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Abstract—Mobile edge computing (MEC) is a promising tech-
nique to improve the quality of computation experience for
mobile devices by providing computation resources in close
proximity. However, the design of scheduling policies for MEC
systems inevitably encounters a challenging optimization problem
that should take both transmissions and computations into
consideration. In particular, how to jointly schedule transmissions
and the computations should adapt to the cross-layer system
dynamics, i.e., random task arrivals and channel state variations.
We formulate this scheduling problem as a joint optimization
problem for both transmissions and computations in order to
minimize the power consumption of mobile devices, while meeting
the latency requirement. With given distributions of the system
dynamics, Markov decision process (MDP) is used to model
the system operations. Based on this model, the power-optimal
scheduling policy can be obtained by converting the joint opti-
mization problem to linear programming (LP) by using variable
substitutions and thus the optimal power-latency tradeoff can
be achieved. When the distribution information of the system
dynamics is unknown, we exploit the Lyapunov optimization
to present a low complexity scheduling policy. Our theoretical
analysis and extensive simulation studies show that our approach
can offer a good tradeoff between power consumption and
latency.

Index Terms—Mobile edge computing, Markov decision pro-
cess, Lyapunov optimization, power-latency tradeoff.

I. INTRODUCTION

In recent years, the demand for mobile devices to execute
high computation tasks is increasing rapidly. However, the
resources of mobile devices, e.g., battery life and computation
capability, are still insufficient due to the limited form factors
[2] and [3]. The conflicting design considerations between
resource-hungry computation tasks and resource-constrained
mobile devices hence pose as a significant challenge to the
future mobile computing. To overcome this challenge, mobile
edge computing (MEC) is proposed, whose aim is to provide
computation resources, i.e., edge server,in close proximity of
mobile devices [4].

Nowadays, MEC is recognized as one of the key technolo-
gies for the next generation 5G networks. The benefits of MEC
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consist of high energy efficiency and low latency [5], which
are also considered as the key performance indices (KPIs)
for the support of low latency sensitive applications under
the limited energy resource of mobile devices in computation
offloading [6] and [7]. For the computation offloading in
MEC systems, the power consumption and latency in both the
task transmissions and computations should be jointly taken
into consideration [8] and [9]. Hence, a joint optimization
from both transmission and computation aspects is required to
schedule a task to make the best use of the system resources
[10]. Unfortunately, this may result in higher complexity and
more difficulty in the design of the task scheduling policy
owing to the system dynamics, i.e., random task arrivals
and channel state variations. Therefore, how to minimize the
power consumption at the mobile device while completing the
required computation task on time is highly challenging, but
of paramount importance. This paper is to tackle this problem.

Many works have been conducted to study the design of
scheduling policies from transmission and computation aspects
in order to achieve higher energy efficiency. To meet this
goal, various optimization schemes have been proposed to
minimize energy consumption at both the network side and the
device side. In [8], Zhang et al. designed an energy efficient
computation offloading scheme, which jointly optimizes radio
resource allocation and offloading to minimize the energy
consumption of the offloading under the latency constraint
in MEC systems. In [11], Sardellitti, Scutari, and Barbarossa
formulated the task offloading as a joint optimization problem
for both radio resources and computation resources, and pro-
posed an iterative algorithm to solve the problem. In [12], a
computation offloading game among the mobile device users
is formulated by Chen et. al, which takes into account both
communication and computation aspects of MEC systems.
The power-delay tradeoff for multi-user MEC systems was
investigated in [13] via the joint management of transmission
and computational resources. In [14], Bi et. al considered
a multi-user wireless powered MEC system and focus on
a weighted sum computation rate maximization problem by
optimizing computing mode selection and system transmission
time allocation. In [15], Mao et. al proposed a low-complexity
online algorithm for an MEC system exploiting energy har-
vesting, which jointly determines the CPU frequencies and the
transmission power for offloading. In addition, in [16], Munoz
et. al proposed a joint allocation scheme for transmission and
computational resources for femto-cloud computing systems,
where each computation task should be completed within
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required latency tolerance. In [17], Wen et. al proposed an
efficient offloading policy by jointly scheduling the clock
frequency and the data transmission at a mobile device to
minimize the energy consumption. In [18], Yu et al. proposed
an offloading policy with caching enhancement for mobile
edge cloud networks to minimize the execution delay. In [19],
Wang et al. proposed an efficient wireless powered multiuser
MEC design with joint energy beamforming, offloading, and
computing optimization. In [20], Liu et al. proposed a two-
timescale framework for UE-server association, task offload-
ing, and resource allocation by incorporating techniques from
Lyapunov stochastic optimization and matching theory.

As mentioned before, it turns out that analyzing and op-
timizing system performance such as queueing delay and
power consumption is a challenging task due to the varying
system dynamics. To achieve better system performance, the
cross-layer scheduling has been widely investigated in both
academia and industry, as it holds the promise to obtain a
good scheduling policy by jointly optimizing different pro-
tocols with cross-layer in the considered systems, e.g., the
random task arrivals in the network layer and random channel
state variations in the physical layer. To our best knowledge,
Collins and Cruz firstly proposed the idea of the cross-layer
scheduling based on the queue and channel states jointly in
[21] to minimize the average power consumption under the
constraints of average latency and peak transmission power.
In [22], Berry and Gallager obtained the optimal power-delay
tradeoff with a discrete Markov decision process (MDP). Xu
et al. in [23] considered cross-layer optimization for wireless
sensor networks powered by heterogeneous energy sources
through the Lyapunov optimization approach. In [24] Chen
et al., investigated the situation with Bernoulli arrivals and a
fixed modulation over a block fading channel, and proposed
a probabilistic policy. Based on this, a generalized model for
data arrivals, fading channels, as well as the transmission rates
was investigated in [25] and [26]. Furthermore, we extended
this cross-design method into the design of joint transmission
and computation scheduling (JTCS) policy in the computation
offloading systems in our previous work [1]. Based on this
method, the optimal power-latency tradeoff can be achieved.

In our previous work [1], we focus on the cross-layer
scheduling in the computation offloading systems under simple
assumptions that the task arrival follows a Bernoulli process
and channel state is fixed in different time slots. However,
considering the burstiness of traffic arrivals in practical appli-
cations and uncertainty in wireless channels, it is necessary
to consider the systems with an arbitrarily random task ar-
rival distribution and a time-varying wireless fading channel.
Moreover, we only consider the case that the distribution
information of task arrivals is already known for the scheduler,
which might not be guaranteed in practical systems.

In this paper, we adopt an arbitrarily random task arrival
distribution to capture the burstiness of the traffic, i.e., there
is no limitation on the number or the distribution of the
arriving tasks during one time slot. In addition, multi-state
of a wireless link is assumed in this paper instead of a fixed
channel state in our previous work. Moreover, the design of
the scheduling policy without distribution information is also

considered. We formulate a cross-layer scheduling problem as
a joint optimization problem for the transmission rate together
with the computation rate in order to minimize the power
consumption at the mobile device, while meeting the latency
requirement of tasks.

With known distribution information on task arrivals and
channel state variations, the scheduling problem can be formu-
lated into a Markov decision process (MDP) framework with
the proposed probabilistic scheduling policy, where MDP is
used to model the system operations. Based on this framework,
the average latency and power consumptions in transmissions
and computations can be analyzed and the original optimiza-
tion problem can be converted into linear programming (LP),
which can be solved efficiently in polynomial time. Then,
the power-optimal scheduling policy can be obtained and
thus the optimal power-latency tradeoff can be achieved. For
the design of scheduling without distribution information, a
Lyapunov drift-plus-penalty approach based on the Lyapunov
optimization is implemented to schedule the task offloading.
By minimizing the Lyapunov drift-plus-penalty function, an
online algorithm is proposed and thus the scheduling decisions
can be obtained at each time slot.

The main contribution of this work is to formulate the
power-optimal scheduling problem as a joint optimization
problem from the transmission and computation aspects, by
considering the random task arrivals in the network layer, the
queueing behavior in the data link layer, and power adaption
and random channel state variations in the physical layer.
A simple but applicable system model is used to capture
the essence of the real system operations in two important
aspects: task arrivals are usually bursty, and the channel state is
quantized and fed back to the scheduler with a limited channel
state information (CSI) feedback. Based on this model, the
tradeoff between the power consumption and the latency is
analyzed theoretically. Various optimization approaches are
given to address the above optimization problem in two
cases that the distribution information is known and unknown,
respectively. With the known distribution information, the
optimal scheduling policy can be obtained efficiently and
thus optimal power-latency tradeoff can be achieved based on
the MDP framework. For the case with unknown distribution
information, a Lyapunov drift-plus-penalty approach is devel-
oped based on Lyapunov optimization to obtain a sub-optimal
scheduling policy with low complexity and an analytic bound
on the performance can be given from the theoretical analysis
when the buffer sizes are sufficiently large.

The rest of this paper is organized as follows. Section II
presents the system model. The joint scheduling problem is
formulated in Section III. The scheduling policies with dis-
tribution information being known and unknown are given in
Section IV and V, respectively. Numerical results are presented
in Section VI, and Section VII concludes the paper.

II. SYSTEM MODEL

In this section, we introduce our model for cross-layer
scheduling development, consisting of the random task arrival
in the network layer, the queueing behavior in the data link
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layer, and power adaption and random channel state in the
physical layer.

Fig. 1. An illustration of an MEC system.

As shown in Fig. 1, we consider an MEC system consisting
of one mobile device and one edge server. The computation
tasks arrived at the mobile device can be offloaded to the
edge server via a multi-state wireless fading channel and then
be computed by the edge server. In this way, a significantly
improved computation experience can be achieved. All control
operations, i.e., transmissions and computations, are managed
by a scheduler. The time is discretized into time slots, each
of which is of equal duration Ts and is indexed by an integer
t. In this paper, we focus on optimizing the average power
consumption at the mobile device, while guaranteeing the
latency requirement of tasks.

The latency experienced by a task in the offloading schedul-
ing is defined as the time from when the computation task is
arrived to when the result of the computation task is obtained
at the mobile device. Thus, it incorporates the time to upload
the task to the edge server, the time necessary to compute
the task at the edge server, and the time to download the
computation result of the task back to the mobile device.
For the sake of simplicity, we assume that the time necessary
for download is a fixed small value, which can be negligible
compared with the time necessary for upload and computation.
Therefore, the latency for each task can be considered as the
sum of the time necessary for transmission during the upload
step and for computation at the edge server. Thus, we can
characterize the considered system by a tandem queue model,
consisting two queues of the mobile device and edge server,
as illustrated in Fig. 2.

Let a[t] denote the number of tasks newly arrived at the mo-
bile device at the beginning of the t-th time slot. We suppose

Fig. 2. System model.

that a[t] is a random variable, which follows an independent
and identically distribution across the time slots. To capture
the burstiness and variability of real-time applications, the
distribution of a[t] can be characterized by

Pr{a[t] = m} = pm, m = 0, 1, 2, . . . , (1)

where m is a nonnegative integer and pm ∈ [0, 1]. Moreover,
considering traffic shaping and admission control adopted in
the system [26], the number of tasks newly arrived at each
time slot must be upper-bounded by a large integer M , where
pm = 0 for all m > M . Thus, the average task arrival rate is
obtained by

λ1 = lim
T→∞

1

T

T∑
t=1

a[t] =
M∑

m=0

m · pm. (2)

Due to the normalization constraint, we have
M∑

m=0

pm = 1. (3)

Let Q1 and Q2 the buffer sizes of the mobile device and the
edge server, which are finite. Each task is set to be offloaded
to the edge server via the wireless link. The tasks arrived but
not transmitted can be backlogged in the buffer of the mobile
device. The queue length of the mobile device, defined as the
number of tasks backlogged in the buffer of the mobile device
at the end of t-th slot, is denoted by q1[t] and updated as

q1[t] = max {0,min {Q1, q1[t− 1] + a[t]} − s[t]} , (4)

where s[t] is the transmission rate, defined as the num-
ber of tasks transmitted in the t-th time slot, and
min {Q1, q1[t− 1] + a[t]} is to guarantee that the tasks back-
logged cannot exceed the buffer size Q1. Then the tasks
received by the edge server can be computed in the next time
slot. Likewise, the tasks that have not been computed can be
backlogged in the buffer of the edge server and the queue
length is denoted by q2[t], which is updated as

q2[t] = min {Q2,max {0, q2[t− 1]− c[t]}+ s[t]} , (5)

where c[t] is the computation rate, defined as the number of
tasks computed in the t-th time slot. Due to the constraints of
the mobile device and edge server, it is reasonable to assume
that at most S and C tasks can be transmitted and computed in
one time slot. Thus, we have s[t] ∈ {0, 1, . . . , S} and c[t] ∈
{0, 1, . . . , C}, which are scheduled at the beginning of one
time slot. Moreover, to avoid any possible packet dropping,
we assume that S ≥M and C ≥M .

The wireless channel is assumed to experience N -state
block fading, where N is a positive integer. Let h[t] > 0
denote the continuous channel power gain in the t-th time
slot. Assume that the channel power gain stays constant during
one time slot, and follows an independent and identically dis-
tribution across the time slots. With the limited CSI feedback,
the continuous channel state h[t] is quantized into N discrete
states. The discrete channel state in the t-th time slot is denoted
by l[t] ∈ {1, 2, . . . , N}. Let h1 = ∞ > h2 > . . . > hN >
hN+1 = 0 be the channel power gain levels. Assume that the
channel state is at the n-th channel state, i.e., l[t] = n, if h[t]
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ranges in the interval [hn, hn+1). Accordingly, the probability
that the channel is at the n-th state is denoted by φn, which
is given by

φn = Pr {l[t] = n} =

∫ hn

hn+1

p(h)dh, (6)

where n ∈ {1, 2, . . . , N} and p(h) is the probability density
function of the continuous channel power gain h[t]. Due to
the normalization constraint, we have

N∑
n=0

φn = 1. (7)

Suppose that there exists a feedback channel through which
CSI is sent back from the edge server to the mobile device.
Then, the channel state l[t] can be obtained by the scheduler
at the beginning of one time slot. Therefore, the scheduler can
determine the action s[t] and c[t] based on the queue states
q1[t] and q2[t], the task arrival a[t], and the channel state l[t]
at one time slot.

In practical systems, the transmission power consumption
should be adapted to the channel state and the transmission
rate to meet the bit error rate (BER) requirement. Let Ps(s, n)
denote the power required to transmit s tasks successfully in
one time slot with the n-th channel state. Since more power is
required to combat channel fading when the channel condition
is poor, for any given transmission rate s ∈ {1, . . . , S}, we
have

Ps(s, n1) < Ps(s, n2), ∀n1 < n2. (8)

Moreover, when the transmission rate s = 0, we always have
Ps(0, n) = 0 for any channel state.

From the perspective of the physical layer, for one given
channel state, to transmit more bits without increasing the
BER, a higher constellation should be implemented. Therefore,
more power will be consumed for every bit on average. As a
result, for any given channel state n ∈ {1, . . . , N}, we have

Ps(s1, n)

s1
<
Ps(s2, n)

s2
, ∀s1 < s2. (9)

Moreover, the transmission power consumption in the t-th time
slot is denoted by

Ps[t] = Ps(s[t], l[t]). (10)

Let Pc(c) denote the power needed to compute c tasks in
one time slot. According to [27], the power consumption per
CPU cycle at the edge server can be expressed as

Pcycle = κfc
2, (11)

where fc is the clock frequency and κ is the effective switched
capacitance depending on the chip architecture. In each time
slot, the total CPU cycles should satisfy

fcTs = Lc, (12)

where L is the number of required CPU cycles to compute
one task. Then Pc(c) can be rewritten as

Pc(c) = Pcycle · fc =
κL3

Ts
3 c

3. (13)

Based on the above analysis, we have

Pc(c1)

c1
<
Pc(c2)

c2
, ∀c1 < c2. (14)

Moreover, the computation power consumption in the t-th time
slot is denoted by

Pc[t] = Pc(c[t]). (15)

Our system model captures the essence of the real system
in two important aspects. Task arrivals are usually bursty in
practice, and the channel state is quantized and fed back to the
scheduler. Hence, this simple but applicable model is general
enough, and allows tractable analysis to provide insights for
further study and practical protocol design.

III. PROBLEM FORMULATION

In this section, we should mathematically formulate the joint
transmission and computation scheduling (JTCS) problem
in the considered system. Based on this joint optimization
problem, we aim to propose the JTCS scheduling policies to
determine the transmission rate s[t] and the computation rate
c[t] in each time slot.

Intuitively, by recalling Eq. (8), we notice that more trans-
mission power consumption can be saved if the mobile device
is willing to wait for better channel condition. However, the
waiting time can be undesirably prolonged if the wireless
channel stays at poor conditions for a long time. To reduce
the latency, the mobile device has to transmit tasks back-
logged in the buffer when the wireless channel state is not
so good, which inevitably leads to more transmission power
consumption. On the other hand, from Eqs. (9) and (14), we
see that the latency becomes shorter as the increase of the
transmission rate s[t] and the computation rate c[t], but with
the cost of more power consumption. Hence, there naturally
exists a tradeoff between the power consumption and the
latency in the considered system.

We are interested in the average latency from the task
generation time to its accomplish time, denoted by Dava. Due
to the QoS constraint, Dava should be less than or equal to
a latency constraint denoted by Dth. In other words, instead
of minimizing the average latency, we only need to guarantee
that the average latency of tasks Dava does not exceed Dth.

According to Little’s Law, the average length Lava =

lim
T→∞

1
T

T∑
t=1

(q1[t] + q2[t]) is equal to the arrival rate λ1 multi-

plied by the average waiting time W that a task spends in the
queue. Moreover, the total latency experienced by each task is
the sum of waiting time in the queue and the time of the task
being computed at the edge server, i.e., one time slot. Thus,
we have Dava = W + 1. Hence,the average latency of tasks
Dava can be calculated by

Dava = 1 +
Lava

λ1
= 1 + lim

T→∞

1

λ1T

T∑
t=1

(q1[t] + q2[t]) . (16)

As mentioned before, the battery life of the mobile device
is limited. Hence, it is necessary to minimize the average
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transmission power consumption at the mobile device, which
is give by

P ava
s = lim

T→∞

1

T

T∑
t=1

Ps[t]. (17)

Furthermore, there also should have a constraint on the average
computation power consumption, which is given by

P ava
c = lim

T→∞

1

T

T∑
t=1

Pc[t] ≤ P th
c , (18)

where P th
c is the constraint of the power consumption at the

edge server.
Thus, the power-optimal JTCS problem in the considered

system can be formulated as

min
s[t],c[t]

P ava
s = lim

T→∞

1

T

T∑
t=1

Ps[t] (19.a)

s.t. Dava = 1 + lim
T→∞

1

λ1T

T∑
t=1

(q1[t] + q2[t]) ≤ Dth,

(19.b)

P ava
c = lim

T→∞

1

T

T∑
t=1

Pc[t] ≤ P th
c , (19.c)

q1[t] = max {0,min {Q1, q1[t− 1] + a[t]} − s[t]} ,
(19.d)

q2[t] = min {Q2,max {q2[t− 1]− c[t], 0}+ s[t]} ,
(19.e)

s[t] ∈ {0, 1, . . . , S}, (19.f)
c[t] ∈ {0, 1, . . . , C}, (19.g)

where the transmission rate s[t] and the computation rate c[t]
in each time slot are decision variables.

Based on this problem, we next study the JTCS policies for
the two scenarios in Section IV and V, where the distribution
information of the task arrivals and channel state variations
is known and unknown, respectively, In these scenarios, an
MDP-based approach and a Lyapunov drift-plus-penalty ap-
proach are implemented to obtain the scheduling policies. The
key features of the two policies are summarized in Table I.

IV. SCHEDULING WITH MDP-BASED APPROACH

In this section, we focus on the design of power-optimal
JTCS policy with known distribution information of task
arrivals and channel state variations. A MDP-based approach
is implemented to analyze the proposed scheduling policy.

A. The Probabilistic Scheduling Policy

Given the information of distributions of the task arrival a[t]
and the channel state l[t], we aim to find an power-optimal
JTCS policy based on the problem (19), which can achieve
an optimal tradeoff between the average transmission power
consumption, the average computation power consumption,
and the average latency. To this end, we propose a probabilistic
scheduling policy to schedule the transmission rate s[t] and
the computation rate c[t] for the mobile device and the edge

server in each time slot based on the current queue lengths
(q1[t], q2[t]), channel state l[t], and task arrival a[t].

The transmission rate can be determined by the scheduler
after the task arrival in each time slot. Thus, in the sense of
the average latency, the scheduling policy is only aware of
how many tasks waiting for transmission in the buffer of the
mobile device, irrespective of the tasks are newly arrived or
have already backlogged before. Hence, a new queue state is
defined as

ζ[t] = q1[t− 1] + a[t], (20)

where ζ[t] denotes the number of tasks backlogged in the
buffer of the mobile device at the beginning of the t-th time
slot. From Eqs. (4) and (20), ζ[t] is updated as

ζ[t+ 1] = min {Q1,max {0, ζ[t]− s[t]}+ a[t+ 1]} . (21)

To avoid any possible packet dropping, i.e., ζ[t] > Q1, the
constraint q1[t] ≤ Q1 −M should always be guaranteed.

Then, the probabilistic scheduling policy is described by
the probability fs,ck1,k2,n

of s[t] = s and c[t] = c given that
(ζ[t], q2[t]) = (k1, k2) and l[t] = n, which is given by

Pr {s[t] = s, c[t] = c|(ζ[t], q2[t]) = (k1, k2), l[t] = n} . (22)

Furthermore, the normalization constraint of the probabilistic
scheduling policy, i.e.,

C∑
c=0

S∑
s=0

fs,ck1,k2,n
= 1, (23)

holds for any k1 ∈ {0, 1, . . . , Q1}, k2 ∈ {0, 1, . . . , Q2} and
n ∈ {1, 2, . . . , N}.

In addition, since the transmission and computation rate
cannot exceed the number of tasks backlogged in buffers,
the probabilistic scheduling policy should satisfy the con-
straints, which are given by, for any given channel state
l[t] ∈ {1, 2, . . . , N},

fs,ck1,k2,n
= 0 if s > k1, (24.a)

fs,ck1,k2,n
= 0 if c > k2. (24.b)

Moreover, to avoid packet dropping caused by the overflow
of the buffers, we have the constraints, which are given by

fs,ck1,k2,n
= 0 if k1 − s > Q1 −M, (25.a)

fs,ck1,k2,n
= 0 if k2 + s− c > Q2, (25.b)

This completes the description for our probabilistic scheduling
policy in this scenario.

B. The MDP Framework

For obtaining the proposed scheduling policy, we construct
an MDP framework to analyze the average latency and power
consumption. Based on the MDP framework, an optimization
problem which is equivalent to the original problem (19) can
be formulated.

According to the description of the system model, the
system state can be characterized by the queue lengths
(ζ[t], q2[t−1]), which denote the number of tasks backlogged
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TABLE I
DIFFERENCES BETWEEN MDP-BASED AND LYAPUNOV DRIFT-PLUS-PENALTY APPROACHES.

Features MDP-based approach Lyapunov drift-plus-penalty approach

Algorithm type Offline Online

Distribution information Necessary Unnecessary

Power and latency analysis Accurate formulas in Eqs. (35-38) Upper-bound in Theorem 4

Power-latency tradeoff Optimal Sub-optimal

in the buffers at the beginning of t-th time slot. The system
state at the next time slot only depends on the current state, and
not on the states at the previous slots. Therefore, the system
state can be completely characterized by a two-dimensional
Markov chain, whose state space is given by

{(ζ, q2)|0 ≤ ζ ≤ Q1, 0 ≤ q2 ≤ Q2}. (26)

In addition, the state transition at the next time slot depends
on the current action s[t] and c[t], and task arrivals at the
beginning of the next time slot a[t+1], given the current state
information.

For the ease of understanding, an instance with transition
diagram for the state ζ[t] = 3 and q2[t] = 3 is given in Fig. 3.
We denote (a[t + 1], s[t], c[t]) = (a, s, c) as (a, s, c) for each
link . As shown in Fig. 3, the state ζ[t] = 3 and q2[t] = 3
cannot make transition to the states that do not have a link with
it, e.g., ζ[t] = 2 and q2[t] = 1. For keep the figure legible,
the cases that will result in packet dropping, e.g., (1, 0, 0), are
neglected in this figure.

Fig. 3. Transition diagram at ζ[t] = 3 and q2[t− 1] = 3 (Q1 = 3, Q2 = 4,
S = 3, C = 2, A = 1), where (a, s, c) of one link denotes a[t + 1] = a,
s[t] = s, and c[t] = c.

Based on this Markov chain, our scheduling policy can be
modeled by an MDP as a 5-tuple, defined as

(Q,W,A,P (.,.)(., .),F ). (27)

Here, Q = {0, 1, 2, . . . , Q1} × {0, 1, 2, . . . , Q2} denotes the
set of all feasible system states, each of which represents
the state of the Markov chain defined in Eq. (26). In ad-
dition, let W denote all possible combinations of task ar-
rivals and channel states, indicating the system uncertainty.

Moreover, let A denote the set of all feasible actions of
transmission rate and computation rate. In one time slot,
one action v[t] = (s[t], c[t]) is taken from A based on
the system state q = (ζ[t], q2[t]) and the system uncer-
tainty w[t] = (a[t + 1], l[t]). Besides, Pv,w(q1, q2) =
Pr {q = q2|q = q1, v[t] = (s, c), w[t] = (m,n)} is the prob-
ability that given the system uncertainty w[t] = (m,n), action
v[t] = (s, c) in state q1 leads to state q2 in the next time
slot. Finally, F = (D̄, P̄s, P̄c) denotes the state-action cost
function, where D̄ is the average latency, P̄s is the average
transmission power, and P̄c is the average computation power,
respectively.

Let λq1,q2k1,k2
denote the transition probability from the state

(k1, k2) to the state (q1, q2) in the next time slot in the
considered MDP, which is summarized in the following result.
Theorem 1. The transition probability λq1,q2k1,k2

satisfies

λq1,q2k1,k2
=

M∑
m=0

pm

N∑
n=1

φnf
s(m),c(m)
k1,k2,n

1{s(m)∈S,c(m)∈C}, (28)

where {
s(m) = k1 − q1 +m,

c(m) = k1 + k2 − q1 − q2 +m,
(29)

and the indicator function 1{s(m)∈S,c(m)∈C} is equal to 1 if
s(m) ∈ S and c(m) ∈ C; otherwise it is equal to 0.

Proof: The core idea of this proof is that the transition of
the state only relies on the transmission and computation rate
in the current time slot, and the task arrivals in the next time
slot. From Eqs. (5) and (21), considering constraints (24) and
(25), we have{

ζ[t+ 1]− ζ[t] = a[t+ 1]− s[t],
q2[t+ 1]− q2[t] = s[t]− c[t].

(30)

Then, given that a[t + 1] = m and l[t] = n, whose
probability is fs(m),c(m)

k1,k2,n
, the corresponding transmission rate

and computation rate at the current time slot can be calculated
as{
s[t] = ζ[t]− ζ[t+ 1] + a[t+ 1] = k1 − q1 +m = s(m),

c[t] = q2[t]− q2[t+ 1] + s[t] = k2 − q2 + s(m) = c(m),
(31)

where s(m) and c(m) are already given in Eq. (29). Therefore,
for any a[t + 1] = m and l[t] = n, the transition probability
from the state (k1, k2) to the state (q1, q2) in the next time
slot is pmφnf

s(m),c(m)
k1,k2,n

. Then, by summing up transition
probabilities of all feasible combinations of a[t + 1] and l[t],
λq1,q2k1,k2

in Eq. (28) can be obtained and hence this theorem is
proved.
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In this MDP framework, we denote πk1,k2
as the steady-

state distribution probability of the state (k1, k2). The steady-
state distribution of this Markov chain is denoted by

π(Q1+1)×(Q2+1) =
π0,0 ... π0,q2 ... π0,Q2

π1,0 ... π1,q2 ... π1,Q2

...
π1,0
...

...
... πq1,q2 ...

...

...
πq1,Q2

...
πQ1,0 ... πQ1,q2 ... πQ1,Q2

 .
(32)

For convenience, we convert the matrix π(Q1+1)×(Q2+1) into a
column vector, i.e., the vectorization of a matrix. Then we have
the column vector π(Q1+1)(Q2+1)×1 = vec(π(Q1+1)×(Q2+1)).
In addition, define 1 = [1, . . . , 1] and 0 = [0, . . . , 0], and let
I denote the identity matrix. We do not specify their sizes if
there is no ambiguity. In the rest of this paper, we refer to
π(Q1+1)(Q2+1)×1 as π, where satisfies

Hπ = π, (33.a)
1π = 1, (33.b)

where H is the transition matrix of the Markov chain and
the elements of which are defined in Eq. (28), e.g., the first
row of H is given by [λ0,00,0, λ

0,0
0,1, . . . , λ

0,0
0,Q2

, λ0,01,0, . . . , λ
0,0
Q1,Q2

].
Hence, we have

π = G−1c, (34)

where G =

[
1

H − I

]
and c = [1,0]T . In other words, the

transition matrix H determines the steady-distribution π.

C. Average Latency and Power Consumption

According to the probabilistic scheduling policy defined in
Eq. (22), when ζ[t] = k1, q2[t] = k2 and l[t] = n, the power
consumption for the mobile device and the edge server in
the t-th time slot is Ps(s, n) and Pc(c) with the probability
fs,ck1,k2,n

, ∀s ∈ S and ∀c ∈ C. The average transmission power
consumption at the mobile device is given by

P ava
s =

Q2∑
k2=0

Q1∑
k1=0

N∑
n=1

C∑
c=0

S∑
s=0

πk1,k2
φnf

s,c
k1,k2,n

Ps(s, n).

(35)
In addition, the average computation power consumption at
the edge server is given by

P ava
c =

Q2∑
k2=0

Q1∑
k1=0

N∑
n=1

C∑
c=0

S∑
s=0

πk1,k2φnf
s,c
k1,k2,n

Pc(c). (36)

Moreover, the average queue length Lava is given by

Lava = lim
T→∞

1

T

T∑
t=1

(q1[t] + q2[t])

= lim
t→∞

E{q1[t] + q2[t]}

= lim
t→∞

E{ζ[t+ 1] + q2[t]} − lim
t→∞

E{a[t+ 1]}

=

Q1∑
k1=0

Q2∑
k2=0

(k1 + k2)πk1,k2
− λ1.

(37)

Then, by substituting Eq. (37) into Eq. (16), the average
latency can be obtained as

Dava = 1 +

∑Q1

k1=0

∑Q2

k2=0(k1 + k2)πk1,k2
− λ1

λ1

=
1

λ1

Q1∑
k1=0

Q2∑
k2=0

(k1 + k2)πk1,k2 .

(38)

Based on above analysis of the average transmission power
consumptions, the average computation power consumption,
and the average latency, we can convert the original optimiza-
tion problem (19) into an equivalent problem based on the
MDP framework.

D. Power-optimal Scheduling based on MDP
Based on the anlaysis of average latency and power con-

sumption in the MDP framework, we have the following opti-
mization problem with fs,ck1,k2,n

being optimization variables.

min
fs,c
k1,k2,n

Q2∑
k2=0

Q1∑
k1=0

N∑
n=1

C∑
c=0

S∑
s=0

πk1,k2φnf
s,c
k1,k2,n

Ps(s, n)

(39.a)

s.t.
1

λ1

Q1∑
k1=0

Q2∑
k2=0

(k1 + k2)πk1,k2
≤ Dth, (39.b)

Q2∑
k2=0

Q1∑
k1=0

N∑
n=1

C∑
c=0

S∑
s=0

πk1,k2φnf
s,c
k1,k2,n

Pc(c) ≤ P th
c ,

(39.c)
1π = 1, (39.d)
Hπ = π, (39.e)
C∑

c=0

S∑
s=0

fs,ck1,k2,n
= 1 ∀k1, k2, n, (39.f)

fs,ck1,k2,n
≥ 0 ∀k1, k2, n, s, c, (39.g)

πk1,k2 ≥ 0 ∀k1, k2, (39.h)

where (39.b) and (39.c) denote the constraints of the average
latency and the computation capability at the edge server,
respectively.

In order to solve this problem, it is necessary to realize that
the objective function and the constraints in the problem (39)
are linear combinations of {πk1,k2φnf

s,c
k1,k2,n

}, {fs,ck1,k2,n
}, or

{πk1,k2
}. Thus, we define a new variable as

y = {ys,ck1,k2,n
|k1 ∈ {0, 1, . . . , Q1}, k2 ∈ {0, 1, . . . , Q2},
n ∈ {1, . . . , N}, s ∈ S, c ∈ C},

(40)

where
ys,ck1,k2,n

= πk1,k2
φnf

s,c
k1,k2,n

, (41)

with the normalization constraint:
Q2∑

k2=0

Q1∑
k1=0

N∑
n=1

C∑
c=0

S∑
s=0

ys,ck1,k2,n
=

Q2∑
k2=0

Q1∑
k1=0

πk1,k2

N∑
n=1

φn = 1.

(42)
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The size of y is (Q1 + 1)(Q2 + 1)N(S + 1)(C + 1). For the
ease of presentation, we denote ys,ck1,k2,n

as the entry at position
{(Q2 + 1)(S + 1)(C + 1)N · k1 + (S + 1)(C + 1)N · k2 +
(S+ 1)(C+ 1) · (n−1) + (C+ 1) · s+ c+ 1} in y, e.g., y0,00,0,1

and yS,CQ1,Q2,N
are the first and the last elements, respectively.

By recalling the normalization constraints in Eqs. (7) and
(23), πk1,k2 can be expressed as

πk1,k2 =
N∑

n=1

C∑
c=0

S∑
s=0

πk1,k2φnf
s,c
k1,k2,n

=
N∑

n=1

C∑
c=0

S∑
s=0

ys,ck1,k2,n
.

(43)
Moreover, constraint (39.f) can be rewritten as:

Q2∑
k2=0

Q1∑
k1=0

C∑
c=0

S∑
s=0

ys,ck1,k2,n
=

Q2∑
k2=0

Q1∑
k1=0

πk1,k2
φn = φn, (44)

where
N∑

n=0
φn = 1.

By replacing optimization variables fs,ck1,k2,n
with ys,ck1,k2,n

,
constraints (39.d) and (39.e) can be expressed as a matrix
equation Qy = 0, where the constraint (39.e) can be rewritten
as:
πq1,q2

=

Q2∑
k2=0

Q1∑
k1=0

πk1,k2λ
q1,q2
k1,k2

=

Q2∑
k2=0

Q1∑
k1=0

N∑
n=1

M∑
m=0

πk1,k2
pmφnf

s(m),c(m)
k1,k2,n

1{s(m)∈S,c(m)∈C}

=

Q2∑
k2=0

Q1∑
k1=0

N∑
n=1

M∑
m=0

pmy
s(m),c(m)
k1,k2,n

1{s(m)∈S,c(m)∈C}

=
N∑

n=1

C∑
c=0

S∑
s=0

ys,cq1,q2,n,

(45)

where the last line is obtained from Eq. (43). Then, based
on the last two parts of Eq. (45), the matrix Q can be
obtained. In this way, the problem (39) is converted into linear
programming which is summarized in the following theorem.
Theorem 2. The problem (39) is equivalent to the following
linear programming.

min
ys,c
k1,k2,n

Q2∑
k2=0

Q1∑
k1=0

N∑
n=1

C∑
c=0

S∑
s=0

Ps(s, n)ys,ck1,k2,n
(46.a)

s.t.
1

λ1

Q1∑
k1=0

Q2∑
k2=0

N∑
n=1

C∑
c=0

S∑
s=0

(k1 + k2)ys,ck1,k2,n
≤ Dth,

(46.b)
Q2∑

k2=0

Q1∑
k1=0

N∑
n=1

C∑
c=0

S∑
s=0

Pc(c)y
s,c
k1,k2,n

≤ P th
c , (46.c)

Q2∑
k2=0

Q1∑
k1=0

C∑
c=0

S∑
s=0

ys,ck1,k2,n
= φn, (46.d)

Qy = 0, (46.e)
ys,ck1,k2,n

≥ 0 ∀k1, k2, n, s, c, (46.f)

where y is a column vector with ys,ck1,k2,n
as components.

Proof: Firstly, we proceed to prove each component in
those two problems can be converted equivalently. Define
ys,ck1,k2,n

= {πk1,k2
φnf

s,c
k1,k2,n

} and πk1,k2
can be expressed

as πk1,k2
=

∑N
n=1

∑C
c=0

∑S
s=0 y

s,c
k1,k2,n

. Therefore, each
component in the problem (39) can be converted into the
corresponding form in the problem (46). Then we need to
prove that all the feasible solution of those two problems
are bijective. For each feasible solution πk1,k2

and fs,ck1,k2,n

in the problem (39), ys,ck1,k2,n
= {πk1,k2

φnf
s,c
k1,k2,n

} is still
feasible to the problem (46). For each feasible solution ys,ck1,k2,n

of problem (46), the corresponding solution of the problem
(39) can be obtained by πk1,k2

=
∑N

n=1

∑C
c=0

∑S
s=0 y

s,c
k1,k2,n

.
Moreover, another part of feasible solution of the problem
(39), i.e., fs,ck1,k2,n

, is considered in the following Eqs. (48)
and (49).

Therefore, all the feasible solutions of those two problems
can be converted equivalently, i.e., bijective, and thus they can
be converted equivalently.

The converted problem (46) can be solved efficiently in
polynomial time using interior-point method [28]. After the
optimal solution ys,ck1,k2,n

∗ of the linear programming (46) is
obtained, the corresponding steady-state distribution can be
represented as

π∗k1,k2
=

N∑
n=1

C∑
c=0

S∑
s=0

ys,ck1,k2,n
∗
. (47)

To obtain the power-optimal scheduling JTCS policy, we
can derive fs,ck1,k2,n

∗ from ys,ck1,k2,n
∗, which is summarized

below.
Case 1. When π∗k1,k2

6= 0, the optimal policy is given by

fs,ck1,k2,n
∗

=
ys,ck1,k2,n

∗

φnπ∗k1,k2

. (48)

Case 2. When π∗k1,k2
= 0, which means that the state (k1, k2)

is a transient state. Denote A as the feasible set of action
(s, c) where s ∈ S and c ∈ C, satisfying constraints (24) and
(25). Then, a simple policy can be used, i.e.,

fs,ck1,k2,n
∗

=
1

|A|
, ∀(s, c) ∈ A, (49)

where |A| is the cardinality of A.

Since the time complexity of deriving fs,ck1,k2,n
∗ from

ys,ck1,k2,n
∗ is also polynomial, the power-optimal JTCS policy

can be obtained through the MDP-based approach in poly-
nomial time. It is worth emphasizing that this MDP-based
approach is an offline algorithm which only needs to be
optimized for once before the offloading rather not in each
time slot. Then, based on this policy, the optimal power-latency
tradeoff can be achieved.

V. SCHEDULING WITH LYAPUNOV DRIFT-PLUS-PENALTY
APPROACH

In this section, we focus the design of JTCS policy with
unknown distribution information of the task arrivals and the

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on March 15,2020 at 00:14:30 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.2979136, IEEE
Transactions on Wireless Communications

9

channel state variations. To solve this problem, an online
algorithm is proposed through a Lyapunov drift-plus-penalty
approach since it can operate without requiring distribution
information.

A. Lyapunov Drift-plus-penalty Approach

Intuitively, more computation power consumed by the edge
server will provide higher computation rates, which will not
affect the transmission of the mobile device while reducing
the average delay. Thus, the inequality constraint (19.c) can
be regarded as an equality constraint P ava

c = P th
c . Similar

to [29], in order to satisfy this constraint, we define a virtual
queue of computation power consumption, denoted by q3[t],
whose initial value q3[0] = 0 and updating equation is given
by

q3[t] = q3[t− 1]− P th
c + Pc[t]. (50)

If virtual queue q3[t] is stable, its input rate lim
T→∞

1
T

T∑
t=1

Pc[t]

will be less than its output rate P th
c [30]. In this way, the

constraint of the computation capability in (19.c) holds, which
is more effective than by optimizing the weighted sum of P ava

s

and P ava
c in [13].

Based on this virtual queue, we define the Lyapunov drift
function of the problem (19) as

∆L[t] =
1

2
E

{
3∑

i=1

(qi[t]
2 − qi[t− 1]

2
)|Q[t− 1]

}
, (51)

where Q[t−1] = {q1[t−1], q2[t−1], q3[t−1]}. The expectation
depends on the scheduling policy and is with respect to the
random channel states and the control actions made in reaction
to these channel states. The quadratic function is implemented
since it has important dominant cross terms that include an
inner product of the current queue lengths and rates of trans-
mission and computation. The Lyapunov drift-plus-penalty
function can be defined as ∆L[t]+V E{Ps(s[t], l[t])|Q[t−1]},
where the penalty parameter V ≥ 0 is set to balance the trade-
off between the average latency and the average transmission
power consumption. Intuitively, from Lyapunov drift analysis,
with the increase of V , the objective of the optimization can
be arbitrarily close to optimal average transmission power
consumption, while with the increasing cost on the average
latency. When V is very large, the queues might be non-
convergence, resulting in the average delay is infinite.

From Eqs. (4) and (5), we have the Lyapnuov drifts of q1[t]
and q2[t] satisfying

q1[t]2 − q1[t− 1]2

2
≤ M2 + S2

2
+ q1[t−1](a[t]− s[t]), (52)

and

q2[t]2 − q2[t− 1]2

2
≤ S2 + C2

2
+ q2[t− 1](s[t]− c[t]), (53)

since (max{Z −Y, 0}+X)2 ≤ Z2 +X2 +Y 2 + 2Z(X −Y )
holds for any X , Y , and Z ≥ 0. In addition, from Eq. (50),

we also have the Lyapnuov drift of the virtual queue q3[t]
satisfying

q3[t]2 − q3[t− 1]2

2
≤ P th

c
2

+ Pm
c

2

2
+ q3[t− 1](Pc[t]− P th

c ),

(54)
where Pm

c = Pc(C) ≥ Pc[t]. Then the Lyapunov drift-plus-
penalty function is bounded by

∆L[t] + V E{Ps(s[t], l[t])|Q[t− 1]}
≤Bmax + E {q1[t− 1](a[t]− s[t]) + q2[t− 1](s[t]− c[t])

+ q3[t− 1](Pc[t]− P th
c ) + V Ps(s[t], l[t])|Q[t− 1]} ,

(55)
where

Bmax =
M2 + C2 + P th

c
2

+ Pm
c

2

2
+ S2. (56)

From the above bound in Eq. (55), we can develop an
online algorithm as summarized in Algorithm 1 to greedily
minimize the upper bound of the Lyapunov drift-plus-penalty
function given the queue lengths Q[t − 1] and the current
channel state l[t]. Note that the algorithm only uses the current
system states a[t], l[t], and Q[t − 1], while does not require
any distribution information of task arrival and channel state.
This algorithm is based on a heuristic approach when infinite
buffers are considered, while it can approach to the original
drift-plus-penalty method in [30] when the buffer sizes are
large sufficiently.

Algorithm 1 A heuristic scheduling policy
1: Input current system state: V , a[t], l[t], q1[t−1], q2[t−1]

and q3[t− 1].
2: Define available transmission decision set Sa = {x|0 ≤
q1[t− 1] + a[t]− x ≤ Q1 −M,x ∈ S}.

3: Define available computation decision set Ca = {y|0 ≤
q2[t− 1] + s[t]− y ≤ Q2, y ∈ C}.

4: Choose the control decisions s[t] ∈ Sa and c[t] ∈ Ca
which can minimize the upper bound of Lyapunov drift-
plus-penalty function defined in the right hand side of
Eq. (55).

5: Update queue lengths for next time slot, i.e., q1[t], q2[t],
and q3[t].

6: Output s[t] and c[t].

Notice that, the objective of the problem (19) is to op-
timize the average transmission power consumption, while
the average latency constraint must be guaranteed before,
rather not just keep the queues stable [13]. To ensure the
average latency constraint holds, the penalty parameter V
should be adjusted over time, regarded as V [t], since it plays
the role to balance the average transmission power and latency.
Hence, by sampling the average latency over a period of time,
we can update V [t] according to the sampling results. For
instance, V [t] can be updated through a dichotomy method,
i.e., Vmin ← V [t] and V [t] ← V [t]+Vmax

2 if the sampled
average latency is less than Dth; otherwise Vmax ← V [t] and
V [t]← V [t]+Vmin

2 . After several updates, the penalty parameter
V [t] can converge to a constant, and then the scheduling policy
can be obtained according to Algorithm 1. With the scheduling
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policy, the average delay and transmission power consumption
can be counted based on Eqs. (16) and (17).

B. Performance Analysis

For analyzing the upper bound of the optimization perfor-
mance, we consider an ideal scenario that the buffer size Q1

and Q2 are sufficiently large such that the buffer overflow can
be negligible. For convenience, we assume that the buffer sizes
are infinite, i.e., Q1 = Q2 = ∞. Therefore, in Algorithm 1,
steps 3 and 4 can be relaxed to Sa = S and Ca = C. Then,
according to [30] (Definition 2.3 and Theorem 2.4), we have
the following theorem and definition.

Theorem 3. (Rate Stability Theorem) The queues q1[t] and
q2[t] are rate stability, i.e.,

lim
T→∞

q1[T ] + q2[T ]

T
= 0, (57)

if and only if λ1 ≤ min{µ1, µ2}, where µ1 = lim
T→∞

1
T

T∑
t=1

s[t]

and µ2 = lim
T→∞

1
T

T∑
t=1

c[t].

Definition 1. Define λmax = min{µ1, µ2} as the feasible
region of the arrival rate λ1 defined in Eq. (2), where there
always exists a scheduling policy that can keep queues q1[t]
and q2[t] rate stable if λ1 ≤ λmax.

Since we do not consider the transmission power consump-
tion in the above definition, the transmission rate s[t] can be
scheduled at the highest rate S in each time slot and thus
µ1 = S ≥ M ≥ λ1 holds. Then, the feasible region of
the arrival rate can be rewritten as λmax = µ2, which is the
optimal solution of the following problem, i.e.,

µ2 = max
g(c)

∑
c∈C

c · g(c) (58.a)

s.t.
∑
c∈C

Pc(c) · g(c) ≤ P th
c (58.b)∑

c∈C
g(c) = 1 (58.c)

g(c) ≥ 0,∀c ∈ C, (58.d)

where the optimization variable g(c) is the probability that
computation rate is chosen as c at one time slot. This optimiza-
tion problem is linear programming and can also be solved to
obtain the feasible region λmax = µ2, which is the maximal
arrival rate that can be supported by the edge server to keep
the queue q2[t] stable under the power constraint in (58.b).

Furthermore, denote Ψ(λ1) as the minimal average trans-
mission power consumption that can be achieved without the
average latency constraint, while guaranteeing the queue q1[t]
stable by any feasible control policy. It is the optimal value of

the objective function in the following optimization problem,
i.e.,

Ψ(λ1) = min
gc,n

N∑
n=1

∑
s∈S

φnPs(s, n) · f(s, n) (59.a)

s.t.
N∑

n=1

∑
s∈S

φns · f(s, n) > λ1 (59.b)∑
s∈S

f(s, n) = 1,∀n ∈ {1, · · · , N} (59.c)

f(s, n) ≥ 0, ∀s ∈ S,∀n ∈ {1, · · · , N}, (59.d)

where the optimization variable f(s, n) is the probability that
the transmission rate is chosen as s[t] = s when the channel
state l[t] = n at one time slot. Likewise, this problem is also
linear programming and can be solved efficiently. Based on the
above analysis and results, we have the following theorem.

Theorem 4. Assume that the task arrival rate is within the
feasible region, i.e., λ1 ≤ λmax, and the online scheduling
decision algorithm in Algorithm 1 is applied in each time slot.
For any control parameter V > 0, the average transmission
power consumption P ava

s and average latency Dava can be
bounded as

P ava
s ≤ Ψ(λ1) +

Bmax

V
, (60)

and

Dava ≤ Bmax + V (Ψ(λmax)−Ψ(λ1))

λ1(λmax − λ1)
+ 1

≤ Bmax

λ1(λmax − λ1)
+
V Ps(S,N)

λ1S
+ 1.

(61)

Proof: Since λ1 < λmax, there exists one scheduling
policy algorithm {s∗[t], c∗[t]} depends on the current channel
state l[t] can keep all queues rate stable, satisfying that:

µ1 = lim
T→∞

1

T

T∑
t=1

s∗[t] ≥ λ1 + ε, (62)

and

µ2 = lim
T→∞

1

T

T∑
t=1

c∗[t] ≥ λ1 + ε, (63)

and
P ava
s = E {Ps(s

∗[t], l[t])} = Ψ(λ1 + ε), (64)

where ε is a non-negative constant [30].
Since the proposed online scheduling algorithm in Algo-

rithm 1 always attempts to greedily minimize the right-hand-
side of Eq. (55) for each time slot over all possible feasible
decision, we have the following inequality, which is given by

∆L[t] + V E{Ps(s[t], l[t])|Q[t− 1]}
≤Bmax + V E {Ps(s

∗[t])}+ q1[t− 1](λ1 − E {s∗[t]})
+q2[t− 1](λ1 − E {c∗[t]}) + q3[t− 1](E {Pc(c

∗[t])} − P th
c ),
(65)

where the left-hand-side of this inequality is the Lyapunov
drift-plus-penalty function obtained by the scheduling deci-
sions based on Algorithm 1. By plugging Eqs. (62), (63), and
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(64), and the constraint E {Pc(c
∗[t])} ≤ P th

c into the right-
hand-side of the above inequality, we have

∆L[t] + V E{Ps(s[t], l[t])|Q[t− 1]}
≤Bmax + VΨ(λ1 + ε)− ε(q1[t− 1] + q2[t− 1]).

(66)

Taking expectations of the above inequality and using the law
of iterated expectations, we have

L[t]− L[t− 1] + V E{Ps(s[t], l[t])}
≤Bmax + VΨ(λ1 + ε)− εE{q1[t− 1] + q2[t− 1]},

(67)

where L[t] = 1
2E
{∑3

i=1 qi[t]
2
}

. By summing the above
inequality over T time slots, we have

L[T ]− L[0] + V
T∑

t=1

E {Ps(s[t], l[t])}

≤BmaxT + V TΨ(λ1 + ε)− ε
T∑

t=1

E{q1[t− 1] + q2[t− 1]}.

(68)

Thus, the following two inequalities can be obtained by

Ψ(λ1) ≤ 1

T

T∑
t=1

E {Ps(s[t], l[t])} ≤ Ψ(λ1+ε)+
Bmax

V
+
L[0]

V T
,

(69)
and

1

T

T∑
t=1

E {q1[t− 1] + q2[t− 1]}

≤Bmax + V (Ψ(λ1 + ε)−Ψ(λ1))

ε
+
L[0]

εT
.

(70)

Then, by taking T →∞, we have

P ava
s = lim

T→∞

1

T

T∑
t=1

E {(Ps(s[t], l[t])} ≤ Ψ(λ1) +
Bmax

V
,

(71)
where ε is set as 0, and

Lava =
1

T
lim

T→∞

T∑
t=1

(q1[t− 1] + q2[t− 1])

≤ Bmax

λmax − λ1
+
V (Ψ(λmax)−Ψ(λ1))

λmax − λ1
,

(72)

where ε is set as λmax − λ1 to satisfy λ1 + ε ≤ λmax.
Furthermore, we have

Ψ(λmax)−Ψ(λ1) ≤ (λmax − λ1)
Ps(S,N)

S
, (73)

where the inequality holds because it requires at most Ps(S,N)
S

units of power to transmit each task according to Eq. (9). By
substituting Eq. (73) into Eq. (72), we have

Dava =
Lava

λ1
+ 1

≤ Bmax

λ1(λmax − λ1)
+
V (λmax − λ1)Ps(S,N)

S

λ1(λmax − λ1)
+ 1

=
Bmax

λ1(λmax − λ1)
+
V Ps(S,N)

λ1S
+ 1.

(74)

Then the theorem is proved.

VI. NUMERICAL RESULTS

In this section, we will validate our theoretical results by
the simulation studies. Throughout this section, we set S = 2,
C = 2, M = 2, and N = 3. Power consumption functions
defined in Eqs. (8), (9), and (14) are assumed as Ps(s, n) =
n(2s−1)

10 and Pc(c) = c3

5 . The distributions of task arrivals and
channel state variations are summarized in Table II. Based
on this, the average arrival rate can be calculated as λ1 =∑M

m=1 pm · m = 0.75. Based on the optimization problem
(46) and Algorithm 1, the scheduling policy with and without
distributions of task arrivals and channel state variations can
be obtained. Each simulation result runs 107 time slots.

TABLE II
SIMULATION PARAMETER SETTINGS.

m 0 1 2 n 1 2 3

pm 0.5 0.25 0.25 φn 0.25 0.25 0.5

Fig. 4. Comparison of Optimization and Simulation Results.

The average transmission power consumption achieved by
the MDP-based approach and the Lyapunov drift-plus-penalty
approach are compared in Fig. 4, where the constraint of the
computation capability at the edge server P th

c = 1.25 and
buffer sizes Q1 = Q2 = 20. For the MDP-based approach,
the optimization results are obtained by Eqs. (35) and (38)
via linear programming in (46), while the simulation results
are given by Eqs. (16) and (17) via Monte-Carlo simulation,
where they match perfectly well. For the Lyapunov drift-
plus-penalty approach, the penalty parameter V should be
adjusted to meet each latency constraint Dava ≤ Dth first.
Then, with the obtained stationary value of V , the simulation
results of the Lyapunov drift-plus-penalty approach are also
obtained via Monte-Carlo simulation. With the increase of
the average latency constraint Dth, the average transmission
power consumptions achieved by two approaches decrease
significantly. Moreover, by making full use of the distribution
information of task arrivals and channel state variations, the
MDP-based approach can achieve lower average transmission
power consumption compared to the Lyapunov drift-plus-
penalty approach.

The optimal tradeoff among the average latency, transmis-
sion power consumption, and computation power consumption
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Fig. 5. Optimal Power-Latency Tradeoff.

with buffer sizes Q1 = Q2 = 20 achieved by MDP-based
approach is shown in Fig. 5. As it is expected, the average
transmission power consumption decreases when both the
average latency constraint and the computation capability
constraint increase, which is also matched with the results in
Fig. 4. When the latency constraint Dth are small enough, the
mobile device always transmits all arriving tasks under any
channel state without waiting and, hence, the average trans-
mission power consumption approaches to the maximal value,
i.e.,

∑M
m=0

∑N
n=1 φnPs(m,n) = 0.225. Moreover, when P ava

s

and P th
c are large enough, the tasks can be transmitted as soon

as each task arrives, i.e., the tasks can be transmitted as soon
as each task arrivals, i.e., the transmission rate is min{ζ[t], S},
and then be computed at the rate min{q2[t], C} in each time
slot. As a result, the average latency is two time slots.

Fig. 6. Results of the Lyapunov Drift-plus-penalty Approach with Different
Buffer Sizes.

The simulation results for the Lyapunov drift-plus-penalty
approach with different buffer sizes Q1 = Q2 = 10, 15, 20,
and ∞, respectively, are shown in Fig. 6, where the constraint
of the computation capability at the edge server P th

c = 1.25.
With the increase of buffer sizes, the Lyapunov drift-plus-
penalty approach can achieve a better performance, which
matches with the theoretical results. With the increasing of
penalty parameter V , the mobile device will prefer to transmit
tasks at a lower transmission rate at the time slots with good
channel state to reduce power consumption. When V is large
enough, the average transmission rate at the early time will

be less than the average arrival rate λ1, which will lead to
a full buffer. In this way, the mobile device with full buffer
state has to transmit all arriving tasks at any channel states to
avoid overflow and then the average transmission power will
rise up with the increase of V , which is also matched with the
simulation results in Fig. 6.

Fig. 7. Average Transmission Power Consumption P ava
s versus Penalty

Parameter V .

Fig. 8. Average Latency Dava versus Penalty Parameter V .

The simulation results and theoretical upper bounds of the
average transmission power consumption P ava

s and average la-
tency Dava through the Lyapunov drift-plus-penalty approach
are shown in Fig. 7 and Fig. 8, respectively. The constraint
of the computation capability at the edge server is given by
P th
c = 1.25. In Fig. 7, with the increase of the penalty

parameter V , both simulation results and upper bound of P ava
s

approach to the optimal value Φ(λ1) in Eq. (60). In Fig. 8, both
of the simulation results and upper bound of Dava increases
with the increasing of V . Thus, both the average transmission
power consumption P ava

s and average latency Dava can be
bounded well with different V and thus the theoretical results
in Theorem 4 can be validated.

VII. CONCLUSION

In this paper, we have investigated the power-optimal
scheduling policies to achieve the optimal power-latency trade-
off in MEC systems by considering the system dynamics in
different layers. In particular, we have formulated a scheduling
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problem to minimize the average power consumption at the
mobile device under the constraints of the average latency of
tasks and the computation capability at the edge server. With
known distribution information of the system dynamics, the
scheduling problem can be formulated into an MDP frame-
work to analyze the average latency and power consumptions.
By solving this problem, the power-optimal scheduling policy
is obtained and thus the optimal power-latency tradeoff can be
achieved. When distribution information of the system dynam-
ics is unknown, we have also presented an online algorithm
based on a Lyapunov drift-plus-penalty approach to optimize
the scheduling decisions in each time slot. Through theoretical
analysis, the power-latency tradeoff based on the Lyapunov
drift-plus-penalty approach can also be found. Furthermore,
an analytic bound on the performance can be obtained when
the buffer sizes are sufficiently large. Important future topics
include considering the worst-case latency as the latency
constraint rather than the average latency.
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