distribution fit for T from the available samples. In this research, 
we can regard the cell residence time sequence T ,  t 2 ,  t3, . . . as a 
renewal process ([4]). 

Iv .  EFFECT OF DISTRIBUTION OF THE CELL RESIDENCE 
TIME ON THE CHANNEL HOLDING TIME DISTRIBUTION 

It is well-known that the exponential distribution is completely 
determined by a single parameter, i.e., the average value. Thus, if 
we use exponential distribution to model the cell residence time for 
the field trials, the fitted distribution is completely determined by 
the average value of the field data. Therefore, this model hardly 
captures the variation of the cell residence time for a mobile user. 
In this case, the resulting channel holding time, which is also expo- 
nentially distributed, is also completely determined by the average 
channel holding time (or the average cell residence time). In real 
situation, however, a mobile user's cell residence time significantly 
deviates from the average value from time to time and from cell to 
cell. It is important to understand how distribution of the cell resi- 
dence time affects the channel holding time distribution. One sta- 
tistical quantity to characterize the deviation of the field data from 
the average value is the variance. In fact, the variance of the cell 
residence time is one of the reasons why the channel holding time 
is not exponentially distributed when the cell residence time is not 
exponentially distributed. 

In this section, we use our analytical results to study a few ex- 
amples and analytically show how variance of cell residence time 
affects the channel holding time distribution. We show that when 
the cell residence time is not exponentially distributed, the chan- 
nel holding time is not exponentially distributed either. In fact, for 
some cases (where the variance is small), the approximation using 
the exponential distribution is severely inappropriate. This sug- 
gests that a careful study is needed for the channel holding time in 
teletraffic analysis. 

We first study the channel holding time for the case when the 
cell residence time is Erlang distributed. The Erlang distribution 
is characterized by its density function and Laplace transform as 
follows: 

where P = mv is called the scale parameter and m is called the 
shape parameter. The mean of this Erlang distribution is 17 and its 
variance is 1/(mq2). When the mean 77 is fixed, varying the value 
m is equivalent to varying the variance, larger m means smaller 
variance, lesser spread of the cell residence time. 

Due to the similarity of the formulae for new call and handoff 
call, we only study the handoff call channel holding time. Figure 3 
shows the handoff call channel holding time distribution functions 
with different variance of cell residence time distributed according 
to Erlang distribution with the same mean. It can be observed that 
when the cell residence time become less spread, the handoff call 
channel holding time shows severe mismatch to the exponential 
distribution. This implies that we can not simply apply the expo- 
nential distributions for handoff call channel holding time during 
the network study of PCS networks where mobility is a major is- 
sue. 

Now we study the case when the cell residence time is hyper- 
Erlang distributed with two terms as follows 
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Fig. 3. Distribution of handoff call channel holding time (solid line) and its expo- 
nential fitting (dashed line) when cell residence time is Erlang distributed with 
parameter (m, 7 )  

m l = l .  m2=1 m l = l .  m2=10 
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Fig. 4. Distribution of handoff call channel holding time (solid line) and its expo- 
nential fitting (dashed line) when cell residence time is hyper-Erlang distributed 
with parameter (ml , m 2 , ~ )  

The handoff call channel holding time can be written as 

+a2 { -& + S. s + p  (=)mz}. s+m2q 

This representation illustrates that the handoff call channel hold- 
ing time is in fact an average of two channel holding times each 
of which is obtained from Erlang distributed cell residence time 
cases. The mean value of the cell residence time for this case 
is still q, which is the same as in the Erlang case. Different val- 
ues of ml and m2 signify the different variances. Figure 4 shows 
the distribution plotting. It can be theoretically proved that when 
ml = m2 = 1 and ql = 172, the cell residence time is in fact 
exponentially distributed. In this case, we have an exponentially 

m=3 m=4 

'0 0.5 1 1.5 2 

Fig. 5. Conditional distribution of handoff call channel holding time (solid line) 
and its exponential fitting (dashed line) when cell residence time is Erlang dis- 
tributed with parameter (m, q) 

distributed handoff call channel holding time as evidenced in the 
figure (ml = m2 = 1). However, when ml and m2 are different, 
i.e., the variances of cell residence time are different, the handoff 
call channel holding time is no longer exponentially distributed. 

Figure 5 shows the conditional distribution for the handoff call 
channel holding time when the cell residence time is Erlang dis- 
tributed. From this example, we observe the conditional distribu- 
tion for handoff call channel holding time is a better match to the 
exponential distribution when the variance of cell residence time 
is large. However, when the variance becomes small, i.e., the cell 
residence time is less spread, this match disappears. 

V. CONCLUSIONS 

In this paper we propose a new mobility model and analytically 
characterize the distribution of the channel holding time under the 
realistic assumption that the cell residence time is generally dis- 
tributed. Our modeling effort focuses on the characterization of 
the channel holding time under the assumption that distribution of 
the cell residence time has rational Laplace transform, hence our 
analytical results can be readily applicable to the hyper-Erlang dis- 
tribution models for the cell residence time. We demonstrate that 
hyper-Erlang distribution model is general enough to fit field data 
for system analysis and design. The analytical results presented 
in this work provide a general framework for further study of tele- 
traffic aspects in PCS networks in which classical assumptions may 
not be satisfied. 
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APPENDIX 

Strong Memoryless Property of Exponential Distribution: If < is exponentially distributed, then for any nonnegative random 
variable C, we have 

Proof: Let l /p = E[<] and let fc(y) denote the probability density 
function of C, then we have 

This completes the proof. 0 
Remark: Traditionally, the memoryless property is equivalent to 
saying that (26) holds for any constants C 2 0 and 2 2 0. 
The strong memoryless property seems to be more appropriate for 
many applications. 
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