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Abstract—A typical application of unmanned aerial vehicles
(UAVs) is surveillance of distant targets, where data collected by
its sensors need to be transmitted back to a ground terminal
(GT) for further processing in a timely manner. Due to the
limited battery capability of the UAV, the sensed data could be
preprocessed in a UAV to reduce the amount of data transmitted,
which could potentially reduce the average power consumption
at the UAV, especially when the transmission link quality is poor.
In this paper, a probabilistic approach is adopted to schedule the
transmission and computing of the data tasks based on the UAV
and GT’s buffer states. The joint transmission and computing
problem can be modeled as a four-dimensional Markov chain,
based on which the average delay of each task and the average
power consumption at the UAV can be obtained. Our design goal
is to minimize the average power consumption under the delay
constraints. To do that, a delay-constrained power minimization
problem is solved by an proposed method to obtain the power-
optimal joint transmission and computation scheduling (JTCS)
policy efficiently. Finally, the optimization results are validated
with extensive simulations.

I. INTRODUCTION

Typical applications of unmmaned aerial vehicles (UAVs),
e.g., search and rescue operations, make it necessary for
surveillance of distant targets [1][2]. In these scenarios, the
data collected by a UAV need to be transmitted back to the
ground terminal (GT) quickly with delay requirements, e.g.,
some mission-critical tasks like counter-terrorism. However,
the battery life and computation capability of the UAV is still
limited [3]. Therefore, the UAV needs to shift the complex
computation tasks to the GT with more powerful computation
resources and battery capabilities, e.g., a computer server with
adequate supply of electricity, to reduce the computation load.
Due to the uncertainty of the wireless channel fading and high
mobility of the UAV, transmission power consumption of the
tasks will be high and even unacceptable when the channel
condition is poor, e.g., a blocking building between the UAV
and a GT as shown in Fig. 1. Thus, if we can minimize the
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Fig. 1. A scenario of a UAV communication system

data size by preprocessing operation of the UAV itself, it will
reduce transmission power, which is widely used in wireless
sensor networks [4].

Since both the delay of tasks and power consumption
at the UAV are due to transmission and computing, the
traditional packet-switched transmission and computing may
not provide the best-effort service. In contrast, the joint trans-
mission and computing scheduling policy holds the promise
of meeting the above performance requirements based on
the state information of both transmission and computing,
which has been studied widely. In [5], a method is proposed
to jointly optimize the transmit power and the CPU cycles
assigned to each application in one mobile cloud computing
system and full exploitation of the computing capabilities is
achieved when allocation of transmission and computational
capabilities is performed jointly. In [6], an online joint radio
and computational resource management algorithm for multi-
user mobile-edge computing (MEC) systems is developed to
minimize the average weighted sum power consumption of
mobile devices. In [7], the offloading selection, radio resource
allocation, and computational resource allocation are jointly
optimized to minimize the energy consumption at mobile
devices in the multi-user MEC system.

Furthermore, the probabilistic scheduling approach, which
is one of the major methods of achieving the optimal per-
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formance in terms of delay or power consumption, has the
potential to improve the system performance. To our best
knowledge, Collins and Cruz were among the first to study the
optimal scheduling policy by jointly using the channel state
and the queue state information [8], where a framework of the
cross-layer scheduling is proposed. In [9], we investigated the
situation with a Bernoulli arrival and a fixed modulation over a
block fading channel, and a probabilistic policy based on one
queue state is proposed. Based on this policy, we generalized
our model in the packet arrival and the transmission rate in
[10][11], as well as to adopt the system with two queues in
serial connection [12] and parallel connection [13]. In [14],
a probabilistic scheduling is studied in a two-user multiple
access system with a discrete rate set, where the asymmetric
scenario is also included.

In this paper, we generalize this method to a UAV commu-
nication system, which is composed of one UAV and one GT.
Two kinds of tasks, i.e., original task and compressed task,
could be stored in their finite-buffers. The power consumption
at the UAV is the sum of transmission power consumption for
transmitting data to the GT and computing power consump-
tion for local preprocessing. The considered system can be
modeled as two queues in serial connection with two kind of
stored packets. The state of this queueing system could be
formulated as a four-dimensional Markov chain whose state
transition probability is determined by the JTCS policy. Our
objective is to find the optimal JTCS policy to minimize the
average power consumption at the UAV under the constraints
on average delay in order to prolong the UAV’s service
duration with guaranteed tolerant delay. This optimization
problem can be converted into a linear programming problem
which can be solved efficiently. Then, a power-optimal JTCS
policy could be used to jointly determine the probabilities of
the transmission and computing rate at the UAV based on the
queue states.

II. SYSTEM MODEL

We consider a UAV communication system where the UAV
is set to transmit the data collected by its sensors to a GT.
Assume that further processing is necessary for the collected
data, e.g., image recognition and surveillance monitoring [1],
requires a large amount of computing resources, which need
to be transported to the GT with more powerful computation
resources and battery capabilities.

The UAV is assumed with the computation ability to prepro-
cess the data, e.g., data compression [4], by local processing
units in order to reduce data size and save energy consump-
tion. The data preprocessing step at the UAV, however, will
also consume power, i.e., the computing power consumption.
In this case, from the UAV side, it gives us two design options,
namely, to transmit with preprocessing or to direct transmit
without preprocessing.

Thus, the data tasks stored in the UAV can be classified
into original tasks and compressed tasks, whose parameters
are summarized in Table I. Data size of an original task can
be reduced from B bits to βB bits with λL CPU cycles,

TABLE I
PARAMETERS OF ORIGINAL AND COMPRESSED TASKS

Data Size CPU-cycle(UAV) CPU-cycles(GT)

Original task B 0 L

Compressed task βB λL γL

Fig. 2. Queue model.

where β(β < 1) is the data compression ratio. The further
process of each original task and compressed task requires
L and γL CPU cycles, respectively, where γ depends on
the data preprocessing step. If the data preprocessing is data
compression [4], we have γ > 1 owing to the compu-
tation consumption of decompression in the GT. Besides,
we also have 0 < γ ≤ 1 in some scenarios, e.g., data
preprocessing is down-sampling or feature extraction. Thus,
the power consumption at the UAV can be divided into two
parts: transmission power consumption and computing power
consumption.

To simplify the analysis, we assume that the time is divided
into time-slots, whose length is Ts. Assume that at the
beginning of each time-slot, the volume of data collected by
the UAV is a random variable following the Bernoulli Process
with an arrival rate α, i.e.,{

Pr{a[n] = 1} = α,

Pr{a[n] = 0} = 1− α.
(1)

We assume that each packet arrival contains N(N ≥ 1)
original tasks, which can be converted into compressed tasks
by data preprocessing step at the UAV.

A. Queue Model

Both original and compressed tasks can be stored in the
finite-buffers of the UAV and GT, whose buffer sizes are Q1B
and Q2B bits, which are equal to Q1 and Q2 original tasks,
respectively. The considered system can be modeled by two
queues in serial connection, which denote the buffer states of
the UAV and the GT, as shown in the Fig. 2.

For the UAV, the number of original tasks and compressed
tasks transmitted in the n-th time-slot are denoted by s1[n] and
s2[n], respectively. Moreover, the number of original packets
that is preprocessed in the UAV is denoted by c1[n]. Denote
quav[n] = (q1[n], q2[n]) as the buffer state of the UAV at the
end of the n-th time-slot, where q1[n] and q2[n] denote the
numbers of original and compressed tasks stored in the UAV’s
buffer.



For the GT, the number of original tasks and compressed
tasks processed in the n-th time-slot are denoted by c2[n]
and c3[n], respectively. Denote qgt[n] = (q3[n], q4[n]) as the
buffer state of the GT at the end of the n-th time-slot, where
q3[n] and q4[n] denote the number of original and compressed
packets stored in the GT’s buffer. Consider the typical UAV
and GT equipments, it is reasonable to assume that the buffer
size of the UAV and GT should be larger than the data size
of one data packet arrival, i.e., Q1 and Q2 > N .

In each time-slot, the decision is made by the UAV, which
can be characterized by a triplet τ [n] = (s1[n], s2[n], c1[n]).
Then, the dynamic of the task buffer quav[n] = (q1[n], q2[n])
and qgt[n] = (q3[n], q4[n]) can be expressed as

q1[n+ 1] = max{q1[n]− s1[n]− c1[n], 0}+Na[n],

q2[n+ 1] = max{q2[n]− s2[n], 0}+ c1[n],

q3[n+ 1] = max{q3[n]− c2[n], 0}+ s1[n],

q4[n+ 1] = max{q4[n]− c3[n], 0}+ s2[n].

(2)

Due to the limitation of the buffer size, the buffer state in
each time-slot should satisfy{

q1[n] + βq2[n] ≤ Q1,

q3[n] + βq4[n] ≤ Q2;
(3)

otherwise, it will result in packet dropping owing to the buffer
overflow.

B. Power Model

The power consumption due to transmission and computing
at the UAV in the n-th time-slot are denoted by P t

uav[n] and
P c
uav[n], respectively. Assume the length of time-slot Ts is

long enough, the ergodic channel is considered. Consider that
the information-theoretically optimal transmission rate is R =

log(1 +
ht
uavP

t
uav

No
), where P t

uav[n] is the transmission power
consumption, No is the background noise power, and htuav is
the channel power gain. Then, P t

uav[n] can be rewritten as

P t
uav[n] = gtuav(s1[n], s2[n]) = ktuav(2

B
Ts

(s1[n]+βs2[n]) − 1),
(4)

where ktuav = No

ht
uav

is the transmission power gain.
Moreover, according to [15], the power consumption per

CPU cycle can be expressed as

P c
uav(f

c
uav) = κcuavf

c
uav

2, (5)

where f cuav is the clock frequency and κcuav is the effective
switched capacitance depending on the chip architecture used
in the UAV. The total CPU cycles required by the UAV in the
n-th time-slot should satisfy

f cuav[n]T
c
uav = Lλc1[n]. (6)

Then P c
uav[n] can be rewritten as

P c
uav[n] = gcuav(c1[n]) = kcuav(c1[n])

3, (7)

where kcuav =
κc
uavλ

3L3

Ts
2 . Likewise, the computing power

consumption at the GT in the n-th time-slot is given by

Pgt[n] = gcgt(c2[n], c3[n]) = kcgt (c2[n] + γc3[n])
3
, (8)

where kcgt =
κc
gtL

3

Ts
2 and κcgt is the effective switched capaci-

tance of the GT.
Then, the total power consumption of the UAV in the n-th

time-slot is given by

PUAV[n] = P t
UAV[n] + P c

UAV[n]. (9)

Based on the above analysis, it is able to capture
the mathematical relationship between PUAV[n] and
(s1[n], s2[n], c1[n]). In addition, to achieve lower delay, the
UAV will conduct transmission and computing at higher rate,
which may cause more power consumption. Hence there is a
fundamental tradeoff between the average delay and average
power consumption. Moreover, due to the constraints of the
UAV’s hardware capabilities, in order to prolong the service
lifetime of the UAV, we assume that the maximum available
power consumption at the UAV is given by Pmax

uav , i.e.,

PUAV[n] = P t
UAV[n] + P c

UAV[n] ≤ Pmax
uav . (10)

The maximum available power consumption at the GT is given
by Pmax

gt .
The scheduling of the UAV works in the following pro-

cedures. The data packet arrival information Na[n] can be
obtained at the beginning of each time-slot. Hence, it can be
taken into consideration along with the sates of two buffers,
i.e., quav[n] and qgt[n] by the UAV to make a probabilistic
decision τ [n] for the current time-slot.

III. DELAY AND POWER ANALYSIS BASED ON JTCS

In this section, the JTCS policy of the UAV is introduced in
a rigorous way. The considered system with two buffers can
be formulated as a four-dimensional Markov chain. Then, by
the analysis of the steady-state probabilistic distribution of this
Markov chain, the average delay and power consumption of
the UAV can be obtained. In the following analysis, we will
introduce the probabilistic scheduling policy, and analyze the
average delay of each task and the average power consumption
of the UAV using Markov chain theory.

A. Joint Transmission and Computing Scheduling Policy

In each time-slot, the scheduling is made by the UAV upon
a new data arrival, by which (q1[n−1]+Na[n]) original tasks
are left in the buffer. In the sense of the average delay, the
scheduling policy is only aware of how many tasks waiting
for transmission, irrespective of when the task arrives at the
queue. Hence, we rewrite the queue state of the UAV by
quav[n] = (ζ[n], q2[n]), where

ζ[n] = q1[n− 1] +Na[n] ∈ [0, Q+N ]. (11)

From Eq. (2), we have

ζ[n+1] = max {ζ[n]− s1[n]− c1[n], 0}+Na[n+1]. (12)

The queue state of the system is denoted by q[n] =
(ζ[n], q2[n], q3[n], q4[n]).

The current decision of the GT (c2[n], c3[n]) is made by
the GT independent of decisions taken by the UAV. Since the
GT has an adequate supply of electricity, the average power



consumption of the GT cannot be the bottleneck. Thus, we
will not take the energy efficiency into consideration, but only
focus on the average delay of the tasks queued in its buffer.
Thus, the optimal decision can be determined by Algorithm 1,
which aims to minimize the average delay of the task by
processing the compressed tasks with higher priority.

Algorithm 1 Computing Scheduling Algorithm in GT
1: Input q3[n] and q4[n].
2: Calculate the largest number of the compressed tasks that

can be processed by the GT within one time-slot accord-
ing to Eq. (8), i.e., Cmax = max{C|gcgt(0, C) ≤ Pmax

gt }
.

3: Assign c3[n] = min{q4[n], Cmax}.
4: Calculate C

′

max = max{C ′ |gcgt(C
′
, c3[n]) ≤ Pmax

gt }.
5: Assign c2[n] = min{q3[n], C

′

max}.
6: Output (c2[n], c3[n]), then stop.

The probabilistic scheduling policy of the UAV can be
formulated by the probability fs1,s2,c1k1,k2,k3,k4

, where

fs1,s2,c1k1,k2,k3,k4
= Pr {τ [n] = (s1, s2, c1)|q[n] = (k1, k2, k3, k4)} .

(13)
According to Eq. (2) and (3), the current decision τ [n] should
satisfy

q1[n]− s1[n]− c1[n] ≥ 0, (14.a)
q2[n]− s2[n] ≥ 0, (14.b)
q1[n+ 1] + βq2[n+ 1] ≤ Q1, (14.c)
q3[n+ 1] + βq4[n+ 1] ≤ Q2; (14.d)

Otherwise we set fs1,s2,c1k1,k2,k3,k4
= 0 to avoid overflow or

underflow. Eq. (14.a) and (14.b) mean that the transmission
and computing rates cannot exceed the corresponding numbers
of tasks stored in the buffer. Moreover, inequality constraints
in Eq. (14.c) and (14.d) are proposed to avoid packet dropping.

B. Delay and Power Analysis

The scheduling problem can be characterized
by a four-dimensional Markov chain with q[n] =
(ζ[n], q2[n], q3[n], q4[n]) as its states. The state space
of this Markov chain is given by

M = {(ζ, q2, q3, q4)|ζ + βq2 ≤ Q1, q3 + βq4 ≤ Q1} , (15)

where ζ, q2, q3 and q4 are non-negative integers.
Let Γ(q) denote the set of all feasible decisions which

can guarantee no overflow or underflow in Eq. (14), where
q is the state of the Markov chain. Recalling Eq. (10),
the feasible domain of τ [n] is given by Ω(q) = Γ(q) ∩
(s1[n], s2[n], c1[n])|PUAV[n] ≤ Pmax

uav ) and the normalization
condition of the probabilistic scheduling policy holds for any
feasible queue state q. ∑

τ∈Ω(q)
fτq = 1. (16)

Denote λq, q
′

as the one-step state transition probability
from state q=(k1, k2, k3, k4) to state q

′
=(n1, n2, n3, n4) in

the four-dimensional Markov chain, which is summarized in
the following theorem.

Theorem 1 The transition probability λq, q
′

satisfies

λq, q
′
= α

∑
τ∈Xq,q

′

fτq + (1− α)
∑

τ∈Nq,q
′

fτq , (17)

where Xq, q′
is the set of τ= (s1, s2, c1) ∈ Ω(q) satisfying

n1 = q1 − s1 − c1 +N,

n2 = q2 − s2 + c1,

n3 = q3 + s1 − c2,
n4 = q4 + s2 − c3,

(18)

and Nq, q′
is the set of τ= (s1, s2, c1) ∈ Ω(q) satisfying

n1 = q1 − s1 − c1,
n2 = q2 − s2 + c1,

n3 = q3 + s1 − c2,
n4 = q4 + s2 − c3.

(19)

The (c2, c3) in Eq. (18) and (19) can be obtained according
to Algorithm 1 based on (q3[n], q4[n]) = (q3, q4)).

When the conditions (14) and (16) are satisfied, one can find
a single close positive recurrent aperiodic class in this Markov
chain [9]. Moreover, the steady-state probabilistic distribution
{πq} can be obtained by solving the following linear equation
set. 

∑
q∈S

λq′ ,qπq′ = πq ,∀q ∈ S∑
q∈S

πq = 1.
(20)

According to Little’s law [16], the average length L is equal
to the arrival rate αN multiplied by the average waiting time
T that a task spends in the queue. This average waiting time
does not include the service time of the task, which is time
required for the processing unit at the GT to execute the task.
Thus, the total delay is the sum of average waiting time in
the queue T and service time in the server of the GT, i.e., one
time-slot, which is given by

Dava = T + 1

=
1

αN
lim
n→∞

E

{
4∑
i=1

qi[n]

}
+ 1

=
1

αN
lim
n→∞

E

{
(ζ[n]−Na[n]) +

4∑
i=2

qi[n]

}
+ 1

=
1

αN
lim
n→∞

E

{
ζ[n] +

4∑
i=2

qi[n]

}
=

1

αN

∑
q∈S

(k1 + k2 + k3 + k4)πq ,

(21)



where q = (k1, k2, k3, k4).
According to Eqs. (4) and (7), for any buffer state q, the

power consumption for transmitting and computing at the
UAV are given by gtuav(s1, s2) and gcuav(c1) with probability
f
τ=(s1,s2,c1)
q in each time-slot. Then, the average power

consumption is given by

P ava
uav =

∑
q∈S

∑
τ∈Ω(q)

πqf
τ
q guav(τ ), (22)

where guav(τ ) = gtuav(s1, s2) + gcuav(c1).
Based on the above analysis of the average delay and power

consumption, a power-optimal JTSC strategy can be obtained
in the next section.

IV. OPTIMAL POWER-DELAY TRADEOFF

In the UAV communication system, the task has the tolerant
delay Dth before the process of the task should be completed,
which is a constant design value. We need to guarantee that
the average delay does not exceed the tolerant delay Dth.
Moreover, as the battery life of the UAV is limited, it is
necessary to reduce the power consumption at the UAV P ava

uav

as much as possible.
Therefore, we aim to minimize the average power consump-

tion of the UAV under the constraints on average tolerant delay
Dava in Eq. (21). Then, we have the following optimization
problem:

P1 : min
πq ,fτq

P ava
uav =

∑
q∈S

∑
τ∈Ω(q)

πqf
τ
q guav(τ ) (23.a)

s.t
1

αN

∑
q∈S

(k1 + k2 + k3 + k4)πq ≤ Dth

(23.b)∑
q∈S

λq′ ,qπq′ = πq ,∀q ∈ S (23.c)

∑
q∈S

πq = 1 (23.d)

∑
τ∈Ω(q)

fτq = 1,∀q ∈ S (23.e)

fτq ≥ 0,∀τ ∈ Ω(q),∀q ∈ S, (23.f)

where (23.b) is the average delay constraint, (23.c) and (23.d)
denote the balance equation set. Clearly, the objective function
and constraints in optimization (23) are linear combinations
of πqfτq and πq . By recalling the normalization condition of
fτq in Eq. (23.e), πq can also be expressed as

πq =
∑

τ∈Ω(q)
πqf

τ
q =

∑
τ∈Ω(q)

yτq . (24)

By substituting Eq. (24) into Eq. (23), the optimization (23)
is converted into a linear programming which is summarized
in the following theorem.

Theorem 2 The optimization problem P1 is equivalent to
the following linear programming problem P2

P2 : min
yτq

P ava
uav =

∑
q∈S

∑
τ∈Ω(q)

yτq guav(τ ) (25.a)

s.t
1

αN

∑
q∈S

∑
τ∈Ω(q)

(k1 + k2 + k3 + k4)y
τ
q ≤ Dth

(25.b)∑
q∈S

∑
τ∈Ω(q)

λq′ ,qy
τ
q

′ =
∑

τ∈Ω(q)
yτq ,∀q ∈ S

(25.c)∑
q∈S

∑
τ∈Ω(q)

yτq = 1 (25.d)

yτq ≥ 0,∀τ ∈ Ω(q),∀q ∈ S. (25.e)

After the optimal solution yτq
∗ of the linear programming

(24) is obtained, the corresponding steady-state distribution
can be represented as

π∗q =
∑

τ∈Ω(q)
yτq
∗
. (26)

To obtain the power-optimal strategy, we can derive fτq
∗ from

yτq
∗ to satisfy the constraint in Eq. (23.e) as follows:

Case 1 When π∗q 6= 0, the optimal strategy is given by

fτq
∗
=
yτq
∗

π∗q
. (27)

Case 2 When π∗q = 0, which means that the state q is a
transient state. A simple strategy can be used, i.e.,

fτq
∗
=

1

|Ω(q)|
,∀τ ∈ Ω(q). (28)

Theorem 3 Given yτq
∗, the proportion of the tasks that are

preprocessed at the UAV in the long run can be calculated by

η =

∑
q∈S

∑
τ∈Ω(q) πqf

τ
q s2∑

q∈S
∑
τ∈Ω(q) πqf

τ
q (s1 + s2)

, (29)

where q = (k1, k2, k3, k4) and τ = (s1, s2, c1).

Generally speaking, η will increase to reduce the power
consumption with the increase of transmission power gain
ktuav and the decrease of the data compression ratio β.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the power-
optimal JTCS policy by simulations. Throughout this section,
we set N = 2, Q1 = Q2 = 4, β = 0.3, γ = 1.3, Pmax

uav = 50,
Pmax
gt = 100 and kcuav = kcuav = 5. For the sake of simplicity,
B
Ts

is set to 1. Based on the optimization problem P2 described
in Eq. (25), the power-optimal JTCS policy can be obtained.

We introduce four baseline scheduling policies, including
probabilistic scheduling with η = 100%, in which each task
is preprocessed to reduce data size in the UAV; probabilistic
scheduling with η = 0%, in which each task is transmitted to



Fig. 3. The average power consumption vs. the average arrival rate α.

Fig. 4. The proportion of tasks that are preprocessed η vs. the compression
ratio and the transmission power gain.

the GT directly and probabilistic scheduling is implemented;
greedy scheduling with η = 100%, in which each task is
transmitted in its arrival time-slot and probabilistic scheduling
is implemented; greedy scheduling with η = 0%, in which
each task is preprocessed in its arrival time-slot and then be
transmitted in the next time-slot.

The average power consumption achieved by our proposed
JTCS policy and above four policies are given in Fig. 3.
We set compression ratio β = 0.8, transmission power gain
ktuav = 6 and tolerant delay Dth = 3. It can be observed
from this figure that the power consumption achieved by each
policy increases with the arrival rate α, which is in accordance
with our intuition. Moreover, our proposed JTCS policy with
an optimal dynamic preprocess has a better performance
compared to the policies with a fixed preprocess policy, i.e.,
η = 0 or 100%.

The proportion of tasks locally preprocessed η achieved
by the JTCS policy with different compression ratio β and
transmission power gain ktuav is given in Fig. 4. We set arrival
rate α = 0.5 and tolerant delay Dth = 3. As expected,
with the decrease of β and increase of ktuav, more power
consumption of a task can be saved by preprocessing this
task to reduce its data size, which results in higher η and is
matched with the results in Fig. 4.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated a power-optimal joint
transmission and computing scheduling (JTCS) policy for a
UAV communication system. When the transmission environ-
ment is poor, the data collected by the UAV could be prepro-
cessed locally to reduce the amount of data transmitted, and
thus the transmission power consumption at the UAV can be
reduced. The system is modeled as a four-dimensional Markov
chain and a probabilistic scheduling method is adopted. By
jointly scheduling the rate of transmission and computing for
preprocessing based on the buffer states, the energy efficiency
of the UAV will be improved significantly. Based on the
analysis of average power consumption at the UAV and the
average delay of the tasks, the optimization problem could
be formulated and solved efficiently. In this way, the power-
optimal JTCS policy is obtained, which can achieve the
minimum average power consumption at the UAV with the
average delay constraints compared to four baseline policies.
For the further investigation, we will extend this work to more
generalized systems, e.g., adaptive channel fading.
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