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Abstract—Reducing the carbon footprint of data centers is
becoming a primary goal of large IT companies. Due to the
intermittency and unpredictability of renewable energy sources
such as wind and solar, it is quite challenging to utilize them in
data centers. In this paper, we explore the opportunities offered
by delay-tolerant workloads and thermal storage to facilitate the
renewable energy integration in data centers and meanwhile,
reduce the cost of using brown energy (i.e., energy from the
utility grid). A stochastic optimization problem is formulated
to tackle the stochastic renewable generation and workload
arrival processes. Then, an online control algorithm based on
the Lyapunov optimization approach is proposed to solve it.
Simulation results based on the real-world traces show the
effectiveness of the algorithm in practice.

Index Terms—Renewable energy, data center, thermal storage,
Lyapunov optimization, batch workloads

I. INTRODUCTION

With the growing demand for large-scale computing re-

sources, cloud computing is becoming very popular with

different kinds of cloud services ranging from infrastructure-

as-a-service, platform-as-a-service, to software-as-a-service.

As the key underpinning for supporting these services, more

and more new data centers are envisioned to be built in the

near future. These data centers consume a huge amount of

energy for their IT equipments and cooling infrastructures.

Meanwhile, large IT companies pay more and more attention

to their carbon footprints and propose to power their data

centers with on-site renewable generation [1]. However, unlike

conventional energy, renewable energy sources such as wind

and solar are non-dispatchable and their availability depends

on the ambient environment.

Data centers usually support a wide range of IT workloads,

including both delay-sensitive, interactive applications and

delay-tolerant, batch applications. Examples of delay-sensitive,

interactive applications include web browsing, instant mes-

sage, and searching. For the delay-tolerant, batch applications,

typical examples are these jobs that can work well with

the Amazon EC2 Spot Instances [2], such as background

compression, elastic MapReduce, and scientific simulation.

The flexibility of the delay-tolerant, batch workloads can

be exploited to improve the renewable energy utilization by
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delaying their running to periods with abundant renewable

generation.

Another opportunity is the thermal storage facility in a

data center. Note that a large portion of data center power

consumption comes from the cooling infrastructure. While

large-scale electric energy storage, such as batteries, is still

very expensive, thermal storage is much cheaper and can

be leveraged to help integrate renewable energy. In fact,

Apple has already deployed a chilled water storage facility

in its green data center in Maiden, NC [1]. Excess renewable

generation can be stored into the thermal storage for cooling

purpose later.

Renewable-powered data centers are receiving more and

more attention both in industry [1], [3] and in academia [4]–

[7]. Previous studies [4], [5] explore the feasibility and ben-

efits of using geographical load balancing for delay-sensitive

interactive workloads to facilitate the integration of renewable

sources into data centers. Scheduling of delay-tolerant batch

workload and energy storage to help integrate renewable

sources into a data center with on-site renewable generation

is discussed in [6], [7]. However, all the aforementioned

studies either assume perfect future information of renewable

generation or workload arrivals [4]–[6], or do not consider the

thermal storage [7].

In this paper, we exploit the flexibility provided by the

above two components to help integration of renewable energy

into data centers. Furthermore, considering that the electricity

price in wholesale electricity market is time-varying, we also

minimize the cost of using brown energy from the electric grid.

Considering the randomness of the renewable generation and

workload arrival processes, we first formulate the problem as a

stochastic optimization problem. Then, based on the Lyapunov

optimization techniques [8], we design an online algorithm to

solve it approximately. Numerical simulations based on real-

world traces are done to illustrate the effectiveness of our

algorithm in practice. As far as we know, we are the first one to

explore the opportunities offered by delay-tolerant workloads

and thermal storage to help integrate renewable energy in

a data center without assuming perfect prediction of future

information.

The reminder of this paper is organized as follows. Sec-

tion II describes the models we use and the problem formula-

tion. An online algorithm is proposed in Section III to solve

the problem. Analytical and numerical results are presented in
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Fig. 1. Block diagram for system model

Section IV and Section V, respectively. Finally, conclusions

are drawn in Section VI.

II. MODELING AND OPTIMIZATION

We now describe the models we use in this paper to

minimize the time-average brown energy cost in a data center.

Assume the system is discrete-time. We consider a data center

with on-site renewable generators (such as PV panels and

wind turbines) and a thermal storage facility. Both interactive

workloads and batch workloads would arrive at the data

center for processing. The system we consider in this paper is

depicted in Fig. 1, which is explained in detail as follows.

A. The Workload Model

There are many different workloads in data centers. In

general, they can be divided into the following two cat-

egories: delay-senstive, interactive applications and delay-

tolerant, batch applications [6]. The interactive workloads

usually process real-time user requests, which have to be

completed within a certain time, i.e., there is a maximum

response time. Delay-tolerant, batch jobs are often delay-

tolerant, which can be scheduled to run at any time as long

as the jobs are finished before the deadline, i.e., there is a

maximum completion time.

In every period t, interactive workloads and batch workloads

arrive at the data center. The average arrival rates of interactive

and batch workloads during period t are denoted as λ1(t)
and λ2(t), respectively. A resource allocator in the data center

would allocate appropriate servers to serve them. We assume

the boundness on the arrival rates:

0 ≤ λ1(t) ≤ λmax

1 , 0 ≤ λ2(t) ≤ λmax

2 . (1)

As we have mentioned before, interactive workloads usu-

ally have a QoS requirement. As [4], we adopt the average

queueing delay as the QoS metric and use the M/GI/1/PS
queuing model to analyze it. Suppose there are n1(t) active

servers, each with service rate µ1(t), allocated to serve the

interactive workloads during period t. We have the following

QoS constraints for interactive workloads:

1

µ1 − λ1(t)/n1(t)
≤ dmax, (2)

n1(t) ≥ 0, n1(t) ∈ N. (3)

In contrast, the batch workloads can be buffered and served

later. Denote the amount of buffered batch workloads at the

end of period t as Q(t). Assume that n2(t) active servers,

each with service rate µ2, are allocated to serve the batch

workloads. Then, the dynamics of Q(t) is as follows:

Q(t+ 1) = max{Q(t)− n2(t)µ2, 0}+ λ2(t), (4)

n2(t) ≥ 0, n2(t) ∈ N. (5)

We need to ensure finite average delay for these buffered

workloads. Therefore, we have the following QoS requirement

for the batch workloads:

Q < ∞, (6)

where Q is the time average expected queue backlog for the

batch workloads and is defined as:

Q , lim sup
T→∞

1

T

T−1
∑

t=0

E{Q(t)}. (7)

Denote the total number of servers in the data center as N .

Then, we have

n1(t) + n2(t) ≤ N, ∀t. (8)

B. The Renewable Model

Motivated by the recent industry practice [1], we assume a

data center would build on-site renewable generators near its

location, which can reduce the transmission and distribution

losses with the energy delivery. Denote the amount of on-

site renewable energy generated at the data center as r(t).
Since renewable sources, mainly solar or wind, are variable,

they may vary a lot even within one period (i.e., 10 min) in

our scenario. As [5], we assume that there exists a modest

electric energy storage facility (such as the UPS units) located

in each data center which can provide perfectly “smoothing” to

variable on-site renewable generation. Under this assumption,

the renewable generation can be regarded as being constant

during one period.

C. The Thermal Storage Model

Motivated by the recent industry practice [1], We assume

that the data center has a chilled water/ice storage system as

a thermal storage facility and can use it to help cool the data

center. Denote by Emax the capacity of the thermal storage,

by E(t) the stored energy level at the beginning of period

t, by e+(t) the charge rate, and by e−(t) the discharge rate

during period t. In general, the stored energy in the thermal

storage would decrease over times (i.e., self-discharge) even

without discharging. Moreover, there is conversion loss during

both the charging and discharging processes. Therefore, the

general model of thermal storage can be as follows:

E(t+ 1) = α(t)
(

E(t) + η+e+(t)− e−(t)/η−
)

, (9)

where α(t) ≤ 1 denotes the self-discharge rate and depends

on the time-varying ambient temperature, η+ ≤ 1 denotes the

charge efficiency, and η− ≤ 1 denotes the discharge efficiency.
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For simplicity, we assume in this paper that α(t) = 1, ∀t.
Moreover, we combine η+ and η− together to get the round-

trip efficiency η = η+η− and assume that conversion loss

occurs only during the charging process. We also redefine E(t)
as the usable stored energy level at the beginning of time

t. Under the above assumptions and definitions, we have the

following dynamics for thermal storage:

E(t+ 1) = E(t) + ηe+(t)− e−(t), (10)

Within one control period, the thermal storage can either

charge or discharge, but not both. That is,

e+(t) > 0 ⇒ e−(t) = 0, e−(t) > 0 ⇒ e+(t) = 0. (11)

However, we will temporarily ignore this constraint and decide

the optimal charge or discharge control actions. Later we will

construct an optimal control decision that can satisfy the above

constraint.

Considering the physical constraints, the thermal storage

facility usually has upper bounds on both the charge and

discharge rates as follows:

0 ≤ e+(t) ≤ e+
max

, (12)

0 ≤ e−(t) ≤ e−
max

. (13)

For each period t, we need to ensure that the energy level in

the thermal storage always satisfies the following:

0 ≤ E(t) ≤ Emax. (14)

The initial energy level of the thermal storage is assumed to

be E(0) ∈ [0, Emax].

D. The Energy Consumption Model

Energy consumption in data centers mainly consists of two

parts: one is the energy consumption for powering the IT

equipments and the other is for powering the cooling infras-

tructure to keep the IT equipments in a proper temperature

range.

As [9], we assume that each server would consume either

its maximum power P0 when active or zero when inactive.

Hence, the power consumption Pit(t) for IT equipments at

period t is

Pit(t) = (n1(t) + n2(t))P0. (15)

We assume the following linear cooling energy consumption

model:

Pcool(t) = βPit(t). (16)

where β is a coefficient ranging from 0.1 to 1 according to the

current industry measurement [3]. Without loss of generality,

we assume that discharging more cooling energy from the

thermal storage than needed is not allowed. Therefore, we have

another constraint:

e−(t) ≤ Pcool(t). (17)

E. The Cost Model

Since a majority of electricity in the utility grid is produced

from carbon-intensive fossil fuels, it is called brown energy,

while the electricity from the on-site renewable generator is

called green energy. As analyzed in [10], the electricity price

from the wholesale electricity market is time-varying. We

denote the electricity price from the utility grid at period t
is p(t). We assume boundness on p(t) as 0 ≤ p(t) ≤ pmax.

As [5], [6], we assume that the marginal cost of renewable

energy from the on-site renewable generation is zero so as to

incentivize the usage of green energy. During period t, the

cost of using brown energy from the utility grid is:

C(t) = p(t)
[

(1 + β)(n1(t) + n2(t))P0

+ e+(t)− e−(t)− r(t)
]+

. (18)

F. The Optimization Problem

In this paper, we are interested in minimizing the time-

average expected brown energy cost. Based on the above

models, our problem can be formulated as the following

stochastic optimization: Choose (n1(t), n2(t), e(t), ∀t) to

minimize lim sup
T→∞

1

T

T−1
∑

t=0

E {C(t)} , (19)

subject to constraints (2), (3), (4), (5), (6), (8), (10), (12), (13),

(14), and (17).

III. PROPOSED SOLUTION

The challenge to solve the optimization problem above is

that the statistics of λ1(t), λ2(t), r(t), and p(t) may not

be known and we need to design an optimal control algo-

rithm under uncertainty. Inspired by the recently developed

Lyapunov optimization technique [8], we propose an online

control algorithm which requires minimum information of the

random dynamics in the system and can be easily imple-

mented online. However, a particular challenge in applying

the Lyapunov optimization technique to our problem (19) is

the constraint (14), which brings “time-coupling” property to

the problem across different periods. To resolve it, we design a

perturbed Lyapunov function which can decouple the original

problem over different periods. The online control algorithm

we propose can achieve the range of O(1/V ) within the

optimal objective value with the queue backlog increase in

the order of O(V ), where the control parameter V is also

constrained by the thermal storage capacity.

First, we define a perturbed Lyapunov function as follows:

L(t) ,
1

2

[

(Q(t))2 + (E(t)− θ)2
]

, (20)

where θ is a constant to be specified later. Now define K(t) =
(Q(t), E(t)), and define a one-slot conditional Lyapunov drift

as follows:

△(t) , E{L(t+ 1)− L(t) | K(t)}. (21)
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Here the expectation is taken over the randomness of workload

arrivals, electricity price, renewable generation, as well as the

randomness in choosing the control actions. Then, following

the Lyapunov optimization framework, we add a function of

the expected cost over one slot (i.e., the penalty function) to

(21) to obtain the following drift-plus-penalty term:

△V (t) , △(t) + V E{C(t) | K(t)}, (22)

where V is a positive control parameter to be specified later.

Then, we have the following lemma regarding the drift-plus-

penalty term:

Lemma 1. For any feasible control action under constraints

(4), (5), (8), (10), (12), and (13) that can be implemented at

period t, we have

△V (t) ≤ B + E{(E(t) − θ)(ηe+(t)− e−(t)) | K(t)}

+ E{Q(t)(λ2(t)− n2(t)µ2) | K(t)}

+ V E{C(t)|K(t)} (23)

where

B =
1

2

[

max{(ηe+max)
2, (e−

min
)2}+ (λmax

2 )2 + (Nµ2)
2
]

.

(24)

Proof: First, by squaring both sides of (4) and using the

fact that (max{Q(t)−n2(t)µ2, 0})
2 ≤ (Q(t)−n2(t)µ2)

2, we

obtain

Q(t+ 1)−Q(t)

2
≤

(n2(t)µ2)
2

2
+

(λ2(t))
2

2
−Q(t)[n2(t)µ2 − λ2(t)]. (25)

Due to the boundness of n2(t) and λ2(t), we have

(n2(t)µ2)
2

2
+

(λ2(t))
2

2
≤

(Nµ2)
2 + (λmax

2 )2

2
(26)

Similarly, by squaring both sides of (10) and using the

boundness of e(t), we arrive at the following:

(E(t+ 1)− θ)2 − (E(t) − θ)2

2

≤
max{(ηe+max)

2, (e−max)
2}

2
+ (E(t)− θ)(ηe+(t)− e−(t))

(27)

Summing the two inequalities above together, taking expecta-

tion of both sides over K(t), and adding the penalty term, we

arrive at the lemma.

We now present our algorithm. The main design principle

of our algorithm is to choose control actions that greedily

minimize the R.H.S. of (23).

Proposed Online Control Algorithm: Initialize V and θ. At

the beginning of each period t,

1) Observe the system states (λ1(t), λ2(t), p(t), r(t)) and

the queue states (Q(t), E(t))
2) Choose n1(t), n2(t), e

+(t), and e−(t) to minimize

(E(t)− θ)(ηe+(t)− e−(t))−Q(t)n2(t)µ2 + V p(t)h
(28)

subject to (2), (3), (5), (8), (12), (13), (17), and

h ≥ 0, h ≥ (1+β)(n1(t)+n2(t))P0+ηe+(t)−e−(t)−r(t).

3) Update Q(t) and E(t) according to (4) and (10), respec-

tively.

4) Continue to the next period.

Note that the slack variable h is introduced in the optimization

problem (28) to transform the nonlinear function [·]+ into

a linear form. For each period t, the optimization problem

(28) is a mixed-integer linear programming (MILP) problem.

However, in practice, a data center usually contains thousands

of servers, of which a large fraction are active [9]. Hence, we

can relax the integer constraints on n1(t) and n2(t), round

the resulting solution without significant cost penalties, and

get a simple linear program, which can solved efficiently by

simplex algorithm. The MILP can also be solved efficiently

by commercial solvers such as CPLEX [11].

Another issue is that when solving the problem (28), the ob-

tained optimal solution (n∗

1(t), n
∗

2(t), (e
+(t))∗, (e−(t))∗, ∀t)

may not satisfy the constraint (11). In this case, let A =
η(e+(t))∗ − (e−(t))∗ and we define the actual charge and

discharge rates as follows:

(e+(t))′ =

{

A/η if A ≥ 0,

0 otherwise.
(29)

(e−(t))′ =

{

−A if A < 0,

0 otherwise.
(30)

It is not difficult to see that the control decision defined above

is also an optimal solution to the problem (28).

IV. ALGORITHM ANALYSIS

In this section, we prove that the proposed algorithm is

approximately optimal with trade-offs between cost saving,

average delay, and thermal storage capacity. Considering

that data centers are usually over provisioned in practice,

we further assume that the data center has enough sev-

ers to serve even the peak demand without buffering, i.e.,

⌈(λmax
1 )/(µ1 − 1/dmax)⌉+ λmax

2 /µ2 ≤ N . Then, the results

are summarized in the following theorem.

Theorem 1. Suppose that 0 < V ≤ Vmax, where Vmax =
(Emax − ηe+

max
− e−

max
)/pmax, and θ = V pmax/η + e−

max

Then under our proposed algorithm, we have the following:

1) The queue Q(t) is deterministically upper bounded as

follows:

0 ≤ Q(t) ≤
V pmaxP0(1 + β)

µ2

+ λmax

2 . (31)

2) The thermal storage level E(t) is always in the range

[0, Emax].
3) If the system states (λ1(t), λ2(t), p(t), r(t)) are i.i.d.

over periods, then the time average expected cost under

our proposed algorithm is within the bound B/V of the
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optimal value, i.e.,

lim sup
T→∞

1

T

T−1
∑

t=0

E {C(t)} ≤ C∗ +B/V. (32)

Proof: Due to the space limitations, we only provide a

sketch of our proof. Similar proof ideas can also be found in

our previous work [12], [13].

1) We prove the result by induction. First, if Q(t) ≤
(V pmaxP0(1 + β))/µ2, the maximum increase during

one period is λmax
2 . Therefore, we obtain the upper

bound in this case. Second, if Q(t) > (V pmaxP0(1 +
β))/µ2, our algorithm would choose the maximum

possible value for n2(t). Then, the amount of arrival

workloads cannot be larger than the served amount

by the total capacity assumption. Therefore, the queue

length cannot increase. This completes the proof.

2) Similarly, we prove it by induction. First, if θ <
E(t) ≤ Emax, our algorithm would choose the max-

imum possible value for e−(t). Therefore, we have

0 ≤ θ − e−
max

≤ E(t + 1) ≤ E(t) ≤ Emax.

Second, if θ − V p(t) ≤ E(t) ≤ θ, we have 0 ≤
θ − V p(t) − e−max ≤ E(t) − e−max ≤ E(t + 1) ≤
E(t) + e+

max
≤ θ+ e+

max
≤ Emax, where we have used

the facts that p(t) ≤ pmax and V ≤ Vmax. Finally, if

0 ≤ E(t) < θ− V p(t), our algorithm would choose the

maximum possible value for e+(t). Therefore, we have

0 ≤ E(t) ≤ E(t + 1) ≤ E(t) + e+max ≤ Emax, where

we have used the fact that V ≤ Vmax. This completes

the proof.

3) As we have mentioned before, our proposed algorithm

is always trying to greedily minimize the R.H.S. of

the upper bound (23) over all feasible control policies

under constraints (4), (5), (8), (10), (12), and (13).

According to the framework of Lyapunov optimization,

there exists a stationary and randomized policy that

can satisfy the above constraints while providing the

following guarantees:

E{ηê+(t)} = E{ê−(t)}, (33)

E{n̂2(t)µ2} ≥ E{λ2(t)}, (34)

E{Ĉ(t)} = Ĉ∗. (35)

Note that this policy can only be derived based on de-

tailed statistics, which usually has the problem of “curse

of dimensionality” if solved by dynamic programming.

Moreover, this policy may not be feasible to the original

optimization problem because of the constraint (14).

Moreover, Ĉ∗ ≤ C∗ due to less constrained for the

stationary control policy. In the following, we use the

existence of such a policy to derive the performance

bound of our proposed algorithm. By substitute this

policy into the R.H.S. of (23), we obtain the following:

△V (t) ≤ B +Q(t)E{λ2(t)− n̂2(t)µ2 | K(t)}

+ V E{Ĉ(t) | K(t)}

≤ B + V Ĉ∗ ≤ B + V C∗. (36)

Taking the expectation of both sides, using the law of it-

erative expectation, and summing over t = 0, 1, . . . , T−
1, we have

V

T−1
∑

t=0

E{C(t)} ≤ BT +V TC∗−E{L(T )}+E{L(0)}.

(37)

Dividing both sides by T , let T → ∞, and using the

facts that E{L(0)} is finite and E{L(T )} is nonnegative,

we arrive at the following performance guarantee:

lim sup
T→∞

1

T

T−1
∑

t=0

E{C(t)} ≤ C∗ +B/V, (38)

where C∗ is the optimal objective value, B is a constant,

and V is a control parameter.

V. NUMERICAL EVALUATION

In this section, we evaluate our algorithm under real-world

traces of renewable energy generation, workload arrivals, and

electricity price.

A. Evaluation Setup

In this part, we introduce the default settings that are

used throughout the evaluations unless otherwise stated. We

consider a data center with a thermal storage facility and on-

site PV panels. The length for one period is 10-min and the

time-horizon in the evaluations is 20 days or 4800 slots.

Wholesale Electricity Price. We use the day-ahead hourly

locational marginal prices (LMPs) from NYISO [14] as the

data trace for the electricity price p(t). A portion of the data

trace during one week is shown in Fig.2(a).

Renewable Energy Source. The data trace for the solar

power is obtained from the Measurement and Instrumentation

Data Center (MIDC) [15] at the National Renewable Energy

Laboratory. It has solar irradiance measurements every 10

minutes and is shown in Fig.2(b) for one week. The trace

is scaled properly so that it can meet half of the power

consumption for the data center on average.

Workload Traces. We use the historical Hadoop (an open

source implementation of MapReduce) traces on a 600-

machine cluster at Facebook [16] to calculate the average 10-

min workload arrival rate. A portion of the workload trace is

shown in Fig.2(c) for one day. We scale the workload trace

separately for interactive and batch workloads so that their IT

resource requirements (in terms of of CPU-periods) are the

same.

System Parameters. The maximum queuing delay for

interactive workloads is set to be 0.1 second. We set the

average service rate of interactive workloads for each server to

be 20 requests per second. The average service rate of batch

workloads for each server is set to be 1/100 request per second.

The total number of servers N = 1000. Each active server

consume P0 = 0.05 kWh during each period. The cooling

coefficient β is set to be 1. Moreover, we set e+
max

= e−
max

= 5
kWh and η = 1.

Globecom 2013 - Symposium on Selected Areas in Communications

2870



50 100 150
0

50

100

150

Time (Hours)

E
le

c
tr

ic
it
y
 P

ri
c
e
 (

$
 /

 M
W

h
)

(a) Electricity price

200 400 600 800 1000
0

5

10

15

Time (10−min period)

S
o
la

r 
P

o
w

e
r 

G
e
n
e
ra

ti
o
n

(b) Solar generation

20 40 60 80 100 120 140
0

5

10

15

Time (10−min period)

W
o
rk

lo
a
d
 A

rr
iv

a
ls

 (
×
 1

0
3
)

(c) Interactive workload arrival

Fig. 2. Real-world data traces used in the evaluations

0.1 1 2 5 10 15 20

0.5

1

0

V

N
o
rm

a
liz

e
d
 A

v
e
ra

g
e
 C

o
s
t

0.1 1 2 5 10 15 20
10

30

50

V

A
v
e
ra

g
e
 D

e
la

y

Fig. 3. The normalized average cost and delay performance of our algorithm
with different V

B. Numerical Results

Due to the space limit, we only discuss two sets of experi-

mental results.

1) Impact of V on the tradeoffs between cost and delay.

In this set of evaluations, we choose different thermal

storage capacities, set V = Vmax, and observe the

corresponding average cost and average workload delay

in our proposed algorithm. We can observe from Fig. 3

that with the increase of thermal storage capacity V , our

algorithm can lower average cost with a tradeoff in the

workload delay, which validates the results of algorithm

analysis in Theorem 1.

2) Algorithm Comparison. We compare our algorithm with

another benchmark scheme that always serve the work-

loads whenever they arrive without any consideration

on electricity price, renewable energy availability, or

storage. We choose a moderate thermal storage size

Emax such that it is enough to satisfy the cooling energy

demand for 3 hours with average workload arrival rates

and V = Vmax. The average cost achieved under the

two schemes is depicted in Fig.4. We can observe that
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Fig. 4. Total cost comparison between our algorithm and the benchmark

our algorithm can achieve around 30% improvement

compared with the benchmark in the brown energy cost.

VI. CONCLUSION

Leveraging the flexibility offered by delay-tolerant work-

loads and thermal storage, we design an online control al-

gorithm to facilitate green energy integration while reducing

the brown energy cost in a data center. The algorithm we

developed is provably optimal and can operate without any

perfect future information or detailed statistics. Numerical

evaluations based on the real-workload traces show that our

algorithm can indeed achieve good performance in practice.
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