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Almost sure and 5-moment stability of jump linear systems

YUGUANG FANGti, KENNETH A. LOPAROY and XIANGBO
FENGT

In this paper, we study the almost sure-stability and J-moment stability of
discrete-time jump linear systems with a finite state form process. Criteria for
almost sure and d-moment stability, which are necessary and sufficient condi-
tions for (scalar) one-dimensional systems, are derived. The relationship
between almost sure and J-moment stability for (scalar) one-dimensional
systems is also presented. If the system matrices commute, necessary and
sufficient conditions for almost sure stability are obtained.

1. Introduction
Jump linear systems are a family of stochastic systems of the form

Xp1 = H(o)x, + G(o)u, te Z* =1{0,1, ...} (1.1)
for the discrete-time case, or
i, = H(o)x, + G(o)u, t € RT = [0, +) (1.2)

for the continuous-time case. The finite-state random process {o,} is usually a
Markov jump process, referred to as the form process and models the possible
changes in system structure. The system models (1.1) and (1.2) are often
encountered in engineering applications; for example, in the analysis of control
systems subject to abrupt phenomena such as component and interconnection
failure (Chizeck et al. 1986, Mariton 1990), and more recently in the study of
systems with random communication delays (Krtolica et al. 1991, Fang et al.
1991). A significant effort has been devoted to the optimal control of jump
linear systems with a quadratic cost functional and to developing notions of
controllability and observability for this class of systems. Many important results
concerning the analysis and design of such systems have been obtained, see, for
example, Ji and Chizeck (1990), Mariton (1990) and the references cited therein.

It is common knowledge that the stability of a dynamical system is one of the
primary concerns in the design and synthesis of a control system. The study of
stability of jump linear systems has attracted the attention of many researchers.
The earliest work can be traced back to Rosenbloom (1954), who was interested
in stability properties of the moments of such systems. Bellman (1960) was the
first to study the moment stability of (1.1) with an independent and identically
distributed (i.i.d.) form process using the Kronecker matrix product. Bergen
(1960) used a similar idea to study the moment stability properties of continuous
time systems (1.2) where {o,} is a random process with piecewise constant
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sample paths. Later, Bhuracha (1961) used the idea developed by Bellman
(1960) to generalize Bergen’s results and studied both the asymptotic stability
and the exponential stability of the mean. Darkhovskii and Leibovich (1971)
investigated the second moment stability of systems of the form (1.2) where the
time intervals between jumps are i.i.d. and the mode process for the system is a
finite state Markov chain with a stationary probability transition matrix. In this
work, they obtained necessary and sufficient conditions for second moment
stability in terms of the Kronecker matrix product. This is an extension of
Bhuracha’s result. Kats and Krasovskii (1960) and Bertram and Sarachik (1959)
used a stochastic version of Lyapunov’s second method to study almost sure and
moment stability. Unfortunately, Lyapunov functions are, in general, difficult to
construct and this is a recognized disadvantage of Lyapunov’s second method.
Moreover, for most cases, the criteria obtained from this method are similar to
the moment stability criteria, which are usually too conservative to be of
practical value. See also the work of Mariton (1989).

Recently, Ji et al. (1991) Feng (1990) and Feng et al. (1992) used Lyapunov’s
second method to study the stability of (1.1) or (1.2) with a finite state Markov
chain form process, and obtained necessary and sufficient conditions for the
second moment stability both for the discrete time case (1.1) and for the
continuous time case (1.2), respectively.

As Kozin (1969) pointed out, moment stability implies almost sure stability
under fairly general conditions, but the converse is not true. This is a unique
aspect of stochastic stability problems—in deterministic systems, if the sample
path is stable, then all moments are certainly stable. In applications, almost sure
(sample path) stability is the desirable property, because sample path behaviour
can be observed in practice. It often turns out that second moment stability
criteria, which are commonly associated with the synthesis of optimal closed-
loop systems derived by minimizing a quadratic cost functional, are too
conservative to be useful in practical applications. Several illustrative examples
were given by Mitchell and Kozin (1974). This is a motivation for this work,
where we seek to obtain more general stability criteria for almost sure (sample
path) stability. The recent development of the Lyapunov exponent method
offers potential for obtaining testable necessary and sufficient conditions for
almost sure stability (Loparo and Blankenship 1984, Feng et al. 1992, Ji et al.
1991, Mariton 1988). For a comprehensive and mathematically oriented treat-
ment of Lyapunov exponents, the reader is encouraged to refer to Arnold and
Wihstutz (1986), Bougerol and Lacroix (1985). Although it is known that the
(top) Lyapunov exponent is naturally related to sample path stability, it is
usually very difficult to compute analytically, estimate or determine the sign of
the top Lyapunov exponent. More advanced results, in particular those related
to the development of computational schemes, are needed before this approach
can be applied to the analysis and design of control systems.

In the spirit of the above works, there are many unsolved problems for the
stability of jump linear systems, most notably, deriving testable conditions which
yield a reasonable estimate of the almost-sure stability region in the space of
system parameters. It is known that for some special systems, the almost-sure
stability property of the system is directly related to 6-moment stability (with
small &). In this case, a testable condition for é-moment stability will give a
reasonable estimate of the almost-sure stability domain. Although some results
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and conjectures exist for scalar jump linear systems (Feng et al. 1992) and for
stochastic systems with a special structure (Arnold 1982), é-moment stability
conditions and their relationship to almost-sure stability remains an open
question and presents an active research direction.

In this paper, we present some basic results on almost-sure and S-moment
stability for jump linear systems. We concentrate on the family of discrete-time
systems with an i.i.d. form process. This is the simplest model with which one
can deal. However, most of the results reported here can be directly extended to
the situation where the form process is a general Markovian process both in
continuous and discrete time. From this aspect, the results are illustrative. The
approach we adopt in this work is straightforward, and only relies on some basic
results from matrix algebra and probability theory. The paper is organized as
follows: in § 2, we study the almost-sure, second moment and mean stability of
the system (1.1). Some testable sufficient conditions are obtained. In § 3, the
6-moment (6> 0) stability is investigated and its relationship to almost-sure
stability for scalar systems is also addressed. Section 4 is devoted to systems with
special commuting structures, and necessary and sufficient conditions for various
types of stability properties are obtained. Finally, we present concluding remarks
and possible generalizations of the results presented in this paper in § 5.

2. Almost sure, second moment and mean stability
Consider the discrete-time jump linear system given by

X1 = H(o)x, t e %7 ={0,1,...} (2.1)
where o, € {1, 2, ..., N} is assumed to be an i.i.d. random sequence with the
common probability distribution P{o,=j} =p; for j=1, 2, ..., N, unless

stated otherwise. Without loss of generality, assume that p; #0 and xo € R" is a
non-random constant. The followmg notation will be used throughout the
remainder of the paper. Let NE {1 2,..., N} and A; =det(H(i)) for i e N.
Let A(A) denote the collection of all elgenvalues of the matrix A, i.e. the
spectrum of A, and p(A) denote the spectral radius of A, i.e. p(A)=
max {|A]: A € A(A)}. Let u; = p(H (i)) be the spectral radius of H (i) for i e N. If
A is a positive semi-definite matrix, let A,,,(A) = max {1: 1 € A(A)} denote the
largest eigenvalue of A, and let A; = A,.,(H'({) H(i)) for i € N, where ' denotes
matrix transpose. Let I;(x) be the indicator function which is defined as

1, ifx=1
Ii(x) =

0, otherwise

Finally, for (7, . . ., nx) given with n; = 0, define the set of matrices
K, ms -+ nn) = {(Ar, Az, - ooy AN)E Aj € RV Ao (A]A) < 15,
Vie N} (2.2)

The following stability concepts are important.
Definition 2.1: The jump linear system (2.1) is said to be

(i) almost surely stable, if for any xq € R", lim,_, ;. |[x/| = 0 almost surely
(with probability one).
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(ii) 8-moment stable (8> 0), if for any xy € R", lim,_, ;. E{|x°} = 0.
(iii) mean stable, if for any xo € R", lim,_, . E{x;} = 0.

(iv) almost surely ¥(ny, ..., ny) stable, if for any (H(1), ..., H(N)) e
H(m, ..., nn), the system defined by (2.1) is almost surely stable.

If {04} is a finite state Markov chain with initial distribution 7, we say the
system is stable in any one of the above senses, if the corresponding property
holds not only for any xo € ", but also for any initial distribution 7y of {0} }.

‘ (]

Note that mean stability is different from first moment stability (because the |||
is used in the definition of first moment stability) and almost-sure (4, . . ., Ay)
stability (iv) can be interpreted as a type of robust almost-sure stability concept
for stochastic systems. :

In this section, we present some testable conditions for the various types of
stability of (2.1) given in Definition 2.1. These conditions are easy to test and
for certain classes of systems, they are necessary and sufficient. Our results are
also valid with o,, a finite-state Markov chain, although we only present the
details for the i.i.d. case in this paper. For more detailed results concerning the
Markovian case, see Fang et al. (1991). The following theorem is one of our
main results.

Theorem 2.1—Almost-sure stability properties: For the jump linear system
(2.1), we have

(1) a sufficient condition for almost-sure stability is
Magr. L AR <1 2.3)

in particular, for a scalar system (the dimension of the state space n = 1),
the above condition is also necessary

(2) it A['AY> ... ARV =1, then for almost all (with respect to Lebesque
measure) xo€ R", lim,_, o |[x||#0 and thus, the system is not almost
surely stable (almost sure unstable)

(3) necessary and sufficient condition for the system to be almost surely
H(n, - . ., nn) stable is

nns> .. nv <1 2.4

Before we prove Theorem 2.1, we make some comments about the results.
Note that \/L is the largest singular value of H (i) and Condition (1) (equation
(2.3)) is only a sufficient condition for a.s. (almost sure) stability. Condition (2)
implies that AP'AL? ... A{¥ <1 is a necessary condition for a.s. stability.
Condition (3) is a necessary and sufficient condition for robust a.s. stability.
Another interpretation of (3) is that the condition (2.3) becomes necessary and
sufficient for a.s. (4, . .., Ay) stability. All these conditions are easily testable
and examples are presented after the proof of the theorem to illustrate the range
of applicability of these results. To prove the theorem, we need the following
lemma which is a fundamental result of stochastic processes and its proof can be
found in, say, Shiryayev (1984).

Lemma2.1—Law of the iterative logarithm: Let {§;} be a sequence of
independent identically distributed random variables with E&, =0 and
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EE%c = 0% < +, then

ES,

P 11 =1l =1
n—\/ 202n loglog n
ZE,
P{ lim =-1|=1
n—/ 202n loglog n

Proof of Theorem 2.1: For any k and x, it is easy to show that
x'H'(0)H(op)x < A0 J0 - jIn@0yry (2.5)
Thus, we have
xXixx = xH'(00) H'(0) ... H'(04-1) H(04—1) . . . H(0g)xg

< M=) AN H (0y) ... H ' (0k—) H(0k—2) . . . H(0p)xg
< ..o RN ZIEDE) | GRE )

— (/1{%2.271111(0.') o l)% :‘;OllN(Ui))kx(l)xO (2.6)

Since {ox} is an i.i.d. sequence, for each je N, {Ij(oy)} is also an i.i.d.
sequence. Therefore, from the Law of Large Numbers (Shiryayev, 1984, p. 366),
we have

=
;35“ —Zl(a) = E{I(0)} = p; as. Vje N

It follows that
Jim AR P p X GO XS L C N T VY Y

From (2.3), the right-hand side of the above inequality is less than 1, almost
surely, and there exist a kg = ko(w) and A <1, so that

Xixe < Mxfxy, Vk= ko as. 2.7

From this we conclude that the system (2.1) is almost surely (exponentially)
stable. This establishes the first statement of (1).

Next, we apply Lemma 2.1 to show that (2.3) is also necessary when n = 1.
In this case, all the inequalities in (2.5)—(2.6) are actually equalities. It is easy to
see that if AY"AJ2 ... AR¥ > 1, we have lim,_ . x% = +% a.s. for any xO;ﬁO
which contradicts the almost-sure stability. Suppose that A{'A3? ... AN =
Then, we have >, p;logA; = 0 and also

x2 = 2N) | R, 2

k-1 N ,
= exp(E > Ii(0;) log /'L,») x5

i=0j=1

Let & = >,L11i(0;)logh;, with {o;} an i.i.d. sequence, {§;} is also an i.i.d.
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sequence. Thus, we obtain
N N

E§; = X (logA)Ely(0)) Z(IOgl )p; =0

j=1 =1

and

]

N 2 N
EE=E (21(108 Aj)lj(o'i)) lej(log AP < 4w
j= j=

From Lemma 2.1, we obtain that

EE,
=] a.s.
V20210glogn as

Thus, 2{‘;&& is unbounded from above almost surely and so is xi. This

contradicts the almost-sure stability assumption and completes the proof of (1).
For (3), the sufficiency directly follows from (1) and necessity is proved next.

Take H(j) = \/r]_jl for j € N, where I denotes the identity matrix. Then (H(1),
., H(N)) e X(n, ..., ny) and

P CONN S SO

Xixg = 1

Using the same arguments as in the proof of the necessity of (2.3) for the scalar
case, we see that a.s. stability of (2.1) with H(j) = \/-n_jl implies

mmst ...y <1

This completes the proof of (3).

Finally, we show (2) by contradiction. Suppose that lim;_, .. x; =0 a.s. for
all xo € S CR" where S is a subset of R” which has positive Lebesgue measure.
Then, there is a basis (vy, . . ., v,} of R” so that for each j

klilll H(o)H(0k-1) ... H(op)vj =0, a.s.

It follows that
kliIP H(op)H(0-1) ... H(op)[v1, .-+, 0,] =0 € R as.

and therefore
Jim_det(H(s)H(ox-) .. H(og)) = lim (AF¥=h) . ARZRivedy
—>+ 00

=0 a.s.

Using a similar argument as in the proof of the necessity of (2.3) for the scalar
case (using Lemma 2.1 and the law of large numbers), we conclude that

AP ARV <
This is the desired contradiction. : O

Before presenting an example to illustrate the results, further observations
are 1n order. First, from Lemma 2.1, we can also conclude that the sequence
S % J& is not bounded from below, hence there exists a subsequence {n;} so
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that x%,k—>0 (k — ) almost surely. So a scalar system (2.1) is neither almost
surely stable nor almost surely unstable when A{'A5> ... AR¥ = 1. Second, note
that the Ay, ..., Ay are closely related to the matrix norm induced by the vector
2-norm in R". This suggest the following more general sufficient condition for
a.s. stability.

Theorem 2.2:  If there exists a matrix norm ||-||, such that
IEOPE@)P ... [HN)PY < 1
then the system (2.1) is almost surely stable.

Proof: Since
1H(ox) ... H(opll s [|H(oWl ... |H(oyl|

following arguments similar to those used in the proof of (1) of Theorem 2.1, we
obtain the desired result, O

Next, we comment on the importance of this result. From Desoer and
Vidyasagar (1975), we know that the spectral radius p(A) of a matrix A is given
by

p(A) = inf [sup (|Ax|/lx])]

where N is the set of all vector norms on C". This means that for any &> 0,
there exists an induced matrix norm ||-|| such that ||A|| < p(A) + ¢. It follows that
A is a stable matrix if and only if there exists an induced matrix norm so that
|Al<1. Proper choice of a vector norm can improve the stability region
determined by Theorem 2.2. One possible consideration is as follows. For any
non-singular matrix P, the vector norm |x| = | Px|, induces a matrix norm given
by [|[A[| = [PAP~!||,, where 2 denotes the 2-norm, i.e. the euclidean norm. Thus,
we can try to solve the following optimization problem

min [|[PH(1) P78 PH(2) P7HE2 . . . [|PH(N) P[5

If there is an optimal solution P* and the optimal value of the objective function
is less than unity, then (2.1), is almost surely stable. On the other hand, for a
given P
D%

{((HQ), ..., HN)): [PH)PH R PHQ@ P ... [PH(N)PTYF™ < 1}

defines a stability region in the parameter space

N times

.{)Ran X %nxn X .. X ?Rnxn

One may try to maximize the volume of Dp by a proper choice of P. This is a
common procedure in applying Lyapunov’s second method, i.e. try to select a
suitable Lyapunov function from a given family so as to maximize the associated
stability domain. A systematic approach to the optimization problem posed here
for a more general family of systems is currently under investigation and will be
presented at a later time. The following example demonstrates the application of
the above results.
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Example 2.1: -Let

09 1 1 0
H(1)=|:0 09:|aH(2)=I=|:0 1:|’ p1=p2 =035

As M = dmax(H(Q) H(1)) =2:3546, X = Apae(H(2)'H(2)) =1 and AP'A?=
1-5345 > 1, we can not use Theorem 2.1 directly.

1 0 .
Let P = |:O 100:| , then we obtain
09 o0-01]|™|ft o7|"?
—1p P2 = = Q-
Py plpH@ P = ([0 09| o ]| =oos<
Using Theorem 2.2, we conclude that the system (2.1) is a.s. stable. O

While almost sure (sample path) stability is the most desired stability
property for engineering applications, moment stability concept are also impor-
tant. In particular, the second (6 =2) moment stability is directly associated
with solutions of the linear quadratic optimal control problem for jump linear
systems. Considerable research has been devoted to the moment stability
problem. Kozin’s survey (Kozin 1969) clarified some confusion regarding the
concepts of almost sure (sample path) and moment stability. It is well-known
that second moment stability implies almost sure stability and, in many cases,
second moment stability criteria are too conservative to be of practical value.
The Lyapunov exponent approach to a.s. stability is a promising way of
determining necessary and sufficient conditions for a.s. stability. Unfortunately,
it is computationally difficult to evaluate the exponents and obtain numerical
criteria for stability. Recently, more research effort has been devoted to
revealing the relationship between 6-moment and almost-sure stability (Arnold
1982, Feng et al. 1992). It is expected that for jump linear systems, the stability
region for 6-moment stability will monotonically increase to the almost-sure
stability region. Therefore, a sufficient condition for 6-moment stability for 6
small may yield a reasonable estimate of the a.s. stability region. Next, we
present some of basic results in this direction which we have obtained so far.

"An i.i.d. sequence is a special case of a Markov chain, so we can use the
result in (Ji et al. 1991) to obtain a second moment stability criteria as follows.

Theorem 2.3: A necessary and sufficient condition for the system (2.1) to be
second moment (8 = 2) stable is that for any N positive definite matricies Q1, Q»,

.., On, there exists N positive definite matrices Py, P, ..., Py so that the
following equations hold

N
H'(i)(zpfﬂ)H(i) ~-P=-0 ieN
j=1

The above condition involves the simultaneous solution of N coupled matrix
equations. In order to use the theorem, we need to solve this set of matrix
equations, which may be too complicated. For the i.i.d. case, we can reduce the
above N matrix equations to one matrix equation. We obtain the following new
results.

Theorem 2.4: A necessary and sufficient condition for the system (2.1) to be
second moment stable is that for any positive definite matrix Q, there exists a
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positive definite matrix R so that the following equation holds
N
S pH()'RH(j) = R = -Q
j=1 .

Proof: It is sufficient to show that the two sets of equations in Theorems 2.3
and 2.4 are equivalent. Without loss of generality, we can assume that

1=0y= -+ =Qy=Q=1. Suppose that there exists positive definite
matrices P;, P,, ..., Py so that

N
H'(J')(EpiPi)H(f) - F=-1
i=1
Multiplying both sides by p; and summing from j =1 to j = N, we obtain
N N N N
ZPjH'(f)(EPiH)H(f) - >piP=-1
j=1 i=1 j=1

Let R = Zf\il p;P;, which is also a positive definite matrix. Then R is a solution
of the matrix equation in Theorem 2.4 for Q = I.

Conversely, suppose that R is the solution of the matrix equation in
Theorem 2.4, let P,=1 + H'(i)RH(i), then P; (1 <i=< N) are positive definite
matrices satisfying

N
H’(i)(Elp,-f’;) H() ~ P,

N _
H’(i)(zlpj(l + H’(i)RH(i)))H(i) - B
p=

N
= H'(i)(l + ZIP;H'(J')RH(J')) H(i) — P,
=

H'())RH(i) — P, = -1
This implies that Py, P,, . .., Py is a solution of the matrix equation in Theorem
2.3. This completes the proof. |

Although the above theorems provide a necessary and sufficient condition
for second moment stability, we have to solve the above matrix equations. We
now present some simpler sufficient conditions for second moment stability.

Theorem 2.5:  The system (2.1) is second moment stable, if one of the following

conditions holds.

(1) H< E{H' (00)H(o)} = S NipH'(YH(j) is a stable matrix, i.e.

p(H)<1.

() pif + polp + oo+ pyAy < 1 with A4 = Imax(H(G) H(P)) =
p(H (i)' H(i)) as defined before.

(3) H(i)' H(i) is stable matrix, i.e. p(H'())H(@())<1,i=1,2,..., N.

Proof: Let o= p(H). Then, for any x € R", we have x'Hx <ox'x and it
follows that

Exjxi = E{xj_1H'(0k_1) H(0}_1)xx—1}
= E{E{x}—1H'(04-1) H(0g—1)Xk-1|Xk—1}}

= E{xj_1Hx;_1} < 0E{xj_1x_1} < - - < 0*E{x}x0}
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Thus, p(H) <1 implies that (2.1) is (exponentially) second moment stable. This
proves that (1) is a sufficient condition for second moment stability. Because
H(i)'H({) and H are positive semi-definite matrices, p(H)=|H| and
A = |H(@)' H(i)|. Then

p(H) = |H| =

N N N
Z,lpiH @O'H@)| =< leillH O H@| = leili

It is clear that condition (2) implies (1). This shows the sufficiency of (2).
Similarly, condition (3) clearly implies (2) and thus, (3) is also sufficient. O

Before dealing with the general d-moment stability problem, we briefly
examine the concept of mean stability. The following simple result illustrates the
fact that mean stability of a jump linear system is closely related to the concept
of S stability of an interval dynamic system.

Theorem 2.6: The jump linear system (2.1) is mean stable if and only if the
matrix EfilpiH (i) is stable.

~ Proof: By independence of the sequence of {0}, we have

E{xi} = E{H(0k-1)xk-1} = E{H(04-1)}E{x¢—1} = E{H(00)} E{xx-1}

- .= (épiH(i))kE{xo}

The result follows directly. O

The mean stability criteria given above is closely related to the so-called S
stability for interval dynamic systems. Define

N N
S(A1, Ay, ..., Ay) = {zpiAilpi =0, >p = 1}
i=1 =1

We say that S is stable if each matrix in § is stable. Then the problem is: under
what conditions, is S stable? In general, the convex hull S is not stable even
though the vertices A;, A,, ..., Ay are stable. For example

_[05 10 o5 0
Al‘[o 0-5]"42‘[10 0-5]

Even though A;, A, are stable, it is easy to show that 0-54; + 0-5A4, is not
stable. For this problem, we have the following simple testable sufficient
conditions for § stability. The proof is omitted here and is available from the
authors (Fang et al. 1992 a, b).

Theorem 2.7:  The following statements hold.

(a) If A1, A,, ..., Ay are stable symmetric matrices, then S(Aq, A,, ...,
Ap) is stable.
(b) If Ay, Ay, ..., Ax can be simultaneously transformed into upper (or

lower) triangular forms by a similarity transformation, then S is stable if
and only if Ay, A,, ..., Ay are stable.

(¢) If Ay, A,, ..., Ay pairwise commute and are stable, then S is stable.
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(d) If there exists a non-singular matrix P so that the singular values of
PA;P! are less than unity for all i € N, then S is stable.

(e) If for each i € N, A; can be diagonalized by the same unitary transform-
ation, and each A, is stable, then S is stable.

(f) If there exists a positive definite matrix P such that A}PA; — P is negative
definite for each i € N, then S is stable.

S stability is closely related to the robustness property of interval dynamical
systems. More general results are still under investigation and will be reported
on at a later time. It is obvious that if H(i)= A; (i =1, 2, ..., N) satisfies one
of the conditions in Theorem 2.7, then the system (2.1) is mean stable for any
probability distribution {p;, p,, ..., py}. This can be interpreted as a
robustness property of mean stability against randomness in the system struc-
ture! We conclude this section with an example.

Example 2.11: Let
122 =34 _| 153 =304
H(l)‘[oq —0-9]’ H(Z)‘[%z —14-3]

Using the similarity transformation

2 -1
=1 o]
then we have

TH(1)T™! =[3'5 (1).8], TH(2)T™* ;[8'1 3.9]

Using (b) of Theorem 2.7, py H(1) + p, H(2) is always stable for any probability
distribution {p;, p,}. From Theorem 2.6, we conclude that the system (2.1) is
always mean stable for any i.i.d. random form process {oy}. O

3. é-moment stability and its relationship to almost sure stability

In §2, we have studied the almost-sure, second-moment and mean-stability
properties of the jump linear system (2.1). As mentioned previously, the
d-moment stability criteria and the relationship between almost-sure and &-
moment stability is important because it can serve as the basis for developing
sufficient conditions for almost-sure stability that may not be as conservative as
the second moment stability criteria. In this section, we present S-moment
stability criteria and discuss the relationship between almost sure and 6-moment
stability for the jump linear system (2.1).

Theorem 3.1:  The system (2.1) is O-moment stable, if one of the following
conditions holds.
(@) p A+ poadP 4+ pyAdP <1, Where A = Amax(H() H(i)) as
defined previously .
(b) If there exists an induced matrix norm ||| such that
pillHOP + po HQI + - - - + p|HN]° < 1

in particular, for a scalar system (n = 1), (a) and/or (b) is necessary and
sufficient for 6-moment stability .



1292 Yuguang Fang et al.
Proof: For any positive semi-definite matrix A, we have (x'Ax)°<
(Amax(A))°(x'x)? for all x € R". Then, it follows that
ElxlP = E{xj—1 H'(04—1) H(0k-1)xx1}%"?

< E{QAJa(H'(03-1) H(03-1))(Xho1-1) %%}

= E{AJA(H'(04-1) H(04-1)} Elpte—1[*

= E{AJa(H'(00) H(00))} E|xy—1|°

< -+ < (EAYa(H'(09) H(09)))* E o °
By definition -
EXR(H (00)H(00) = ph + pihd + -+ + pyadl?
Which yields

Elll? < (A2 + -+ + paA)*E o2

Therefore, if (a) holds, then the system (2.1) is d-moment stable. Similarly, for
the sufficiency of (b), we have

Elxl® = E{||H(0x-1) ... H(do)xo|}
< E{|H(0x-D)I°} - .. E{[H(0)|*} E{[lxol’}
= (E{[[H (o)’ E{|xoll}
= (IHO® + -+ + pyHN)[))* E{|lxo1°}

The result follows directly. Finally, we observe that for a scalar system, the
conditions (a) and (b) are the same. Hence, we need only to show that (a) is
also a necessary condition for §-moment stability in this case. However, for a
scalar system, H (i) for i € N are scalars and we obtain

E|x]° = E{|H(ox-1)|° . .. | H(00)|1°|Ixoll}
(E||H (00)||°)* E||xo||°
= (0 A% + -+ 2DFE x|

Hence, E|x|°—0 if and only if P24+ poad?+ oo+ AY<1. This

completes the proof. |

As we mentioned at the beginning of the paper, all the results in this work
can be extended to treat the case when {o,} is a Markov chain. Next, we
present a theorem for the markovian case, which is the corresponding general-
ization of Theorem 3.1 proved above.

Theorem 3.2: Suppose that the form process {o;} in (2.1) is a finite-state
Markov chain with the probability transition matrix P. Let D = diag {||H(1)||°,
IHQ)|®, ..., |H(N)|°}. Then, a sufficient condition for (2.1) to be 6-moment
stable is that DP is a stable matrix, i.e. p(DP) <1. Furthermore, for a scalar
system (n = 1), if the strong mixing condition P = (p;)nxn >0 is satisfied, i.e.
pij>0 for all i, je N, then, p(DP)<1 is also a necessary condition for
8-moment stability . O
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Proof: Let a; = ||H(i)|]°. Then
E|H(oy) ... H(oo)|* < E[H(0)[° . .. [H(o0)|°

> PiPig, - - - PipiJHGOI - . [[H (o)1

iorityeemrig

2 DiyPigi; -+ + Pip_4i %y - - - @iy Gi

igyigsenesip

2 (ploalo)(plotla11 s (pik_likaik)

(nOD)(PD) ... (PD)(Pb) = mo(DP)*b

where b = (ay, ay, ..., ay)’ and 7y = (p1, P2, - .-, py) is the initial probability
distribution. If DP is stable, we have limy_ . (DP)*=0. It follows that
limy_,o E||H(0)) ... H(0p)||?=0. This implies that (2.1) is 5-moment stable.
This proves the flrst statement. For the scalar case, without loss of generality,
we assume that a; = ||H(i)|| # 0. According to the strong mixing assumption, P
is a positive matrix, and so is DP. Because PD and DP have the same
eigenvalues, DP is stable if and only if PD is stable. Let Ay, be the largest
eigenvalue of PD, which is, in fact, the spectral radius of PD, then from
Perron’s theorem (Horn and Johnson 1985), there exists a positive (row)
eigenvector x for Ay, i.e. X' PD = Ap,x'. As (2.1) is 6-moment stable for any
initial distribution, choose initial distributions which are the rows of P, we then
obtain

lim P(DP)*b = Jim (PD)*"1D71p = lim (PD)¥*1le = 0

k—o0

wheree= (1,1, ..., 1)’.A Therefore, for
x=(x1, X2, - » Xn)’, I}im x'(PD)**le =0

It follows that

khm x'(PD)**le = klim Atlyre = khm At e+ 4+ xy) =0

—+ —+

Because x; + - - - + x5 >0, this implies that lim;_, Afnax =0 and Ay, <1. That
is, DP is a stable matrix. This completes the proof. |

We know that an 11 d. sequence is a special type of Markov chain. To be
more specific, if {ak} k=0 is an i.i.d. sequence with common distribution p = (p,,
.., pny) and {51} j=1 is a Markov chain with a transmon matrix P = (pj)nxn
and initial distribution 7y, then {0} %2, and {&,} j=1 have the same set of finite
dimensional distributions as long as p; = p; for all z, jeN, regardless of .
Therefore, one can 1dent1fy the two sequences {0y} 5 and {m;}%=; with each
other. From this, it is expected that we can recover the d-moment stability
criteria for the i.i.d. case from the abcve result. We justify this claim next.

Lemma3.1: Let A be a non-negative matrix, i.e. a matrix with non-negative

entries. Then, for any positive vector x where x = (xq, . . ., X,)', we have
n

min —E a;x; < p(A) < max iE a;x; (3.1)

Isisn X; j=1 Isisn X; j=1
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Furthermore, if there exists a positive vector x so that Ax = Ax for a positive A,
then p(A) = A.

Proof: Equation (3.1) can be found in Horn and Johnson (1985). Assume that
Ax = Ax for some x and A positive. Then, 2,’-‘=1a,~,~xj = Ax;. By applying (3.1), we
obtain p(A) = A. O

Theorem 3.3: Let P = (py)nxn be a transition matrix satisfying p; = p; >0 for
all i, je N. Then, DP is stable if and only if

pllHQOI + - - + py|HN[® < 1 (3.2)

i.e. for an i.i.d. form process with common distribution (py, . . ., py), a sufficient
condition for 6-moment stability is (3.2).

Proof: Let A =(DP)'. Then, A is non-negative and the following equation
holds

P1 F01P1 apr ... 4GNP1 p1
Al P2 | =| 91P2 &Py ... GNP P2
PN | @1PN  @PN ... 4NDN PN

[ (p1a1 + -+ + pnan)py 2

_| (pay + - ':+ PNAN)P2 | _ (pray + -+ - + pray)| P2

| (p1a1 + - -+ + pnan)py PN

From Lemma 3.1, pia; + - + pyay is the spectral radius of A = DP. Thus
DP is stable if and only if

piay + -+ pyay = pilHO[? + p|HR)P + -+ + py|HN|P < 1
O

We know that for an ergodic markovian form process, the almost sure
stability property is independent of the initial distribution. From the above
results, it is very tempting to conjecture that this may also be true for -moment
stability. In particular, for a scalar system with an ergodic markovian form
process, one may conjecture that the J-moment stability condition is
may + -+ ayay <1 with 7= (m, ..., 7y) being the unique invariant dis-
tribution (a; is defined as above). Equivalently, the stability of DP may be
equivalent to ma; + - - - + myay < 1. Unfortunately, this is not true as illustrated
by the following example.

Example 3.1: Let H(1) =19 and H(2) =0-5, and
P —_

01 09
108 02
For the first moment (6 = 1), it is easy to see that the eigenvalues of DP are
0-973 and —0-683. Hence, DP is stable and (2.1) is first-moment stable from

Theorem 3.2. However, the unique invariant measure is (8/17, 9/17) and for
8 =1, ma, + may = (8/17) X 19 + (9/17) x 0-5 = 19-7/17 > 1. O

The above criteria for S-moment stability are easily testable. In the re-
mainder of this section, we study the relationship between §-moment stability
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and almost sure stability. We show that for a scalar jump linear system, the
stability regions 2% in the space of system parameters associated with -moment
stability are monotonically increasing as & decreases to 0 and 3° tends to the
almost-sure stability region 2 monotonically from the interior of 2*. Similar
results have been obtained for a scalar continuous-time jump linear system with
a markovian form process by Feng et al. (1992) and Feng (1990). We first prove
a lemma which plays a central role in the development.

Lemma3.2: For A;=0, i€ N fixed, define a function f: R— R by
(M + paA3 + -+ pyAW)YF ifx #0
f(x)={amgz...m~ | ifx=0
Then, f(x) is continuous and non-decreasing on [0, »).

Proof: It is easy to see that f(x) is continuous on R\{0}. Hence, it suffices to
show that it is continuous at x = 0. In fact, using L’Hopital’s rule, we have

lo Ao+ X
lil‘%(plﬂ,f + oo+ pyAi)YE = exp (lin(1) g(pit DN N))
™ x—! X

lim p .
x=0 piM + - + pNAN

= APAP AR

( . PiMlogly + -+ + pyAylog AN)
exp

Thus, f(x) is continuous at 0. Next, we show that f is non-decreasi% on
[0, +). For any x;, x; € [0, +®) with x; < x,, let 8= x;/x, <1 and g(x) = xP.
As <1, g(x) is concave. From Jensen’s inequality, we obtain

N N
S pig(i) < g(zp,xfz)
i=1 i=1

From this, we have f(x;) < f(x,). Thus, f(x) is non-decreasing on [0, +). This
completes the proof.
Now, define

3= {(M, Aoy o AN)IAPAS2 AR <1, 4 = 0}
26 = {(Al, AQ, Ceey )'N)lplll + P23/z B pNAN <1, Aj = 0}

By the above results, we see that 37 is the almost sure stability region and 3° is
the S6-moment stability region in the space of parameters of (H(1), ...,
H(N))' € ®N. We have the following important theorem.

Theorem 3.4:  For the scalar jump linear system (2.1)

(@) for any 8y, 8, >0 with 8, < &,, we have 3% C 3% C 3°,

(b) lims o 20 = Upso2° = 37
Proof: The proof is a direct application of Lemma 3.2. d
Remark: This theorem is very important, because it reveals the relationship
between the almost-sure stability and the -moment stability. First of all, it says

that 6-moment stability implies almost-sure stability for any 6 > 0. Secondly, as
we mentioned previously, almost-sure stability is often a desired stability
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property; and a testable necessary and sufficient condition for almost-sure
stability, however, is extremely difficult to obtain in general (the Lyapunov
exponent approach seems promising). Hence, if we can use the criteria in this
section to test 6-moment stability, in particular for small 6 >0, then we can
obtain a sufficient condition for almost-sure stability. This theorem says that this
sufficient condition for almost-sure stability derived from S-moment stability is
‘close’ to being necessary for 6 >0 ‘small’. In this sense, almost-sure stability
can be studied using criteria for 6-moment stability. O

We conclude this section with two examples. These examples illustrate that
for a certain class of systems, the criteria for almost-sure stability obtained in
this paper are better than those obtained from second moment stability.

Example 3.2: Let H(1) =25, H(22) =0-1, and p; = p, =0-5, then A; =625

and A, = 0-1. Thus
A2 =1625x0-01 =025 < 1

piM + pohy = 625+ 001 ; 00l _ 34351

and from Theorem 2.1 and Theorem 2.5, we conclude that the system is almost
surely stable, but not second-moment stable. a

Example 3.3: Let {o;} be a two-state i.i.d. sequence, and let H(1) = «, and
H(2) = f3, and p; = p, = 0-5. Then, according to Theorem 3.1, the system (2.1)
is 6-moment stable if and only if

|a® + 181°
2
and it is almost surely stable if and only if

o Bl <1 O

The Figure illustrates the stability regions.

In Fig. 1, Ry denotes the almost-sure stability region, which is the open
connected region enclosed by the four (disconnected) hyperbolic curves. R; is
the S&-moment stability region with a 6 <1, which is the open connected
bounded region enclosed by the next four (connected) hyperbolic curves. The
diamond-shaped region denoted by R; is the first-moment stability region. The
open connected region R, enclosed by the ellipse is the second-moment stability
region. Finally, the open connected square R is the -moment stability region
for 6 = +. Indeed, we have R, C R, C R; C Ry, and as 6 decreases to 0", R
tends to R, monotonically. This is consistent with our previous analysis. A
generalization of the above one-dimensional results to the general class of jump
linear systems is currently under investigation and we will report on these results
in a subsequent paper.

<1

4. Systems with special commuting structures

In the previous sections, we have studied almost-sure and 6-moment stability
of a jump linear system of the form (2.1). Simple testable sufficient conditions
for stability are given. These conditions turn out to be also necessary for
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Almost-sure and §-moment stability regions.

one-dimensional systems. This suggests that the commutivity of the mode
matrices H(1), ..., H(N) is critical for necessity. Indeed, it is true that the
effectiveness of these conditions depends on the eigen-structures of the mode
matrices, in particular, the pairwise commutivity of H(1), ..., H(N). In this
section, we attempt to examine commuting structures in more detail and some
testable necessary and sufficient conditions for almost sure stability are obtained.
Although we only deal with systems with an i.i.d. form process, our results are
still valid for the general Markovian case. The following theorem relates the
almost sure stability to the spectral radii of H(1), ..., H(N) when the matrices
pairwise commute.

Theoremd4.1: If H(1), H(2), ..., H(N) pairwise commute, then
pf'ug . opR <1

is a sufficient condition for (2.1) to be almost surely stable, where w; = p(H (i)).is
the spectral radius of H(i) for each i € N.

To prove the theorem, we need the following lemma whose proof appears in
the appendix.

Lemmad.l: Let A € R™™". Then, for ¢ >0 and ||| a norm on R™*" arbitrarily
given, there exists a constant M > 0 such that

A% < Ma* Vk>0
Where o = |Apax(A)| + €.

Proof of Theorem4.1: As the matrices H(1), ..., H(N) pairwise commute,
we have

X, = HD)ZSHE) g(2)25 0@ | H(N)ZS Ny,
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Hence, from Lemma 4.1, for any >0, IM;, M,, ..., My such that
|HG)*|| < Mi(w; + €)* for 1<i< N and k > 0. It follows that

k-1 k-1
el < My(uy + 8)2‘=° hed o My(uy + E)EH’ |

k
=M,... My ((M + g2 (un + 8)%25‘;;‘11\;(0,-)) [lxoll

Since pf'uf? ... uR¥ <1, there is an £>0 so that (u + &£)Pi(u, + £)P . ..
(uy + €)P¥ <1. Then, from the Law of Large Numbers, we conclude that
x|l — 0 as k — . This completes the proof. m|

It is easy to see that for the one-dimensional case, the condition in the above
theorem is also necessary. The following corollary of Theorem 4.1 is immediate.

Corollary4.1: If H(1), H(2), ..., H(N) pairwise commute and are all stable
matrices, then the system (2.1) is almost surely stable.

In general, the condition in Theorem 4.1 is not necessary. The following
demonstrates this fact and is illustrative for the later development.

wo-[4 5] w5 o]

A direct computation yields

!:6{%2 :‘;0111(01') afi(z :{:0112(01‘) 0
Xk = 15 -1 15 k-1
0 8F =0 11(01‘)“{( i=0 I2(07)

Example 4.1:

k
] x0 2 A(k)rxg

By applying the Law of Large Numbers, we see that the system (2.1) is almost
surely stable if and only if

otafr <1

8adr < 1
If we choose 6;=2, 8,=01, a; =01, ap=2 and p; = p, =0-5, then the
system (2.1) is almost surely stable, even though uf'uf? =2 > 1. ]

The above example suggests the following generalization to systems with a
more general type of commuting structure.

Theorem 4.2:  Suppose that H(1), H(2), . .., H(N) pairwise commute. Then

(@) if HQ1), ..., H(N) can be simultaneously diagonalized to the following
form

Pu,j
T'H()T = Prj (1<j<N)
'.'pn,j
then the system (2.1) is almost surely stable if and only if
lofipfs ... PPN <1Vlsis<n

(b) if HQ1), ..., H(N) can be simultaneously transformed to Jordan form
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with the corresponding diagonal elements pyj, P2, - - ., Pn,j for j€N,
then a necessary and sufficient condition for the system (2.1) to be
almost surely stable is

lpPipf3 ... pf%l <1Vie{l,..., n}

Clearly, the proof of (a) is similar to the one-dimensional case. To show (b),
we need the following matrix lemma.

Lemma 4.2:

(i) Any two Jordan blocks with the same dimension commute. Any diagonal
matrix commuting with a Jordan block will be a scalar multiple of the
identity matrix.

(ii) Any two Jordan form matrices A and B which commute can be written
as matrix diagonal forms, in which the number of the diagonal sub-
matrices are equal, and the corresponding submatrices, J; and J; have the
same dimension, i.e.

.,'Jr . 3,

where dimJ; =dimJ; for 1<i<r, and J;, J; are either diagonal or
Jordan blocks. These canonical forms will be referred to as D—-J forms.

(iii) If Ay, Ay, ..., Ay commute and can be simultaneously transformed to
Jordan forms, then they can be simultaneously transformed into D-J
forms.

Proof: For the proof see the Appendix. O

Proof of Theorem4.2: (a) is trivial. We only show (b) here. The necessity is
obvious by examining the diagonal elements of matrix products of the Jordan
forms. To show (b), it is enough to prove sufficiency.

As the matrices H(1), H(2), ..., H(N) pairwise commute and can be
simultaneously transformed to Jordan forms, from (iii) of Lemma 4.2, there is a
non-singular 7 such that for each je N,

H(j) = T ' diag{Jyj, Joj» - - > Je;}T
where J;; for 1<I<r are either Jordan blocks or diagonal matrices, and
dimJ;; =dimJ;, = -+ - =dimJ; y for all 1 </ =< r. Thus, we have

X, = HQ)ZSH@ | F( N)Z{‘;,‘IN(oi)xO

=7 e 2{(_11( A El‘—ll ‘ Txo
Jr, =0 Ii(oy) Jr,N i=0 In(0)

Let q,, = k-t 1,(0;) for 1< m < N. For simplicity, assume that N = 2.
Let us examine the diagonal block J{1J/3 with the corresponding eigenvalues
of J; 1, J;» being «;, B; respectively.

Case 1: if both J;; and J;, are diagonal, then from (a), J{}J{} converges to
zero almost surely.
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Case 2: if J;; is a Jordan block, with dimension m, and J;, is diagonal, then
from (i) of Lemma 4.2, we see that J;, is, in fact, a scalar multiple
of the identity matrix, i.e. J;, = 3,1, then we obtain

. ; 1" '
G I
®;
QTBE (ByadTlgE (5 et
] of B :
............. wi-1go

Hence, from the Law of Large Numbers, we obtain

. k k a.s.
lim af B2 o pP

k—
From the sufficiency condition, a?'f? < 1, thus for any finite /

This implies that J{1J{3 converges to zero almost surely.
Case 3: if J;; and J;, are both Jordan blocks with dimension m, then we

have
(o 1 " e 1 . =
q q — (Yt ."'-.' ﬁl.‘.."'-.‘
L ; Bi
"‘alqlﬁ?z E523(?‘)(;}2—1)‘:‘(?1_1/}?2_1“ . ;';Bl(;ll)(?nz—l—l)agl_lﬁgz_m+l+1
_ al' B ..
- T a;ll:ﬁgz
By hypothesis, we know that a? 1[3}’2 <1, and for any finite integer /,
we obtain
(‘112) ap ("11 )(l ‘”1) ITIET g (‘Ill) o e

L oK) (MBIt O (a1 gy 25

where O(a,) denotes a quantity such that O(a,)/a, is bounded as

a,— 0. In the above derivation, we have used the fact that lim,.
_» k'a* =0 for any finite integer I, where |a| <1. In this way, we

can conclude that J#{J/ converges to zero almost surely.

Combining the above discussion, we obtain the proof of sufficiency for
" N =2. The case when N > 2 is similar. This completes the proof. O

Remark: As we already know, if the matrices H(1), H(2), ..., H(N) are
diagonalizable, then they commute if and only if they can be simultaneously
transformed to diagonal forms. But, for the simultaneous transformation to
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Jordan form, this does not hold; that is, commutivity does not guarantee
simultaneous transformation to Jordan form. A simple example is

aefp ) e[h 7]

More generally, one may ask for a necessary and sufficient condition for the
case when H(1), ..., H(N) pairwise commute without additional restrictions in
the eigenstructure of the matrices. The following results partially answer this
question.

|

Theorem 4.3: Suppose that H(1), H(2), ..., H(N) pairwise commute. Then
there is a unitary matrix U € €"*" (the linear vector space of n X n matrices with
complex entries) such that for each je N, U*H(j)U is an upper triangular
matrix with the diagonal elements {p1 j, P2j> - - -» Pn,j}- A necessary condition for
(2.1) to be almost surely stable is

P1 P p ;
lpPipf3 ... pENl <1V1s<is<n

Proof: The existence of such a unitary matrix U is given by Horn and Johnson
(1985, p. 81). To show the necessity, first use the unitary transformation to
change the matrix product into a product of upper triangular matrices, then use
the diagonal elements together with the Law of Large Numbers and the Law of
the Iterated Logarithm, the proof is then complete. O

We conjecture that the above condition is also sufficient. However, we have
not obtained a proof of the sufficiency. The following two-dimensional result
supports the above conjecture. '

Theorem 4.4: For two-dimensional (n=2) commuting matricies H(1), H(2),
..., H(N), the necessary condition for almost sure stability given in Theorem 4.3
is also sufficient. :

To prove this, we need the following lemma.
Lemma 4.3:
Q) a b|F [k kba*!
! 0 a| | O a*
[«

O 0 Z:|

and

commute. If a #0, and
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K
then fBy = B,.

(ifi) Let
A= ["61 0‘:2] and B = [/(3)1 [’3’2:’

where a #0, b #0, oy # ay, 1 # By. If A and B commute, then they
can be simultaneously diagonalized as either

ol 18 alelv A) (5 4]

there are no other choices.

commutes with

Proof: (i) and (ii) follow from a direct computation. We show (iii) next: let T
be the matrix so that T~*AT, T~!BT are diagonal, and let

In
T =
[:121 tzz:l
T-iar=| % 0
0 [¢%)
Then

AT = 71 ® 0:] él:a/ltll taty  tpo + atzzil _ l:ﬁl’ltu Olztlz:l
0 a it 45353} @ity aply

From this we have a,t5; = ;15 and 1y = 0. Moreover, t1; = aty/(a, — a;).

If
T™BT = [%2 121]

we obtain that B,t5 = t5,6;. Since f; # f3,, we have t,, = 0, which contradicts
the non-singularity of 7. Hence 7~'BT must be

& 5

In a similar fashion, we can prove that if

T-iar=|%2 0
0 [¢4]

T7'BT = [%2 ;3)1]

This completes the proof. O

Suppose that

then
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Proof of Theorem 4.4: It is enough to prove the sufficiency. As the matrices
H(Q), HQ2), ..., H(N) pairwise commute, from Theorem 4.3, there exists a
unitary matrix U, such that

U*H(j)U = ["6]’ zﬂ (1<j<nN) (4.1)

Without loss of generality, we assume that for each je N, H(j) is an upper
triangular matrix.
Group (4.1) into the following three sets

Set1: | ¢ bl],...,[“" b'], b,#0, 1<r<i
_O (¢4} i

et 2: [ @it ﬁm] g ] ey # B b, 0. 1< 7 <
L i+1 l+]

Ty « 0
Set 3: | %+ }[N ]
Lo ﬁH,vH 0 By

Let us examine each of the following three possibilities.

Case 1: if Set 1 is not empty, then from (ii) of Lemma 4.3, we know that Set
2 is empty, and the matrices in Set 3 are just scalar multiples of an identity
matrix, i.e. @41 = Bis1, . . ., &y = By. Thus, we have (g; is as defined before)

X = H(1)‘71H(2)‘12 . H(N)‘hxo

q1
a
1 aff’ff .oadxg
051

_ o/f afally . a?w s as - aveft . o i
0 aftad ... o}y 0
where f(q1, g2, - - -, gn) is a finite degree polynomial in q;, g3, . .., gn. Thus,

from the (ioondition of the proposition and the Law of Large Numbers, we obtain
that x, '— 0 almost surely, i.e. the system (2.1) is almost surely stable.

Case2: If Set 1is empty, and Set 2 is not empty, then the matrices in Set 2
can be simultaneously diagonalized. Furthermore, from (iii) of Lemma 4.3,
there is a T so that

—1["6" zﬂT=[‘zf /3,] (1<i<j)

Also, note that if Set 2 is not empty, then the matrices in Set 3 are again scalar
multiples of the identity matrix. Therefore, we have

q1 q;
_|* a’] :l ! 9i+1 S
X, = aliy ... affx
“ [0 /31] [ Bi| - aNT 4.2)
af'ad™ ... o 0 ] -1

=T - T 'x

[ 0 BIBS? ... B 0
In deriving (4.2), we have used the fact that «;,; = ﬁ]H, ..., ay = By. From

(4.2), it follows that under ’Ehe condition of the proposition, the Law of Large
Numbers guarantees that x; — 0. This implies that system (2.1) is almost surely
stable.
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Case3: if Set 1 and Set 2 are empty, then H(1), H(2), ..., H(N) are
diagonal. It is easy to see that in this case, system (2.1) is almost surely stable.
O

5. Concluding remarks

In this paper, we have studied stability problems of discrete-time jump linear
systems and we have obtained a set of stability criteria both for almost-sure
stability and é-moment stability, which are easy to check in applications. Some
of the criteria developed turn out to be necessary and sufficient conditions for
almost-sure stability and 6-moment stability for one dimensional systems. We
also studied the relationship between 6-moment stability and almost-sure stabil-
ity. It is shown that for scalar systems, -moment stability implies almost-sure
stability. Also, for 6 > 0 sufficiently small, the region for §-moment stability is a
good estimate of the region for almost-sure stability. This suggests that the
almost sure stability information is somehow contained in the 5-moment stability
information. For systems with a special commuting structure, some necessary
and sufficient conditions for almost sure stability have been obtained.

We mention again that although we deal with systems with an i.i.d. form
process exclusively in this paper, all the results have their analogues in systems
with a Markov form process. Much future research work can be identified. The
most interesting is probably the further investigation of the relationship between
almost-sure and 6-moment stability. We expect that results hold in the higher
dimensional cases that are similar to those obtained for one-dimensional systems
in this paper. Moreover, a weaker testable (necessary and) sufficient condition
for -moment stability for general jump linear systems is also needed to achieve
a significant stability criteria for engineering applications. Of course, jump linear
systems are only a small family of stochastic systems. One may ask for similar
results for a more general family of systems. In a subsequent paper, we will
report on further research results in these directions.
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Appendix

Proof of Lemmad4.1: We only need to prove the 2-norm case because any
norms on R"*" are equivalent.
Using Jordan’s theorem, there exists a non-singular 7 such that

Jl «@; 1

L <y, where J; = a"-.,'l

-
—

. ) e
Thus, we have A¥ = T71J*T. Since
lal = |77t 77| < (Tl T~ D]
< (ITI- |77 max {77}

TAT™ ! =
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Therefore, it is enough to show that the result holds for any Jordan block J in
the form

A1
7= A 1 )
-
mXm
Since
FLE L (g)lk—Z o (/’;_1)lk—m+1
7 A k)Lk—l (5 _p)Ak-m+2
.............. M
it follows that
I = sup (' (J")kT*x) M2
x|=1
. 1/2
= ”SIHIP1 [inxj(P'r’n(k))(/lk—”’)z]
x||= i,j
. 1/2
= sup [Shos| PG/~ |t (A1)
x|=1 i,j

‘Where, in (A1), PUI(k) is a polynomial of k with degree less than 2m. Since
|A|/a < 1 for any eigenvalue A of A, we have forany 1<i, j<m
PR(M/@y*m™ — 0, k — o
Thus, we conclude that 3 M > 0, such that
|A*| < Mak, Vk>0 O

Remark: In this lemma, we cannot improve the value of «. In fact, we cannot
choose «a as the spectral radius of A. For example

_la 1 v _[d  ka*!
A—|:O a:|’ A_[O a*
Thus, Apax(A¥(A%)) = 32 + K2a™2 + ka 2V 4a? + K?)a** = f(k)a*,i.e. |AX||=
Vf(k)a*. As we can see, f(k) is unbounded. O

Proof of Lemma 4.2: (i) follows from a direct computation and (iii) follows
from (ii). We only show (ii) here. First, assume that A and B are in the Jordan
canonical forms as in (ii). We want to show that they can be rewritten in the
required forms. We start with J; and J;.

Case 1: dimJ; > dim J;. For dim J;, then J; and J; are real Jordan blocks. Let
A1 w1 -~

P TR e B
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and let J be the p X p submatrix of B on the upper left, i.e.

[ oo
I = [0 A1:|
also let
A1
|6 A _ )* ...

Jl‘[o 52]’ O = w1

A
qxq
A1 0 0
A : :
8 = | e ) 0

A (P—9)x(p—q) 1o 0 ax(p—q)

Thus, from the p X p upper left submatrices of AB and BA and the commuta-
tivity of A and B, we have A;A; = J1A;, and if p — g = 1, this gives

0 0 o * * 124 1 0 0 0
: : g, N poee : :
0 ... 0 Teow | e 1 0 0
1 0 ... 0 A “u |1 o0 0
i.e.

0 oo ] 0 *

0 0o |1 o

g % * u * *

Comparing the first column on both sides, we obtain that this is not true. Hence
dim J; > 1 is not true.

For dimJ; = 1, then from AB = BA, one can observe the upper left p X p
submatrix. It is easy to check that the next p — 1 dimensional matrix (i.e. the
J(2, 3, ..., p) which is the minor matrix including the elements in 2, 3, ..., p
rows and 2, 3, ..., p columns) is diagonal, this implies that J,, Js, ..., J, are
of dimension one. This can be seen by observing the (1, 3) elements both in AB
and BA together with the commutativity. Furthermore, from (i), J;=J, = - - -
= J,. In this way, we can rewrite J; as the p X p submatrix at the upper left
position in B. Thus, dim J; = dim J;, and they are at the same position in A and
B, respectively.

If dimJ; <dimJ;, we can perform the same procedure. Continuing this
reconstruction, we can obtain our D-J canonical form. This completes our
proof.
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