
Throughput-Delay Tradeoffs in Large-Scale
MANETs with Network Coding

Chi Zhang∗ and Yuguang Fang∗†
∗Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL 32611
Email: {zhangchi@, fang@ece.}ufl.edu

Xiaoyan Zhu†
†National Key Laboratory of Integrated Services Networks

Xidian University, Xi’an, China
Email: xyzhu@mail.xidian.edu.cn

Abstract—This paper characterizes the throughput-delay
tradeoffs in mobile ad hoc networks (MANETs) with net-
work coding, and compares results in the situation where only
replication and forwarding are allowed in each node. The
schemes/protocols achieving those tradeoffs in an effective and
decentralized way are proposed and the optimality of those
tradeoffs is established. The scenarios in which network coding
can provide significant improvement on network performance are
identified under different node mobility patterns (fast and slow
mobility). The insights on when and how information mixing
is beneficial for MANETs with multiple unicast and multicast
sessions are provided. As far as we know, this is the first work
characterizing scaling laws of throughput and delay of MANETs
with network coding.

I. INTRODUCTION

One distinct characteristic of wireless mobile ad hoc net-
works (MANETs) is that, besides transporting data through
multi-hop connected paths between the source and destination,
packets can also be delivered through the physical mobility of
relay nodes which is called store-carry-and-forward paradigm
in the literature [1]. Grossglauser and Tse [2] have shown that
significant gains in per-node throughput can be obtained by
exploiting this paradigm. In particular, they proposed a 2-hop
relaying scheme, and showed that it can achieve a constant
per-node throughput. The scheme overcomes the throughput
bound of O(1/

√
n log n) originally established by Gupta and

Kumar [3] for a static wireless network, where n is the number
of nodes for definitions of the standard asymptotic notation
used throughout the paper). Although heavy use of relaying
through node mobility allows for higher throughput, it also
bears negative side-effects: increased delay. It has been shown
in [4], [5] that the 2-hop relaying scheme in [2] yields an
extremely large average delay of Ω(n).

Since both throughput and delay are important network
performance metrics from the perspective of an application,
significant effort in the last few years has been devoted to un-
derstand the throughput-delay relationship in MANETs (refer
to Section II-A and the references therein) in the networking
research community. An interesting work by Neely and Modi-
ano [5] suggested to utilize redundant packets transmission
through multiple opportunistic paths (which are composed
of multiple opportunistic links) of a MANET to balance
the conflicting requirements on throughput and delay. The
basic idea is that the time required for a packet to reach
the destination (i.e., end-to-end delay) can be reduced by
repeatedly transmitting this packet to many relay nodes of
the network, and thus improving the chances that some user
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holding an original or duplicate version of the packet reaches
the destination node. Clearly, the cost of this approach is
the decreased throughput since duplicate packets waste scarce
opportunities of wireless transmissions. In particular, with
i.i.d. mobility, it was shown that for per-node throughput
T (n) = O(1), the relaying strategies with replication could
yield end-to-end delay D(n) scaling as Θ(n · T (n)) [5].

Previous studies on the scaling laws of MANETs, as
discussed above, are all based on the implicit assumption
that each node can only perform traditional operations on
packets, such as storage, replication and forwarding. Recently,
network coding, first introduced by Ahlswede et al. [6] in
2000, has been widely recognized as a promising primitive
operation besides simple replicating and forwarding incoming
packets [7]. Using the paradigm of network coding, when a
node is scheduled to transmit, it may transmit a “mixed” packet
as a result of algebraic operations on its incoming packets to
maximize the usefulness of this transmission to all receivers
in its transmission range. It is worth noting that a particular
useful form of network coding called Random Linear Coding
(RLC) was proposed in the literature [8], [9] to independently
and randomly mix incoming packets at each node with linear
operations, which allows the nodes of the network to achieve
the optimal performance in a decentralized fashion.

Intuitively, when RLC instead of replication is used to
minimize the end-to-end delay, network congestion can be
alleviated and the requirement on buffer size can be relaxed.
Therefore, a better throughput-delay tradeoff is expected to
be obtained. Since network coding was not taken into con-
sideration in Grossglauser and Tse’s original work [2] and the
related work [4], [5], [10] that followed, an interesting question
raised naturally is how much benefit network coding can
provide to the network performance of MANETs compared
to when only simple replication and forwarding are allowed
for relay nodes. Answering this question will help us better
understand not only the benefits and limitations of network
coding in wireless networks but also the fundamental tradeoffs
determining MANET’s performance.

In this paper we conduct a thorough study on the scaling
laws governing MANETs. We characterize the throughput-
delay tradeoffs with respect to different node mobility patterns.
We identify scenarios in which network coding can provide
significant improvement on network performance. Note that
our work differentiates MANETs from static wireless networks
by the roles network coding plays, because previous work
showed that network coding could only provide constant
improvement on the throughput of static wireless networks
(cf. Section II-C and the references therein). We also provide
insights on when and how information mixing is beneficial and
propose algorithms to show that these benefits can be achieved
in an effective and decentralized fashion.
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II. BACKGROUND AND RELATED WORK

A. Scaling Laws of MANETs without Network Coding

Seminal work of Gupta and Kumar [3] initiated the inves-
tigation on how the throughput of wireless networks scales
with n, the number of nodes. Under the assumption that nodes
with common transmission range are randomly distributed, it
is shown that per-node throughput for static wireless networks
scales as Θ(1/

√
n log n). Note that [3] implicitly used a

fluid model for establishing throughput scaling. Later work
by Kulkarni and Viswannath [11] consolidated the result
of [3] with an explicit constant packet size model. In [12],
with percolation theory, Franceschetti et al. showed that the
Θ(1/

√
n) per-node throughput is achievable if each node can

adjust its transmission range (through power control), however,
the throughput vanishing problem for large-scale (n → ∞)
static wireless networks still remains. In [2], Grossglauser and
Tse showed that the mobility of the nodes in a MANET can
be exploited to overcome this problem. The 2-hop relaying
scheme they proposed achieves a constant per-node throughput
at the cost of a large delay on the order of n [4], [5].
This result reveals the possibility of trading larger delay for
higher throughput or lower throughput for smaller delay in
MANETs. Since then, a flurry of research activities have tried
to characterize the throughput-delay relationship with respect
to node mobility, e.g., [4], [5], [13]–[20].

In general, there are two ways to trade throughput for delay
in the literature. Kleinrock et al. [21] may be the first to
find that delay can be reduced by increasing the transmission
radius of each relay node, at the expense of reducing the
number of simultaneous transmissions the network can sup-
port, which leads to a lower throughput. Similar transmission
radius scaling techniques have appeared in [4], [14]–[20].
Another approach, which improves delay via redundant packet
transfers is considered in [5], [22]. In this paper, we follow
this approach, adopting redundant strategy and comparing it
with network coding for the following reasons:

• First of all, the assumption that transmission ranges
can scale with n, the number of nodes, is impractical
for large-scale MANETs. To obtain the scaling law of
MANETs, we usually require n tending to infinity, which
is equivalent to assuming

√
An → ∞ for extended

network model, where An is the area of the network (cf.
Section III-A). In general, wireless device is power lim-
ited, rendering it impossible to require the transmission
range reaching the order of

√
An.

• Second, tradeoffs theoretically analyzed using the first
means mentioned above are mainly based on fluid model,
in which the packets are allowed to be arbitrarily small
as n → ∞ (e.g., [4], [14]–[17], [19], [20]). On the other
hand, tradeoffs obtained through the second approach
assume constant packet size model1, where the packet
size remains constant, i.e., does not scale down with
n (e.g., [5]). We prefer the constant packet size model
since in reality, packet size does not change when more
nodes are added to the network. Furthermore, fluid model
cannot be applied to scenarios with network coding, since
every coded packet includes a “code vector” of at least
constant size for successful decoding.

1Note that with the additional constraint that the packet size remains
constant, the throughput-delay tradeoff can be no better than that in the fluid
model, and the analysis of constant packet size model is much harder than
that of fluid model [18]. Throughout the paper, our results on scaling laws
of MANET with or without network coding are all based on constant packet
size model (cf. Section III-A) for the rigor of theoretical analysis.

• Finally, in this paper we are interested in examining
pure gains introduced by network coding in MANETs.
Replication strategies can be replaced by network coding,
which provides a good chance for comparison. Transmis-
sion radius scaling techniques, however, are orthogonal to
network coding, and should be studied separately.

We would like to point out that all the results discussed
above are based on the implicit assumption that only storage-
and-forwarding (without network coding) is allowed in each
node, while in this paper we seek to understand whether
network coding indeed affects the throughput-delay tradeoffs
in MANETs.

B. Network Coding Applications in Wireless Networks

At the very beginning, research on network coding mainly
focused on multicast scenario. In their pioneering theoretical
work, Alswede et al. [6] showed that the min-cut throughput
of a multicast session on a directed graph can be achieved,
provided that one allows network coding, i.e., encoding at the
intermediate nodes of the network. Conversely, it is generally
not possible to achieve this communication rate if one allows
only routing or copying packets at the intermediate nodes
of the network. Shortly afterwards, Li, Yeung, and Cai [23]
showed that it is sufficient for the encoding functions at the
interior nodes to be linear. Subsequent work by Jaggi et al. [8]
and Ho et al. [9] showed that the linear encoding functions
can be designed randomly and independently at each node,
which leads to a particular useful form of network coding, the
RLC. Since RLC operates in a decentralized fashion [24], [25]
which is extremely suitable for MANETs where centralized
control is almost impossible or costly, we concentrate on RLC
throughout the paper. Performance of RLC for local and global
broadcast in wireless networks has been extensively studied in
the literature, e.g., [7], [26]–[30].

For practically more important case of multiple unicast, we
can only ascertain that it is totally different from multicast
cases. For example, Li and Li conjectured in [31] that for
undirected network with multiple unicast sessions, network
coding does not help much on throughput. A deep understand-
ing on achievable throughput for multiple unicast sessions
in a network is still an open problem. In general, it is not
clear whether network coding should be performed, and if
it should, what the strategy must be [7]. One of our main
contributions in this paper is that we analytically address this
problem and show that, although RLC still cannot improve
the order of throughput in MANETs, it changes the achievable
throughput-delay tradeoffs significantly, which we believe will
help improve our understanding of the theoretical limits on the
benefits of network coding and on how to achieve them for
MANETs with multiple unicast sessions.

The idea that, when RLC is allowed in intermediate nodes,
compared to replication strategies [5], [22], larger throughput
can be achieved with the same delay and smaller sizes of
node buffers, was perhaps first explicitly developed in the
work [32] by Zhang et al., where a simulation-based study
of the benefit of RLC in one unicast communication is also
presented. The recent work by Lin and Li [33] gives a rigorous
analysis of this idea based on ordinary differential equations.
To our knowledge, [32] and [33] are the closest to our work in
terms of understanding the relationships between throughput
and delay with network coding. However, our work has the
following advantages:

• First of all, instead of explicitly modeling nodes’ spatial
distributions as in this paper, the mobility of nodes
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in [32] and [33] is modeled with meeting times of any
pair of nodes, to simplify the analysis. The problem is
that, the most important feature of wireless transmission,
i.e., interference, is not included in their modeling. It is
nevertheless still reasonable for [32] and [33], since the
authors are mainly interested in delay tolerant networks,
where nodes are assumed to be sparsely distributed and
interference from simultaneous transmissions can be ig-
nored. However, it is obviously not suitable for the study
of general MANETs.

• Second, the traffic pattern considered in our paper is more
practical. The number of unicast sessions supported in
this paper is Θ(n), while only one unicast or broadcast
session is assumed in [32] and [33].

• Next, only epidemic routing and its replacement of net-
work coding are considered in [32] and [33], while in
our work, several alternatives are considered and different
algorithms are developed, which achieve throughput-
delay pairs on different orders of n. Therefore, we obtain
a complete characterization of tradeoffs in MANETs.

• Most importantly, explicit expressions of network perfor-
mance or tradeoffs are obtained in our paper for the first
time, which provides insights on the degree of scalability
of MANETs with network coding.

C. Scaling Laws of Wireless Networks with Network Coding

Scaling laws governing wireless networks with network
coding have only been investigated in the limited scenarios in
the literature recently. The delay gains and reliability benefit
(measured in the reduced number of transmissions) of network
coding in unreliable wireless networks were characterized
in [34], [35] and [36], respectively. However, these results are
for one multicast session with one-hop transmission or stable
network topology. For multiple unicast scenario, Liu et al. [37],
[38] and Keshavarz-Haddadt et al. [39] showed that for static
wireless networks, network coding and broadcasting at most
provide a constant-factored improvement in the throughput,
compared to Gupta and Kumar’s Θ(1/

√
n log n) per-node

throughput [3]. As far as we know, the scaling laws for
throughput and delay are still unexploited for MANETs in
the literature. More importantly, our results show that, net-
work coding can provide significant improvement on network
performance when mobility is utilized, which is impossible
in static wireless networks [37]–[39]. We believe it reveals
the intrinsic difference between MANETs and static wireless
networks.

III. MANET MODELS AND DEFINITIONS

A. Network Models

Random network model for MANETs: Consider an ad hoc
network where n nodes are distributed uniformly at random
in a square area of An. The square is assumed to be a torus2,
i.e., the top and bottom edges are assumed to touch each other
and similarly the left and right edges also are assumed to
touch other. We consider a multiple (n) unicast scenario in
which each node i ∈ {1, 2, · · ·, n} is a source node for one
unicast session, and a destination node for another unicast
session. Suppose that the source node i has data intended
for destination node d(i). We assume that each source node
has an infinite stream of packets to send to its destination.

2We assume the torus to avoid edge effects, which otherwise complicates
the analysis. We note, however, that the results in the paper hold for square,
disk or any other shapes of practical interests.
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Fig. 1. Fast and slow mobility models for MANETs.

The source-destination (S-D) association does not change with
time, although the nodes themselves move.

Mobility models: The torus is divided into m = Θ(n) square
cells of area An/m each, resulting in a two-dimensional

√
m×√

m discrete torus3, see Fig. 1 for an illustration. The initial
position of each node is equally likely to be any of the m
possible cells independent of others. We assume the time is
slotted and we study the following mobility models in this
paper:

• Fast mobility model (i.i.d. mobility model): At each time
slot, nodes randomly choose a new cell location inde-
pendently and identically (i.i.d.) distributed over all cells
in the network. This model captures the situation when
mobile user moves so quickly that its position is almost
independent from time to time. With this assumption, the
network topology dramatically changes in every time slot,
so that the network behavior cannot be predicted and fixed
routing algorithms cannot be used. This mobility model
is also used in [5], [14], [16], [19], [20].

• Slow mobility model (random walk model): Let a node
be in cell (i, j) ∈ {1, · · ·√m}2 at time slot t, then,
at time slot t + 1, the node is equally likely to be in
the same cell (i, j) or any of the four adjacent cells
{(i−1, j), (i+1, j), (i, j−1), (i, j +1)}, where addition
and subtraction are modulo

√
m. So each node in fact

independently performs a simple random walk on the
two-dimensional

√
m×√

m discrete torus. Note that this
model implicitly sets an upper bound on the velocity of
nodes as

√
2An/m. Therefore, it is a suitable model

for capturing real motion of nodes with slow mobility.
Similar mobility model is also adopted in [4], [17]–[19].

Model for successful transmission: For characterizing the
condition for a successful transmission, we adopt the protocol
model as defined in [3]. We assume that all nodes use a
common range rc for their transmissions, and a transmission
from node i to node j is successful if and only if dij ≤ rc and
dkj ≥ (1 + Δ)rc for any other simultaneous transmitter, say
node k. Here, dij is the distance between nodes i and j, and Δ
is a positive constant independent of n. During a successful
transmission, nodes send data at a constant rate of W bits
per second. In the other commonly used model of successful
transmission, namely, the physical model, a transmission is
successful if the SINR is greater than some constant. It is
well known [3], [4] that with a fading factor α > 2, the
protocol model is equivalent to the physical model. Therefore,
we prefer the use of the protocol model in this paper for a
cleaner presentation of the key ideas.

Concurrently transmitting cells: Now we define the trans-
mission range and schedule. We choose rn in such a way

3For simplicity, assume
√

m is an integer.
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the blue cells which are in group 1 transmit in the same timeslot. In the next
timeslot all the cells in group 2 transmit and so on.

that any node in a cell can always directly transmit to any
other node in the same cell using the smallest common range
of transmission. Obviously, rc =

√
2sn =

√
2An/m =

Θ(
√

An/n). Time is slotted for packetized transmission. We
assume only O(1) packets can be transmitted per cell per
timeslot, i.e., our analysis is explicitly based on constant
packet size model (see [18] and Section II-A for detailed
discussion). We adopt the cell scheduling scheme shown in
Fig. 2, which has the following Proposition [11].

Proposition 1: Under the Protocol model, there exists an
interference-free schedule such that each cell becomes active
regularly once in K2 timeslots and it does not interfere with
any other simultaneously transmitting cells. Here K depends
only on Δ, and is independent of n.

Extended network model: We are particularly interested in
asymptotic properties of MANETs, which hold with high
probability4 for large-scale MANETs. Therefore, we need
often take limits as n → ∞. When the region area An is fixed,
it corresponds to a dense network model [3], [40], because
the density of the network d = n/An also tends to infinity
as n. Another widely used model is the extended network
model [41], [42], in which both the number of nodes and the
area of the region An go to infinity while d is kept constant.
Both models are widely used in the literature and we will focus
on the latter one. In the extended network model, An = n/d =
Θ(n), and correspondingly rc = Θ(

√
An/n) = Θ(1). This is

more practical, since power constraint on wireless devices does
not change when more nodes are added to the network. We
note that, however, results obtained in this paper can be easily
extended to dense network model.

B. Network Performance Metrics

Definition of throughput: A throughput λ > 0 is said to be
feasible/achievable if every node can send at a rate of at least λ
bits per second to its chosen destination. We denote by T (n),
the maximum feasible throughput w.h.p. Given a scheme Π,
let MΠ(i, t) be the number of packets from source node i that
destination node d(i) receives in t timeslots under scheme Π,
for 1 ≤ i ≤ n. Note that this could be a random quantity
for a given realization of the network. Define the long term
throughput of S-D pair i, denoted by λi

Π(n), to be

λi
Π(n) = lim inf

t→∞
1
t
MΠ(i, t).

Scheme Π is said to have throughput TΠ(n) if

lim
n→∞ P

(
λi

Π(n) ≥ TΠ(n) for all i
)

= 1.

4We say that an event occurs with high probability (w.h.p.) if its probability
tends to 1 as n → ∞.

We allow randomness in schemes and, as a result, random
quantities above are in the joint probability space including
both the random network of size n and the scheme Π. Note
that when network coding is utilized in scheme Π, MΠ(i, t)
is the number of successfully decoded packets received by the
destination d(i) of S-D pair i in t timeslots under scheme Π.

Definition of delay : The delay of a packet is the time it takes
the packet to reach the destination after it leaves the source.
We do not take queueing delay at the source into account,
since our interest is in the network delay. Let Di

Π(j) denote
the delay of packet j of S-D pair i under scheme Π, then the
sample mean of delay for S-D pair i is

D
i

Π = lim sup
k→∞

1
k

k∑
j=1

Di
Π(j).

The average delay over all S-D pairs for a particular realization
of the random network is then DΠ = 1

n

∑n
i=1 D

i

Π. The delay
for a scheme Π is the expectation of the average delay over
all S-D pairs and all random network configurations, i.e.,

DΠ(n) = E
[
DΠ

]
=

1
n

n∑
i=1

E
[
D

i

Π

]
.

When network coding is utilized, we consider the delay of
getting original packets. When an original packet mi belongs
to the generation M , the delay of mi under scheme Π is the
time from the first packet belonging to M leaves the source
to the original packet mi has been decoded in the destination.

IV. THROUGHPUT-DELAY TRADEOFFS WITHOUT

NETWORK CODING: SCHEMES AND RESULTS

In this section, we give a brief overview of the redundancy-
based schemes as presented in [5] and establish the
throughput-delay tradeoffs in MANETs without network cod-
ing. Some of the discussions presented here directly build on
results already established in [5]. They are included here for
completeness and comparison purposes .

We first describe three relay schemes with different redun-
dancy proposed in [5] from a unified point of view.
Three Redundancy-Based Schemes Proposed in [5]:

We can control the transmission redundancy of each packet
with two methods: the number of hops each packet will take
from source to destination, and the total number of copies
(replicas) of each original packet in the network. The three
schemes, namely, 2-hop relay without replicas, 2-hop relay
with k1 replicas, and multi-hop relay with k2 replicas represent
different combinations of the two methods.

Each scheme has two parts: (1) scheduling of active cells;
(2) scheduling of transmission in an active cell.

The three schemes have the same cell scheduling policy
(Part (1)) as follows:

• Each cell becomes active once in every K2 timeslots as
discussed in Proposition 1.

• In an active cell, transmission is always between two
nodes within the same cell.

In every active cell with at least two nodes, intra-cell
transmission scheduling (Part (2)) is needed.

• For 2-hop relay schemes, each packet at most takes two
hops from source to destination. The difference is that, for
2-hop relay without replicas, packets are not duplicated
and are held by at most one node (source or relay) at
any timeslot, while for 2-hop relay with k1 replicas, the
source will send k1 replicas to distinct nodes as relays.
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When destination nodes receive packets from relays, they
will first tell relays which packet they are looking for
before the transmission begins (using the handshake).

• Multi-hop relay with k2 replicas is just another type of
flooding scheme, which transmits k2 replicas of each
packet, and places no constraints on the number of hops.
At every timeslot in each active cell, the oldest packet
will be selected to send to all nodes in the cell.

Now, we analyze the performance of the schemes described
above. First of all, we give the lower bounds on delays under
fast mobility model as follows [5].

Theorem 1: Under fast mobility model, D(n) = Ω(log n)
for any scheme and D(n) = Ω(

√
n) for any 2-hop relay

scheme.
Remark 1: To achieve the optimal throughput with the

minimal delay given above, parameters like k1 and k2 in the
proposed schemes should be carefully chosen under different
mobility models. It has been shown in [5] that under fast
mobility model, k1 = Θ(

√
n) is enough for 2-hop relay

scheme to achieve the minimal delay Θ(
√

n). Further in-
creasing redundancy k1 will only reduce throughput without
decreasing delay. Following the same argument, we have the
optimal k2 = Θ(log n) for flooding scheme. These lead to the
following Theorem.

Theorem 2: Assuming infinite buffer space at each node,
throughput-delay tradeoffs achieved by the three redundancy-
based schemes proposed in [5] for MANETs under fast
mobility model can be summarized in the following table.

scheme throughput delay
2-hop relay without replicas Θ(1) Θ(n)
2-hop relay with k1 replicas Θ(1/

√
n) Θ(

√
n)

multi-hop relay with k2 replicas Θ
(

1
n log n

)
Θ(log n)

Proof: The proof of Theorems 1 and 2 is similar to the
proof of Theorems 3, 6, 7 and 8 in [5], with minor differences
caused by our use of the protocol model and cell scheduling
scheme, ignoring queueing delays at source nodes. Due to
space constraints, we do not repeat the proof here.

Next, we consider the throughput-delay tradeoffs under
slow mobility model. We first show that the tradeoff with
slow mobility is dramatically different from the one with fast
mobility by the following theorem.

Theorem 3: Under slow mobility model, D(n) = Ω(
√

n)
for any scheme and D(n) = Ω(

√
n log n) for any 2-hop relay

scheme.
Proof: From random walk model, node speed is upper

bounded by
√

2An/m = O(1) and the transmission range
rc = Θ(1). Therefore, information propagation speed will
be no larger than Θ(1) per timeslot. It can be shown that
the distance between the initial positions of S-D pair is
Ω(

√
An) = Ω(

√
n) w.h.p. [11]. Hence, the expected delay

is at least Ω(
√

n) timeslots. For 2-hop relay cases, see our
technical report [43] for a complete proof.

Theorem 4: Assuming infinite buffer space at each node,
throughput-delay tradeoffs achieved by the three redundancy-
based schemes proposed in [5] for MANETs under slow
mobility model can be summarized in the following table.

scheme throughput delay
2-hop relay without replicas Θ(1) Θ(n log n)

2-hop relay with k1 replicas Θ
(

1√
n log n

)
Θ(

√
n log n)

multi-hop relay with k2 replicas Θ
(

1
n
√

n

)
Θ(

√
n)

Proof: The proof for the performance of 2-hop relay with-
out replicas can be found in [4], [17]. The proof for the other
two schemes are not reported in the literature. We complete the
proof of this theorem in our technical report [43]. Note that
the performance above is achieved with k1 = Θ(

√
n log n)

and k2 = Θ(
√

n), respectively.

V. THROUGHPUT-DELAY TRADEOFFS WITH NETWORK

CODING: SCHEMES AND RESULTS

We first review RLC used in our network coding based
schemes. This bears exactly the same setup as in [25]. Then
we describe the schemes developed for analyzing tradeoffs
in MANETs with network coding, and identify scenarios in
which RLC improves network performance of MANETs.

A. Network Coding Operation

Random linear coding (RLC) is applied to a finite set of k
original packets (i.e., M = {m1,m2, · · · ,mk}), that is called
a generation. Each packet is viewed as an r-dimensional vector
over a finite field, Fq of size q, i.e., mi ∈ Fr

q , i = 1, 2, · · · , k.
If the packet size is m bits, this can be done by viewing each
packet as an r = �m/ log2(q)	-dimensional vector over Fq

(instead of viewing each packet as an m-dimensional vector
over binary field). Typically, F28 (i.e., F256) is used. All the
additions and multiplications in the following description are
assumed to be over Fq. We assume that all the k packets
in M are linearly independent. During the execution of a
RLC based relay scheme, the destination node of M collects
linear combinations of the packets in M . Once there are k
independent linear combinations at a node, it can recover all
the original packets in M successfully.

Now, consider a certain timeslot t. Let Sv(t) and Su(t)
denote the set of all the coded packets (each coded packet is
a linear combination of the packets in M ) at node v and u,
respectively, at the beginning of the timeslot t. More precisely,
if coded packet fl ∈ Sv(t), where l = 1, 2, · · · , |Sv(t)|, then
fl ∈ Fr

q has the form fl =
∑k

i=1 αli · mi, αli ∈ Fq. The
scheme ensures that ali’s are known to node v by appending
each packet fl with a “code vector”, which will be explained
a little later. Let Sv(t)− and Su(t)− denote the subspaces
spanned by the coded packets in Sv(t) and Su(t), respectively.
If Sv(t)− � Su(t)−, we say node v has useful information
about M for u. In timeslot t, if node v is scheduled by the
scheme to transmit a packet related to M to node u, v first
checks if it has useful information for u. If so, v transmits a
“random” coded packet with payload fnew ∈ Fr

q to u, where

fnew =
∑

fl∈Sv(t)

βl ·fl, βl ∈ Fq and P(βl = β) =
1
q

, ∀β ∈ Fq.

It is easy to check that fnew is still a linear combination of the
k original packets, and can be written as fnew =

∑k
i=1 θi ·mi

where θi =
∑

fl∈Sv(t) βl · αli ∈ Fq . For decoding purposes,
the vector (θ1, θ2, · · · , θk) ∈ Fr

q , called code vector, will
be appended to fnew, and sent as overhead. This overhead
clearly requires a padding of additional k log2(q) bits. If the
packet size m � log2(q), which would be the case under
our constant packet size model, then the overhead required
by the RLC based scheme can be ignored in our analysis.5

5 More precisely, the constant packet size model for original packets means
that the packet size scales as Θ(log n) bits, since it needs to carry the ID of
the destination node with Θ(log n) bits. For a fair comparison, we require
that k = O(log n) for the coded packets throughout the paper. Therefore
the overhead introduced by the code vector will not change the order of our
results on T (n) and D(n) for RLC-based schemes.
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We say that v sends an innovative coded packet fnew to u,
if fnew can increase the dimension of the subspace Su(t)−,
i.e., dim(Su(t)−). Note that dim(Su(t)−) ≤ k in general and
if dim(Su(t)−) = k, node u can recover all the k original
packets at once. We now recall the following key result about
RLC, which says that fnew will be an innovative coded packet
for u with probability no less than 1 − 1

q .
Proposition 2: (Lemma 2.1 in [25]) Let Su(t)+ = Su(t)∪

{fnew} be the subspace spanned by the code vectors in u
at the end of timeslot t, i.e., after receiving a coded packet
fnew from v according to the RLC based scheme described
as above. Then,

P
(
dim(Su(t)+) > dim(Su(t)−) | Sv(t)− � Su(t)−

) ≥ 1−1
q
.

B. RLC-Based Relay Schemes

In this subsection, we describe RLC-based relay schemes
with different routing strategies, which will be used later to
exploit throughput-delay tradeoffs in MANETs.

We first introduce the concept of big generation. In what
follows, when we say that the source node groups k =
ω(log n) original packets into one big generation, we in fact
separate these k packets into k/Θ(log n) generations, each
with Θ(log n) packets. When the destination node tries to
decode one original packet, it first needs to collect Θ(k) coded
packets from the big generation (with Θ(log n) coded packets
from each generation). Therefore the overhead introduced by
RLC is ignorable in our analysis (cf. footnote 5).

Schemes 1: 2-hop Relay with RLC
(1) k original packets in each source node will be grouped
into one (big) generation. Each source will send m = (1+ε)k
coded packets for each (big) generation, where ε is a constant.
(2) Coded packets for each generation will have the same
timestamp tp. The value of tp is the time the first coded packet
of that generation leaves the source. All coded packets of a
generation will be deleted from the relay buffer at the timeslot
t if t − tp > thp, where the threshold thp depends on D(n)
of the scheme and will be sufficiently larger than D(n).
(3) Each cell becomes active once in every K2 timeslots as
discussed in Proposition 1. In an active cell, transmission is
always between nodes within the same cell.
(4) For an active cell with at least two nodes, a random
transmitter-receiver pair is selected, with uniform probability
over all possible node pairs in the cell. With probability 1/2,
the transmitter is scheduled to operate in either “Source-to-
Relay” or “Relay-to-Destination” mode, described as follows:

• Source-to-Relay Mode: The transmitter sends a coded
packet of its current generation, and does so upon every
transmission opportunity while it is in source-to-relay
mode until m coded packets have been delivered to
distinct nodes. If all other nodes in the cell already have
one coded packet for that generation, the source will
begin to transmit coded packets from the next generation.
Every node stores a single packet per S-D pair per
generation. When the node receives a new packet, a relay
linearly combines the incoming packet with the stored
one, and replaces the stored packet with the result. Note
that the nodes operate in broadcast mode, i.e., every node
will hear every transmission in its range, and update the
packet storage as described above.

• Relay-to-Destination Mode: If the designated transmitter
has a coded packet in its relay buffer for the destination
node, and the rank of coded packets of that generation

in the receiver is smaller than k, the coded packet is
transmitted to the designated receiver.

Remark 2: Since m > k, we need a mechanism to stop
unnecessary relay of coded packets of a generation when it is
already decoded in the destination. Here we use a proactive
stopping mechanism, i.e., the timestamp of each generation,
since we can bound the delay of the scheme. In the analysis
part presented later, we will show that k = Θ(n), and D(n)
for this scheme is also Θ(n) for fast and slow mobility
models. Therefore, thp should be larger than Θ(n). More
complicated reactive stopping mechanisms (cf. [33] and the
references therein) can be adopted to enhance the efficiency
of the scheme in practice. However, we follow the simplest
design for analytical tractability of the scheme.

Schemes 2: Multi-hop Relay with RLC
(1) k original packets in each source node will be grouped
into one (big) generation. Each source will send m = (1+ε)k
coded packets for each generation, where ε is a constant. Two
timestamps for each generation are used. One is called the
generating time tg, based on the time for k original packets to
be grouped into a generation in the source. Another is called
transmission time tp, based on the time the first coded packet
of that generation is transmitted by the source.
(2) Each cell becomes active once in every K2 timeslots as
discussed in Proposition 1. In an active cell, transmission is
always between nodes within the same cell.
(3) For an active cell with at least two nodes, perform the
following: among all packets contained in at least one node
of the cell and which have useful information for some other
node in the same cell, choose the packet with the smallest
generating time tg . If there are ties, choose the packet from
the S-D pair i which maximizes (tg + i) mod n. Transmit this
packet to all other nodes in the cell. If the selected packet is in
the source, then the source will transmit the linear combination
of its k original packets of the same generation, instead of a
particular packet belonging to that generation.
(4) Every node stores a single packet per S-D pair per
generation. When the node receives a new packet, a relay
linearly combines the incoming packet with the stored one,
and replaces the stored packet with the result.
(5) All coded packets of a generation will be deleted from
the relay buffer at the timeslot t if t − tp > thp, where the
threshold thp depends on D(n) of the scheme and should be
sufficiently larger than D(n).

Remark 3: The generating timestamp tg is used to construct
a flooding scheme for one particular S-D pair where all n S-D
pairs are active and share the network resource. It is easy to see
that the packets from the oldest generation that has not been
delivered to all nodes will dominate the transmissions over the
whole network very quickly. The long-term fairness between
all S-D pairs is guaranteed since in the case of ties, packets
from S-D pair i are given top priority in every n timeslots.
Also note that, since at one particular timeslot, only one
generation from one S-D pair dominates the whole network,
the number of packets each relay needs to store in step (4) is 1,
i.e., just for one generation w.h.p. Another timestamp tp used
here has the same functionality as the previous scheme. The
threshold thp should be larger than D(n), scaling as Θ(log n)
and Θ(

√
n), respectively, for fast and slow mobility models.

C. Main Results for RLC-Based Schemes

In this subsection, we summarize the performance of the
above schemes under different mobility models. Here, we
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Fig. 3. Timetables for different RLC-based schemes under slow mobility
model.

focus on the intuition and explanation of these results. Proofs
of theses results will be given in the next Section.

Theorem 5: When 2-hop relay with RLC scheme is used
and k = Θ(n), we have T (n) = Θ(1) and D(n) = Θ(n) for
fast and slow mobility models.

Remark 4: Compare to Theorems 2 and 4, it is easy to see
that, RLC provides delay improvement Θ(log n) under slow
mobility model. No gain is found under fast mobility model. It
is not surprising, since 2-hop relay with RLC scheme is used to
replace 2-hop relay without replicas, and we know that in the
latter, there is no duplicated packets in order to maximize the
throughput. Thus we cannot expect any gains when network
coding is used. The gain Θ(log n) of delay under slow mobility
model comes from the lower information propagation speed,
and the mixing of packets increase this speed by guaranteeing
that every packet the destination received from relay nodes
will contribute some information for the decoding of the
packet from the same generation. For fast mobility model,
this benefit vanishes since the information propagation speed
is high enough, and the delay for waiting k coded packets for
decoding dominates the whole delay.

Theorem 6: When multi-hop relay with RLC scheme is
used, under fast mobility model with k = Θ(log n), we have
T (n) = Θ(1/n) and D(n) = Θ(log n). Under slow mobility
model with k = Θ(

√
n), we have T (n) = Θ(1/n) and

D(n) = Θ(
√

n).
Remark 5: Under fast and slow mobility models, multi-

hop RLC-based schemes always provide significant gains
compared to flooding schemes. We can see that the RLC-based
scheme can achieve minimal delay, with an improved delay-
constrained throughput. The intuition is that, when flooding is
used, there exist enough opportunities to enhance performance
by replacing replicas with more intelligent coding.

Fig. 3 compares timetables of 2-hop and multi-hop RLC-
based relay schemes. It can be found that in 2-hop relay
schemes, multiple sessions operate in a parallel fashion, while
in multi-hop relay schemes, they operate in a sequential
fashion. Therefore, at each timeslot, for 2-hop relay schemes,
traffic pattern is still multiple unicasts. Recall our discussion in
Section II-B, for multiple unicasts, we seldom find gains from
network coding. While for multi-hop relay schemes, at each
timeslot, traffic pattern looks more like one broadcast session,
where gains from network coding are naturally expected.

Remark 6: Also notice that, multi-hop relay schemes can be
divided into multiple phases, and in each phase, relaying for
one generation from one S-D pair will dominate the network,
which is in fact a type of information flooding in this phase
(refer to Fig. 3(b) for illustration). The result is that in each
phase, packets from one generation will be broadcasted to the
whole network, and if the other n−1 nodes are receivers, they
can all decode the original packets in that generation at the
end of that phase. So it guarantees that multi-hop relay with
RLC coding can support all-to-all traffic pattern (n broadcast
sessions) with the same performance. Note that this also means
that the same network performance can be achieved for any n

multicast sessions (since receivers in this case are just a subset
of receivers in the broadcast case). From Theorem 6, we can
easily obtain the following corollary on the performance of
multiple broadcasts and multicasts with network coding.

Corollary 1: For all-to-all communications or any multi-
casts with n sources, when multi-hop relay with RLC scheme
is used, under fast mobility model with k = Θ(log n), we
have T (n) = Θ(1/n) and D(n) = Θ(log n). Under slow
mobility model with k = Θ(

√
n), we have T (n) = Θ(1/n)

and D(n) = Θ(
√

n).
In [30], Fragouli et al. designed an RLC-based scheme

based on results from [25]. For all-to-all communications,
they showed that their scheme achieves T (n) = Θ(1/n) and
D(n) = Θ(n) under fast mobility model. Obviously, their
scheme obtained the same throughput as ours at the cost of
much larger delay. The basic idea of their scheme is that,
k packets from k different sources will be grouped into one
generation, and the relaying scheme is essentially the same as
ours. The comparison here raises an interesting question—why
in our RLC-based schemes we only mix packets from the same
source? The reasons are the following: first of all, as shown
in the above comparison, even for all-to-all communication
scenarios, mixing packets from different sources is not a good
choice. Second, for multiple unicast scenarios, we mix packets
from different sources and these packets have different desti-
nations. When one destination decodes a packet designated
for another destination, this packet is in fact a duplicate at
the first destination which will reduce the throughput. In our
multi-hop relay with RLC, we also introduce redundancy for
the same reason. However, the redundancy here is explicitly
designed for decreasing the delay. While for the former case,
it is purely a waste of network resource in multiple unicast
scenarios. Finally, grouping packets from different sources
requires coordinations. We are not sure about the cost for
performing this coordination task, and we are interested in
designing fully decentralized schemes, in which the operations
from different nodes should be decoupled as much as possible.

VI. THROUGHPUT-DELAY TRADEOFFS WITH NETWORK

CODING: ANALYSIS

In this section, we give outlines of proofs for the results on
RLC-based relaying schemes discussed in the previous section.
Intuitions behind these proofs are also provided.

A. Preliminaries

To facilitate the theoretical analysis, we need first investigate
two critical delays for fast and slow mobility models: minimal
delays for 2-hop relays and for flooding. Here, 2-hop relay
represents any scheme with controlled redundancy on the
number of hops (in the 2-hop relay case, the number of hops
for each packet is 2, and other schemes with constant hop
constrains will yield the critical delays on the same order of n),
and flooding represents all schemes that remove this constraint
totally.

Consider the following situation: initially, only one node’s
color is red, which we call the source. All other nodes are
blue. Whenever a source node encounters a blue node (in
the same cell), the latter is colored red. The time for Θ(n)
nodes to become red is called minimal 2-hop delay. If we
change the rule slightly: whenever a red node encounters a
blue node, the latter is colored red, then the corresponding
time is named as minimal flooding delay. Obviously, these two
critical delays reflect the intrinsic properties of how mobility
will facilitate information propagation. These two quantities
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are scheme-independent, i.e., they hold for any scheme with
or without replicas and with or without network coding.

For fast mobility model, the values of these two critical
delays are available in the literature [5], and are included here
for completeness.

Lemma 1: (Theorem 3 and Lemma 3 in [5]) The minimal
2-hop delay and the minimal flooding delay under fast mobility
model are Θ(n) and Θ(log n), respectively.

Next, we present the results for slow mobility model.
Lemma 2: The minimal 2-hop delay under slow mobility

model is Θ(n).
Proof: Under slow mobility model, the joint position of

two nodes due to independent random walks can be viewed as
a difference random walk relative to the position of one node.
Then the inter-meeting times are just the inter-visit times of
cell (1, 1) for the difference random walk on a

√
n×√

n torus.
Let τ be the random variable representing the inter-meeting
time defined as above. El Gamal et al. prove the following
Lemma in [17].

Lemma 3: E [τ ] = n and E
[
τ2

]
= Θ(n2 log n).

Let N be the number of distinct nodes the red node has
met in n timeslots. Based on above results, we can obtain that
E[N ] = (1 − ε)n, where 0 < ε < 1 is a constant, and σN =
O(n log n). By Chebyshev inequality, for any 0 < κ < 1,

P {N ≤ (1 − κ)E[N ]} ≤ σN

κ2E[N ]2
= O

(
log n

n

)
→ 0,

which means that N = Θ(n) w.h.p.
Lemma 4: The minimal flooding delay under slow mobil-

ity model is Θ(
√

n).
Proof: Note that, Theorem 3 already shows that no

scheme will obtain a delay better than Θ(
√

n) under slow
mobility model. We need just to show that this is achievable
using flooding. We cite the following important result about
rumor spreading on torus: Theorem 3 in [44] states that
following the flooding rule mentioned above, at timeslot t,
there exists a sub-torus of size

√
t ×√

t, where for each cell
in this sub-torus, there exists at least one red node. Therefore,
in Θ(

√
n) timeslots, we can cover the whole torus of size√

n ×√
n w.h.p.

The following lemma is useful in delay analysis, since it
confirms that the effect of transmission scheduling only con-
tributes a constant factor, which can be ignored in asymptotic
analysis. Therefore, the time for two desired nodes to meet
will dominate the delay of the scheme.

Lemma 5: In the schemes mentioned above, every node
will be scheduled to transmit or receive a packet with a
constant, non-vanishing probability that is independent of n.

Proof: This result can be obtained from Proposition 1. It
only depends on the steady state node location distribution.
Note that fast and slow mobility models have the same node
location distributions in the steady state. Therefore, this result
applies to both mobility models.

B. Proof for Main Results

Proof outline for 2-hop relay with RLC (Theorem 5):
We first prove the case for fast mobility model. Obviously,

if we can prove that in N = Θ(n) timeslots, the destination
can receive Θ(n) coded packets, then based on Proposition 2
the destination has enough coded packets to recover k = Θ(n)
original packets w.h.p. Therefore, delay is upper bounded by
O(n) and the throughput is T (n) = O(1).

From the description of the scheme, we know the source
will send m = Θ(n) coded packets to the network. However,

the destination may get k′ packets, which is fewer than m
packets for the following reasons:

(1) The source node only delivers coded packets to m1 < m
different nodes acting as relays in N timeslots;

(2) The Destination node only meets m2 < m1 relay
nodes that have useful information about the generation the
destination wants to decode in N timeslots;

(3) Furthermore, k′ < m2 since when the destination meets
a relay, it will not always be scheduled to receive a packet from
the relay. However, based on Lemma 5, the difference between
k′ and m2 caused by the above reasons is upper-bounded by
a constant factor and we can assume that Θ(k′) = Θ(m2).

Obviously, if there are Θ(n) nodes in the network which
have useful information for the destination, the probability
for the destination to meet a relay in each timeslot is a
constant value, i.e., will not scale down with n. Therefore,
P{k′ = Θ(n)|m1 = Θ(n)} = 1. Thus, we need to prove that
m1 = Θ(n), which is established in Lemma 1). Due to space
constraints, we do not repeat the proof here.

The proof for the slow mobility case is similar to the
argument above, and the differences are given as follows:
Recall that Lemma 2 already shows that after N1 = Θ(n)
timeslots, m1 = Θ(n). From [45], we know that the mixing
time of a simple random walk on a

√
n × √

n torus is also
Θ(n). Therefore, there exist a constant ε such that after
N2 = εn timeslots, these m1 nodes with coded packets are
uniformly distributed in the torus w.h.p. which means that
each node in the network has coded packets with a constant
probability. Instead of collecting coded packets as soon as
possible, the destination nodes begin to collect packets after
N1 + N2 timeslots. It can be proved that the timeslots N3

required to collect n coded packets is still Θ(n). Therefore
the total delay N = N1 + N2 + N3 = Θ(n) w.h.p.

In both mobility models, each source node sends m = Θ(n)
coded packets for each big generation, and each big generation
has Θ(n) original packets, then each coded packet contains
Θ(1) information of original packets. Because every coded
packet is transmitted twice, we have T (n) = Θ(1).

Proof for multi-hop relay with RLC scheme (Theorem 6):
The central problem here is still the following: can desti-

nation node get Θ(k) coded packets within Θ(k) timeslots?
If it is the case, based on Proposition 2 the destination has
enough coded packets to recover k original packets w.h.p.
Then the delay is upper bounded by O(k). Replacing k
with Θ(log n) and Θ(

√
n) for fast and slow mobility cases,

respectively, we obtain the results on delays. Since we get
k original packets in Θ(k) timeslots, the throughput for the
phase when the transmissions of this S-D pair dominate the
network is Θ(1). For fairness embedded in the scheme, this
situation happens once for Ω(1/n) phases. Therefore, long-
term throughput T (n) = O(1), which completes the proof.

Next, we concentrate on an equivalent problem: how many
timeslots do we need in order to receive at least Θ(k) coded
packets at the destination? We denote it as N . Obviously,
E[N ] ≤ E[S1]+E[S2], where S1 and S2 respectively represent
the timeslots required for Θ(n) nodes in the network to have
one coded packet for that generation, and the time required
for the destination to receive Θ(k) packets given that other
Θ(n) nodes hold coded packets.

Note that Lemma 1 and Lemma 4 establish that E[S1] =
Θ(log n) and E[S1] = Θ(

√
n) for fast and slow mobility

models, respectively. They both agree with Θ(k) in respective
schemes. In fact, it does not happen by coincidence but by
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how we choose the parameter for RLC. Thus we obtain
E[S1] = Θ(k). For S2, since Θ(n) nodes in the network
have the coded packet, every transmission happened in the
destination’s cell will help obtain a coded packet w.h.p., which
leads to E[S2] = Θ(k). Summing E[S2] and E[S2] proves the
result that E[N ] ≤ Θ(k). See our technical report [43] for
detailed proof.

VII. CONCLUDING REMARKS

In this paper, we characterize the throughput-delay tradeoffs
in mobile ad hoc networks (MANETs) with network coding,
and compares with the scenarios where only replication and
forwarding are allowed in each node. The schemes/protocols
achieving those tradeoffs in an effective and decentralized way
are proposed and the optimality of the tradeoffs is established.
The scenarios in which network coding provides significant
improvement on network performance are identified under
different node mobility patterns (fast and slow mobility). The
insights on when and how information mixing is beneficial
for MANETs with multiple unicast and multicast sessions are
provided.
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