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Sufficient conditions for the stability of interval matrices

YUGUANG FANGt, KENNETH A. LOPAROYt
and XIANGBO FENGT

The stability of interval dynamical systems is studied. Sufficient conditions for
the polytope of interval matrices are examined and some of the proofs are
greatly simplified. More generally sufficient conditions are obtained and the
approach taken in the new proofs has the potential for further generalizations
of the result obtained in this paper.

1. Introduction

After the publication of Kharitonov’s (1978) paper, many researchers have
studied the stability of interval dynamical systems. Motivated by this, the
stability of interval matrices has been recently investigated. Bialas (1983)
generalized Kharitonov’s result to this case and claimed that a necessary and
sufficient condition for the stability of interval matrices is the stability of the
vertex matrices. This was shown to be incorrect by Barmish and Hollot (1984),
and Barmish er al. (1988) began to consider the stability of the convex hull
(polytope) of matrices and provided counterexamples to some ‘tempting’ conjec-
tures for sufficient conditions for the stability of the polytope of matrices. By
specifying the vertices, many researchers have obtained necessary and sufficient
conditions for the stability of a polytope of matrices. Shi and Gao (1986) and
Soh (1990 a) found that when the vertex matrices are symmetric, the polytope of
matrices is stable if and only if the vertex matrices are stable. Wang (1991)
generalized this to the case when the vertex matrices are normal. Liao (1987 a)
proved that this is also true for Metzler vertex matrices. But all these criteria are
too conservative to be useful in many practical applications. Many researchers
have attempted to seek sufficient conditions which are less conservative. Jiang
(1987) obtained a sufficient condition which stated that if the symmetric
components of the vertex matrices are stable, then the polytope is stable.
Argoun (1986) used the Gershgorin’s circle theorem to obtain a sufficient
condition, which was shown to be false by Xu and Shao (1989), and Soh
(1990 b) corrected this result by using the matrix measure. Also using the matrix
measure Fang, et al. (1992) obtained a very general sufficient condition for the
stability of the polytope, which generalized all the above criteria. There is,
however, another approach to this problem. Similar to the study of the stability
of ordinary differential equations, the comparison principle of Lakshmikantham
and Leela (1969) can be used. Xu (1985) obtained a sufficient condition by
transforming the vertex matrices into M-matrices. Liao (1987 b) generalized the
result for application to large-scale systems. This result is important because
when the dimension of the dynamical systems is very large, the result can be
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used to reduce the problem to the study of lower dimensional systems, which
makes the approach computationally attractive.

In this paper, we comment on some of the previous results, generalize some
of these results and at the same time simplify their proofs. Some additional
sufficient conditions are obtained and some necessary conditions are provided.

2. Main contributions
Let the non-negative cone of real matrices A, A,, ..., A, be defined as

p
W={A|A=ZﬁlAl,ﬁ,?0,l=1,2,,p}
i=1

and the convex hull (polytope) as

p p
S = {AIA=E aiAi, a120(1s1$p)’2 a/i=1}
i=1 i=1

Jiang (1987) proved that if the symmetric components (A; + A})/2 of vertex
matrices are stable, then the cone W is stable. Although some of details in the
proof are not necessary, which has already been pointed out, a simplification of
the proof can be obtained. Mansour (1988) proposed a short proof by using
Liapunov’s second method and generalized the above result, i.e., if P is positive
definite, and PA; + A] P (1 <i=< p) are stable, then the cone W is stable. Let
|x| denote a vector norm of x on C”, and ||A| the induced matrix norm of the A
by the vector norm |-|. The matrix measure u(A) of the matrix A induced by
the above matrix norm (or say, the vector norm) is defined by

A I+ 041
wA) & lim Y

where I is the identity matrix. The properties of matrix measure can be found in
Desoer and Vidyasager (1975). Let u,(A) denote the matrix measure induced by
the vector 2-norm or the Euclidean norm: we propose the following simple
proof just based on Jiang’s approach (in what follows, we use R to denote the
real part of a complex number, and A(A) or 4;,(A) to denote the eigenvalues of
the matrix A).

Proof: It is easy to see that for any ¢ =0 and matrices A and B, we have
(A + B) < py(A) + uy(B) and puy(cA) = cuy(A). From this we obtain

1) (2 ﬁiAi) = Z Bira(A;)
i=1 i=1

Thus if the matrices (A4; + A,-T)/2 (I1sisp) are stable, then for any A e W,
A # 0 matrix,

p p L i P
u(A) = M(Zl ﬁiAi) < 21 Bima(A;) = 2:1 pimax A, (—/LT’).—AI) =0

Hence max;RA;(A) <0, which means that A is stable and that the cone W is
stable. ]
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This procedure can be generalized to a more general case, we have obtained
the following result.

Theorem 1 (Fang et al. 1992): If there exists a matrix measure u such that
w(A;) <0 (1 <i<p), then the cone W is stable. (We just regard the zero matrix
in the cone as an exceptional element).

This result is more general than Jiang’s and Mansour’s because the matrix
measure depends upon the choice of the vector norm on R”. If we choose the
2-norm, we obtain Jiang’s result as shown above. If P is positive definite, let
P= Q% then when we use the norm [x|=|Qx|,, we obtain Mansour’s
generalization of Jiang’s result. In fact, if we use ug to be the induced matrix
measure by the above norm, we have

-1 ~T ATAHT

Ho(A) = m(QAQ™) = maxR, (Q“‘Q 240 )
— maxRi, (Q_l PA + ATP Q_l) _ max;A(PA + ATP)
: 2a(P, A)

where a(P,A)=max;1;(P) if PA+ ATP is negative semidefinite and
a(P, A) = min; A,(P) if PA + ATP is positive semidefinite. From this we can
prove our claim. In fact, both Jiang’s and Mansour’s results essentially require
that a positive definite solution exists for a simultaneous set of Lyapunov
equations formed by the vertex matricies, this is apparently too conservative.
Our criteria may provide a relaxed sufficient condition. As we pointed out in
Fang et al. (1992), when the 1-norm and the «-norm are used, we can obtain
Argoun’s result (Argoun 1986), and Soh’s result (1990) as special cases. Wang’s
result (Wang 1991) can be deduced from Theorem 1 in the following way: If S is
stable, then the vertex matrices of S are obviously stable. Suppose that the
vertex matrices of S, i.e., A, A,, ..., A, are stable. Note, for any normal
matrix A, from Theorem 2.5.4 on p. 101 of Horn and Johnson (1985), there
exists a unitary matrix U such that A = UDU ™! where D is a diagonal matrix.
Using the vector 2-norm, which is invariant under a unitary transformation, the
induced matrix measure is also invariant, and we have

#2(A) = po(UDU™) = pp(D) = max RA(D) = max RA;(A)

Hence, if A; is normal and stable, then u;(A;) <0, and from Theorem 1, we
conclude that S is stable, which completes the proof. The above discussion
illustrates that Theorem 1 gives a very general sufficient condition for interval
matrices.

The matrix measure can also be used to study the robustness of interval
dynamical systems. The following theorem is obvious and useful.

Theorem 2:  For any matrix measure ., and any constant c, u(A) < c for any
A € S if and only if u(Aj) <c (1< j<p). Moreover, the set

Se = {A|u(A) < ¢}
is convex.

From this theorem, we can obtain some results on the robustness of
dynamical systems with parameter perturbations.
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Corollary 1 (Fang et al. 1992):  For the system described by
x(t) = (A + AA)x(2)

where A A represents the parameter uncertainty, if there exists a matrix measure
such that w(AA)<—u(A), then the system is asymptotically stable, i.e. the
system is always asymptotically stable for all parameter uncertainty AA satisfying
w(AA) < —u(A).

From Lyapunov’s theorem, A is stable if and only if there exists a positive
definite matrix P, and a matrix measure w such that u(ATP + PA) <0. In the
above corollary, if AA € conv{E;, i=1, 2, ..., p}, the convex hull (polytope)
of matrices Ey, Es, . . ., E;, then we obtain

Corollary 2: Suppose for any positive matrix Q, P is the positive definité
solution to the Lyapunov equation PA + ATp = —Q, then the system is asymp-
totically stable if there exists a matrix measure |, so that w(E;P +
PE)<-u(-Q) (Isis<p).

Proof: A+ AA=A+37, aE;, so

w((A + AA)TP + P(A + AA)) = w(ATP + PA + AATP + PAA)

P
= ,L(—Q + > a(ETP + PEi))
i=1
Thus from Theorem 2 and the above corollary, if the condition in the corollary
holds, then w(A 4+ AA) <0, which implies that the system is asymptotically
stable. O

If we choose Q =21, we obtain Foo and Soh’s result (1990).

Corollary 3: If P is the solution of the Lyapunov equation ATP + PA = -2I,
then the system is asymptotically stable if u(E TP+ PE)<2(1<i<p).

A necessary condition for the non-negative cone W to be unstable is
presented in Jiang (1987) and Mansour (1988); we point out that they are too
conservative. Jiang’s result (Theorem 2 in Jiang (1987)) states that W is not
asymptotically stable if Apnin(B;) =0 for some i, where B;=(A;+ AiT)/Z, the
symmetric part of A;. This in fact requires that B; is positive semidefinite, which
implies that A; is not stable. Mansour’s necessary condition suffers from the
same disadvantage. The following result provides a necessary condition which is
easier to test.

Theorem 3: W is not stable if some A; is not stable.

Proof: This is obvious because A; € W. O
Corollary 4: W is not stable if for some A;, tr (A;) =0, where tr (A) is the trace
of A.

Remark: If Apn(B;) =0 for some i, then tr(B)=> A(B)=0, and
tr(A;) = tr (B;), hence tr(A;) =0, which also implies the instability of A;. For
Mansour’s result, we can show that his condition implies the instability of the

vertex matrices. His necessary condition states that if for a positive definite
matrix P, B; = A:-FP + PA; is positive semidefinite, then W is not stable. We
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notice that
2tr(A;) = tr(A; + PTATP) = tr (P™'B;) = min A(B)) tr (P™}) = 0

Th1s implies that A; is not stable. We may conjecture that if tr(PA;+
A; P) =0, then W is not stable. This is not true, for example, let

-1 8 |1 05
A—|:O —1:" P_|:0~5 1:'
then tr (ATP + PA) =4>0, but A is stable. ' O

Next, we pursue the comparison approach. Xu’s result (1985) depends on
Lemma 2 of Xu (1985), which states the following.

Lemmal (Lemma 2 from Xu 1985): If A = (a;) and B = (b;), and if
a; < b; <0, |a| <b; (#))(,j=1,2,...,n)
then stability of B implies the stability of A.

We give a simpler proof here.

Proof: Let C = (c;) be defined as the following:
Cii = G, Cj = Ial]l @i+ ])

Then it is well-known (Siljak 1978) that A is stable if C is stable. Let a
be chosen so that B =« + P, and C = «l + P,, where P; and P, are non-
negative matrices. Because C < B elementwise, we have P, < P;, and we have
p(P,) < p(P;), where p is the spectral radius (Siljak 1978). Because P; and P,
are non-negative matrices, p(P;) and p(P,) are also eigenvalues of P; and P,,
respectively. Suppose that B is stable, then o + p(P;) <0, hence « + p(P,) <0,
thus
lrglagis)L(C) = & + max RA(P) = o+ p(Py) <0

which implies that C is stable. Therefore, A is also stable. O

Liao (1987 a) also studied a similar problem and obtained a necessary and
sufficient condition. In fact, his results can be directly obtained from Lemma 1.
Let N*(P, Q) be the interval matrices, where P = (p;) and Q = (g;) satisfy
3;i<0(@=1,2,...,n)and p;=0 (i#j, i, j=1,2, ...). Liao obtained the
result that N*(P, Q) is stable if and only if Q is stable. We can give the
following simple proof by using Lemma 1. The proof of necessity is trivial. For
sufficiency, suppose that Q is stable, for any A € N*(F, Q), from p; < a; < g;;
and the constraints on P and Q, we have

a; < ¢; <0, lag| = a; < g;
which satisfies the condition of Lemma 1, hence A is stable, and so is N*(P,
Q). |

Liao (1987b) generalized this result to large-scale systems. We first give a
very short proof and then present another sufficient condition for the stability of
interval dynamical systems.
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Let
N(P, Q) = {A = A(a;) nxnl P(py) < A(ay) < O(gy)}
A = diag(Ays, Am, - o Ay) + (1= 8;)A;)
P =diag(Py, Py, .-, Py) + (1 — 6;5)Fy)
Q = diag(Q11, Q2 - - » Q) + (1 — 8;)Qy)
Ay eNPL Q) (j=1,2, .0 7)

where Aj;, Pj, Q; are n; X n; matrices, >iini=n, 6;; is the Kronnecker delta
function . Define m;; = max {||4;[|4; € N(P;, Qy)}

Theorem4 (Liao 1987b): If for any A;€ N(P;, Q;), there exist M;>0,
«; > 0 such that

lexp (Ai(t — to))| < Miexp(—ai(t — t)), (i=1,2,...,71)
with
M;
@
and if p(B) <1, where p(B) is the spectral radius of B(b;), then N(P, Q) is
stable.

b = 1 = 6y)my

Although it has been pointed out that this result could be proved by
M-matrix theory, it is only true for a special case, i.e. for the results in Liao
(1987 a). The original proof of Theorem 4 is too complicated, we give the
following simple proof.

Proof: Consider the following dynamical system
X(1) = AX(1) M
where A € N(P, Q). This is equivalent to the following set of block equations

Xi(t) = AiXi(t) + > 1 — 8)AuXi(1) i=1,2,...,r Q?)
j=1

For any ¢ty < t; < t,, we have
t r

Xi(t2) = exp(A;(t; — t1)) Xi(t1) + J; exp (Ai(t2 — 5)) > (1 — 6;)A;X;(s)ds
1 j=1

G

From this and the condition (i), we can obtain

|1 Xi(22) || < Miexp (—ai(t2 — t) IX (20| @)
+ 3 M1 = dmy [ e (enter = ) IX s
j= 1

Let X; = lim,,, | X;(?)|, then from (4), we obtain
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o r 173
X, < lim Iim 3 b; ft @ exp (—a;(t, = 5)) | X;(s)| ds
1 1

ho® e i
t

r r
< lim [ﬁ 21 by L a;exp (—a;(t; — 5)) ds] tlzim max 1X;(0)|| < 21 byX;
i i=

ti—>® | ty—>00 T —®0 [ SISE,
Thus, if we let Y = (X1, X, ..., X,)T, then we have
0<Y <BY

From this we obtain Y < B*Y, if p(B) <1, let k go to «, we conclude that
Y =0, therefore X(¢)— 0 as ¢ — %, which means that the dynamical system (@)
is stable. This completes the proof. O

From the proof, we can also obtain another sufficient condition as follows.
Theorem S:  In Theorem 4, condition (ii) can be replaced by
(i)’. Let b= My(1 — 8;)my;, and p(B) < min {a;}.
Proof: Similar to the proof of Theorem 4, the following can be obtained
XDl < Miexp (—ai(t — 1)) | Xi(to)ll

r t
+ 5 M1 = op)m [ exp(=ant = 5) 1X,(5)]ds
j=
Let o = min;<;<, «;, then we have
r t
1X:(D] < Miexp (—a(r — 1)) | Xi(to)| + 3 b ft exp (—a(t — 5)) | X(s)[| ds
j=1 0

©)

Let Yi(t) = exp () | Xi(1)l, and Y = (Y4, Y,, ..., Y;)T, then from (5), we
obtain

r t
Y0 < Mi¥i(to) + 3 by [ ¥(s)ds ©
=1
which is equivalent to
t
Y(1) < MY(t0) + | BY(s)ds )
to

where M = diag(M;, M,, ..., M,). From Theorem 1.9.3 on p.- 40 of Lakshmi-
kanthanm and Leela (1969) (a comparison principle from Gronwall-Bellman
Lemma), we have

Y (t) < exp(Bt)MY ()
Let X (1) = (|X1(0)ll, | XDl - . ., | X,(1)])T, then
X(t) < exp(—(al — B)f) MY (t,)

Since from (ii)’ RA(wI — B)=a — p(B)>0 (because B is a non-negative
matrix), this implies that the system (1) is asymptotically stable. So N(P, Q) is
stable. a
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Remark: The proof of Theorem 5 provides us with another approach to study
this problem, and it may be applied to more general case. We will investigate
this later. O

3. Conclusions

In this paper, we have discussed some of the sufficient conditions for the
stability of interval matrices which have been obtained to date. We have given
simplified proofs for some of the results and generalized some of the previously
known results. We proposed a new approach to the study of stability of interval
matrices implied by our method of proof, this approach may be useful for
continued study of more general problem formulations.
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