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Abstract—In current healthcare systems, patients use various
types of medical IoT devices for monitoring their health condi-
tions. The collected information (personal health records) will be
sent back to hospitals for diagnosis and quick responses. However,
severe security and privacy leakages with regard to data privacy
and identity authentication are incurred because the monitored
health data contains sensitive information. Therefore, the data
should be well protected from unauthorized entities. Unfortu-
nately, traditional cryptographic approaches or password-based
mechanisms cannot fulfill the privacy and security demands in
health monitoring due to their low efficiency and knowledge-
based property. Biometric authentication overcomes these defi-
ciencies and successfully verifies the inherent characteristics of
humans. Among all biometrics, the electrocardiogram (ECG)
signal is the most suitable one due to its medical properties.
However, the security and privacy objectives of ECG-based au-
thentication usually fail in practice due to the noise interferences
in the collected ECG data and the privacy breach of the ECG
database. In this work, we propose a practical scheme that can
reliably authenticate patients with noisy ECG signals and provide
differentially private protection simultaneously. The effectiveness
and efficiency of our scheme are thoroughly analyzed and
evaluated over online datasets. We also conduct a pilot study on
human subjects experiencing different exercise levels to validate
our scheme.

Index Terms—Biometrics, eHealth, Authentication.

I. INTRODUCTION

THE aging population and prevalence of chronic diseases
have led to high demand for long-term in-home health

monitoring. With the rapid development of sensing technology,
intelligent health monitoring IoT devices, such as ECG patch,
blood pressure band, pulse oximeter, etc., can collect health
data and provide real-time feedback to patients and hospitals,
either as a warning of impending medical emergency or as a
monitoring aid during exercises [1]. In particular to this IoT-
based healthcare, health data is considerably sensitive because
it reveals inherent characteristics of patients. According to the
Health Insurance Portability and Accountability Act (HIPAA),
patient health records (PHRs) should be encrypted before
releasing [2]. Besides, the access to health data should also
be restricted to unauthorized entities. However, traditional
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methods only verify "what you possess" (e.g., an ID card)
or "what you remember" (e.g., a password) to authenticate
individuals, and conventional cryptographic approaches on
protecting data privacy are not efficient [3], especially for the
case of emergency.

Biometric authentication, which overcomes the above draw-
backs and verifies "who you are" [4], has been extensively
studied and enabled current state-of-the-art biometric systems
to accurately recognize individuals based on biometric trait,
such as face, iris, fingerprint, voice, and gait, acquired un-
der controlled environmental conditions from patients [5].
Biometrics are inherent to humans and unique among indi-
viduals, so they can be used to authenticate patients with
small probability of forging identities. However, most bio-
metrics, such as fingerprint, face, or iris, have the following
drawbacks: 1) extra sensors other than sensors for medical
monitoring purpose are acquired; 2) less help on medical
diagnosis; 3) easily get lost or stolen, all of which prevent them
from being deployed in medical environments. Therefore, the
electrocardiogram (ECG) signal is a more suitable choice
in practical applications. Suppose that a patient Alice has
chronic diseases requiring long-term monitoring. A medical
IoT for ECG monitoring is equipped to collect her ECG
signal daily, especially during exercise, for timely emergency
detection. Since her ECG signal is already acquired during
the monitoring, it is convenient for her to authenticate herself
with her ECG signal. Therefore, the security improvement and
medical data diagnosing can be fulfilled simultaneously.

Nevertheless, the requirement for controlled environmental
conditions in biometric authentication is contradictory to the
properties of the IoT-based health monitoring. During the long-
term monitoring, which should work all the time to detect
any health emergency timely, the environmental condition is
changing due to patients’ mobility. The ECG signal monitoring
during exercises, when most chronic heart diseases take place,
is especially important. However, existing schemes [6]–[8]
only deal with online datasets or resting ECG signals, while
the ECG signals in real situations are usually contaminated
by noise and artifacts, such as muscle movement and patch
displacement when the patient is moving. The authentication
and diagnosis cannot be successfully performed with noisy
ECG signals. On the other hand, the secrecy protection of ECG
signals is also problematic while it is pivotal in preventing
adversaries from stealing or forging a legitimate patient’s ECG
signal and breaking into her medical records [9]. The highly
sensitive property of ECG signals (e.g. revealing illness)
further magnifies the significance of privacy preservation.
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Contributions: To overcome the above limitations, we pro-
pose a scheme that is able to authenticate patients with noisy
ECG signals while ensuring the privacy of stored templates.
Our contributions are summarized as follows:

– The proposed ECG-based authentication is reliable even
with noisy inputs. The noise detection and elimination
is real-time. Thus, the application of ECG-based authen-
tication becomes more practical than ordinary ones for
daily use, especially for long-term health monitoring.

– The most common daily exercises, i.e., walking, running,
and jumping, are included. Our scheme can detect the
motions and adapt the algorithm according to current
moving status.

– The privacy of ECG templates is protected by providing
indistinguishability. The sensitivity of ECG signals is
considered while the authentication accuracy is preserved
after optimized privacy enhancement.

– Our scheme is tested on signals with real world noises
instead of artificially added noises.

II. PRELIMINARIES

A. Basic Features, Noise, and Artifacts in the ECG Signal

The ECG signal is an electrical signal reflecting the elec-
trophysiologic patterns of the human heart muscles when the
heart is depolarizing and repolarizing. Different ECG signals
conform to a similar fundamental morphology, while exhibit-
ing personalized traits, such as relative timing of the various
peaks, beat geometry, and responses to stress and activity [10].
The personalized traits are distinctive among human subjects
and can be quantified in time domain and frequency domain.
Thus, the human identity authentication is enabled via ECG
signals. As illustrated in Fig. 1a and Fig. 1b, a typical ECG
complex consists of various fiducial components such as P
wave, PR interval, QRS complex, J point, ST segment, and T
wave. The QRS complex is the most recognizable and unique
part of a ECG signal, which is frequently utilized for feature
extraction in human authentication [11].

In practice, ECG-based authentication may far from being
accurate because ECG recording is always contaminated by
noise and artifacts. The actual personal traits are hard to be
directly detected in noisy ECG signals, so the authentication
process fails if using the inaccurate features. The most com-
mon high-amplitude ECG noises [12] that cannot be removed
by simple in-band filtering are electromyogram (EMG) signal
interference, baseline wander (BW), muscle artifact, and elec-
trode movement. The ECG signals recorded during exercises
are contaminated by unwanted signal components with greater
energy.

B. Singular Value Decomposition

How to recover and conduct feature extraction from a noisy
ECG record is quite challenging. Singular Value Decomposi-
tion (SVD) [13] is a method to decompose orthonormalized
eigenvectors from the input matrix, which holds the fundamen-
tal features of the input and separate orthogonal components
in the input.
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Figure 1: ECG waveforms

Definition II.1. Let A be a real m × n matrix with m ≥ n,
then A = UΣV T , where UTU = V TV = V V T =
In, Σ = diag(σ1, · · · , σn). The matrix U consists of n
orthonormalized eigenvectors associated with the n largest
eigenvalues of AAT , and the matrix V consists of the
orthonormalized eigenvectors of ATA. The diagonal elements
of Σ are the non-negative square roots of the eigenvalues of
ATA; they are called singular values, which are assumed
to be: σl ≥ σ2 ≥ · · · ≥ σn ≥ 0. Thus if rank(A) = r,
σr+1 = σr+2 = · · · = σn = 0.

C. Differential Privacy

Traditional cryptographic methods are burdensome to pro-
tect ECG signals and the encrypted ECG signals can hardly be
used for diagnosis. Hence, we introduce differential privacy as
defined in [14], which is first defined on databases. Databases
D1 and D2 differ in at most one element if one dataset is a
proper subset of the other and the larger database contains just
one additional row.

Definition II.2 (Differential Privacy). A randomized function
K gives ε-differential privacy if for all data sets D1 and D2

differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S]. (1)

The probability is taken is over the coin tosses of K.
Thus, the risk of privacy leakage increased after this ele-

ment participating in a database is bounded by exp(ε). The
differential privacy with privacy budget ε is named as (ε, 0)-
differential privacy.

The Laplace mechanism is a basic differential privacy
mechanism, which adds Laplace-distributed noise variables to
the query result.

Definition II.3 (The Laplace Mechanism). Given any function
f : N|X | → Rk, the Laplace mechanism is defined as:

ML (x, f(), ε) = f(x) + (Y1, · · · , Yk) (2)

where Yi are i.i.d. random variables drawn from Lap(∆f/ε).
The query result returned to the requester is a perturbed one

based on the ground truth f(x). This mechanism preserves
(ε, 0)-differential privacy.

D. Notations

For clarity, we use different font styles to describe matrices,
vectors, and elements, which are the bold type, the calligraphic
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type, and the normal one, respectively. An example is listed
in Table I, together with some other notations appear in the
paper and their corresponding definitions.

Table I: Notations and Definitions

Notation Definition
M a 2-D matrix containing inputs from ECG channels
Mh the h-th row/channel in M
MT

v the v-th column/sample input in M
mi,j,h the i-th element in the j-th segment of Mh

M̂ ,M̃ the denoised and perturbed version of M
H,N the channel number, sampling time duration for M

TS , TQ, TA fiducial features regarding time durations
AS , AQ fiducial features regarding amplitudes
U ,V ,Σ singular vector decomposition representation
A, ν acceleration and speed for motion detection
Kh the divergence between two ECG signals on channel h
K the overall divergence between ECG inputs and ECG template
C, C̃ the Legendre polynomial fitting coefficients of Mj,h, M̃j,h

C̊ the fitting coefficients after soft thresholding

III. ECG-BASED AUTHENTICATION IN NOISY
ENVIRONMENTS

A. Overview

Fig. 2 demonstrates how our authentication system captures
features, generates templates, and successfully authenticates
patients even when the input signals are contaminated by
noises. A patient’s ECG signals are first obtained using
a wearable ECG acquisition module and then transmitted
to a processing device via wireless communication channel
(e.g. Bluetooth). After receiving the signals, the device applies
SVD to de-noise the signal. The features are then extracted
and stored as templates in the device as well as in the
hospital’s database. Later, when the patient requests for her
health data, an authentication request is issued to the device
and the hospital. Her ECG signals and other data from motion
sensors are recorded. Her motion will be inferred from sensors
and her ECG signals are de-noised according to the detected
motion status. Features are then extracted from the de-noised
signals concurrently and transmitted securely to the device and
hospital. They will be compared with templates to verify the
patient’s identity.
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Figure 2: System Architecture

B. Attack Model and Challenge

ECG signals and their features can be captured and stored
for indefinite amount of time. Given enough accurate features,
it is possible to reconstruct the desired ECG signal at a later

time. In [15], authors generate synthetic ECG signals from
feature distributions to launch attacks against ECG biometrics.

In our model, the attacker intends to access the patient’s
data without stealing the patient’s ECG template directly.
Therefore, the adversary tries to infer a patient’s ECG fea-
ture statistics from the template database. This attacker is
physically outside the hospital, but he can query the ECG
template database stored at the hospital and get the distribution
of ECG statistics. A simple example is that, he gets the
distribution for all patients’ templates for the first query, and he
retrieves the distribution after making a query to the dataset
without patient Alice at the next time. By subtraction, the
attacker knows Alice’s features. Hence, based on a number of
intermediate querying results, the attack can aggregate results
and successfully infer Alice’s ECG information. This kind of
inference attack on databases is extremely common. Finally,
the attacker reproduces Alice’s ECG signal and pretends to
be Alice by authenticating himself with the acquired ECG
information.

The challenge in blocking this kind of attackers is how
to carefully protect the privacy of templates as well as their
statistics, so that the inferred ECG signal will not be validated
while the template still provides enough information for Alice
to authenticate herself.

C. Template Acquisition and Training

Assume that the ECG acquisition module allows H inde-
pendent signal channels for inputs. For clarity, we use different
font styles to describe matrices, vectors, and elements, which
are the bold type, the calligraphic type, and the normal one,
respectively (e.g. M , Mh, and mi,j,h).

1) Data Recording and Training: The patient stays in a rest
position while recording her ECG signal and the entire data is
recorded as a H ×N matrix Ω, which has H ECG channels
and the signal in each channel is sampled for N times. Since
the data is recorded during rest position with negligible noise
interference, the signal can be directly decomposed with SVD
to train singular vectors for signal and noise separation: Ω =
UΣV T , where Σ is a diagonal matrix whose diagonal entries
are the singular values of Ω. Both U and Σ are saved for
further noise elimination.

2) Fiducial Feature Extraction: After obtaining the eigen-
values, R peak locations are first detected and the signals are
segmented with a window with size W centering at R peaks.
After truncation, the remaining signals are denoted as M .
Mj,h is the j-th segment on the h-th channel in M . The
locations of R peaks loc(R)j,h in each Mj,h are marked to
synchronize signals for authentication. The fiducial features
that we plan to select from one segment are described in
Fig. 1b. When processing Mj,h, all features from the last
segment Mj−1,h are updated as following:

– Average activation time T j,hA : the average time length
from the peak of P waves, which are the local maximum
before a R peak, to R peaks.

T new
A = loc(R)j,h − loc (max V[0 : loc(R)j,h))

T j,hA =
[
(j − 1)T j−1,h

A + T new
A

]
/j
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– Average QR duration T j,hQ and amplitude Aj,hQ : T j,hQ is
the average time length from the first minimum points
before R peaks (locate in Q waves) to R peaks, and Aj,hQ
is the average difference between their amplitudes.

T new
Q = loc(R)j,h − loc(min V[0 : loc(R)j,h)

T j,hQ =
[
(j − 1)T j−1,h

Q + T new
Q

]
/j

j ×Aj,hQ = (j − 1)Aj−1,h
Q + V(R)j,h −V(Q)j,h

– Average RS duration T j,hS and amplitude Aj,hS : T j,hS is the
average time duration from R peaks to the first minimum
points after R peaks (locate in S waves), and AtS is the
average difference between their amplitudes.

T new
S = loc(min V[loc(R)j,h : W ])− loc(R)j,h

T j,hS =
[
(j − 1)T j−1,h

S + T new
S

]
/j

j ×Aj,hS = (j − 1)Aj−1,h
S + V(R)j,h −V(S)j,h

D. Authentication in Noisy Environments

In practice, the patient is usually moving while authenticat-
ing with backend servers. Therefore, we propose a solution for
patients under light exercise level to accomplish successful au-
thentication. The "light exercise level" here is defined as: ECG
signals are contaminated by noises so that the morphology
of the ECG signals is distorted in time domain and fiducial
features are hard to be directly extracted from signals. The
muscle movement, patch displacement, and heart rate changes
are the main contributions. However, the exercise level is not
too high to produce destructive changes (e.g., lost of R peaks)
to ECG signals. A typical example of light exercise level is
walking, where the user’s heart rate is slightly boosted and the
chest is experiencing moving so the patch may be distached
from the chest bursty.

1) Motion Detection: Our ECG monitor is a portable one
worn on waists or arms with embedded accelerometer and
gyroscope. Accelerometer (e.g. on x axis) measures the sum
of acceleration and gravity component, Dacl(x) = A(x) +
grav(x), and angle rotation data from gyroscope (e.g. on
x axis) is denoted as Dgyr(x). The linear acceleration and
velocity are easy to get by subtracting the gravity component,
but angular velocity needs a complementary filter [16] to
take the advantage of both sensors’ properties. The linear
accelerations, linear velocity and the angle velocity on x axis
at time t are calculated as:

Atlin =
√
A2(x) +A2(y) +A2(z)

νtlin = Atlin∆t+ νt−1

νtang(x) =
d

[
α′ arctan

(
A(x)√

A(y)2+A(z)2

)]
dt + (1− α′)Dgyr(x)

where α′ is a parameter that balance the data from accelerom-
eter and gyroscope to produce accurate angle velocity.

The angle velocities on y and z axises, νtang(y) and νtang(z),
are calculated in the similar way as νtang(x). The angle
degrees at time t are also known given velocities. According
to acceleration, velocities, and angle degrees, the motions are
categorized into walking, running, and jumping, which are the

most common exercises in daily life. In general, running has
higher speed on XY plane than walking and jumping. Using
angular information alone is hard to distinguish between walk-
ing and running, but it can help us tell them from rest positions,
such as sitting and lying, because walking and running involve
more vigorous muscle activities [17]. Then we take advantage
of the gravity component grav(z) to separate running from
jumping, since the locations of people’s arms/waists when
jumping are higher than when running. Finally, we calculate
the angle degrees in case that it is misclassified as other
exercises when the patient is moving her arm during rest
positions.

2) Motion-aware Noise Elimination: If the patient’s motion
is detected and classified, the input ECG signal M ′ is sup-
posed to be contaminated with unwanted signal components.
As the noise space is time-orthogonal to ECG signal space,
the singular values of signal space is stable, so the noises in
the input can be easily discarded by reconstructing ECG signal
from the stored U and Σ2 for M ′:

S ′ = UTM ′, Ŝ ′ = [s′1 · · · s′r0 · · · 0], M̂ ′ = U Ŝ ′

where S ′ is divided into Ŝ and S̄ corresponding to the signal
and the noise subspaces. The ECG signal is recovered from
signal subspace as M̂ ′.

However, directly applying SVD for reconstruction cannot
eliminate noises efficiently due to the variability of ECG
signals and motions. We also have to wait for the entire input
matrix before denoising while motions may only happens in a
short period during input. Therefore, we propose a weighted
online SVD to let the algorithm automatically adapt to the
variations.

According to the definition of SVD, Σ2 can be re-
formulated as UTM ′M ′TU . In our scheme, this eignvalue-
related matrix will be updated along with U when more
authentication data moves in. During the authentication, we
deploy Jacobian transformation to eliminate off-diagonal ele-
ments in Σ2 after receiving every signal sample to catch its
precise features and adapt itself to new incoming ECG signals.
To balance the template and incoming data, different weights
are assigned w.r.t. motion status. The effect of newly sampled
signals is relatively less important for more violent activities
with smaller weight β given the fact that they are more heavily
contaminated. The procedure is summarized in Algorithm 1,
where Uv , S ′v , Qv are the eigenvectors, subspace matrix, and
the Jacobian rotation matrix [18] updated after receiving the v-
th input vectorM′Tv and α+β = 1. After the training process,
the close approximation of Σ2 is QT

N (αΣ2
N−1+βSNSTN )QN ,

which will stored with other training results, including UN .
3) Feature Extraction and Authentication: At each sam-

pling time t, the system de-noises the ECG samples and
finds out the needed fiducial features TA, TS , TQ, AS , and
AQ by detecting the maximum point (R peak) and nearby
local maximum/minimum points. These fiducial features are
computed and the signal is truncated in the same way as
when training template. Meanwhile, each sample in the latest
segments is compared with the template M without delay.
The features are updated after each segment.
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Algorithm 1 Motion-aware de-noising of ECG signals

1: Initialization: U0 = U , Σ2
0 = Σ2,i = 0

2: while v ≤ N do
3: v = v + 1
4: Sv = UT

v−1M′Tv
5: Update motion status. Assign α and β according to

current motion status.
6: Σ2′

v = αΣ2
v−1 + βSvSTv

7: Σ2
v = QT

vΣ
2′
v Qv

8: Uv = Uv−1Qv

9: Ŝv=[sv,1 · · · sv,r0 · · · 0], S̄v=[0 · · · 0sv,r+1 · · · sv,r+n]

10: Recover ECG signals as M̂′v = UvŜv
11: end while
12: return M̂

′

To quantify the segment comparison results for authentica-
tion, we leverage the concept of Kullback-Leibler divergence
[19], which measures the similarity between two ECG signal
segments. To avoid the drift between the template and inputs,
the divergence computation starts after the detected R peaks
in segments are synchronized with those in the template. At
each sample time in the j-th segment of the h-th channel,
t ∈ [locRj−W/2, locRj+W/2], the divergence Kh is updated:

tKth = (t− 1)Kt−1
h +

∑
i

∣∣∣∣mi,j,h log
m′i,j,h
mi,j,h

∣∣∣∣ (3)

The overall divergence is computed as the average over all
channels:

Kt =

∑H
h=1 Kth
H

The authentication request is successful if K is below a
threshold. Otherwise, the fiducial features will be compared
with the template features. This patient is rejected if the
distances between each pair of features exceeds a bound, but
will be accepted as the features are close to the template.

IV. PRIVACY ENHANCEMENT

Now the patient is able to authenticate herself with her
ECG signals, but the template signal and features are exposed
to inference and reproduction attacks. In this section, we
show how to statically protect the privacy of templates in the
database via differential privacy without intolerably distorting
authentication accuracy.

Before the privacy enhancement scheme, we use Legendre
polynomials fitting [20] to pre-process ECG signals so that
ECG signals are efficiently represented and compressed. Each
channel in the template is matched with high order Legendre
Polynomials [21]. For the ease of description, our scheme
is illustrated on a single channel. The Legendre differential
equation [22] can be expressed as:

d

dx
[(1− x2)

d

dx
pn(x)] + n(n+ 1)pn(x) = 0.

Solutions for Legendre differential equations when n =
{0, 1, 2, . . . , κ} form a polynomial sequence called Legendre
polynomials, which are denoted by pn(x). Suppose that the

location of the first R peak in the template is in line with
x = 0, then the κ-degree equation used for fitting data is
given as:

y(x) =
k′∑
r=1

[
c0,r +

κ∑
1

ci,rpi(x− loc(R)r)

]
(4)

A. Basic Design

Given a template matrix M , the algorithm first uses k′(κ+
1) polynomial coefficients to fit a single channel with k′

segments in the template. Since each segment is compared
independently, we denote the coefficients for one segment
as Cj,h = {c0,j,h, c1,j,h, . . . , cκ,j,h}. Then, the Laplace noise
Lap(λ) is applied to Cj,h:

Pr(Lap(λ) = x) =
1

2λ
e−ε|x|/λ, (5)

whose mean is 0 and variance is 2λ2. The noises added to
Cj,h is denoted as Lapκ(λ) and the perturbed outputs are
C̃j,h = Lapκ(λ) + C + j, h. Finally, the algorithm computes
the noisy signal segments M̃j,h from the fitting equation
m̃i,j,h = c̃0,j,h +

∑κ
k=1 c̃k,j,hpk,j,h(x− loc(R)j,h).

1) Privacy Level: The privacy level achieved by the tech-
nique of differential privacy depends on the sensitivity of the
data query. In our scenario, the query result for data is the set
of Legendre polynomial coefficients. Therefore, the sensitivity
of the Legendre polynomial fitting is defined as the maximum
amount the fitting coefficients can change when the ECG
signal in that channel changes, which is much smaller than
simply applying differential privacy to each signal sample.
According to the definition of differential privacy, we use
the Manhattan distance, |C − C′|, to measures the distances
between two fitting coefficient vectors C and C′.
Definition IV.1 (Legendre polynomial fitting query sensitiv-
ity). Denote the fitting query to one ECG segment in channel
Mh is LPoly(Mj,h) and its result is Cj,h. The Manhattan
sensitivity of any query LPoly to one segment is the maximum
distance of changing Mj,h to M̃j,h:

∆(L)= max
∣∣∣LPoly(Mj,h)− LPolyi(M̃j,h)

∣∣∣
= max

∣∣∣Cj,h − C̃j,h∣∣∣
The sensitivity bounds the drift in results of each query. For

a query LPoly, the achieved privacy level is ε = ∆ (L) /λ.
Then, the problem of guaranteeing privacy while protecting
accuracy turns into restricting the changes in fitting results
and deciding a proper parameter λ. According to the query
sensitivity, we define the privacy level of our algorithm as:

Theorem IV.1. The results M̃j,h of our perturbation algo-
rithm is ε-differentially private, where ε = ∆(L)

λ .

Proof. The coefficients obtained by adding Laplace noises
Lap(λ) is ε-differentially private, and M̃j,h is reconstructed
from coefficients, so it also follows ε-differentially pri-
vacy.
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2) Accuracy Analysis: The accuracy of our perturbation
algorithm is inversely represented by the faulty noisy query
results. The results could be inaccurate due to the loss due to
the approximate fitting and negative effects of the added noise.
We define several metrics to quantify the accuracy as follows.

Definition IV.2 (Approximation Loss). The approximation
loss is the loss of Legendre fitting with order κ+ 1 and more.
The loss is the sum of amplitude differences between original
ECG samples in segment Mj,h and the samples from signals
reconstructed from Legendre polynomial coefficients.

Lossj,h =

∣∣∣∣∣Mj,h −

[
c0,j,h +

κ∑
k=1

ck,j,hpk,j,h(x− loc(R)j,h)

]∣∣∣∣∣
(6)

Definition IV.3 (Expected Negative Effect on Accuracy).
Suppose that the distribution of noise follows F, we formulate
the expected deviation and the error probability of coefficients
as the expected negative effects. The expected deviation neg1 is
the expected standard deviation between perturbed coefficients
and original ones. The error probability neg2 is the count of
perturbed coefficients that exceed a threshold averaging over
the polynomial degree.

neg1(P(Cj,h)) =

√√√√ κ∑
k=0

EF |ck,j,h − c̃k,j,h|2

neg2(P(Cj,h))=
EFcount [|ck,j,h − c̃k,j,h| ≥ γ]

κ+ 1
= Pr [|ck,j,h − c̃k,j,h| ≥ γ]

Theorem IV.2. As λ = ∆(L)
ε , the expected negative effect of

our algorithm is:
neg1(P(Cj,h)) =

√
κ+ 1λ

neg2(P(Cj,h)) = 1− 1

2

[
exp

(γ
λ

)
− exp

(
−γ
λ

)]
Proof. According to differential privacy’s properties:

neg1(P(Cj,h)) =

√√√√ κ∑
k=0

EF |ck,j,h − c̃k,j,h|2

=

√√√√κ+1∑
k=0

E |Lap(λ)|2 =

√√√√κ+1∑
k=0

λ2 =
√
κ+ 1λ.

neg2(P(Cj,h)) = Pr [|ck,j,h − c̃k,j,h| ≥ γ]

= 1−
[∫ γ

−∞
Lap(λ)(x)dx−

∫ −γ
−∞

Lap(λ)(x)dx

]
= 1− 1

2

[
exp

(γ
λ

)
− exp

(
−γ
λ

)]
Obviously, the choice of Legendre polynomial order at-

tributes to the approximate loss, and the negative metrics are
related to the choice of λ and the degree of polynomial fitting,
where λ involves the query sensitivity ∆(L). To formally
analyze the deviations, we assume all constituent sensitivity
to be 1 as in [23], so ∆(L) = κ+ 1.

B. Extended Design

1) Observation: From the analysis above, we can show
that the usefulness of the template is violated because the
deviations are supremely large with a big κ. To reduce
noises, we import an existing noise reduction approach, soft
thresholding [24] with a threshold τθ, to constrain a coefficient
c̃i in C̃ as c̊i:

c̊i =

 c̃i − τθ, c̃i > τθ
c̃i, −τθ ≤ c̃i ≤ τθ
c̃i + τθ, c̃i < −τθ

(7)

The principle behind it is that the noises added to small
coefficients are usually much larger than the coefficients
themselves, but the perturbed coefficients are still comparably
small, so regulating them to zeros will make perturbed coeffi-
cients less noisy [25]. As for those important large coefficients,
it cuts down the values of added noises to confine the drifts.
The threshold τθ should be related to privacy budget and do
not compromise the achieved differential privacy.

2) Noise Smoothing for Privacy Enhancement: The goal of
soft-thresholding is to minimize the variances of C̊−C in order
to alleviate the shifting of coefficients originating from noises.
Given C̃ and Equation (7), minimizing the variance error
V ar(C̊) − V ar(C) after soft-thresholding can be formulated
as:

minimize
τθ

G =
∑

i:c̃i /∈[−τθ,τθ]

(
c̃2i + τ2

θ − 2|c̃i|τθ
)

subject to τθ ≥ 0

G ≥
∑
i

c̃2i + 2(κ+ 1)λ2

(8)

Proof. Since ci = c̃i − ni, the formulation of variance error
can be simplified as following:

V ar(C̊)− V ar(C) =
1

κ+ 1

∑
i

(c̊i
2 − c2i )

=
1

κ+ 1

∑
i

[
(c̊i)

2 − (c̃i − ni)2
]

=
1

κ+ 1

∑
i

(̊c2i − c̃2i )− 2λ2

=
1

κ+ 1

 ∑
i:c̃i /∈[−τθ,τθ]

(
c̃2i + τ2

θ − 2|c̃i|τθ
)
−
∑
i

c̃2i

− 2λ2

where ni is the noise sampled from Lap(λ).
As
∑
i c̃

2
i and 2λ2 are known, the objective function can

reduced to
∑
i:c̃i /∈[−τθ,τθ]

(
c̃2i + τ2

θ − 2|c̃i|τθ
)
.

We propose a searching algorithm on C̃ to calculate a
suitable τθ. As shown in Algorithm 2, it first excludes a certain
number of large c̃j from the range [−τθ, τθ] and solve the
quadric equation to let the objective function reach its potential
minimum

∑
i c̃

2
i + 2(κ + 1)λ2. If the potential minimum is

not achievable, it computes the minimum distance between
the objective function and the potential minimum. Then, it
kicks one more c̃j out of range and begins another round of
searching. Finally, it chooses the c̃j that satisfies the constraints
and minimizes the objective function.

Theorem IV.3. The privacy guarantee is not degraded after
soft-thresholding.
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Algorithm 2 Searching for the optimized τθ

1: Computes 2(κ + 1)λ2. Sort |C̃| in descending order and
assign new indexes.

2: for j = 0 : κ do
3: The first j elements in the newly-ordered |C̃| exceed

the range [−τθ, τθ]
4: Compute

∑j
k=1 c̃

2
k + 2(κ+ 1)λ2

5: Solve (κ − j)τ2
θ −

(
2
∑κ
k=j+1 |c̃k|

)
τθ −

∑j
k=1 c̃

2
k −

2(κ+ 1)λ2 = 0
6: if there is a solution and τθ ≥ 0 and |c̃j | > qτθ ≥
|c̃j+1| then

7: Store τθ in the first candidate vector.
8: else
9: Find the minimum point τθ of the formulation in

Step 5
10: if τθ ≥ 0 and |c̃j | > τθ ≥ |c̃j+1| then
11: Store τθ and its corresponding minimum in the

second candidate vector.
12: end if
13: end if
14: end for
15: return the first element in this vector, otherwise return the

element in the second vector with the smallest minimum

Proof. An intuitive proof is that the threshold τθ is produced
merely on C, which is generated on Lap(λ) and the λ itself,
so the privacy guarantee is the same.

This theorem can also be proved in another mathematical
way from the aspect of probability density function (pdf). The
pdf of C̊ − C is the convolution of the pdf of Laplace noise
and soft-thresholding errors, where the pdf of soft-thresholding
is a set of Dirac Delta functions ampiδ(x − loci), whose
amplitudes and locations have following properties:∑

i

ampi = 1, ∀i, loci ∈ [−τθ, τθ]

Hence, the probability of distinguishing a polynomial fitting
coefficient from another after perturbing with Laplace noise
and soft-thresholding is:

pdf [̊c1 = t]

pdf [̊c2 = t]
=

Lap(t− c1) ∗
∑
i ampiδ(x− loci)

Lap(t− c2) ∗
∑
i ampiδ(x− loci)

=
∑
i

[
ampi exp

(
∆ (L)

λ

)]
= exp

(
∆ (L)

ε

)
which achieves the same privacy budget ε as the basic pertur-
bation scheme does.

V. PERFORMANCE EVALUATIONS

A. Data Collection

In our experiments, we use two online datasets in Phys-
ioBank databases [26], which are MIT-BIH Arrhythmia (MA)
database [27] and MIT-BIH Noise Stress Test (NST) database
[28]. MIT-BIH Arrhythmia database contains two-channel
ambulatory ECG recordings obtained from 47 subjects. The
NST database adds artificial noises to the clean recordings No.

Electrode 1
Electrode 2

Electrode 3

Ground

ECG Channel 1

ECG Channel 2

ECG Channel 3

Accelerometer X

Accelerometer Y

Accelerometer Z

Gyroscope X

Gyroscope Y

Gyroscope Z

Figure 3: Demonstration of Recording and Signals

118 and No. 119 from the MA database, whose signal-to-noise
ratios (SNRs) are 24, 18, 12, 6, 0, and -6 dB, respectively.

Besides online datasets, we recruit 30 healthy subjects to
record their ECG signals voluntarily. During recording, they
perform different physical activities (resting, walking, running,
and jumping). Data are collected with a lightweight wearable
physiological monitor BioRadio 700-0016 and its software
BioCapture, which support up to three leads. The electrode
positions following Einthoven’s system [29]. The recording
situation and an example of recorded waveforms are illustrated
in Fig. 3. The data descriptions are summarized as in Table II:

Table II: Datasets

Dataset Gender Age Sampling Duration
MA/NST 25(M) 22(F) 23-89 360 Hz 30 mins
Collected 20(M) 10(F) 21-40 250 Hz 20 mins

B. Effectiveness of De-noising and Authentication

The de-noising and authentication process is performed on
all dataset to test root mean square error (RMSE), divergence,
and authentication accuracy. We import F1 score, which is
defined below, to evaluate the accuracy of correctly verify
whether a test instance is from the authorized user regardless
of the physical movements.

F1 =
2× TruePositive

2× TruePositive + FalsePositive + FalseNegative

We perform de-noising from "bad" signal entries in NST
database and our collected data, then compare them with
corresponding clean recordings. We chooses 100 segments
with 10 seconds for each person, motion type, and SNR,
and normalize all ECG recordings, then compute the average
RMSE, divergence, and F1 score before and after de-noising.
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Figure 4: The de-noising result under different SNRs
1) De-noising Stability under different SNRs: The de-

noising reliability under different pre-determined SNRs is
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evaluated using NST dataset, which can be observed in Fig. 4.
Data collected from 30 subjects is not evaluated here because
it is hard to determine the SNR in a real ECG signal. The
amplitudes of the original signal correspond to the left y-axis
and those of the recovered signal correspond to the right y-
axis. The differences between de-noised results are negligible
so they are plotted as one line corresponding to the left y-
axis. The outcomes for SNR ≥ 0 are clean ECG signals with
identical QRS complexes and the RMSEs after normalizing are
as small as 0.002. We can conclude than successful de-noising
and authentication are guaranteed regardless of SNRs.

2) Motion Types: We extract 6,600 segments lasting for
10s from our collected data to compare the de-noising and
authentication results for signals under different motion types,
3,000 segments of which are collected during walking and
the other 3,000 and 600 segments come from running and
jumping scenario, respectively. The numbers of segments are
in correspondence to the recording time of each motion.
The ECG signal undergoes small, continual noise interference
when the objective is walking while experiencing large, con-
tinual/abrupt distortions with high energy when the subject is
running/jumping. Table III and Fig. 5a use the divergences
and F1 scores to demonstrate the results. The unwanted signal
component has relatively small energy when the patient is
walking, so it is easy for the algorithm to recover the signal.
However, the noise signal appearing when the patient keeps
running or jumping is sometimes too sharp for the U to react
and separate it from signals, which will jeopardize the stability
of de-noising and authentication. Therefore, the authentication
performance is the best when the subject is walking while
being the worst for jumping, and the divergence (defined in
Equation (3)) and F1 score for jumping have the largest STDs.

Table III: Authentication under different types of movement

Status Walking Running Jumping
Divergence Mean 0.6116 1.8391 4.6458
Divergence STD 0.1634 0.3612 0.7483

Values in Fig. 5a also prove the effectiveness of de-noising.
The F1 scores after de-noising are all increased compared
to those before de-noising. The improvement for jumping is
the most significant. It is almost meaningless to authenticate
jumping subjects before de-noising, but the score is much more
acceptable after de-noising.

3) Authentication Time: To evaluate the time efficiency,
we calculate the average F1 scores when the authentication
process ends after different lengths of recording time with
all movement types. The means and STDs of authentication
accuracy, are shown in Fig. 5b. The scores indicate that the
authentication performs better with longer recording time. It
can be observed that the authentication becomes more accurate
and stable with longer recording time, with smaller STDs and
a F1 score over 94% for our collected data and 97% for
NST dataset. A recording time of 3 seconds is not enough
to reliably recognize the patient with a score around 85%
for the real-life data and the improvement for time longer
than 7s is less significant. Therefore, we set the recording

time for authentication as a constant, e.g. 7s, in the following
experiments from the aspects of accuracy and time efficiency.

4) Experimental Results Comparison: To prove the supe-
riority of our proposed ECG-based authentication scheme,
we compare our scheme with other ECG-based mechanisms
with noise cancellation. The comparison are done among the
following schemes:

a. A basic nonlinear ECG features detection based on Fast
Fourier Transform (FFT) [30].

b. A more advanced method based on Adaptive Fourier
Decomposition (AFD) [31], which is implemented on the
AFD toolbox developed by Wang et al. [32].

c. A SVD-based scheme in [33].
The aforementioned schemes are only tested on signals with

artificially added noises, which are too simple compared to
real scenarios. As shown in Fig. 6, the first simple method
may work for artificially added noises, but it cannot distinguish
real-world noises at all. Its authentication accuracy is very low
because it cannot separate any noises from signals. The AFD-
based one performs better than the previous straightforward
one due to its adaptive feature, but it requires the estimated
SNRs. We estimate some SNRs from the signal amplitudes
and pass them to the algorithm, but the performance still falls
behind our scheme when experiencing higher level of noises
due to the inaccurate estimation on SNR of real-world signals.
Moreover, the time consumption of AFD is high. Therefore,
the AFD-based algorithm is not suitable for authentication
purpose. The last SVD-based one cannot adapt itself to motion
status as well as the variations in noises, so the reproduced
ECG signal may be distorted and the authentication accuracy
is not greatly boosted after de-noising.

C. Privacy Guarantee

1) ROC Curve: Receiver operating characteristic (ROC)
curve is a graph to illustrate the classification performance
under varied thresholds by plotting true positive rate against
the false positive rate. Its area under curve (AUC) is an
important metric to quantify the performance. In Fig. 7, AUCs
for curves of ε = 5 are larger than those for curves of ε = 1,
because higher ε indicates lower privacy bound, which brings
worse privacy guarantee but better performance in terms of au-
thentication accuracy. The classification ability after applying
differential privacy is poor in the traditional academic point
system, since the corresponding AUCs are merely between 0.6
and 0.7. However, after applying soft-thresholding, the AUC
of ε = 1 becomes 0.766 and that of ε = 5 is 0.861. Though
it is still smaller than the AUC without privacy guarantee
due to an inevitable trade-off between privacy and utility, the
performance is ranked as good, which means it is acceptable.

2) Different Privacy Bounds: Overall, the performance is
improved after soft-thresholding as shown in Fig. 8a and
Fig. 8b. The trends in F1 score and RMSE show that the
accuracy is lower with smaller privacy bound, which indicating
stricter privacy demand. Although applying differential privacy
with smaller privacy budgets (ε = 0.5) will degrade the
authentication service greatly with only around 70% accuracy
even after soft-thresholding, a patient can authenticate herself
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with her protected template with an accuracy rate about 90%
when ε = 10. This accuracy rate is close to the upper bound
(the accuracy rate without applying differential privacy). It
implies that the patient can enjoy the accurate authentication
together with the protection of differential privacy if the budget
is loosened. As shown in Fig. 8b, the RMSE descends with
the growing of ε due to the looser privacy requirement and
the RMSE after soft-thresholding can be reduced to the tenth
of the one before thresholding. The deviation caused on ECG
signals by differential privacy is reduced and the effectiveness
of soft-thresholding is verified.

3) Different Polynomial Degrees: Under choices of differ-
ent Legendre polynomial order κ, we reconstruct signals M̃
from noisy coefficients and compute the summation of RMSE
between M̃ and M and the F1 scores achieved. As shown in
Fig. 9b, due to the enlarging sensitivity of C̃ when polynomial
order κ is increasing, there is a slight drop in F1 score and
dramatic rise in RMSE. The tremendous growth in RMSE
does not substantially drop in F1 score because Legendre
polynomials cover some uniqueness of ECG morphology and
the uniqueness is retained even after applying differential
privacy. Apparently, the performance is still enhanced by soft-
thresholding.

D. Efficiency Analysis

We implement our algorithms on Python 2.7 for over 10,000
iterations to estimate the running time. Evaluation results about
running time are listed in Table IV. Training a template takes
up about 3.359 seconds. Its swiftness enables timely online
template training for patients. The average time for extracting
fiducial features from a 10-second ECG signal and comparing
it with the template is about 0.7432s. The extended privacy

enhancement scheme uses only 0.00071 seconds to fit the
ECG template with polynomials, add noises to polynomial
coefficients, smoothing noises, and reconstruct the signal from
noisy coefficients. The running time of our scheme is small and
stable, which indicates that the proposed scheme is efficient
and causes negligible extra burden.

Table IV: Running Time

Training Authentication Privacy Enhancement
Mean/s 3.3591 0.7432 0.00071
STD/s 0.1071 0.0907 0.00046

VI. RELATED WORK

A. ECG-based Authentication

Existing ECG-based authentication schemes rely on fidu-
cial [34] or non-fiducial features (e.g. pulse active ratio [6],
wavelet coefficients [7], [35], and Legendre coefficients [36])
to present ECG signal’s characteristics. Due to the permanence
of the ECG signal, the produced features are constant and
sensitive, so privacy guarantee should be added. Chaotic
functions [37] provide a solution for varying representation of
features, but its stability is not yet validated. A scheme named
fuzzy extractor is proposed in [38] for authentication and some
works extend it to a reusable one [20], [39]. However, the
authentication process in them is not efficient in that it is
done as a step towards getting the key, and the clues needed
for authentication may compromise the privacy of features.
A more significant deficiency in works related to ECG-based
authentication is that a majority of them do not consider
the active authentication. Authors in [40] only estimates the
baseline wander under differential exercises when de-noising
the signal and pay no attention to other noise contamination.

B. Noise Elimination in ECG signals

Either linear or nonlinear methods have been proposed
[31] to eliminate noises in ECG signals. Linear methods
do not consider the overlap between noise frequencies and
signal frequencies. The wavelet-based methods [41] are the
most widely used nonlinear approaches, but their accuracy
is restricted by the choice of mother wavelet and they may
lead to oscillations in the reconstructed ECG signals [42]. In
order to solve these deficiencies, Wang et al. [31] propose
an adaptive wavelet decomposition. However, this scheme
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has a high demand on SNR when reconstructing signals.
Singular Vector Decomposition (SVD) [33] can effectively
extract compressed features from the ECG signal and then
recover a clean ECG signal from the noisy one. However,
most traditional ECG signal decomposition with SVD has to
be done after obtaining the entire ECG data matrix, which can
bring down the efficiency of authentication. Moreover, almost
all existing works are only tested on artificially-added noises
on real or simulated ECG signals, so there efficiency on real-
world noisy ECG signals are doubtful. In our work, we take
the advantage of SVD and boost its efficiency when applying
it to authentication procedure.

VII. CONCLUSION

In this paper, we have presented an ECG-based authentica-
tion scheme for IoT-based healthcare that provides authen-
tication ability when the ECG input is noisy and protects
the privacy of stored ECG templates. Our scheme makes
several novel contributions: preserve the timeliness of authen-
tication by implementing light-weighted online algorithms;
effectively disaggregate noises from ECG signals to ensure
a reliable authentication; provide indistinguishability via dif-
ferential privacy to prevent adversaries from inferring the
patient’s ECG information; improve the accuracy by applying
soft-thresholding while holding the claimed privacy guarantee.
Our experimental evaluation on both online dataset and real-
world experiments shows that the proposed approach can
effectively and efficiently authenticate patients while ensuring
the privacy of templates.
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