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Abstract—Privacy protection is of critical concern to Location-
Based Service (LBS) users in mobile networks. Long-term
pseudonyms, although appear to be anonymous, in fact em-
power third-party service providers to continuously track users’
movements. Researchers have proposed the mix zone model to
allow pseudonym changes in protected areas. In this paper, we
investigate a new form of privacy attack to the LBS system that an
adversary reveals a user’s true identity and complete moving tra-
jectory with the aid of side information. We propose a new metric
to quantify the system’s resilience to such attacks, and suggest
using multiple mix zones to tackle this problem. A mathematical
model is presented that treats the deployment of multiple mix
zones as a cost constrained optimization problem. Furthermore,
the influence of traffic density is also taken into account to
enhance the protection effectiveness. The placement optimization
problem is NP-hard. We therefore design two heuristic algorithms
as practical and effective means to strategically select mix zone
locations, and consequently reduce the privacy risks of mobile
users trajectories. The effectiveness of our proposed solutions is
demonstrated through extensive simulations on real-world mobile
user data traces.

I. INTRODUCTION

The rapid development of mobile devices and positioning

technologies has led to flourish of personalized mobile services

based on users’ locations, known as Location-Based Service

(LBS). Utilizing the underlying network infrastructure, mobile

applications are capable of tracking a user’s movement and

delivering information based on his current location directly

to his mobile device. A wide range of mobile LBS applications

have been developed to aid people’s daily activities, including

but not limited to work, entertainment, health, and navigation.

According to a recent study conducted by Strategy Analytic,

with the increasing consumer demands such as search, maps or

navigation, LBS is envisioned to become an over $10-billion-

per-year business by year 2016 [1].

Although LBS significantly benefits mobile users, privacy

issues arise during the process of collecting, storing, and

sharing of users’ location information. Users who subscribe

to LBS may not realize the extent to which their location

information is revealed or with whom the service providers

(smartphone companies, app companies, and etc.) are sharing

this information. We use the following example to illustrate

the necessity of privacy protection. User Alice may use LBS

The work presented in this paper is supported in part by National Science
Foundation under Grant No. CNS-0709329, CNS-0721744, CNS-0923238,
CCF-0953371, CNS-0916391, CNS-0721744, and CNS-0940805 (BBN sub-
contract).

at a shopping plaza to check out nearby restaurants and may

not mind others discovering her current location. However,

privacy becomes important when Alice later enters a special

hospital and does not want to share this information with

anyone else, especially when Alice is a well-known public

figure. Even though pseudonyms instead of true identities are

commonly used to camouflage the location trace files, previous

works [2], [3] have pointed out that such pseudonym protected

trajectories are vulnerable to inferential attacks, i.e., with

the aid of side information, the adversary can discover true

identities of many users and furthermore obtain an extended

view of their whereabouts. Serious consequences such as

physical crimes may happen due to the revelation of a user’s

complete moving trajectory.

Location privacy protection in mobile networking envi-

ronments is challenging for two reasons. First, wireless

communications in mobile networks are easy to intercept,

e.g., an eavesdropper can collect transmitted information of

mobile users at certain public place. Besides, since people

are publicly observable, context information can easily be

obtained from their conversations or behaviors. As a result,

partial trajectory information associated with a user’s true

identity is inevitably exposed to the eavesdropper. Second, the

limited resources of mobile devices greatly restrict Privacy-

Enhancing Technologies (PET) one could apply and deploy

in the network. Consequently, current PET solutions rest on

simple schemes to hide the true identity of a mobile user

from a passive adversary, rather than complex cryptographic

technologies commonly used in wired network.

One common model for privacy protection is the mix zone

model originally proposed by Beresford and Stajano [4]. A

mix zone refers to a region where users can change their

pseudonyms without being observed by the adversaries. It

effectively breaks the continuity of a user’s location exposure

such that the user’s future locations can be protected. Previous

mix zone solutions mainly focus on single mix zone construc-

tion to achieve k-anonymity (a privacy metric denoting a state

that the information of each individual cannot be distinguished

from at least k − 1 others) for location privacy protection.

However, using a single mix zone is insufficient to handle

the aforementioned inferential attack using side information,

since side information may correspond to any part of a user’s

trajectory. In order to achieve a desired level of protection,

multiple mix zones are needed for a certain region to minimize

the identity correlation over all point-of-interests recorded in
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a user’s trajectory. However, the deployment of mix zones

also comes with a cost of impaired service availability which

limits the number of mix zones one could deploy. The traffic

density at each location also affects the effectiveness of mix

zone deployment, e.g., mix zone works better at busy road

intersections.

In this paper, we address the problem of optimal multiple

mix zones placement to enhance the effectiveness of privacy

protection. Using graph theory, we characterize properties

and constraints of the optimization problem, and build a

formal mathematical model with the objective of minimizing

pairwise information correlation (measured by pairwise node

connectivity) over all possible mix zone placement locations.

Our contributions can be summarized as follows.

• We propose a new metric to quantify the system’s re-

silience to the side information based attack model [3].

• An optimization formulation with cost and traffic con-

straints is presented to model the multiple mix zones

placement problem. Since this problem is NP-hard, we

propose two heuristic algorithms for practically finding a

solution to the optimization problem.

• We verify the effectiveness of our solution using real-

world mobile user traces.

The rest of the paper is organized as follows. In Section II

we present the system model and description of mix zones.

In Section III the adversary model is stated. The formulation

of the mix-zone placement problem is presented in the ILP

form in Section IV. Heuristic algorithms are proposed in

Section V. Section VII summarizes related research in the

literature. Section VIII concludes the paper.

II. BACKGROUND

A. System settings

Users Location Service Infrastructure Application Server

Fig. 1. System model: Users, Location Service Infrastructure, and Applica-
tion server

Our target Location-Based Service (LBS) system is com-

prised of three major components: Users, Location Service

Infrastructure (LSI), and third-party Applications, as depicted

in Figure 1. The location information about users are ac-

tively or passively updated through wireless communications

between users’ hand-held devices and LSI. 1 Some specific

third-party application is interested in a set of locations on

the map, and these locations are referred as Point-Of-Interests

(POIs). For example, consider a gas-price application designed

1In this paper we do not elaborate the details of the location update
procedure.

to provide gas station information tailored to each user’s

preference around the user’s current location in Chicago.

The application will register all gas stations as POIs at LSI.

Now suppose a subscribed user Alice in Chicago is driving

from home to her work place, the gas-price application will

continuously display up-to-date gas prices at neighborhood gas

stations along Alice’s route. To implement this functionality,

the gas-price application will record Alice’s preferences and

require LSI to periodically send Alice’s location information

as callbacks so that the price information at the nearest gas

station can be retrieved.

The physical positions of the registered POIs may be located

at road side or road intersections. At any time, the users use

true identity (most likely the identifier associated with their

devices) to exchange messages with LSI. For communication

between LSI and third-party applications, user identities are

camouflaged by pseudonyms. Users cannot bypass LSI and talk

directly with third-party applications; otherwise, applications

can trivially obtain the true user identities as well as the

complete user trajectories. Because an application only knows

the pseudonym of a user, it needs to send service information

through LSI back to user. Therefore, pseudonyms play an

important role to prevent identity exposure in the scenarios

that some form of identity is required for the functioning of

the third-party application.

The communications occurred during the service period re-

sult in a trajectory file recording a user’s footprints. Each entry

in the trajectory file is a 3-tuple: <pseudonym, timestamp,

location>. Based on the trajectory record of Alice, one can

approximate the time when Alice arrives at each POI along

her complete trajectory. Using a single long-term pseudonym

is vulnerable to privacy attacks, since one accidental true

identity leakage will result in a user’s whole trajectory being

compromised. For better privacy protection, researchers have

proposed the mix zone model to break the continuity of a

user’s trajectory.

The following notations are listed to ease the presentation

in the later sections.

• {Pi}, (i = 1, 2, . . . , n): the set of registered locations

within certain range, e.g., POIs in a city.

• uj : user j’s pseudonym in the system.

• vj : user j’s true identity present in the side information.

• Tuj
(ti), (i = 1, 2, . . . ,m; j = 1, 2, . . . , n): per-user time-

based function used to describe the location traces col-

lected by an adversary. Here, ti indicates the time when

uj’s location is reported by LSI.

• Svj (t
′

i), (i = 1, 2, . . . , κ; j = 1, 2, . . . , π): the side infor-

mation obtained by an adversary. It is also a function of

time and records the set of users V’s location information

within the same city territory as the trace file.

B. Mix zone model

The concept of mix zone [4] refers to a service restricted

area where mobile users can change their pseudonyms so

that the mapping between their old pseudonyms and new

pseudonyms are not revealed. For example, in Figure 2, five
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Fig. 2. A mix zone example. Rectangular area: a mix zone deployed at road
intersection. Arrows begin or end with dots: observable user moving trajectory.
Dashed lines: user moving trajectories not observable by LBS applications.

users with pseudonyms A-E enter the mix zone from different

entrances and exit with a different set of pseudonyms F -J at

approximately the same time. The links between old and new

pseudonyms are not observable by any outsider. This change

effectively “mixes” the identities of all users to achieve privacy

protection. A significant amount of research [5]–[7] has been

devoted to investigating the optimal size and shape of a

single mix zone deployment. Targeting at vehicular networks,

existing mix zone construction methods are not suitable for

the LBS system model, as LBS users can be pedestrians that

are not confined to vehicle moving patterns. In the system

model presented in II-A, a mix zone is established by LSI at

the software level. A mix zone is selected by LSI from the set

of registered POIs, {Pi}, (i = 1, 2, . . . , n). Once Pi is chosen

as a mix zone, LSI will assign a set of new pseudonyms to the

users leaving Pi. Such a software level mix zone establishment

approach has considerable flexibility over physical deployment

of mix zones, because the location and the size of the mix

zones are not constrained by terrestrial borders and can be

easily adjusted.

If multiple mix zones are deployed alongside a user’s routes,

the user’s continuous trajectory is broken into a set of discrete

segments, where each segment is associated with a unique

pseudonym. This causes an adversary to lose the tracking

target. Each single mix zone lowers the privacy risk in the

user’s next trajectory segment. To quantify this protection

effectiveness, a common metric for evaluating an adversary’s

uncertainty in finding out the link between a user’s old and

new pseudonym in a mix zone is information entropy given

by:

Hm = −
∑

u

pu log pu (1)

where pu stands for the probability of mapping an old

pseudonym to a new pseudonym when leaving the mix zone

area. Another important characteristic of mix zone is that

its effectiveness is greatly affected by traffic condition. For

example, mix zones deployed at locations with higher traffic

and more outlets have higher entropy than those placed at

locations with less or barely no traffic. Therefore, when

selecting mix zone locations, traffic density should be carefully

considered.

III. THREAT MODEL

In our threat model, we consider LSI to be trustworthy

for two reasons. First, a service provider who operates LSI

in general has no incentive to become adversarial. This is

because such a service provider who can afford the expensive

equipments in LSI is more likely to be an established major

player on the market. The opportunity cost for acting against

its customers is too high to afford, e.g., facing expensive law

suit and devastating reputation damage. Second, a majority of

localization services offered by LSI rely on message exchange

between users and LSI. In both cellular and wireless networks,

the true identifier of a user’s hand-held device is necessary

for communication purpose. Therefore, if LSI is not trustful,

we need to consider how to localize a mobile user under the

current infrastructure, without exposing any ID information to

LSI. This leads to another set of problems that are out of the

scope of this paper.

1

2

3

4

5

Fig. 3. Example of side information and user traces in an abstracted POI
graph. Concentric circles: POIs in a graph. Edges: road segments connecting
POIs. Shaded vertex: a mix zone. Dashed line: user trajectory. Solid dots
connected by dashed line: side information.

The third-party LBS applications are considered not trust-

worthy. They may directly attack a mobile user’s privacy, or

secretely sell information to other individuals or organizations.

An adversary A refers to any entity formed by one or more

malicious parties (by colluding) who aim at learning the

locations associated with mobile users’ true identities. We

do not consider the case that A actively stalks a particular

user. Since an adversary has the complete trajectory profiles

camouflaged by pseudonyms, it is often characterized as a

global passive eavesdropper that becomes the major threat in

the literature [8].

Besides the trajectory profile, Tuj
(ti), (i = 1, 2, . . . ,m; j =

1, 2, . . . , n), a new weapon was brought into sight recently

to aid the adversary [3]. Because mobile users are publicly

observable, partial trajectory information may be revealed

when they travel in public places. For example, information

such as “Alice was witnessed to pass by XYZ cafeteria at

3pm” becomes valuable auxiliary knowledge to track the

mobile target. Such gathered occasional location information

forms partial traces of the tracking targets, and becomes side

information to A, denoted by Svj (t
′

i), (i = 1, 2, . . . , κ; j =
1, 2, . . . , π). The goal ofA is to identify the target mobile user

in the trajectory file based on side information matching,

and learn the complete footprints left by the tracking target.

For example, in Figure 3, suppose A obtains user vj’s side
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information Svj (t3) = P3,Svj (t4) = P4 , and Svj (t5) = P5.

If A has already learnt the whole trajectory record from t1 to

t5 at P1 through P5 belonging to some user ux, by performing

side information matching, A will immediately know that vj is

ux, and P1 and P2 have also been visited by vj . Therefore, the

whole trajectory of vj is compromised. It must be noted that

while the trajectory files contain accurate location records for

service purposes, the side information may be noisy or even

incorrect. This is because the source of the side information

is unreliable, e.g., personal encounter or context inference.

With this established adversary model, we are now able

to present our privacy protection goal as follows: to prevent

adversary A from learning the tracking target’s complete

trajectory associated with true identity, given partial trajectory

is exposed to A. In the next section, we will present how to

quantify this protection goal and build the formal mathematical

model to solve the problem.

IV. TRAFFIC-AWARE MULTIPLE MIX ZONE PLACEMENT

We model the location map with POIs as an undirected

graph G(V,E), where V is the set of vertices representing

the registered POIs, {Pi}, i = 1, 2, . . . , n, and E is the set of

road segments that links consecutive POIs. All vertices in G

are considered as potential mix zone deployment locations.

A trajectory record belonging to ux defines a path consisting

of one or a sequence of possibly repeated vertices. Similarly,

a piece of side information corresponding to vy is a portion

of some specific trajectory in G. Pi and index i are used

interchangeably to refer to a POI in the following sections.

1 2 3

4

5

6

7

Fig. 4. User trajectory and pseudonym associated vertex pairs, e.g., 1 and 2,
4 and 5, and etc. Concentric circles: POIs in a graph. Edges: road segments
connecting POIs. Shaded circle: a mix zone. Dashed line: user trajectory. Solid
dots connected by dashed line: side information.

A. Privacy metric

In a graph G, two vertices are pairwise connected when

there is at least one path connecting them. In a LBS system,

if a user using one pseudonym from Px can travel to Py

without going through a mix zone and changing pseudonym,

Px and Py are pairwise associated. Using a binary variable

ψij ∈ {0, 1} to indicate the association status of two POIs,

if Px and Py are pairwise associated ψxy = 1; otherwise,

ψxy = 0. Take Figure 4 as an example, suppose Alice travels

from P1 to P5 using the pseudonym ux, without any mix

zone deployed in between, we say P1 and P5 are pairwise

associated. Similarly, P1 and P4, P3 and P4, are also pairwise

associated. An important implication of the pairwise associa-

tion is that, if ux appears at P1, ux can only appear at locations

that are pairwise associated to P1. Furthermore, once the

adversary discovers Alice’s pseudonym at P1, locations that

are pairwise associated to P1 will definitely be compromised

if ux visited them. Given that users change pseudonyms in

mix zones, and pseudonyms are unique, placing a mix zone

at P3 will break the pairwise association and protect Alice’s

future locations, P4 and P5, even if her identity is revealed

at P1. We use the total number of pairwise associations in

the graph as a privacy metric to quantify the system’s privacy

protection level. It is given by:

Φ =
∑

i,j∈{Pi}

ψij (2)

Our goal in case of the side information based attack is

to deploy multiple mix zones to minimize Φ to ensure the

maximum protection level for mobile users. Hence, when a

user exposes his identity at some point, only limited trajectory

can be disclosed by an adversary. Note that there might be

multiple paths connecting two vertices in G. The two vertices

are dissociated only when all paths in between are blocked by

mix zones.

B. Mix zone deployment constraints

The maximum protection level is achieved when mix zones

are deployed at all vertices in G. By doing so, when adversary

A discovers Alice’s partial trajectory using side information,

an immediate pseudonym change can prevent A from learning

Alice’s future locations. However, deploying mix zones adds

certain cost to LSI, e.g., pseudonym transformation for every

user in the mix zone area, saving state information, and in-

forming application servers of newly arrived users. Moreover,

mix zones also result in Quality-of-Experience (QoE) degra-

dation perceived by users. When Alice passes by a mix zone

area, she might lose services temporarily due to pseudonym

changes and synchronization. For these reasons, deploying mix

zones at all POIs is both expensive and inefficient. We need to

strategically plan mix zone placement locations in the system

to achieve the maximum location privacy protection subject to

cost and service constraint.

Following the mapping from location privacy protection to

graph model, the multiple mix zone placement problem is

formulated as an optimization problem, in which the objective

function is to minimize the overall number of associated vertex

pairs. The assumption behind this objective function is that

side information may include true identity exposures at any

POI. We do not make any probability assumption for side

information exposure in advance and the objective function

quantifies the global protection effectiveness of deploying

multiple mix zones in G.

Cost and service constraints. As mentioned before, ψij is

a binary variable indicating whether there is a path association

between vertex i and j in G. Let di be another binary variable

associated with each vertex i in G. di = 1 indicates vertex i is

selected to be a mix zone; otherwise, di = 0. Considering cost

and service constraints posed on LSI, we limit the number of

mix zones to be deployed to be at most K. The constraint is

975



expressed as: ∑

i∈V

di ≤ K (3)

Graph related constraints. The first graph constraint con-

siders two vertices connected by an edge in G. If there is

an edge connecting i and j, then there will be a pairwise

association between i and j; otherwise, at least one of them

should be deployed as a mix zone. That is:

ψij + di + dj ≥ 1 ∀(i, j) ∈ E (4)

The second graph constraint concerns all vertex triplets.

Specifically, the pairwise association is transitive for all ver-

tices in V . If vertex i and j are pairwise associated, and j and

k are pairwise associated, then i and j are pairwise associated,

meaning there must be some path i j  k that a user can

travel through without entering into a mix zone. This constraint

is described as:

ψij + ψjk + ψki 6= 2 ∀(i, j, k) ∈ V (5)

Traffic related constraints: When traffics are not uni-

formly distributed around the service coverage area, the dif-

ficulty of inferential attack conducted by adversary A varies

significantly. For example, suppose A observes Alice drives on

Main Street at 9:50am, and only one location update belonging

to user ux was recorded in the trajectory profile. Then A will

easily associate ux with Alice. We use entropy to represent

the uncertainty for A to guess which pseudonym belongs to

Alice. It quantifies the inherent attacking resilience for each

element in graph G. First, the entropy for a road segment is

defined as follows:

Hr = −
∑

u

pu log pu (6)

where pu corresponds to the probability that the identity

contained in the side information matches to a particular

pseudonym on the road segment.

In addition to road segment entropy, pairwise entropy is

useful to describe the uncertainty that an adversary finds out

a user has visited both POIs of an associated POI pair. Before

defining pairwise entropy, we first clarify the concept of path

entropy. A path τ consists of consecutive intermediate vertices

between two associated vertices and it has no cycle. The

entropy for τ is the expected uncertainty in determining if a

user has traveled this path or not. Denote pri as the probability

that the user’s side information is leaked on the ith road

segment with road segment entropy Hri , we have:

Hτ =
∑

i

Hri × pri (7)

Since there may be multiple paths connecting two vertices, we

denote pτi as the probability that the user’s side information

is leaked on the ith path. The pairwise entropy between two

vertices is then calculated as:

Hp =
∑

i

Hτi × pτi (8)

If two vertices have very low pairwise entropy, i.e., they

are highly correlated, then we should consider deploying a

mix zone to isolate them from other POIs. By doing so,

when a user Alice exposes her identity at these two POIs,

she can change pseudonym immediately to prevent further

location information exposure. A mix zone deployment is

considered to be effective only when it satisfies the minimum

pairwise entropy requirement. Our proposed model for optimal

mix zone placement is traffic-aware because it takes traffic

density and entropy into consideration when examining the

graph. Specifically, two constraints are defined to ensure the

effectiveness of mix zone deployment. First, a mix zone

deployed at each vertex on the graph should exceed the

predefined entropy threshold ξd:

(1− di)×M > ξd − ei ∀i ∈ V (9)

where M is a very large constant, and ei is the entropy for

location i. In addition to the vertex entropy constraint, we

define the following pairwise entropy constraint in our model:

(1− ψij)×M > ξp − ϑij ∀i, j ∈ V (10)

where ξp is a predefined threshold, and ϑij is the pairwise

entropy for i and j.

C. Optimal placement of mix zones

Combining the objective function and all constraints, we

derive a formal Integer Linear Programming (ILP) formulation

for our Traffic-aware Multiple Mix Zone Placement (TMMP)

problem. The complete formulation is described as follows:

Minimize
∑

i,j∈V ψij

Subject to ψij + di + dj ≥ 1 ∀(i, j) ∈ E
ψij + ψjv + ψvi 6= 2 ∀(i, j, v) ∈ V∑

i∈V di ≤ K
(1− di)×M > ξd − ei ∀i ∈ V
(1− ψij)×M > ξp − ϑij ∀i, j ∈ V
ψij ∈ {0, 1} ∀i, j ∈ V
di ∈ {0, 1} ∀i ∈ V

The ILP formulation of TMMP falls into the category of

NP-hard problems [9]. We propose two heuristic algorithms in

the next section to calculate the optimal mix zone placement

for TMMP.

V. HEURISTIC ALGORITHMS

A common technique to solve the ILP formulation of

TMMP is to relax the binary constraint ψij , di ∈ {0, 1}
to a pair of linear constraints 0 ≤ ψij , di ≤ 1. By doing

so, the original NP-hard problem is transformed to a Linear

Program (LP) that is solvable in polynomial time. In general,

the optimal solution derived from solving LP does not have

all variables either 0 or 1. It cannot be directly used to answer

TMMP. In this section, we develop two heuristic algorithms to

provide approximate solutions for TMMP. The first algorithm

assumes uniform traffic pattern over the network, and solves

TMMP formulation without constraints (9) and (10). We

976



denote this heuristic algorithm as Uniform Traffic Mix Zone

Placement (UTMP). It provides an estimation of achievable

privacy level when no knowledge about traffics is available.

The second heuristic algorithm aims at solving the complete

TMMP when LSI obtains enough traffic information over

the target area. We name it as Non-Uniform Traffic Mix

Zone Placement (NUTMP). Both UTMP and NUTMP share

the same set of inputs including the abstracted POI graph

G = (V,E) and the maximum mix zone number K, which

is typically less than the number of vertices in G. NUTMP

requires additional input of entropy information to take traffic

into account. Their output is a set Ω containing mix zone

placement locations in G.

8

3

6

10

12

11

5

4

9

7

2

1

Fig. 5. An execution snapshot of our heuristic algorithms. Concentric circles:
POIs in a graph. Edges: road segments connecting POIs. Shaded vertices:
articulation points. Circled vertices: maximal independent set in bottom part
of the graph.

A. Uniform traffic mix zone placement (UTMP)

In real world, any POI should be reachable from any other

POI in the target area. Thus the area graph is connected

without isolated points. We can see that the total number of

possible pairwise connections in such a graph of n vertices

is O(n2). The first step in UTMP is built on the observation

that partitioning G into several disconnected components is

helpful to eliminate the pairwise connections across these

components. Therefore, we are seeking for vertices whose

removal disconnect the graph. Such vertices are typically

referred to as articulation points in graph theory. Take the

area graph in Figure 5 as an example. Any route from 1 to

9 or from 1 to 12 needs to go through vertices 6 and 10.

Therefore, 6 and 10 are articulation points in this graph. If a

mix zone is deployed at vertex 6 or 10, a pseudonym appears

at any vertex in the bottom part of the graph cannot appear

at vertices 9, 12, and 11. Hence, the total number of pairwise

associations is reduced.

After G is partitioned into disconnected components, the

mix zone deployment in each component is further refined to

improve the solution quality. In graph theory, an independent

set refers to a set of vertices that are not adjacent to each other.

Hence, if all vertices that are not in an independent set are

selected as mix zones, there will be no pairwise association

between the vertices in the independent set. Again, refer to

the bottom part of Figure 5 as an example. Circle highlighted

vertices, {1, 8, 3, 5}, form a maximal independent set for the

lower part of the graph. If vertices {2, 4, 6, 7} are selected as

mix zones, a user Alice’s pseudonym ux appears at vertex 1

will not appear at any other vertex in the independent set. As

a result, Alice’s past and future locations on her trajectory are

protected, even though her identity get exposed at vertex 1.

Finally, we need to control the number of mix zones to meet

the cost and service constraint. At the last step of our algo-

rithm, we iteratively remove the vertex that introduces the least

number of pairwise association increment from the mix zone

candidate set selected by previous steps until constraint (3) is

met. Algorithm 1 summarizes the proposed UTMP algorithm.

Algorithm 1: Uniform traffic mix zone placement (UTMP)

input : A graph G = (V,E) and K

output: A set Ω of at most K selected mix zone

positions

/* --Step #1: Find articulation points-- */

Depth first search for G to find discover time i.d for

each vertex;

for each vertex i in G do

i.ν ← min{i.d,minbackedge i→w{w.d}} ;

end

Initialize articulation points set Λ← ∅;

for each vertex i in G do

if i.ν ≥ i.d then

Λ← Λ ∪ {i};
end

end

Ω← Ω ∪ Λ;

/* --Step #2: Maximal independent set-- */

Find maximal independent set ICj
for each connected

component Cj by iteratively adding non-adjacent vertices;

I ← ∪ICj
;

Ω← Ω ∪ {V \ I \ Λ};
/* --Step #3: Maintain cost constraint-- */

while |Ω| > K do
Find vertex x ∈ Ω that contributes the least pairwise

associations to V \ Ω, and remove it from Ω;

end

Return Ω;

B. Non-uniform traffic mix zone placement (NUTMP)

Algorithm 2 summarizes the proposed NUTMP algorithm

that further considers the impact of traffic conditions on mix

zone deployment effectiveness. Specifically, NUTMP incorpo-

rates two filtering procedures in addition to UTMP to guaran-

tee the final solution meets the traffic-related constraints (9)

and (10). First, in the articulation point selection step, only

those articulation points with entropy values higher than ξd
are considered as mix zone candidates and put into set Ω.

Second, unlike UTMP that selects a maximal independent set

as the starting point, in NUTMP, we first choose all vertices

that have lower entropy values than ξp into a set Ψ so that they

cannot be used as mix zones. Then, the vertices that are not

articulation points and are not adjacent to any vertex in from
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Ψ are put into Ψ. The reason for this step is similar to the

maximal independent set selection in UTMP. By adding non-

adjacent vertices to Ψ, no pairwise association is introduced

(if all others are mix zones). It is possible that the vertices not

qualified to become mix zones are adjacent to each other. If

the threshold values are set appropriately, the pairwise entropy

constraint should be satisfied in this step. Let Ω become

(V \ Ψ). By iterating through all mix zone candidates in Ω,

we remove those vertices that satisfy the pairwise entropy

constraint and incur the least number of pairwise association

increment until mix zone cost constraint (3) is met.

Algorithm 2: Non-uniform traffic mix zone placement

(NUTMP)

input : A graph G = (V,E), K, mix zone entropies,

and entropy matrix for vertex pairs

output: A set Ω of at most K selected mix zone

positions

/* --Step #1: Find articulation point-- */

Find articulation points set Λ as in Algorithm 1;

Remove the articulation points that have entropy value

less than ξd from Λ;

/* --Step #2: Non-mix-zone vertices

selection-- */

Put all vertices with entropy values less than ξd into Ψ;

Select vertices from V \ Λ \Ψ that are not adjacent to

any vertex in Ψ, and put them into Ψ;

Ω← V \Ψ;

/* --Step #3: Maintain cost constraint-- */

while |Ω| > K do
Find vertex x ∈ Ω that satisfies the pairwise entropy

constraint and incurs the least pairwise association

increase, and remove it from Ω;

end

Return Ω;

C. Complexity analysis

The complexity of both UTMP and NUTMP algorithms

consists of mainly three components. First, the method for

finding all articulation points in G is an algorithm suggested by

and analyzed in [9]. Its complexity is O(E). Second, finding a

maximal independent set by iteratively adding vertices that are

not adjacent to current selected vertices requires only linear

time in both heuristic algorithms. Step 3 in both UTMP and

NUTMP are similar to the critical node detection algorithm

proposed in [10], which has complexity O(|V |2|E|). As a

result, the overall complexity for UTMP and NUTMP are both

O(|V |2|E|).

VI. PERFORMANCE EVALUATION

In this section, we present the simulation results of the

proposed UTMP and NUTMP algorithms. Both algorithms are

implemented in C++. Due to the differences in privacy metrics

used and problem formulation, it is difficult to conduct direct

performance comparison with some existing works, e.g., [8],

[11], [12]. To evaluate the solution quality of UTMP and

NUTMP, we compare the results with the near optimal solu-

tion obtained from CPLEXTM [13] using standard techniques,

e.g., branch-and-bound algorithm. For trajectory generation,

we adopt the real world mobility trace of San Francisco Bay

area cabs from CRAWDAD [14]. The partial road map of the

same area is abstracted as our input graph. We select 20 POIs

from the map covering a diverse location types, e.g., road

intersections, hospitals, and bars/coffee shops.

A. Protection Effectiveness

First, we compare the solution quality of both UTMP and

NUTMP to the near optimal solution derived by CPLEXTM

(marked as “near-optimal”). Besides, we also include the

simulation results for randomly selected mix zone locations

(marked as “random”), and selecting representative mix zones

from K evenly partitioned components in G (marked as

“even”). The input graph is shown in Figure 7, where all POIs

are potential mix zone deployment locations. We evaluate the

protection effectiveness for K ranging from 0 to 10. For the

NUTMP algorithm, 20% of the edges and 10% of the vertices

are randomly selected as low-traffic locations. Their entropy

values are drawn from the normal distribution of N (1, 0.5),
and the entropy values for the rest are drawn from the normal

distribution of N (4, 0.5). Figure 6 shows the reduction in total
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Fig. 6. Total number of pairwise associations

number of pairwise associations when different number of mix

zones are deployed in the system. As expected, the number

of pairwise associations decreases with the increased number

of mix zones in all four methods, under both uniform and

non-uniform traffic assumptions. We observe that both UTMP

and NUTMP perform very close to the near optimal solution.

When the number of the selected mix zones is larger than 4,

the average difference of pairwise associations between our

heuristic algorithms and the near optimal solutions provided

by CPLEXTM is less than 10%. Because entropy constraints

for both vertex and incident edges are taken into account

in NUTMP, its outcome is in general different from UTMP.

Mostly the value derived from NUTMP is higher than that in

UTMP. A possible explanation for this phenomenon is that the

ideal locations for minimizing pairwise associations in UTMP

may not be qualified in NUTMP because of the traffic-related

constraints. Finally, when K becomes larger, the possibility
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of selection overlapping increases for all methods. Hence, we

observe that both “random” and “even” approach performs

fairly well when K is large. Figure 7 presents an example mix
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Fig. 7. Comparison of mix zone locations between CPLEX’s solution and
heuristic algorithms

zone selection result to compare the near-optimal solution and

our heuristic algorithms. We can see that, the majority of the

locations are overlapped. Since the assigned entropy values are

low for edges 3↔ 5 and 19↔ 20, and for vertices 3 and 20,

vertex 3 is not selected in Figure 7(c) and Figure 7(d). Instead,

vertex 19 is selected in Figure 7(c) and Figure 7(d) to satisfy

the traffic constraint. When the number of mix zones becomes

larger, the selected location sets exhibit more overlap. This

is the same trend exhibited in Figure 6(a) and Figure 6(b),

where the number of pairwise associations between optimal

and heuristic become very close.

B. Resilience to side information based attack

Utilizing the mix zone placement selection results presented

in the last section, we conduct another set of simulations

to investigate the systems’ resilience to side information

based attacks. We randomly select 500 partial mobility traces

from the San Francisco Bay area cab’s mobility traces in

CRAWDAD [14]. Each of them is recorded with a distinct

pseudonym. These mobility traces simulate users’ trajecto-

ries in the input graph. Since the trace file is recorded in

<time,coordinates> format, we consider a user stepping onto

the corresponding vertex in G, when his trace appears within

a certain range of one of the marked POIs. Similarly, the

coordinates of a user’s trace between two POIs are interpolated

and mapped to the closest edge in G. We randomly select some

portion of the selected user mobility traces to generate 100
shorter trajectories as side information. Each side information

belongs to a particular ID that serves as the true identity

of a user. Since real world side information often contains

noises [3], we obfuscate the generated side information to

better simulate this effect. The maximum likelihood estimation

approach for adversary A is implemented as described in [3]

to simulate the side information based inferential attack. An

attack is successful if the adversary finds out the corresponding

pseudonym used by a user in the side information. The success

rate of an adversary is the ratio of number of successful attacks

over total number of attacks. Figure 8 shows the attack success
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Fig. 8. Attack success rate under different traffic and mix zone deployment
situations

rate when different number of mix zones are deployed in the

target area. According to [3], this type of inferential attack has

high success rate when no mix zone is deployed. Using our

mix zone deployment algorithms, we observe that the attack

success rate can be reduced to about 50% of original value.

Moreover, the difference between our heuristic algorithms and

the near optimal solution provided by CPLEXTM is only about

10% on average. The reason is that, previously, a piece of side

information may be able to be matched back to its original

mobility trace with high probability. When more mix zones are

deployed, this mobility trace may be broken into more pieces

of shorter trajectories. It is difficult to find the best match

because the side information now faces many possibilities

with these broken trajectories under different pseudonyms.

From Figure 8 we can see that both UTMP and NUTMP

achieve nearly the same protection effect as the near-optimal

solutions, and result in lower attack rate than the other two

approaches. Moreover, from Figure 8(b) we can see that when

traffic intensity is considered, better protection effectiveness

is achieved. The reason is that when a road segment has high

traffic intensity, it is hard to distinguish users on the road

with or without the help of side information. Therefore, the

traffic-related constraint provides another level of protection

to privacy attack.

VII. RELATED WORK

Location privacy issues in mobile computing environments

have received significant attention in recent years. An early

study [15] showed that location-tracking LBS (locations are

tracked by other parties) generates more concerns of privacy

leaking than position-aware LBS (device’s self-awareness of

its current location) for mobile users. Hence, most existing

works focus on the location-tracking LBS model and assume
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the presence of a centralized trusted anonymization server. The

most popular technique to achieve desired level of privacy

protection is to degrade the resolution of location information

in a controlled way. This has led to a large number of

location perturbation and obfuscation schemes proposed in the

last decade. For example, spatial cloaking [16], [17] allows

obfuscation of a mobile user’s exact location using cloaked

spatial areas to meet anonymity constraints, e.g., k-anonymity.

However, spatial cloaking may result in a severe degradation of

service quality due to the large cloaked area over an extended

time period [18], and is not suitable to protect privacy in

the network-constrained mobile environments such as road

networks [19].

An alternative approach for location perturbation and obfus-

cation is to restrict locating of mobile user position in certain

areas, known as the mix zone model [15]. A mix zone often

covers a small area, e.g., a road intersection, and allows users

to change pseudonyms within the area. Due to its ability to

reduce the linkability between identity and trajectory, mix zone

deployment over road intersections has gained popularity in

vehicular networks. Given the presence of a global passive

adversary, Freudiger et al. [6] proposed the CMIX protocol

to create cryptographic mix zones at road intersections. Dahl

et al. [20] improved the cryptographic approach by fixing the

key establishment protocol in CMIX. A more sophisticated

protocol, MobiMix [7], improved attack resilience by consid-

ering various factors, e.g., traffic density, user moving patterns,

and etc. All these approaches do not consider the optimal

placement of multiple mix zones. Huang et al. [11] proposed

the use of cascading mix zones. Their investigation focused

on evaluating the QoS implication on real-time applications,

rather than protection effectiveness of using multiple mix

zones. Shin et al. [12] proposed a request partitioning method

to increase the unlinkability of different requests over time.

The most related research in [8] analyzed the optimal place-

ment of multiple mix zones with combinatorial optimization

techniques. Our work is significantly distinctive in the fol-

lowing aspects: (1) compared with the flow-based metric used

in [8], the cumulated pairwise location associativity is more

appropriate to capture the global placement effects; (2) using

on this metric, our optimal placement strategy is capable of

handling a recently emerging side information based attacking

model [3] in addition to the simple passive adversary model;

and (3) we consider the impact of traffic density at each mix

location to enhance the attack resilience.

VIII. CONCLUSION

This paper investigated the optimal multiple mix zones

placement problem for location privacy protection. We mod-

eled the area covered by location-based services as a graph,

where all vertices (POIs) are considered as candidates for

mix zone deployment. In order to protect mobile users from

side information based inferential attacks, we propose to use

pairwise vertex association to characterize the linkability of

the POIs along a user’s trajectory on the map. To achieve

maximum privacy protection, we formulated the optimization

problem with the objective of maximizing the overall discon-

tinuity of all possible trajectories on the road network and

subject to deployment cost and traffic constraints. For each

road segment and intersection, the traffic density effect in

terms of entropy is also taken into account. We designed two

heuristic algorithms for practical and efficient solutions to

the NP-hard optimization problem. Simulation results based

on realistic mobile user data traces show that our solution

yields satisfactory performance in reducing the success rate

of inferential attacks. The mathematical modeling and perfor-

mance results presented in this paper offer both theoretical and

practical guidance to multiple mix zones placement in mobile

networks for protecting users’ location privacy.
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