
A Scalable Key Agreement Scheme For Large Scale Networks

Yun Zhou, Student Member, IEEE, and Yuguang Fang, Senior Member, IEEE

Abstract— Key agreement is a central problem to build up
secure infrastructures for networks. Public key technology is
not suitable because of its computation inefficiency and the
lack of central authorities in distributed scenarios. Conventional
distributed symmetric key agreement models try to achieve key
agreement between any pair of nodes without interactions. They
are lack of scalability because of their memory cost of N −1 in
a network of N nodes, and thus only suitable and optimum in
small networks. In this paper, we propose a novel symmetric key
agreement scheme, which is scalable for large scale networks
with very small memory cost per node. We show that for a
network of N nodes our scheme has only O(k

√
N) memory

cost per node, where k ≥ 1. Conventional distributed models
can be derived as special cases of our scheme.

I. INTRODUCTION

Key agreement is a central problem to build up secure
infrastructures for networks, because all secure primitives
including encryption and authentication are based on keys.
A general scenario is the two-party key agreement between
any two nodes in a network. Though public key schemes
outperform symmetric key schemes in terms of flexible man-
ageability, their efficacy relies on the authenticity of public
keys. Hence, public key schemes are usually applicable in the
networks including fixed authorities who are in charge of the
authentication of public keys. However, there are many sce-
narios, e.g., dynamic conferences or ad hoc networks, where
such authorities are not available. In addition, public key
schemes require more computation resources than symmetric
key schemes. Hence, in large scale networks, symmetric key
schemes are pretty suitable because of their efficiency.

To apply symmetric key techniques, one of the fundamen-
tal problems is how to achieve key agreement between two
nodes in a network. In conventional key distribution center
(KDC) and key translation center (KTC) models [1], all
nodes have a shared key with a central trusted server, and
this trusted server helps to establish a shared key between
any two nodes. In this centralized network, the trusted server
is a potential failure point in that the entire network is broken
down if the trusted server is corrupted.

In addition to the centralized solutions, some distributed
methods exist. An example is the full pairwise key model,
in which each pair of nodes in a network of N nodes must
share a distinct symmetric key. This model is perfect secure

Yun Zhou is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611, USA (Tel: (352)392-8576;
Fax: (352)392-0044; Email: yzufl@ufl.edu).

Yuguang Fang is with the Department of Electrical and Computer Engi-
neering, University of Florida, Gainesville, FL 32611, USA (Tel: (352)846-
3043; Fax: (352)392-0044; Email: fang@ece.ufl.edu).

This work was supported in part by the US Office of Naval Research
under grant N000140210464 (Young Investigator Award) and under grant
N000140210554, and by the US National Science Foundation under grant
ANI-0093241 (CAREER Award) and under grant ANI-0220287.

in that no matter how many nodes collude with each other
they know nothing about the symmetric keys held by other
normal nodes. However, in this model, each node must have
N −1 symmetric keys, and the overall number of keys in the
network, which may need to be centrally backed up, is then
N(N−1)

2 , or approximately N2. As the size of the network
increases, this number becomes unacceptably large.

In [2], Blom proposes a key distribution method that
allows any pair of nodes in a network to be able to find
a unique shared key. The optimality of his method is based
on (N, t + 1) MDS linear codes [3] in that in a network
of N nodes the collusion of less than t + 1 nodes can not
reveal any key held by other normal nodes, i.e., t-secure.
The memory cost per node of the Blom scheme is t + 1.
To guarantee perfect secure in a network with N nodes, the
(N − 2)-secure Blom scheme should be used, which means
the memory cost per node is N − 1.

In [4], Blundo et al. suggest to use a t-degree bivariate
symmetric polynomial to achieve key agreement. It is a
special case of the Blom scheme in that a Vandermonde
matrix is used as the generator matrix of MDS code. Like
the Blom scheme, the Blundo scheme also provides perfect
security while features the same memory cost of N − 1 in a
network of N nodes.

Obviously, previous distributed models are lack of scal-
ability because of their huge memory cost of N − 1 in
a network of N nodes. Hence they are only suitable and
optimum in small networks.

In this paper, we propose a novel key agreement scheme,
which is scalable for large networks with small memory
cost per node. We show that for a network of N nodes
our scheme has only O(k

√
N) memory cost per node, where

k ≥ 1. Conventional distributed models can be generated as
special cases of our scheme when k = 1. Unlike centralized
schemes where a fixed server is used, in our scheme every
node may be a third trusted party to help key agreement
between other two nodes, which means more robust against
node corruption.

The rest of the paper is organized as follows. Section II
gives our motivation to address the scalability problem of
key agreement in large scale networks. Section III describes
the mathematical tool we use in our scheme. Details of
our scheme are given in Section IV. Analysis on network
parameters, such as memory cost and security is given in
Section V. A method to enhance security is described in
Section VI. The paper is ended with a discussion in Section
VII.

631

gxylsh
Text Box
1-4244-0065-1/06/$20.00 ©2006 IEEE

II. MOTIVATION

In conventional distributed key agreement schemes, all
nodes are non-interactive. Every node can independently
learn the keys shared with other nodes without help of
other trusted parties. It has been shown in [4] that the
memory cost per node in a non-interactive network is at least
N − 1 where N is the total number of nodes no matter
what kind of algorithms is used to derive pairwise keys.
The pairwise key model, the Blom model and the Blundo
model are optimum as non-interactive schemes in terms of
their memory cost. However, this memory requirement of
non-interactive schemes restricts their applications in many
large scale networks, such as ad hoc networks or sensor
networks, which may involve hundreds to thousands of
individual nodes. Obviously, to further decrease memory cost
to increase the scalability in large networks, some interaction
between nodes should be involved. The KDC and KTC
models are two extreme cases where each node needs to
keep only one key shared with the trusted server who helps
key agreement between nodes. However, the security of KDC
and KTC is worse than non-interactive schemes. Our scheme
tries to achieve a trade-off between the interactive approach
and the non-interactive approach, thus the memory cost per
node can be reduced.

III. MATHEMATICAL TOOL

Our scheme is based on a t-degree multivariate symmetric
polynomial. A t-degree (k+1)-variate polynomial is defined
as

f(x1, x2, . . . , xk, xk+1) =
t∑

i1=0

t∑
i2=0

· · ·

t∑
ik=0

t∑
ik+1=0

ai1,i2,...,ik,ik+1 xi1
1 xi2

2 · · ·xik

k x
ik+1
k+1 . (1)

All coefficients are chosen from a finite field Fq, where q is
a prime that is large enough to accommodate a cryptographic
key. Without specific statement, all calculations in this paper
are performed over the finite field Fq.

A (k + 1)-tuple permutation is defined as a bijective
mapping

σ : [1, k + 1] −→ [1, k + 1] . (2)

By choosing all the coefficients according to

ai1,i2,...,ik,ik+1 = aiσ(1),iσ(2),...,iσ(k),iσ(k+1) (3)

for any permutation σ, we can obtain a symmetric polyno-
mial in that

f(x1, x2, . . . , xk, xk+1) = f(xσ(1), xσ(2), . . . , xσ(k), xσ(k+1)) .
(4)

IV. KEY AGREEMENT

Our key agreement scheme has three components, i.e.
share distribution, direct key calculation, indirect key nego-
tiation. In the share distribution part, partial information of
a global t-degree (k + 1)-variate polynomial is distributed

among nodes. All the partial information can not reveal
the global polynomial but can help key agreement between
nodes. Some nodes may calculate a shared key directly if
they have some partial information in common. The indirect
key negotiation part tells how to negotiate a shared key
between two nodes with help of other nodes if they can not
calculate a direct key.

A. Network Model

We assume each node is identified by an index-tuple
(n1, n2, . . . , nk), and we may use the index-tuple as the node
ID. Hence each node is mapped into a point in a k-dimension
space S1 × S2 × · · · × Sk, where Si ⊂ Z for i = 1, . . . , k.
Node IDs satisfy the following properties:

1) ni is a positive integer drawn from a subspace Si, for
i = 1, 2, . . . , k;

2) Any two subspaces have no intersection, i.e.,
Si

⋂Sj = φ, for i, j = 1, 2, . . . , k and i �= j;
3) The cardinality |Si| = Ni, for i = 1, 2, . . . , k.

Hence the maximum number of nodes in the network can be
N =

∏k
i=1 Ni.

Each node in the network may be corrupted, and may
use what he knows to learn more secrets in the network. To
further evaluate the impact of node corruption, we assume
the probability of the corruption of a node is p.

Our scheme targets at the key agreement between two
end nodes. Hence we assume the underlying routing protocol
can provide connectivity between any pair of nodes in the
network.

B. Share Distribution

During the network initialization period, a global
t-degree (k + 1)-variate symmetric polynomial
f(x1, x2, . . . , xk, xk+1) is constructed as shown in Section
III. For a node (n1, n2, . . . , nk) in the network, a polynomial
share

f1(xk+1) = f(n1, n2, . . . , nk, xk+1)

=
t∑

ik+1=0

bik+1 x
ik+1
k+1 , (5)

where

bik+1 =
t∑

i1=0

t∑
i2=0

· · ·
t∑

ik=0

ai1,i2,...,ik,ik+1 ni1
1 ni2

2 · · ·nik

k , (6)

is calculated by using the node ID as inputs to the t-degree
(k + 1)-variate symmetric polynomial. Obviously, the share
is a t-degree univariate marginal polynomial of the global
polynomial and has t + 1 coefficients. Then the polynomial
share is assigned to the node. Here, the node only knows the
t + 1 coefficients of the univariate polynomial share, but not
the coefficients of the original (k + 1)-variate polynomial.
Therefore, even if the marginal bivariate polynomial is ex-
posed, the global polynomial is still safe if the degree t is
chosen properly.

632

C. Direct Key Calculation

Two nodes u with ID (u1, u2, . . . , uk) and v with ID
(v1, v2, . . . , vk) may calculate a shared key directly if the
following conditions are satisfied:

1) for some i ∈ [1, k], ui �= vi, and
2) for j = 1, 2, . . . , k, j �= i, uj = vj = cj .

Then node u can take vi as the input to its own share
f(u1, u2, . . . , uk, xk+1), and node v can as well take ui

as the input to its share f(v1, v2, . . . , vk, xk+1). Due to the
polynomial symmetry, the desired shared key between nodes
u and v has been established as

Kuv = f(c1, . . . , ui, . . . , ck, vi) = f(c1, . . . , vi, . . . , ck, ui) .
(7)

In fact, node u and node v achieve the key agreement by
a marginal t-degree bivariate symmetric polynomial, i.e.,

f2(xi, xk+1) = f(c1, . . . , ci−1, xi, ci+1, . . . , ck, xk+1) ,
(8)

where cj for j = 1, 2, . . . , k, j �= i are the common indices
between nodes u and v.

Because all node indices of u and v are drawn
from different subspaces where any two subspaces
have no intersection and ui �= vi, the k + 1 in-
dices c1, . . . , ci−1, ci+1, . . . , ck, ui, vi are pairwise different.
Hence the shared key calculated by the nodes u and v is
unique, i.e., other nodes do not know the shared key. Any
two nodes may calculate a unique shared key directly if there
is only one mismatch between their k-tuple IDs. This is
similar to the Blom scheme and the Blundo scheme, because
the two nodes have the same t-degree bivariate symmetric
polynomial to calculate a pairwise key.

D. Indirect Key Negotiation

If two nodes have more than one mismatch between their
IDs, they can not calculate a shared key directly, because
they do not have the same bivariate symmetric polynomial.
However, they may rely on some intermediate nodes as
agents to negotiate a shared key.

1) j mismatches (j ≥ 2): Suppose two nodes u and v
have j mismatches in their IDs. For simplicity, let us omit
all the same indices and mark the two nodes with those
mismatching indices, say node u

(ui1 , ui2 , . . . , uij
)

and node v
(vi1 , vi2 , . . . , vij

) ,

where i1, i2, . . . , ij ∈ [1, k] and are pairwise different.
Then they may negotiate a shared key along a secure path
consisting of agents as

(vi1 , ui2 , ui3 , . . . , uij−1 , uij
) ,

(vi1 , vi2 , ui3 , . . . , uij−1 , uij
) ,

(vi1 , vi2 , vi3 , . . . , uij−1 , uij
) ,

...
(vi1 , vi2 , vi3 , . . . , vij−1 , uij

) ,

because all neighboring nodes along the path have direct
keys. It is worth noticing that there are more secure paths
between node u and node v. Another example is

(ui1 , ui2 , ui3 , . . . , uij−1 , vij
) ,

(ui1 , ui2 , ui3 , . . . , vij−1 , vij
) ,

...
(ui1 , ui2 , vi3 , . . . , vij−1 , vij

) ,
(ui1 , vi2 , vi3 , . . . , vij−1 , vij

) .

The existence of multiple paths makes our scheme more
robust than the conventional centralized models against node
corruption.

2) Number of secure paths: The number of secure paths
can be calculated as follows. Each secure path is constructed
in j steps. Begin from (ui1 , ui2 , ui3 , . . . , uij−1 , uij

). At each
step one of the indices is replaced with the corresponding
index from (vi1 , vi2 , vi3 , . . . , vij−1 , vij

). Hence we can get an
agent at the step. At the first step, any of the j indices of node
u may be replaced, so there are j choices. The second step
has j − 1 choices. At the j-th step, there is only one choice
left. Hence, the total number of secure paths can calculated
as

Np = j · (j − 1) · · · · 2 · 1 = j! . (9)

3) Number of disjoint secure paths: Out of the Np secure
paths some are disjoint, i.e., any two disjoint paths have no
common agent nodes except the two end nodes u and v.
For nodes u and v who have j mismatches in their IDs, the
number of direct agent nodes of the end nodes u or v is j.
Hence the number of disjoint secure paths is

Nd = j . (10)

4) Number of agent nodes: For nodes u and v who have j
mismatches in their IDs, each agent node along a secure path
between the two nodes has an ID constructed in the following
way. Randomly select l positions from j mismatches between
u and v, draw indices from u’s mismatching ID at those
positions, and draw indices from v’s mismatching ID at the
positions that are not selected. The ID of the agent node
consists of the two sets of selected indices and the common
indices between u and v. Hence the number of agent nodes
can be calculated as

Na =
(

j

1

)
+
(

j

2

)
+ · · · +

(
j

j − 1

)
= 2j − 2 . (11)

5) An example: An example of 3-dimension ID space is
given in Fig. 1. Suppose node (u1, u2, u3) needs to establish
a shared key with node (v1, v2, v3), where all 3 indices
in their IDs are mismatching. They can determine 6 agent
nodes. All these 8 nodes form a cube in the 3-dimension ID
space. There are 6 paths from node u to node v, in which 3
are disjoint. For example, 3 disjoint paths are

(u1, u2, u3) → (v1, u2, u3) → (v1, v2, u3) → (v1, v2, v3) ,

(u1, u2, u3) → (u1, u2, v3) → (v1, u2, v3) → (v1, v2, v3) ,

633

n1

n2

n3 (u1,u2,u3)

(v1,v2,v3)

(v1,u2,u3)

(v1,u2,v3)

(u1,v2,u3)

(u1,v2,v3)(u1,u2,v3)

(v1,v2,u3)

Fig. 1. An example of key graph, where nodes (u1, u2, u3) and
(v1, v2, v3) and all 6 agent nodes form a cube in the 3-dimension ID space.

and

(u1, u2, u3) → (u1, v2, u3) → (u1, v2, v3) → (v1, v2, v3) .

Obviously, the above set of disjoint paths is not unique.

V. ANALYSIS

A. Polynomial Degree

All nodes in the network hold partial information of one t-
degree (k +1)-variate polynomial to achieve key agreement.
Some nodes may be corrupted and cooperate to expose the
polynomial with the partial information they hold whereby
to calculate keys between other nodes directly. Obviously,
the polynomial degree t is an indication of the difficulty
to expose the polynomial, and it is directly related to the
memory cost per node. In this section, we will investigate
how to choose the polynomial degree.

1) Corrupt one subspace: Let us consider the malicious
cooperation in one subspace. Suppose there are Ni nodes
in the subspace Si, in which all nodes have same indices
in other subspaces, for i = 1, 2, . . . , k. Any pair of nodes
in the subspace Si can achieve key agreement with a
t-degree bivariate polynomial f2(xi, xk+1), which is the
marginal of the global t-degree (k + 1)-variate polynomial
f(x1, . . . , xi, . . . , xk, xk+1) (refer to Section IV). It has been
shown in [4] that a t-degree bivariate polynomial is t-
secure in that the coalition between less than (t + 1) nodes
holding shares of the t-degree bivariate polynomial can not
reconstruct it. To guarantee any pair of nodes in Si have
a direct key that is unsolvable by other Ni − 2 nodes, an
(Ni−2)-secure bivariate polynomial should be used. Hence,
the degree of polynomial should satisfy

0 ≤ Ni − 2 ≤ t , i = 1, 2, . . . , k . (12)

2) Corrupt all subspaces: Even all nodes in one subspace
are corrupted, they can not expose the global t-degree (k+1)-
variate polynomial because they only know a marginal of the
global polynomial. Hence, to expose the global polynomial,
more subspaces should be corrupted.

Suppose all Ni nodes in subspace Si are corrupted, they
can construct Ni(Ni+1)

2 equations, i.e.,


f2(u1, u1) = K11

...
f2(u1, uNi

) = K1Ni

f2(u2, u2) = K22

...
f2(uNi

, uNi
) = KNiNi

, (13)

where uj for j = 1, 2, . . . , Ni are the indices in subspace
Si. Kj1,j2 , j1 �= j2 is the direct key between the j1-th and
the j2-th nodes in the subspace, and Kj,j is calculated with
the polynomial share of the j-th node.

If all the subspaces are corrupted, the total number of
equations that can be constructed is

Ne =
N

N1
· N1(N1 + 1)

2
+

N

N2
· N2(N2 + 1)

2
+

· · · +
N

Nk
· Nk(Nk + 1)

2

=
1
2
(

k∏
i=1

Ni)(
k∑

i=1

Ni + k) , (14)

where the total number of nodes in the network is N =
N1 · N2 · · ·Nk.

The number of coefficients of a t-degree (k + 1)-variate
symmetric polynomial is [4]

Nc =
(

t + k + 1
k + 1

)
. (15)

Thus, to guarantee perfect security of the polynomial, the
following condition should be satisfied, i.e.,

Ne ≤ Nc =⇒ 1
2
(

k∏
i=1

Ni)(
k∑

i=1

Ni + k) ≤
(

t + k + 1
k + 1

)
.

(16)
3) Choose degree t: Given the number of nodes in the

network, any polynomial degree t satisfying the aforemen-
tioned conditions (12) and (16) can be chosen. Each node
needs to keep a t-degree univariate polynomial, which has
t + 1 coefficients. Thus, to minimize memory cost per node,
we should use the polynomial which has minimum degree
satisfying the aforementioned conditions.

A common case to design a network is to let Ni = N1

for i = 1, 2, . . . , k, i.e., all subspaces have the same number
of indices. Thus, the inequality in (16) can be changed to

k

2
N1

k(N1 + 1) ≤
(

t

k + 1
+ 1
)(

t

k
+ 1
)(

t

k − 1
+ 1
)

· · ·
(

t

2
+ 1
)

(t + 1) . (17)

We can prove that when

t ≥ N1
k+1
√

k(k + 1)!/2 (18)

the inequality (17) can be satisfied.

634

TABLE I

BOUND AND PRECISE RATIOS BETWEEN t∗ AND N1

k r t∗/N1

1 1 1
2 1.8171 1.7715
3 2.4495 2.3919
4 2.9926 2.9219
5 3.4878 3.4058

Proof : (
t

k + 1
+ 1
)(

t

k
+ 1
)
· · ·
(

t

2
+ 1
)

(t + 1)

>
tk+1

(k + 1)!
+

(k + 1)(k + 2)
2(k + 1)!

tk

≥
(
N1

k+1
√

k(k + 1)!/2
)k+1

(k + 1)!
+

(
N1

k+1
√

k(k + 1)!/2
)k (k + 1)(k + 2)

2(k + 1)!

=
k

2
N1

k+1 +
(

k

2

) k
k+1 (k + 1)(k + 2)

2 k+1
√

(k + 1)!
N1

k

>
k

2
N1

k+1 +
(k + 1)(k + 2)

2 k+1
√

(k + 1)k+1
N1

k

=
k

2
N1

k+1 +
k + 2

2
N1

k

>
k

2
N1

k(N1 + 1) , (19)

where k ≥ 2. �
Because

(
t+k+1
k+1

)
is a monotonic increasing function of

t, the solution of (17) should be [t∗,∞), where t∗ is the
minimum degree satisfying (17). Because the solution of (18)
is the subset of the solution of (17), the minimum global
polynomial degree t∗ can be bounded as

t∗ ≤ r · N1 , (20)

where ratio

r = k+1

√
k(k + 1)!

2
. (21)

The second column in Table I gives some bound ratios
when k is small. Figure 2 illustrates the precise ratio of t∗

to N1 respect to N1. We can see when N1 becomes large,
the value of t∗ becomes stable and the real ratio is bounded
by r. Some average ratios are given in the third column in
Table I when k is small. Obviously when the condition in
the inequality (16) is satisfied, the condition in the inequality
(12) is automatically satisfied.

B. Memory Cost

The memory cost per node is mainly related to two
parts, i.e., one for node ID and the other for polynomial
share. Remind that each node is identified by a k-tuple
(n1, n2, . . . , nk) where ni ∈ Si and all subspaces Si are
disjoint. The total number of different indices is N1 + N2 +

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

Number of indices − N1

R
at

io
 o

f m
in

im
um

 p
ol

yn
om

ia
l d

eg
re

e
to

 n
um

be
r

of
 in

di
ce

s
−

 t/
N

1

k=2
k=3
k=4
k=5

Fig. 2. The ratio of minimum required polynomial degree to number of
indices in one subspace.

· · · + Nk where Ni = |Si|. Hence for each k-tuple ID, the
number of bits should be used is

MID = k log(N1 + N2 + · · · + Nk) . (22)

When all subspaces are equal sized, the memory cost of node
ID is

MID = k log kN1 = k log k + log N . (23)

Besides, each node in the network keeps a t-degree uni-
variate polynomial share, which has t+1 coefficients drawn
from the finite field Fq. With the bound calculated in the
previous section, we know the memory cost per node for
polynomial share can be bounded as

Mp ≤
(

k
√

N
k+1

√
k(k + 1)!

2
+ 1

)
log q . (24)

Due to the large value of q, usually we have MID
 Mp.
Thus, the total memory cost is

M = MID + Mp

≤ k log k + log N +

(
k
√

N
k+1

√
k(k + 1)!

2
+ 1

)
log q

∼ k
√

N r log q . (25)

Obviously, compared with conventional distributed models,
our scheme has very small memory cost per node, which is
on the order O(k

√
N) when k is fixed.

C. Security

For nodes u and v who have j mismatches in their IDs,
the secure path between them consists of j − 1 agent nodes.
Suppose the probability that any node is corrupted is p. The
probability that the exchanged shared key between u and v
is exposed can be calculated as

Pc = 1 − (1 − p)j−1 . (26)

635

Because the maximum number of mismatches in k-
dimension ID space is k, the maximum probability that the
exchanged key is exposed is

Pc,max = 1 − (1 − p)k−1 . (27)

Obviously, by tuning k, our scheme can achieve a trade-off
between security and memory cost in large scale networks.

VI. ENHANCEMENT

The existence of multiple secure paths between two nodes
can be utilized to enhance the confidentiality of the ex-
changed key. The idea is to transform the key into many
pieces and transmit those pieces through multiple secure
paths such that the key can be recovered if and only if all
those secure paths are corrupted.

When node u needs to negotiate a key with v, u constructs
a new subspace Sk+1 ⊂ Z where Sk+1

⋂Si = φ for i =
1, 2, . . . , k. Remember u has a polynomial share

f1(xk+1) =
t∑

ik+1=0

bik+1 x
ik+1
k+1 . (28)

Node u may randomly select s ∈ Sk+1 and calculate a key
Kuv = sb0, thus a new polynomial can be formed as

f ′
1(xk+1) = Kuv + b1xk+1 + b2x

2
k+1 + · · · + +btx

t
k+1 . (29)

Then, Shamir’s (t + 1, T) threshold secret sharing scheme
[5] can be applied. Specifically, T shares can be calculated
as

f ′
1(1), f ′

1(2), . . . , f ′
1(T) , (30)

where T ≥ t + 1.
Next, node u transmits the T shares to node v through

multiple secure paths by following the method proposed in
[6]. Suppose u and v have j mismatches in their IDs, which
means there are j disjoint secure paths between them. Then
node u may transmit T/j shares along each secure path to
node v. Once node v gets t + 1 out of T shares, he can
recover the polynomial f ′

1(xk+1) and get the key Kuv by
Lagrange interpolation.

The value T should be chosen properly such that the
polynomial f ′

1(xk+1) can not be recovered even if j − 1
out of j secure paths are corrupted. Thus T should satisfy{

T ≥ t + 1
T − T/j < t + 1 (31)

=⇒ t + 1 ≤ T <
j(t + 1)
j − 1

. (32)

By following the procedure, the key Kuv may be exposed
only if all j secure paths are corrupted. Hence the probability
of the key exposal is reduced to

P ′
c = Pc

j = (1 − (1 − p)j−1)j . (33)

VII. DISCUSSION AND CONCLUSION

The dimension of the ID space k is a parameter we can
control to achieve the trade-off between memory cost per
node and security performance. The conventional pairwise
key model, the Blom model and the Blundo model are special
cases where k = 1. They are perfect secure, but have memory
cost of N − 1, which is not suitable when number of nodes
increases. Our scheme are scalable in that the memory cost
per node only increases proportionally to the k-th root of
the total number of nodes while the security only deceases
gradually.

Conventional key agreement models have been finding
many applications in large scale networks, especially ad
hoc networks and sensor networks [7]–[9]. Due to the large
number of nodes in those networks, it is not realistic to
apply those models directly. A general way is to partition
the entire network into many portions and apply conventional
models in each portion. But the performance is not good in
terms of large memory cost and low security. However our
scheme is pretty suitable in those scenarios because of its
good scalability. We will continue to investigate our scheme
in those scenarios in our future work.

REFERENCES

[1] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996.

[2] R. Blom, “An optimal class of symmetric key generation systems,” in
Proc. of EUROCRYPT ’84, pages 335-338, 1985.

[3] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correction
Codes, North-Holland, New York, 1977.

[4] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro,and M.
Yung, “Perfectly-secure key distribution for dynamic conferences,” in
Advances in Cryptology C CRYPTO 92, LNCS 740, pages 471-486,
1992.

[5] A. Shamir, “How to share a secret,” in Communications of the ACM,
22911):612-613, November, 1979.

[6] Wenjing Lou, Wei Liu and Yuguang Fang, “SPREAD: Enhancing data
confidentiality in mobile ad hoc networks,” in IEEE INFOCOM’04,
HongKong, China, Mar 2004.

[7] Haowen Chan, Adrian Perrig, and Dawn Song, “Random key predis-
tribution schemes for sensor networks,” in Proceedings of the 2003
IEEE Symposium on Security and Privacy, p.197, May 11-14, 2003.

[8] W. Du, J. Deng, Y. S. Han, and P. K.Varshney, “A pairwise key
pre-distribution scheme for wireless sensor networks,” in CCS’03,
Washington, DC, October 27-30, 2003.

[9] D. Liu, and P. Ning, “Establishing pairwise keys in distributied sensor
networks,” CCS’03, Washington, DC, 2003.

636

