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Abstract—Wireless ad hoc networks (WANETs) offer commu-
nications over a shared wireless channel without any pre-existing
infrastructure. Forming peer-to-peer security associations in self-
organized WANETs is more challenging than in conventional
networks due to the lack of central authorities. In this paper,
we propose a generic model to evaluate the relationship of
connectivity, memory size, communication overhead and security
in fully self-organized WANETs. Based on some reasonable as-
sumptions on node deployment and mobility, we show that when
the average number of authenticated neighbors of each node is
Θ(1), with respect to the network size n, most of the nodes can
be securely connected, forming a connected secure backbone, i.e.,
the secure network percolates. This connected secure backbone
can be utilized to break routing-security dependency loop, and
provide enough derived secure links connecting isolated nodes
with the secure backbone in a multi-hop fashion, which leads to
the secure connectivity of the whole network.

I. INTRODUCTION

By definition, a wireless ad hoc network (WANET) (mobile
or stationary) is a group of wireless nodes that coopera-
tively form a network which operates without the support
of any pre-established or centralized network management
infrastructure [1]–[3]. In the literature, there are two extreme
ways to introduce security in WANETs: (1) through a single
authority domain, where certificates and/or keys are issued by
a single authority, typically, in the system setup phase [4]–
[9], or (2) through full self-organization, where security does
not rely on any trusted authority or fixed server, not even
in the initialization phase [1]–[3], [10]. In this paper, we
follow the second approach. Our main motivation comes from
observations on some WANET scenarios, which require self-
organized network management, e.g.,

• when the WANET merges and partitions in a sporadic
way and the network cannot be pre-planned;

• when each user has individual interests and thus is its own
authority domain where the full control of the security
settings of its own nodes is desired;

• when users prefer to join and leave the network at random
without contacting any remote trusted authority;

• when the number of users gets large and thus the key
servers, if any, will become the bottleneck or central
points of failure.

This work was supported in part by the U.S. National Science Foundation
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All these situations highlight the need of a security architec-
ture with self-organization property, i.e., the ability of nodes to
establish security associations among themselves after network
formation without the aid of any form of on-line or off-line
trusted third party (TTP) [1]. Although not all WANETs are
required to be fully self-organized, this property is considered
as one of the final objectives in most of the ongoing research
projects, such as Terminodes, Spontnet and zero-configuration
networks [1]–[3], [10].

Impromptu, self-organized WANETs can be informally vi-
sualized as a group of wireless communication devices (called
WANET nodes in this paper), held by people without any pre-
planning, coming together to form a network for a common
purpose (e.g., emergency response). Some keying materials for
primary security associations (SAs), which we will formally
define later, are already pre-configured in communication
devices, based on the trust relationships between the people
involved. The problem is how to exploit those primary security
associations to provide secure communication for arbitrary
node pairs when needed.

Neighbor authentication, which provides hop-by-hop secu-
rity, is the first step for secure communications in all kinds
of networks. This is especially crucial for WANETs since
every node need to act as the router to forward packets for
others. If the node cannot authenticate its physical neighbors,
how can it trust all those physical neighbors to handle its
packet correctly? Obviously, neighboring nodes with primary
security associations can authenticate each other directly with
pre-configured keying materials. Since the number and the
distribution of primary security associations are determined
by the embedded social network (e.g., trust relations) of
users, a node may not have primary security associations
with any of its physical neighbors. In this case, a Neighbor
Authentication Protocol (NAP) is required to set up derived
security associations with its neighbors on the need basis with
the help of already authenticated neighbors.

Although some examples of fully self-organized security
architecture for WANETs have been discussed in the litera-
ture [1]–[3], [10], many theoretical problems are still remain-
ing: e.g., what is the minimum fraction of primary SAs for
securing all the links? What is the communication overhead
for NAPs to provide derived SAs? How do the characteristics
of the trust graph of users affect the performance of NAPs
and the security of WANETs? Is this kind of self-organized
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WANETs scalable in terms of the required memory size for
keying material in each node or the communication overhead
for the NEP, when the network size becomes arbitrarily large?

In this paper, we propose a generic model to evaluate
the relations of connectivity, memory size, communication
overhead and security in fully self-organized WANETs. Based
on some reasonable assumptions on node deployment and
mobility, we show that when the average number of authen-
ticated neighbors of each node is Θ(1), with respect to the
network size n, most of the nodes can be securely connected,
forming a connected secure backbone, i.e., the secure network
percolates. This connected secure backbone can be utilized to
break routing-security dependency loop (cf. Section II-B), and
provide enough derived secure links connecting isolated nodes
with the secure backbone in a multi-hop fashion, which leads
to the secure connectivity of whole network.

II. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

1) Physical Graph G(Xn, Epl): Let Xn = {X1,X2, · · · ,
Xn} denote the node set of a WANET, with network size
|Xn| = n. By slight abuse of notation, we let Xi denote the
location, as well as the identity, of a node. The n nodes are
distributed uniformly at random on the given geographical
area, which is, without loss of generality, a unit disk D
centered at the origin. Two nodes Xi and Xj have a physical
wireless link (Xi,Xj) if their Euclidean distance is no greater
than rn, the communication range, and Xi and Xj are called
physical neighbor with respect to each other. Let Epl denote
the physical link set. The graph G(Xn, Elink) with vertex set
Xn and edge set Elink is termed random geometric graph
(RGG) [11], which is widely used in the literature to model
the physical graph of a WANET. A physical path between two
nodes, e.g., X1 and Xk, is a set of consequential edges in Epl.
Two nodes are said to be physically connected if there exists
a physical path that starts at one and ends at the other. Graph
G(Xn, Epl) is said to be physically connected if every pair of
nodes in the graph is physically connected. In this paper, we
are mainly concerned with events that occur inside the unit
disk D with high probability (w.h.p.); that is, with probability
tending to one as n → ∞.

For a mobile WANET, we assume that nodes move inde-
pendently in the unit disk D according to a Brownian motion
model (BMM) in [12]. We assume that the initial positions of
nodes are i.i.d. and uniformly distributed in the disk D. This
implies that the positions of the nodes will remain uniform
at all times under the BMM. Since we are only interested in
the statistical properties of G(Xn, Epl) and other related graph
models, based on the BMM, we can omit the time dimension
and treat the mobile WANET as static in a given time point,
which will greatly simplify our analysis. Note that the results
of this paper also apply to other related mobility models such
as the random walk mobility model [13] and the Markovian
mobility model [14]. This is because the Brownian motion
model can be viewed as a limiting case of these other mobility
models [12].

b

a
c

e

d

f

g

Communication Range

Fig. 1. An exemplary WANET with primary SAs. Here solid lines and
dashed lines represent physical links and primary SAs, respectively.

2) Trust Graph G(Xn, ESA): When we say two nodes have
primary security association (SA), we mean that two nodes
trust each other and either a symmetric key are shared between
them, or that the nodes know each others’ authentic public
keys. Two nodes may have exchanged their keys through a side
channel (e.g., over an infrared channel at the time of a physical
encounter, or just manually set up those keys). We further
assume that security associations are always symmetric. In
the beginning, this assumption may seem conflicting with the
asymmetric nature of certificates on public keys. Due to the
fact that node Xi knows the authentic public key of node
Xj does not necessarily imply that node Xj also holds the
authentic public key of node Xi, and vice verse, relations in
certificate graph [1], [3], [14] are asymmetric. However, first
of all, in practice the statistical analysis of the “Web of Trust”
among users of Pretty Good Privacy (PGP) [15], the market
leader in the world of secure email communications, shows
that about 2/3 of the links in the large strongly connected
component are bidirectional [16]. Second, in our scheme, we
require two nodes to bidirectionally exchange their keying
materials in order to successfully establish a primary SA.
Third, besides the requirement of possessing correct keying
material, we also require that two nodes trust each other, e.g.,
they rely on each other to handle their packets, which is the
reason that this kind of trust must be bidirectional. Primary
SA can be deemed as a logical link connecting two nodes
in the WANET. We name two nodes with a primary SA as
friends and denote the set of primary SAs as ESA. The graph
G(Xn, ESA) with vertex set Xn and edge set ESA is termed
the trust graph, and is used to model the trust relationships
between users in the WANET.

The characteristics of trust graphs created in WANETs will
depend on the existing social relationships between users. In
what follows, we just introduce one simplified parameter pf

to quantify the existence of SAs in the WANET.
We consider a homogeneous trust graph model, i.e., the

number of friends of each node is on the same order of n.
Based on the i.i.d. and uniform distribution of initial positions
of the nodes and the BMM, whenever two nodes meet as
physical neighbors, they will be friends (have a SA) with
almost the same probability, denoted as pf .

3) Secure Graph G(Xn, Esl) or G(Xn, gpf
): Obviously,

when one of Xi’s friends, e.g., node Xj , becomes the physical
neighbor of Xi, then nodes Xi and Xj can directly authen-
ticate each other. We call Xi the neighboring friend of Xj ,
and there exists a secure physical link through wireless com-
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Fig. 2. Graph models constructed from the original wireless ad hoc
network in Fig. 1. (a) Physical graph; (b) trust graph; (c) secure graph; (d)
local augmented secure graph.

munication between Xi and Xj . We denote the set of secure
physical links as Esl, and define the graph with vertex set Xn

and edge set Esl as the secure graph. Since (Xi,Xj) ∈ Esl

iff (Xi,Xj) ∈ Epl and (Xi,Xj) ∈ ESA, G(Xn, Esl) is the
coupled graph of G(Xn, Epl) and G(Xn, ESA).

Note that some links in set Epl\Esl can also be secured with
the assistance of local authenticated neighbors. We name all
those links locally augmented secure links, denoted as Elasl.
The graph G(Xn, E ′

sl) with E ′
sl = Esl ∪Elasl is termed locally

augmented secure graph. The relationship between G(Xn, Esl)
and G(Xn, E ′

sl), and the techniques to locally augment secure
links will be further investigated in Section III-C. We can
define the secure connectivity in G(Xn, Esl) (or G(Xn, E ′

sl))
in a way similar to physical connectivity in G(Xn, Epl), i.e.,
there exists a secure path with links in Esl (or E ′

sl) for arbitrary
node pairs in Xn ×Xn.

Here we give a generalized formulation to describe the
graph models introduced above. Given Xn as the vertex set, we
connect every two nodes Xi and Xj (i �= j) with probability
g(Xi − Xj). The resulting graph is denoted as G(Xn, g).
We term the connected components of G(Xn, g) as clusters,
and the number of nodes in each cluster as its order. The
cluster with the maximal order is called the giant cluster. The
graph G(Xn, g) is connected iff there exists only one cluster.
Therefore, G(Xn, Epl) can also be denoted as G(Xn, g1),
where

g1(x) =
{

1 if |x| ≤ rn,
0 if |x| > rn.

(1)

Given pf , G(Xn, Esl) can also be denoted as G(Xn, gpf
),

where

gp(x) =
{

pf if |x| ≤ rn,
0 if |x| > rn.

(2)

Based on the property of the Poisson process, the number
of physical neighbors and the number of neighboring friends
for each node in Xn are random variables following Poisson-
distribution with expected values of nπr2

n and pf · nπr2
n,

respectively (for simplicity, here we ignore the border effect,
cf. the Appendix in [17]). Using the term of graph theory,
these two values are also called the average node degree for
G(Xn, g1) and G(Xn, gpf

), respectively.

B. Neighbor Authentication and Pairwise Key Establishment

For self-organized WANETs, neighbor authentication con-
sists of three phases, namely neighboring-friend discovery,

local secure-link and multi-hop secure-link augmentation.
The neighboring-friend discovery phase takes place when

a node discovers that a new neighboring node appears in its
one-hop neighborhood. The simplest way for any two nodes
to discover if they are friends is that each node encodes
its node ID and relevant identification information in clear
text into its beacon message (also called HELLO message)
which is periodically broadcast to its physical neighbors for
neighbor discovery and channel usage coordination in MAC
layer. Alternate methods exist which hide identity information
from an adversary thereby establishing private neighboring-
friend discovery. When one node finds another as its friend,
they mutually authenticate the identity of the other party as
it claims, using any challenge-response protocols. When two
neighboring nodes are mutually authenticated, a secure link is
established, and their security association is realized, or acti-
vated. After the first phase, each node Xi knows all its physical
neighbors and neighboring friends, which are denoted by
sets N(Xi) and NF (Xi), respectively. The sets authenticated
and unauthenticated neighbors of node Xi are represented
by NA(Xi) and UA(Xi), respectively. After the first phase,
NA(Xi) = NF (Xi), UA(Xi) = N(Xi) \ NF (Xi) and
the nodes with secure links are modeled by the trust graph
G(Xn, Esl).

Due to the limitation of the trust graph, nodes can only
share primary SAs with a subset of the neighboring nodes.
Therefore, the local secure-link augmentation phase is needed
to establish derived SAs with the remaining neighbors with
the help of authenticated neighbors. The techniques and quan-
titative analysis of the second phase will be detailed in Sec-
tion III-C. Here, we just emphasize that in this phase, each user
only makes use of its one-hop neighbors’ information, which
can be collected in the MAC layer. Once a neighbor in set
UA(Xi) is authenticated and the pairwise key is established
in the second phase, it is included in set NA(Xi) and deleted
from set UA(Xi), and the corresponding locally augmented
secure links will be added in the set Elasl. After this phase,
nodes with secure links are modeled by the graph G(Xn, E ′

sl),
where E ′

sl = Esl ∪ Elasl.
Note that the key difference between WANETs and other

distributed systems is that, each node in the WANET is
required to act as a router to forward packets for other nodes.
This unique feature introduces the well-known routing-security
dependency loop [18], [19]: acyclic dependency arises between
security services and routing services since multi-hop security
services require routing layer security themselves. This loop
implies two consequences especially for node authentication.
On the one hand, the primary SA between two remote nodes
cannot be utilized if there is no secure path between them.
Even though the packets can be end-to-end encrypted or
authenticated, they are at risk to be sent through false routes,
or simply dropped without the secure path (routing layer
security). On the other hand, derived SAs between neighboring
nodes cannot be established over multiple hops if the routing
protocol does not operate securely. Here, we rely on the
first two phases to break this loop, since they only need the
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information collected on the MAC layer and are independent
of both secure routing and other security services. Upon
completion of these two phases, some multi-hop secure paths
with hop-by-hop security will emerge, based on which secure
routing can be implemented. In general, there still exists unau-
thenticated physical neighbors after the second phase. In the
following multi-hop secure-link augmentation phase, multi-
hop secure paths will be used to authenticate and establish
pairwise keys with the remaining neighbors in set UA(Xi).
The criterion that the neighbor authentication completes de-
pends on the application requirement of a particular WANET.
For example, if the main purpose of a WANET is to facilitate
the cooperation between the neighboring nodes/users, the main
traffic patten will be local communications where a node needs
to authenticate as many neighbors as possible, or stops until the
fraction of authenticated neighbors |NA(Xi)|

|N(Xi)| is greater than a
system parameter, say c. If the main purpose of a WANET
is to provide an infrastructure to support communications
with remote nodes, the main traffic pattern will be multi-hop
communications. If every source node is able to find a secure
path to the target destination, no augmented secure links are
required. The authentication with the remaining neighbors can
be activated in an on-demand fashion, i.e., to authenticate
each other only when they need to communicate. Once a
neighbor in set UA(Xi) is authenticated and the pairwise key
is established, this neighbor will be included in set NA(Xi)
and deleted from set UA(Xi), and the corresponding globally
augmented secure links will be added in the set Egasl. At the
end of this phase, nodes with secure links are modeled by the
graph G(Xn, E ′′

sl), where E ′′
sl = E ′

sl ∪ Egasl.

C. Problem Formulation

Now, we can formally define the objective of secure
WANETs as follows:

Objective: Constructing a secure path between an arbitrary
pair of nodes in Xn ×Xn w.h.p.

Constraints: (i) Physical graph G(Xn, Epl) is connected,
and (ii) trust graph G(Xn, ESA) is connected.

Mathematically, the objective is equivalent to the situation
that the globally augmented secure graph G(Xn, E ′′

sl) is con-
nected w.h.p. Here, we need to explain these two constraints
in detail. In fact, these two constraints are the necessary
conditions to achieve the objective. First of all, when the
physical graph is disconnected, it is impossible to provide
multi-hop communications for disconnected nodes with tra-
ditional routing schemes (reactive or proactive) designed for
WANETs. Although the mobility of nodes can be utilized, and
some routing schemes designed for delay tolerant networks
(DTNs) can be used to provide communications between some
disconnected nodes, no protocols can guarantee the delivery of
packets between them so far even in the w.h.p. sense. However,
it is interesting to examine in what degree this constraint can
be relaxed by adopting the DTN routing protocols, which
will be our future work. Second, a disconnected trust graph
implies that users can be divided into several isolated trusted

g (|x|)

|x|

1

p

rn (1/p) rn

g for G(    , rn)

g p
squash

Fig. 3. Squishing and Squashing. The function g is squished and squashed
to give the function gsquash

p .

groups, and there is no trust relationship between those groups.
In this situation, the objective of constructing secure path
between two nodes that belong to different trust groups is
meaningless. Therefore, when we mention the objective of
providing a secure path between an arbitrary pair of nodes,
we implicitly include these two constraints. Previous research
on Erdös-Rényi random graph [20], [21] and random geo-
metric graph [11], [17] show that the necessary conditions
for the connectivity of the trust graph and physical graph are

pf = Ω
(

log n
n

)
and rn = Ω

(√
log n

n

)
, respectively.

Under this objective, we list the problems that need to
be addressed as follows: (1) What are the requirements on
the physical graph G(Xn, Epl) and trust graph G(Xn, ESA)
so that it is possible for G(Xn, E ′′

sl) to be connected? Or
more precisely, what should rn and pf be? (2) What is
the communication overhead incurred due to the neighbor
authentication? (3) What is the effect of the secure link
distribution on the performance of secure routing?

III. PROPERTIES OF SECURE GRAPHS

A. Background of Continuum Percolation

In this section, we make use of the results from continuum
percolation, which was first introduced by Gilbert [22] and
later analyzed by Meester and Roy [23], Penrose [11], [24].

In continuum percolation theory, nodes are assumed to be
distributed as a homogeneous Poisson process Pλ on R

2 with
density λ. However, our original network model concerning a
fixed number of nodes Xn randomly and uniformly distributed
in the unit area disc D. In most of the proofs in this paper,
it is useful to first consider, instead of Xn, a coupled Poisson
process Pλ with density λ close to n, then deduce the results of
Xn from the results of Pλ, using the so-called Poissonization
technique [11, Chapter 1.7]. We first define the network model
based on node distribution Pλ. Let {X1,X2,X3, · · ·} be the
set of nodes according to Pλ in R

2, so that the expected
number of nodes in any region is equal to the area of the
region multiplied by λ. Let G(Pλ, g) denote the following
random geometric graph: we connect any two points Xi and
Xj (i �= j) in Pλ with probability g(Xi−Xj), independent of
any other pairs of nodes. We term the connected components
of G(Pλ, g) as clusters, and the number of nodes in each
cluster as its order. We first show the existence of a non-
trivial critical density at which percolation occurs (that is, an
infinite-order cluster forms) in G(Pλ, g).

Lemma 1: [Percolation Properties of G(Pλ, g)] Consider
a graph G(Pλ, g) for some given measurable function g :
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R
2 → [0, 1], satisfying:

g(x) = g(|x|), x ∈ R
2, (3)

0 <

∫
R2

g(x)dx < ∞, (4)

we have the following results:
(1) There exist a critical value (continuum percolation

threshold) λp such that

0 < λp(g) = inf{λ : ∃ infinite-order cluster w.h.p.} < ∞.

When λ > λp we say that the G(Pλ, g) percolates [24,
Theorem 1].

(2) If g(x) ≤ g(y) whenever |x| ≥ |y|, for a G(Pλ, g), there
is at most one infinite-order cluster w.h.p. [23, Theorem 6.3,
pp.172].

(3) Given a measurable function g and 0 < p < 1, define the
squashed function gsquash

p of g as gsquash
p (x) = p · g(

√
px),

we have
λp(g) ≥ λp(gsquash

p ), (5)

see Fig. 3 for an example [25, Theorem 2.1].
(4) When g(x) = g1(x) as defined in (1), we have a special

RGG denoted by G(Pλ, g1). The exact value λp for this case
is not known. Simulation studies indicate that λp ≈ 4.5

πr2
n

[11,
pp.189] while rigorous bounds 2.187

πr2
n

≤ λp ≤ 10.593
πr2

n
are given

in Meester and Roy [23, Chapter 3.9]. A recent result of
Balister and et al. [26] shows that with 99.99% confidence,
the critical value λp lies between 4.508

πr2
n

and 4.515
πr2

n
, i.e.,

4.508 ≤ πr2
nλp ≤ 4.515. (6)

Gupta and Kumar [17] and Penrose [11] show that, G(Pλ, g1)
is equivalent to G(Xn, g1) when λ = n. Therefore, in this
paper we assume πr2

nλp = 4.5 for G(Pλ, g1) or G(Xn, g1).
We place a node X0 at the origin. Then the resulting Poisson

point process Pλ ∪ X0 is “conditioned to have a point at 0,
in the sense of Palm measures” and X0 is assumed to be an
“arbitrary point of the Poisson process” [24]. Let C(0) be the
“cluster at the origin”, the set of nodes having a path to X0

in G(Pλ ∪X0, g). Let pk(λ) denote the probability that C(0)
has k points. The percolation probability, i.e., p∞(λ), is the
probability that 0 lies in an infinite cluster when λ → ∞.

We have the following result:
Lemma 2: [Isolated Nodes in G(Pλ ∪ X0, g)] Assume a

measurable function g satisfying equation (3) and inequal-
ity (4). If g also encloses zero (essentially, g is symmetric,
has bounded support, and is bounded away from zero in some
open neighborhood of the surface, see [24]; note that all the
functions g considered in this paper encloses zero), then

lim
λ→∞

∑∞
k=1 pk(λ)
p1(λ)

= 1, (7)

which implies that for large λ, the origin lies in either an
infinite-order cluster or an order-one cluster (i.e., it is isolated)
w.h.p. [24, Theorem 3].

B. Theoretical Results on the Secure Graph

Based on Lemma 2 and Lemma 1(2), the following lemma
can be easily derived.

Lemma 3: [Isolation and Connectivity of G(Pλ∪X0, g)]
Assume a measurable function g satisfying equation (3) and
inequality (4), g also encloses zero, and g(x) ≤ g(y) whenever
|x| ≥ |y|. As λ → ∞, the probability that the graph G(Pλ ∪
X0, g) is connected is asymptotically equal to the probability
that the graph G(Pλ ∪ X0, g) has no isolated nodes, i.e.,

lim
λ→∞

Pr[G(Pλ ∪ X0, g) is connected]

= lim
λ→∞

Pr[G(Pλ ∪ X0, g) has no isolated nodes].

Now we can investigate the connectivity property of the
secure graph G(Xn, gp).

Theorem 1: [Connectivity of G(Xn, gp)] Assume that p is
any constant in [0, 1]. Let p · n · πr2

n = log(n) + c(n). Then,
the graph G(Xn, gp) is connected w.h.p. iff c(n) → ∞ and is
disconnected w.h.p. iff c(n) → −∞.

Proof: This result can be proved from Lemma 2 and 3
using Poissonization technique. The details of the proof has
been omitted due to space constraints.

Note that in Theorem 1, if p is the probability that two
neighboring nodes can establish the SA, then k = p · d =
p · nπr2

n denotes the average number of authenticated neigh-
bors. Theorem 1 shows that for G(Xn, gp), there exists a
phase transition phenomenon, i.e., there is a critical threshold
kc = log(n) for k, corresponding to a minimum number of
authenticated neighbors for individual nodes, above which a
desirable global property (e.g., connectivity) exists with high
probability. When k is below the threshold kc, the desired
global property exists with a low probability. This phase
transition is typically seen to become sharper as the number of
nodes n in the network increases. The following theorem will
reveal another phase transition phenomenon for G(Xn, gp).

Theorem 2: [Percolation Properties of G(Xn, gp)] Define
the critical value (percolation threshold) of the average node
degree for G(Xn, gp) as

kp = inf{k : ∃ infinite-order cluster w.h.p.

in G(Xn, gp) as n → ∞}.
(1) 0 < kp ≤ 4.5. (2) When k = pf · nπr2

n > kp, we say that
G(Xn, gp) percolates, and there exists only one infinite-order
cluster w.h.p. (3) When the graph G(Xn, gp) percolates, all of
the finite-order clusters are one-order clusters w.h.p.

Proof: The existence of a non-trivial critical value of the
average node degree for G(Pλ, gp) comes from Lemma 1(1).
We define G(Pλ, g′1) as the graph with vertex set Pλ, and

g(x) = g′1(x) ≡
{

1 if |x| ≤ r′n
0 if |x| > r′n,

where r′n = √
pfrn. Obviously, gp is the squashed function

of g′1. According to Lemma 1(3) and (4), we have

0 < λp(gp) ≤ λp(g′1) =
4.5

πr′n
2 . (8)
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follow the equation kp = 4.5 ·
√

pf +0.1

1+0.1
in (11).

The average node degree kp for G(Pλ, gp) is given by

kp = pf · λp(gp) · πr2
n ≤ λp(g′1) · πr′n

2
. (9)

From (8) and (9), we obtain 0 < kp ≤ 4.5. Let λ = n, we can
get the same result for G(Xn, gp).

The second part of the theorem follows from Lemma 1(2).
For gp, since gp(x) ≤ gp(y) whenever |x| ≥ |y|, there exists
only one infinite-order cluster w.h.p. for G(Pλ, gp). Using
Poissonization technique, we can prove that it also holds
for G(Xn, gp). The third part of the theorem follows form
Lemma 2, using Poissonization technique.

Let S be the giant cluster’s size fraction, i.e., the number
of nodes in the giant cluster divided by n. For Erdös-Rényi
random graphs [20], [21], it is well known that S is a function
of the average node degree k, and is the non-zero solution to
the following equation

S = 1 − e−k·S when n → ∞. (10)

For RGGs, simulation results show that, S − k relationship
also follows the same form but appears to be shifted along
the average node degree axis (cf. Fig. 7). Since the proof
procedure of Theorem 1 indicates that the probability of iso-
lated nodes for G(Xn, gp) is upper and lower bounded by the
probabilities of isolated nodes for Erdös-Rényi random graph
model G(Xn, g0) and RGG model G(Xn, g′1), respectively, it
is reasonable to assume that S − k relationship for G(Xn, gp)
bears the same form with some shift along the average node
degree axis. Therefore, we have the following conjecture:

Conjecture 1: [Size of the Largest Cluster of G(Xn, gp)]
The size of the largest cluster of G(Xn, gp), say S, is the
non-zero solution to the following equation w.h.p.:

S = 1−e−(k−kp+1.45)·S , where kp = 4.5 ·
√

pf + 0.1
1 + 0.1

. (11)

Note that (11) is merely a shifted version of (10). We need
to estimate this shift. Obviously it depends on kp. However,
Theorem 2(1) only gives the range of kp. Given pf , the exact
value of kp is still an open problem. Simulated values of kp for
different pf values are given in Fig. 4. We have tried several
function forms to estimate the pf − kp relationship. A good

approximation is found to be kp = 4.5 ·
√

pf +0.1
1+0.1 . Fig. 4

illustrates the calculated kp resulting from this approximation,
which shows a good match between the simulated and cal-
culated values of kp. Two important practical consequences

b

c

e

a

(a)

f

g

(b)d
d

Fig. 5. Local trust graphs for (a) node a and (b) node f in Fig. 1. Note
that in the local trust graph, two nodes are connected iff they are physical
neighbors and they have a primary SA.

follow from Conjecture 1: (i) Given pf , we can calculate
the critical threshold of k for percolation; (ii) Given k, we
can calculate the size of the giant cluster in G(Xn, gp). We
further support Conjecture 1 with simulations performed using
different values of n and pf (see Section III-D).

C. Properties of the Graph G(Xn, E ′
sl)

In this subsection, we want to study the following prob-
lem: given pf , what is the probability that two neighboring
nodes can establish a derived SA after the local secure-link
augmentation phase? Recall that after the neighboring-friend
discovery phase (cf. Section II-B), every node Xi knows its
physical neighbors N(Xi) and neighboring friends NF (Xi).
In the local secure-link augmentation phase, every node Xi

first locally broadcasts its sets N(Xi) and NF (Xi). Using the
sets received from neighbors, a node can build a local trust
graph based on the friend relations among neighbors. The local
trust graph maintained by node Xi is defined as Gi(Vi, Ei),
where the vertex set Vi = {Xj |Xj ∈ N(Xi) ∨ j = i} and
the edge set Ei = {(Xj ,Xk)|Xj ,Xk ∈ N(Xi) ∧ Xk ∈
N(Xj) ∧ Xj ∈ N(Xk) ∧ (Xk,Xj) ∈ ESA}. Fig. 5 illustrates
local trust graphs maintained by individual nodes.

There are two possible cases to locally augment secure links.
In the first case, two nodes do not share a primary SA (not

directly connected in the trust graph), but have a common
physical neighbor that shares a primary SA with each of them.
In Fig. 5 (a), for instance, nodes a and c do not have a
primary SA, but have a common physical neighbor node b that
has a primary SA with each of them. Secure communications
between nodes a and c can now be achieved via the help of
node b. We denote the probability that this event occurs as
p1. When the symmetric key based cryptography is used, the
pairwise key generated by node a is sent to node c through the
secure path in the local trust graph, say secure links (a, b) and
(b, c) in Fig. 5 (a). The pairwise key is encrypted/decrypted in
each hop till it reaches the destination. When the asymmetric
key based cryptograph is used, node a can obtain node c’s
valid public key from node b, and generates the pairwise key
which is sent to node c directly, encrypted by node c’s public
key. In general, if a node finds a secure path in its local trust
graph from itself to one of its unauthenticated neighbors, this
node can adopt the method described above to authenticate
each other and establish direct secure link between them.

In the second case, two nodes do not share a primary SA
(not directly connected in the trust graph), and cannot find a
neighbor satisfying the first case. However, there exists a node
that shares a primary SA with each of the two nodes, and is
a physical neighbor of only one of them. In Fig. 5 (b), nodes
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g and f do not have a primary SA, but node d has a primary
SA with each of them, and node d is the physical neighbor
of only node f . Secure communications between nodes g and
f can be achieved via the help of node d. We denote the
probability that this event occurs as p2. In this situation, node
d will first find the possibility to augment secure link (f, g),
and take the responsibility to initiate this procedure. When the
symmetric key based cryptography is used, the pairwise key
generated by node a will be sent to node d, and then this
key will be sent back to f which is encrypted by nodes’ d
and g’s pairwise key in their primary SA. Node f then relays
the encrypted key to node g. When the asymmetric key based
cryptograph is used, node f can obtain node g’s valid public
key from node d, and the pairwise key generated by node f is
sent to node g directly, which is encrypted by node g’s public
key. In general, if a node Xi finds a secure path from itself
to one of its authenticated neighbors, say Xj , and node Xj

does not have a primary SA with one of node Xi’s 2-hop
away neighbors, say Xk, which is one of node Xi’s friends,
then node Xi can use this secure path to help these two nodes
authenticate each other and establish a direct secure link.

Probabilities p1 and p2 can be calculated as the following:

p1 = (1 − pf ) ·
0.5865d∑

k=1

((
0.5865d

k

)
(pf )k

(1 − pf )0.5865d−k ·
(
1 − (1 − pf )k

))
. (12)

p2 = (1 − pf ) · (1 − p1) ·
0.8270d∑

k=1

((
0.8270d

k

)
(pf )k

(1 − pf )0.8270d−k ·
(
1 − (1 − pf )k

))
. (13)

Note that p1 and p2 are functions of d and pf , and d = nπr2
n

is determined by n and rn. In general, rn and pf are also given
as a function of n. Therefore, p1 and p2 are functions of n only.
After the local secure-link augmentation phase, the probability
that there exists a secure link between two neighboring nodes,
denoted by p′f , is given by,

p′f (n) = pf (n) + p1(n) + p2(n). (14)

Then the graph G(Xn, E ′
sl) is equivalent to G(Xn, gp′

f
), where

gp′
f
(x) =

{
p′f if |x| ≤ rn

0 if |x| > rn.

A simple examination on equations (12) and (13) shows
that p1(n) ∼ p2(n) ∼ Θ(pf (n)), which implies p′f (n) ∼
Θ(pf (n)) from equation (14). As a result, we have the
following theorem:

Theorem 3: [Effect of Local Secure-Link Augmentation]
The local secure-link augmentation schemes will not alter the
order of the probability for two neighboring nodes to establish
a secure link, i.e. p′f (n) ∼ Θ(pf (n)).

Since we are only interested in the asymptotic properties of
the WANET with n tending to infinity, Theorem 3 indicates

that G(Xn, E ′
sl) (i.e., G(Xn, gp′

f
)) is equivalent to G(Xn, Esl)

(i.e., G(Xn, gp)) since p′f (n) ∼ Θ(pf (n)).

D. Summary of the Properties of Secure Graphs

Results in Section III-B show that the secure graph
G(Xn, gf ) undergoes two phase transitions with the varying
of k, the average node degree of G(Xn, gf ).

The two critical values of k, corresponding to two phase
transitions, separate the value of k into three intervals:

(1) k ≤ kp ≈ 4.5: secure graph G(Xn, gf ) is in the sub-
critical phase, indicating that G(Xn, gf ) does not percolate.
The entire network consists of O(n) small clusters, and the
number of nodes in any cluster is not greater than O(log(n)).

(2) kp < k ≤ kc = Θ(log(n)): secure graph G(Xn, gf ) is in
the supercritical phase, indicating that G(Xn, gf ) percolates
and is not connected w.h.p. In this phase, G(Xn, gf ) consists
of one infinite-order cluster and some isolated nodes. Each
node lies in either the infinite-order cluster or an one-order
cluster (i.e., it is isolated) w.h.p.

(3) k > kc: the secure graph G(Xn, gf ) is connected w.h.p.,
i.e., there exists only one cluster.

Note that k = pf · d = pf · πr2
n, which indicates that k is

determined by two parameters: pf from the trust graph and rn

from the physical graph. Now, we can proceed to investigate
the trade-off between memory size, communication overhead
and secure connectivity in G(Xn, gf ).

Connected Phase Previous works [27]–[29] suggest that in
order to achieve the objective, at least G(Xn, Esl) should be
connected. Therefore, after the neighboring-friend discovery
phase, the trust graph G(Xn, gp) is created and all the nodes
are connected with secure links w.h.p. A secure path between
an arbitrary node pair can be established with any routing
schemes operated on those secure links.

Next, we consider the communication overhead in this
phase. The secure graph G(Xn, gp) must have a lower average
node degree compared to the corresponding physical graph
G(Xn, g1), in that a lower node degree will increase the
path length which will affect the communication overhead.
Obviously, this overhead can be characterized by the average
path length. Previous works [17] show that, in order to keep
the physical graph connected, the average node degree for
G(Xn, Epl), i.e., d = πr2

n, should be on the order of log(n)
minimally, and the average path length is O(

√
n). The fol-

lowing theorem indicates that, when G(Xn, gp) is connected,
the average path length is on the same order, which implies
that the communication overhead introduced by the secure
operations is asymptotically negligible.

Theorem 4: [Average Path length of G(Xn, gp)] When
G(Xn, gp) is connected, the average path length over all node
pairs (or hop-counts) is O(

√
n).

Proof: Consider the graph G(Xn, g′1) with

g′1(x) =
{

1 if |x| ≤ √
prn

0 if |x| >
√

prn.

G(Xn, g′1) has the same average node degree as G(Xn, gp).
Since gp is the squashed function of g′1, the average path length
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Fig. 6. Effect of pf on the hop-count distribution in the secure graph.

for G(Xn, gp) is smaller than that for G(Xn, g′1). G(Xn, g′1) is
also a RGG, and has the same order of average path length as
G(Xn, g1). Therefore, the average path length for G(Xn, gp)
is on the same order as that for G(Xn, g1), i.e., is O(

√
n).

Fig. 6 displays the simulated values of hop-count distribu-
tion for different pf ’s given that the average node degrees
remain the same. It can be observed that, when pf becomes
smaller, the average path length reduces significantly. The
reason is that, to keep the average node degree on the order
of log(n), rn should be correspondingly increased. Therefore,
the probability of having a direct link between two nodes
at a longer distance increases as well, which will effectively
decrease the average path length.

Theorem 4 indicates that when the network is operated in
the situation that G(Xn, gp) is connected, the secure con-
nectivity objective can be achieved with negligible commu-
nication overhead. The problem, however, is that it is not
scalable, which is demonstrated by the following “back-of-
the-envelope” calculation.

In order to keep the physical graph connected, the average
node degree for G(Xn, Epl), i.e., d = πr2

n is at least on
the order of log(n) [17]. Therefore, if we want secure graph
G(Xn, Esl) to be connected, pf is at least on the order of O(1),
which means the average number of friends for every node,
i.e., pf ·n, is in the order of O(n). Obviously, it is unrealistic
for the trust graph as well as the required memory size in each
node for primary SAs.

Last, we consider the effect of local secure-link augmen-
tation phase. Theorem 3 shows that, after this phase, the
probability that two neighboring nodes share a SA (primary
or derived) is p′f (n), which is on the same order of pf (n).
Therefore, given pf (n), which cannot achieve the connectivity
of secure graph G(Xn, gpf

), although local secure-link aug-
mentation techniques can achieve a p′f greater than pf , the
resulting secure graph G(Xn, gp′

f
) is still disconnected. Put it

in another way, since p′f (n) ∼ Θ(pf (n)), it is impossible to
rely on local secure-link augmentation techniques to reduce the
requirement on the order of pf (n) for the secure connectivity.

Supercritical Phase Theorem 1 shows that in order to keep
G(Xn, gp) connected, the average node degree must grow
approximately like log(n), when the number of nodes in the
network increases, which is expensive and results in poor
scalability. We show, however, that it is no longer the case if
we only slightly loosen the connectivity requirement, by just
imposing that G(Xn, gp) is in the supercritical phase. More
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Fig. 7. Simulated and calculated values for the giant cluster size and
probability of connectivity in RGGs (pf = 1) for different values of n.
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Fig. 8. Simulated and calculated values for the giant cluster size and
probability of connectivity in trust graphs for different values of pf .

precisely, we want a giant cluster to appear in G(Xn, gp), that
contains a vast majority of the nodes, but we can leave a small
number of nodes out of it (in other words, we want the securely
connected nodes to percolate). This apparently benign change
gives a much more optimistic perspective on the scalability of
our scheme.

Fig. 7 and 8 show the calculated and simulated results about
the size of the giant cluster and the probability of connectivity
for different pf and n values. The first conclusion we can draw
after analyzing simulation data is that Conjecture 1 gives a
quite accurate estimation of the giant cluster size when n is
large enough. Secondly, in all simulated cases we see that the
giant cluster size is growing steeply towards 1 for those values
of the mean degree that the probability of 1-connectivity is
very low. For a relatively large span of the mean degree values
the giant cluster is already covering most of the network but
1-connectivity is not achieved yet. This is due to only a few
isolated nodes or small node clusters outside the giant cluster.

Note that the giant cluster of G(Xn, gp) forms a connected
secure backbone, i.e., all nodes in the giant cluster are con-
nected with secure links or paths. It is easy to show that
the average secure path length of node pairs in the giant
cluster is also on the order of O(

√
n), which means the

communication overhead (or routing stretch) is asymptotically
negligible. Therefore, we can reduce the memory size or
enhance the scalability of the network by a factor of log(n)
with the trade-off of isolation of an arbitrary small fraction
of nodes. Here, isolation only means that there is no secure
links connecting isolated nodes with the secure backbone. We
can still guarantee the physical connectivity by setting that
d = πr2

n is at least on the order of log(n) [17].
Handling Isolated Nodes Although a small fraction of

isolated nodes is a reasonable trade-off, in certain environ-
ments we might need to connect these isolated nodes to
the network. To connect isolated nodes to the network, the
isolated nodes need to detect it is isolated. Existing network
partition detection algorithms may be used for this purpose.
But according to Theorem 2, when the graph gets into the
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supercritical phase, except for the giant cluster, the size of the
remaining clusters is very small, usually 1 in our simulation
results. Thus the cost for the partition detection algorithm is
not expensive, or when the cluster size is 1, it can recognize
itself as isolated without any partition detection algorithm.
The isolated nodes can be securely connected to the giant
cluster (secure backbone) by finding one of the nodes in the
giant cluster which shares a primary SA with it. To do this
it should either increase transmission range or move around
or broadcast the message to find a friend with 2 or more
hops. The routing-security dependency loop can be avoided
since that each isolated node can communicate with the secure
backbone (the giant cluster in G(Xn, gp)) with only one-hop
w.h.p. and the communication overhead can be ignored since
the number of isolated nodes can be made arbitrarily small.

Subcritical Phase It is interesting to ask whether we can
further reduce the required number of authenticated neighbors,
i.e., k, such that k < 4.5 and the secure graph G(Xn, gp) is
in the subcritical phase. The problem is that in this phase, the
entire network consists of O(n) small isolated trusted groups
(clusters), and the number of nodes in any trusted group is
not greater than O(log(n)). Then, when we need to establish
a path between two nodes, this path will go through O(

√
n)

isolated trusted groups w.h.p., which is almost on the same
order of the path length. Therefore, when G(Xn, gp) is in the
subcritical phase, we will meet routing-security dependency
loop again, and local secure-link augmentation is not enough
to break this loop. Our conclusion is that, the secure graph
G(Xn, gp) is at least in the supercritical phase, and k cannot
be further reduced.

IV. CONCLUSION

In this paper, we propose a generic model to evaluate
the relationship of connectivity, memory size, communication
overhead and security in fully self-organized WANETs. Based
on some reasonable assumptions on node deployment and
mobility, we show that we can achieve secure connectivity
when the average number of authenticated neighbors of each
node is at least Ω(1). We utilize continuum percolation theory
to construct the secure backbone, and connect the isolated
nodes to the secure backbone with multi-hop secure link
augmentation scheme. The communication overhead incurred
due to the neighbor authentication and the routing stretch are
asymptotically negligible.
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