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Abstract—Electricity expenditure comprises a significant fraction of the total operating cost in data centers. Hence, cloud service

providers are required to reduce electricity cost as much as possible. In this paper, we consider utilizing existing energy storage

capabilities in data centers to reduce electricity cost under wholesale electricity markets, where the electricity price exhibits both

temporal and spatial variations. A stochastic program is formulated by integrating the center-level load balancing, the server-level

configuration, and the battery management while at the same time guaranteeing the quality-of-service experience by end users. We

use the Lyapunov optimization technique to design an online algorithm that achieves an explicit tradeoff between cost saving and

energy storage capacity. We demonstrate the effectiveness of our proposed algorithm through extensive numerical evaluations based

on real-world workload and electricity price data sets. As far as we know, our work is the first to explore the problem of electricity cost

saving using energy storage in multiple data centers by considering both the spatial and temporal variations in wholesale electricity

prices and workload arrival processes.

Index Terms—Cloud computing, electricity cost, data center, energy storage, Lyapunov optimization, wholesale electricity market
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1 INTRODUCTION

WITH the popularity of cloud computing [2], more and
more data centers are envisioned to be built in the

future in order to meet the growing demand for large-scale
computing resources. It is common for a cloud service
provider to have multiple data centers each having
hundreds of thousands of servers. Those data centers are
geographically distributed for reliability as well as perfor-
mance improvement. A critical issue in the operations of
those data centers is the energy consumption, including both
servers and air conditioners. According to the estimation
from [3], large companies such as Google and Microsoft pay
tens of millions of dollars for just electricity usage every year,
and 30-50 percent percentage of operational expenses in data
centers come from electricity. Therefore, minimizing the
electricity cost is receiving more and more attention.
However, saving electricity cost and improving performance
are usually in conflict with each other; thus, joint optimiza-
tion is needed.

A natural way to reduce electricity cost is to conserve
energy consumption or to improve the energy efficiency
such that the same amount of workload can be served with
less energy. Note that in large-scale data centers, computing
equipments generally exhibit high power intensity with all
of its consumed electric power converted to heat. In order to

ensure the reliable operation of data centers, air conditioning
is required to extract the heat dissipated by the IT computing
devices. Thus, additional power is required to operate the
cooling system. Power Usage Effectiveness (PUE), which
measures the ratio of total building power to IT power, i.e.,
the power consumed by the actual computing equipment, is
used to judge the energy efficiency of a data center. It is
reported that PUE is nearly 2 for typical data centers [4].
Various engineering techniques such as advanced cooling,
virtualization, direct current (DC) power, multicore servers,
etc., have been employed to improve the PUE.

On the other hand, more and more electricity markets
are undergoing deregulation where the electricity market
operators offer dynamic electricity rates to large industrial
and commercial customers instead of traditional flat rates
at the retail level. Therefore, minimization of electricity
consumption does not necessarily translate into that of the
electricity cost since the cost should be the price times the
energy amount. Geographical load balancing [3], [5] has
been proposed to utilize the variation of electricity prices in
wholesale electricity markets so as to provide significant
cost savings for data centers. The basic idea is to route more
traffic to data centers where the electricity price is lower.
Although those techniques are effective in practice, a
largely ignored factor is the existence of energy storage
facilities within data centers, which can provide further
cost saving if utilized intelligently in combination of the
previous techniques. Comparing with existing techniques
for power cost reduction, the method of energy storage has
no performance degradation.

Data centers have uninterrupted power supply (UPS)
units to keep them powered using stored energy in case of
electric utility failure, which is their primary power source,
before the backup diesel generation can start up and provide
power as secondary power source. Usually, the transition to
use diesel generation takes only 10-20 seconds while UPS
units have enough capacity to power the data center at its
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maximum power need between 5-30 minutes. This excess
energy storage capacity can be used to save the electricity
cost by the simple intuition of charging when the electricity
price is low while discharging when the electricity price is
high in the utility grid.

In this paper, we investigate the problem of exploiting the
UPS units within data centers to minimize the cloud service
provider’s electricity cost. We propose a joint load balancing,
server configuration, and battery management scheme for
multiple distributed data centers. Since the traffic arrivals
and electricity prices are both random processes with
possibly unknown statistics, the problem is formulated as a
stochastic program and then, an efficient online algorithm
based on the Lyapunov optimization technique [6] is
proposed to solve it.

Our contribution can be summarized as follows:

. We investigate the problem of minimizing the total
electricity cost of multiple data centers for a cloud
service provider under wholesale electricity markets
by taking into account the batteries within these data
centers.

. We formulate the problem as a stochastic program,
which captures the center-level load balancing, the
server-level configuration, and the battery manage-
ment while at the same time guaranteeing the
quality-of-service (QoS) experience by end users.

. We propose an efficient online algorithm based on
the Lyapunov optimization technique to obtain the
optimal joint load balancing, server configuration,
and battery management scheme for the total
electricity cost minimization. Moreover, our algo-
rithm offers an explicit tradeoff between the cost
saving and the battery capacity.

. We evaluate our algorithm based on real-world data
sets and the results show that our approach can
achieve significant electricity cost saving.

The rest of this paper is organized as follows. Section 2
reviews some related studies in electricity cost reduction in
data centers. Section 3 presents the models of electricity cost
in multiple data centers, which is formulated as a stochastic
program to minimize the time-average expected electricity
cost. Section 4 solves the optimization problem by first
considering a relaxed problem and then, using the Lyapunov
optimization technique to design a control algorithm to
approximately solve the original problem. Section 5 gives the
algorithmic performance analysis and Section 6 gives the
numerical evaluation results based on real-world data sets.
Finally, Section 7 concludes the paper.

2 RELATED WORK

The huge energy consumption in data centers has
motivated a lot of research to reduce the electricity cost
in data centers. These studies can be roughly divided into
two categories: one is from the perspective of hardware
design and engineering; the other is from the perspective
of algorithmic design.

In the first category, energy-efficient chips, multicore
servers, DC power supplies, advanced cooling systems, and
virtulization have been developed [7]. These techniques have

been used to improve the PUE for data centers (See [8] for a
survey on these issues).

In the second category, the research can be divided into the
following three different levels. The first level is the server
level, where only the power consumption of a single server is
considered. A widely used technique is the dynamic voltage/
frequency scaling (DVFS), where the operating voltage and
frequency of the server’s CPU can be adjusted according to
the intensity of the workload on the server. Since the first
analytical study of DVFS by Yao et al. [9], the scheduling and
speed scaling algorithms to minimize the total energy used in
order to meet job deadlines have been addressed in [10]. The
objective of minimizing the average response time given an
energy budget is addressed in [11], while the objective of
minimizing a weighted combination of expected response
time and energy usage per job is considered in [12].

The second level is the data center level. Dynamic cluster
server configuration (DCSC) has been proposed to optimally
adjust the number of active servers in data centers while
satisfying the QoS requirement for electricity cost reduction.
Lin et al. propose a novel online algorithm for cost reduction
to dynamically right size a data center, which is proven to be
3-competitive, while taking into account the switching cost
during turning on/off servers [13].

The third level is the interdata center level, which is based
on the observation that the electricity price is different across
different time and locations under wholesale electricity
markets. Qureshi et al. are the first to discuss the opportunity
of utilizing such electricity price variation to reduce total
electricity cost by distributing more traffic to data centers
with low electricity price [3]. Rao et al. investigate the
problem of minimizing the total electricity cost for data
centers in a multielectricity-market environment subject to
QoS guarantee and propose a linear programming formula-
tion to approximately solve it [5]. These studies focus on
directly reducing the total electricity cost by exploiting the
spatial variation of electricity prices. However, none of the
aforementioned work considers using available energy
storage capabilities, typically UPS units, in data centers to
further reduce the electricity cost.

Our work is mainly motivated by Urgaonkar et al. [14],
which considers the case of a single data center with energy
storage for time-varying electricity price under a wholesale
electricity market. The system implementation issue of
using UPS units to help reduce electricity cost is analyzed
in [15]. Different from previous studies, our work considers
the total electricity cost minimization of a cloud service
provider having multiple data centers with energy storage
under both time-varying and location-varying electricity
prices. In our preliminary work [1], we assume that the
server consumes a fixed amount of power when turned on
and the battery cost is not considered. However, in this
paper, we take into account the battery cost as well as
realistic server power consumption model. Moreover,
extensive numerical evaluation results based on real-world
data sets are included in this paper.

3 MODEL AND FORMULATION

We now describe the models we use in this paper to
minimize the time-average expected electricity cost in data
centers. Assume the system is discrete time with time period
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matching the timescale at which traffic distribution, server
configuration, and charging/discharging decisions can be
updated (e.g., 10 min).

We consider a cloud service provider having N

geographically distributed data centers, denoted by D ¼
fD1; . . . ; DNg and K front-end proxy servers, denoted by
S ¼ fS1; . . . ; SKg. Each data center Di has a total number
of Mi homogeneous servers. The system operates in slotted
period, i.e., t ¼ f0; 1; . . .g. The block diagram of our system
model is shown in Fig. 1, which is described in detail as
follows.

3.1 The Workload Model

In every period t, customer requests arrive at each front-end
proxy server. We denote the average arrival rate of workload
at Sj by AjðtÞ, j 2 f1; . . . ; Kg, where AðtÞ ¼ ðA1ðtÞ; . . . ;

AKðtÞÞ denotes the traffic arrival vector. The workload
arrival rate distributed from the front-end proxy server Sj to
the data center Di is denoted as �jiðtÞ. This can be done by
dynamically generated DNS responses, HTTP redirections,
or using persistent HTTP proxies to tunnel requests. We
assume that there exists a proxy/DNS server colocated with
each request source. Therefore, we have

XN
i¼1

�jiðtÞ ¼ AjðtÞ; 8j ¼ 1; . . . ; K: ð1Þ

�jiðtÞ � 0: ð2Þ

Define the total arrival rate distributed to data center Di as
�iðtÞ and the distributed workload vector as ��ðtÞ ¼
ð�1ðtÞ; . . . ; �NðtÞÞ. Then, we have

�iðtÞ ¼
XK
j¼1

�jiðtÞ; 8i ¼ 1; . . . ; N: ð3Þ

3.2 The Battery Model

We assume that each data center possesses some kind of
battery. For each data center Di, we denote by Ei;max the
battery capacity, by EiðtÞ the energy level of the battery at
period t, and by PiðtÞ the power (energy per period) charged
to (when PiðtÞ > 0) or discharged from (when PiðtÞ < 0) the
battery during period t. Assume that the battery energy

leakage is negligible and batteries at data centers operate
independently of each other. Then, we model the dynamics
of the battery energy level by

Eiðtþ 1Þ ¼ EiðtÞ þ PiðtÞ: ð4Þ

For each data center Di, the battery usually has an upper
bound on the charge rate, denoted by Pi;max, and an upper
bound on the discharge rate, denoted by Pi;min. Pi;max and
Pi;min are positive constants depending on the physical
property of the battery. Therefore, we have the following
constraint on PiðtÞ:

� Pi;min � PiðtÞ � Pi;max: ð5Þ

The battery energy level should be always nonnegative and
cannot exceed the battery capacity. Therefore, in each time
period t, we need to ensure that for each data center Di,

0 � EiðtÞ � Ei;max: ð6Þ

From constraints (4), (5), and (6), we get the following
equivalent constraints in each period t for data center Di:

PiðtÞ � �minfPi;min; EiðtÞg; ð7Þ

PiðtÞ � minfPi;max; Ei;max �EiðtÞg: ð8Þ

However, the cost of using battery cannot be ignored. In
practice, there are limited times of charging/discharing
cycles for each battery. Besides, conversion loss occurs both
in charging and discharging processes. Stored energy is
also subject to leakage with time. All these factors depend
on how fast/much/often it is charged and discharged.
Instead of modeling these factors exactly, we use an
amortized cost Cb (in unit of dollars) to model the impact
of per charging or discharging operation on the battery
during one period. Therefore, during one time period, an
operating cost of Cb is incurred whenever the battery is
charging (PiðtÞ > 0) or discharging (PiðtÞ < 0).

3.3 The QoS Model

In practice, according to the service level agreement (SLA)
between the service provider and customers, customer
requests should have some kind of QoS requirements. In
this paper, we use the average response time as the QoS
metric. As in [5], we use an M=M=n queuing model to
analyze the average response time in data centerDi when the
traffic arrival rate is �iðtÞ and there are miðtÞ active servers,
each with service rate �iðtÞ. Note that miðtÞ is an integral
variable and has the maximum value Mi at each data center
Di. Also, there exists the maximum service rate�i;max for each
server in data centerDi. When there is traffic distributed into
Di, using the results from queuing theory [16], the average
response time WiðtÞ is 1

miðtÞ�iðtÞ��iðtÞPQ where PQ is the
queuing probability. Without loss of generality in a data
center, we assume the servers are always busy if turned on.
Hence, PQ ¼ 1 and WiðtÞ ¼ 1

miðtÞ�iðtÞ��iðtÞ . To meet the QoS
requirement of customers, the maximum average response
timeWi;max is imposed on each data centerDi. Therefore, we
have the following QoS constraints:

miðtÞ�iðtÞ � �iðtÞ �
1

Wi;max
; 8i ¼ 1; . . . ; N; ð9Þ
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0 � miðtÞ �Mi; mi 2 IN; 8i ¼ 1; . . . ; N; ð10Þ

0 � �iðtÞ � �i;max; 8i ¼ 1; . . . ; N: ð11Þ

3.4 The Power Consumption Model

In each time period t, the normal power consumption HiðtÞ,
including the cooling energy consumption at each data
center Di, by running miðtÞ servers at rate �iðtÞ can be
approximated by the following formula [17]:

HiðtÞ ¼ miðtÞ � ð�i��ii ðtÞ þ �iÞ � PUEi; ð12Þ

where �i, �i, �i, and PUEi are constants determined by the
data center Di. Specifically, �i is the average idle power
consumption of a server, and �i�

�i
i ðtÞ þ �i gives the power

consumption of one server running at rate �iðtÞ atDi. PUEi is
the ratio of the total building power (including cooling
power) to IT server power, whose value lies between 1.3 and
2 in today’s energy-efficient data centers [4].

Due to the introduction of energy storage, the total
amount of energy GiðtÞ drawn from the grid to supply the
data center Di during time period t is given by

GiðtÞ ¼ HiðtÞ þ PiðtÞ; 8i ¼ 1; . . . ; N: ð13Þ

Specifically, when PiðtÞ > 0, some energy drawn from the
grid is used to charge the battery besides serving the normal
data center operation. When PiðtÞ < 0, some energy is
discharged from the battery to supplement the energy
drawn from the grid so as to meet the energy demand of
the data center.

3.5 The Electricity Price Model

The electric power grid in US is organized into different
reliability regions, where each region has its own regional
transmission organization (RTO) or independent system
operator (ISO) [18]. The RTO or ISO is a central authority that
directs the flow of electricity between generators and
consumers and ensures the reliability of the grid. It also
operates wholesale electricity markets, which usually include
day-ahead and real-time electricity markets. The electricity
prices in these markets are determined by the clearing
processes of supply and demand bids while satisfying the
transmission constraints.

As analyzed in [3], the electricity prices in wholesale
electricity markets have both spatial and temporal variations.
At each data center Di, we assume a time-varying electricity
priceCiðtÞwith the maximum valueCi;max and the minimum
value Ci;min, respectively. Denote CðtÞ ¼ ðC1ðtÞ; . . . ; CNðtÞÞ
as the electricity price vector and GðtÞ ¼ ðG1ðtÞ; . . . ; GNðtÞÞ
as the grid energy consumption vector. We further assume
that CðtÞ and GðtÞ are independent. Different data centers
may have different electricity prices at the same time due to
being located in different electricity markets.

3.6 The Cost Minimization Problem with Energy
Storage

As discussed before, the total electricity cost of N data
centers during time period t is given by the following:

XN
i¼1

fGiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCbg: ð14Þ

In this paper, we are interested in choosing the following
three control decisions to minimize the long-term time-
average expected electricity cost: 1) the workload distributed
from the front-end web portals to different data cen-
ters—��ðtÞ; 2) the number of active servers at different data
centers—mðtÞ and the corresponding service rates—��ðtÞ;
3) the charge/discharge rate at different data centers—PðtÞ.
Based on the models above, our problem can be formulated
as the following stochastic program, called P1:

min lim sup
T!1

1

T

XT�1

t¼0

XN
i¼1

IEfGiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCbg;

subject to constraints (1), (2), (6), (7), (8), (9), (10), (11), and
(13), where the constraints are for each time period t and
data center Di.

4 PROPOSED SOLUTION

One challenge of solving the stochastic optimization
problem above is the unawareness of future workload
arrivals as well as time-varying and location-varying
electricity prices. Moreover, the constraints on EiðtÞ bring
the “time-coupling” property to the stochastic optimization
problem above. It means that the current control action may
impact the future control actions, making it more challen-
ging to solve. As mentioned before, the statistics of AðtÞ and
CðtÞ may not be known and we need to design an optimal
control algorithm under uncertainty. We use the recently
developed technique of Lyapunov optimization [6]. The
algorithm we propose can achieve the range of Oð1=V Þ
within the optimal objective value, where V is a parameter
related to the battery capacity of each data center Di. One
salient feature of our algorithm is that it does not need any
future knowledge of the system and can be easily imple-
mented online.

4.1 Relaxed Problem

Before giving the solution to our original problem P1, we
consider a relaxed problem. Define the time-average
expected value of charge or discharge rate at data center
Di under any feasible control policy of P1 as follows:

Pi ¼ lim sup
T!1

1

T

XT�1

t¼0

IEfPiðtÞg: ð15Þ

Since the battery energy level is evolving according to (4),
summing over all t 2 f0; 1; 2; . . . ; T � 1g, and taking expec-
tation of both sides, we have

IEfEiðT Þg � Ei;ini ¼
XT�1

t¼0

IEfPiðtÞg;

where Ei;ini ¼ Eið0Þ is the initial battery energy level at
data center Di. As 0 � EiðtÞ � Ei;max for all time periods
t, dividing both sides by T , and taking T !1 yields
Pi ¼ 0. Hence, we have the following relaxed problem,
called P2:

min lim sup
T!1

1

T

XT�1

t¼0

XN
i¼1

IEfGiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCbg;
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subject to constraints (1), (2), (5), (9), (10), (11), (13), and

Pi ¼ 0;

where the constraints are for each time period t and data
center Di.

Denote the optimal objective value of P1 as QOPT and the
optimal objective value of P2 as QREL. As discussed before,
any feasible solution to P1 is also a feasible solution to P2.
Hence, QREL � QOPT . Note that P2 is a decoupled control
problem since no correlation exists in any constraint. From
the framework of Lyapunov optimization [6], we have the
following theorem for the solution to P2:

Theorem 1. If CðtÞ and AðtÞ are i.i.d. over slots, then there exists
a stationary, randomized policy that takes control decisions
��statðtÞ, mstatðtÞ, ��statðtÞ, and PstatðtÞ every period purely as a
function (possibly randomized) of the current workload vector
AðtÞ and the electricity price vector CðtÞ while satisfying the
constraints of P2 and providing the following guarantees:

IEfPstat
i ðtÞg ¼ 0;

IE
XN
i¼1

�
Gstat
i ðtÞCiðtÞ þ 1fPstat

i ðtÞ6¼0gCb
�( )
¼ QREL;

where the expectations above are with respect to the stationary
distributions of AðtÞ, CðtÞ, and the randomized control
decisions.

Proof. It can be proven using Caratheodory’s theorem in
[6] and is similar to that in [14]. It is omitted here for
brevity. tu

In order to derive such a policy, we need to know the
statistical distributions of all combinations of CðtÞ and AðtÞ,
which usually has the problem of “curse of dimensionality”
[19] if solved by dynamic programming. Moreover, this
control policy may not be a feasible solution to P1. Instead,
we use the existence of such a policy to help us design our
control policy that meets all constraints of P1 and derive the
algorithmic performance of our algorithm as illustrated in
the proof of our algorithmic properties later.

4.2 Our Proposed Algorithm

The idea of our algorithm is to construct a Lyapunov
scheduling algorithm with perturbed weights for determin-
ing the traffic distribution, data center sizing, service rate,
and charging/discharging decisions. By carefully perturb-
ing the weights, we can ensure that whenever we charge or
discharge the battery, the energy level in the battery always
lies in the feasible region.

First, we define a modified Lyapunov function as
follows:

LðtÞ ¼4 1

2

XN
i¼1

½EiðtÞ � V Ci;max � Pi;min�2: ð16Þ

To simplify the notation, we define a variable SiðtÞ for each
data center Di, i 2 f1; . . . ; Ng as follows:

SiðtÞ ¼ EiðtÞ � V Ci;max � Pi;min: ð17Þ

Let SðtÞ ¼ ðS1ðtÞ; . . . ; SNðtÞÞ. It is obvious that SiðtÞ is just a
shifted version of EiðtÞ and has the same dynamics as EiðtÞ
with the following equation:

Siðtþ 1Þ ¼ SiðtÞ þ PiðtÞ: ð18Þ

Then, the Lyapunov function can be rewritten as follows:

LðtÞ ¼4 1

2

XN
i¼1

S2
i ðtÞ:

Now, define the one-period conditional Lyapunov drift as
follows:

4ðtÞ ¼ IEfLðtþ 1Þ � LðtÞjSðtÞg: ð19Þ

Here, the expectation is taken over the randomness of
electricity prices and workload arrivals, as well as the
randomness in choosing the control actions. Then, following
the Lyapunov optimization framework, we add a function
of the expected electricity cost over one period (i.e., the
penalty function) to (19) to obtain the following drift-plus-
penalty term:

4V ðtÞ ¼4 4ðtÞ þ V IE
XN
i¼1

½GiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCb�jSðtÞ
( )

:

ð20Þ

We have the following lemma regarding the drift-plus-
penalty term:

Lemma 1. Under any feasible action that can be implemented at
period t, we have

4V ðtÞ � Bþ
XN
i¼1

IEfSiðtÞPiðtÞ j SðtÞg

þ V
XN
i¼1

IEfGiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCb j SðtÞg;
ð21Þ

where B ¼4
PN

i¼1

maxfP 2
i;max;P

2
i;ming

2 .

Proof. From (18), squaring both sides, we have for each data
center Di,

S2
i ðtþ 1Þ � S2

i ðtÞ
2

¼ P
2
i ðtÞ
2
þ SiðtÞPiðtÞ: ð22Þ

Moreover, we have the following inequality:

P 2
i ðtÞ
2
�

max
�
P 2
i;max; P

2
i;min

�
2

¼4 Bi:

Taking expectations of both sides of (22) given SðtÞ and
summing over all data centers Di, we have

4ðtÞ �
XN
i¼1

Bi þ
XN
i¼1

IEfPiðtÞSiðtÞ j SðtÞg:

Adding penalty term

V
XN
i¼1

IEf½GiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCb� j SðtÞg

to both sides of the inequality above, we arrive at the
conclusion. tu

GUO AND FANG: ELECTRICITY COST SAVING STRATEGY IN DATA CENTERS BY USING ENERGY STORAGE 1153



We now present our algorithm. The main design principle
of our algorithm is to choose control actions that minimize
the R.H.S. of (21) subject to the constraints in P2. Our
algorithm works as follows.

Note that the algorithm above only requires the knowl-
edge of the instant values of electricity prices CðtÞ, traffic
arrival rates AðtÞ, and battery energy levels EðtÞ. It does not
require any knowledge of the statistics of these stochastic
processes. The remaining challenge is to solve P3, which is
discussed below.

4.3 Solution to P3

As we can observed, for each time period t, the optimiza-
tion problem above is a mixed-integer nonlinear program-
ming (MINLP), which is NP-hard in general. As in [20], by
using the KKT conditions, we can obtain that the optimal
solution, if exists, must satisfy the following:

��i ðtÞ ¼ m�i ðtÞ��i ðtÞ �
1

Wi;max
: ð23Þ

It can be observed that once the optimal m�i ðtÞ and ��i ðtÞ are
obtained, we can solve the corresponding ��ijðtÞ by the
following two equations:

XN
i¼1

��jiðtÞ ¼ AjðtÞ; ��jiðtÞ � 0; ð24Þ

XK
j¼1

��jiðtÞ ¼ m�i ðtÞ��i ðtÞ �
1

Wi;max
: ð25Þ

In the following part, we focus on how to obtain the optimal
m�i ðtÞ and ��i ðtÞ.

We first define IiðtÞ as the indicator variable to describe
the battery usage associated with each data center Di during
time period t. When the battery is used (either charging or
discharging) at data centerDi, IiðtÞ ¼ 1. Otherwise, IiðtÞ ¼ 0.
Then, the optimization problem can rewritten as follows,
named P4:

Minimize

XN
i¼1

fðSiðtÞ þ V CiðtÞÞPiðtÞ þ V CbIiðtÞ þ V CiðtÞHiðtÞg;

s.t.

XN
i¼1

miðtÞ�iðtÞ ¼
XK
j¼1

AjðtÞ þ
XN
i¼1

1

Wi;max
;

0 � miðtÞ �Mi; miðtÞ 2 IN;

0 � �iðtÞ � �i;max;

� Pi;minIiðtÞ � PiðtÞ � Pi;maxIiðtÞ;

IiðtÞ 2 f0; 1g;

0 � PiðtÞ þHiðtÞ � Gi;max;

where the constraints are for each time period t and data
center Di.

A general MINLP is known to be NP-hard and no efficient
solutions exist when the problem size is large because
the search space would increase exponentially. However, in
some practical situations, the MINLP problem often have
some special structures that can be exploited for designing
effective solutions. One particular situation, as in our
problem, is that by fixing the discrete variables first, the
remaining problem becomes convex for continuous vari-
ables. In this paper, we use the technique of generalized
Benders decomposition [21] to solve it. The proposed
algorithm is expected to converge to the optimal solution
within a finite number of iterations. To simplify the notation,
we ignore the time t in the following algorithm.

Definition 1. Let X ¼4 f��;Pg and Y ¼4 fm; Ig. We denote the
total electricity cost function fðX;YÞ, the workload constraint
function gðX;YÞ, and the charging/discharging constraint
functions h1iðX;YÞ, h2iðX;YÞ, k1iðX;YÞ, and k2iðX;YÞ
as follows:

fðX;YÞ ¼
XN
i¼1

fðSi þ V CiÞPi þ V CbIi þ V CiHig;

gðX;YÞ ¼
XK
j¼1

Aj þ
XN
i¼1

1

Wi;max
�
XN
i¼1

mi�i;

h1iðX;YÞ ¼ Pi � Pi;maxIi; 8i 2 f1; 2; . . . ; Ng;

h2iðX;YÞ ¼ �Pi;minIi � Pi; 8i 2 f1; 2; . . . ; Ng;

k1iðX;YÞ ¼ �Pi �Hi; 8i 2 f1; 2; . . . ; Ng;

k2iðX;YÞ ¼ Pi þHi �Gi;max; 8i 2 f1; 2; . . . ; Ng:

Definition 2. Let

� ¼ fmi 2 ½0;Mi�; Ii 2 f0; 1gj9�i 2 ½0; �i;max�;
Pi such that gðX;YÞ � 0; h1iðX;YÞ � 0; h2iðX;YÞ

� 0; k1iðX;YÞ � 0; k2iðX;YÞ � 0; 8ig:
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For any fixed Ŷ ¼ fm̂; Îg 2 �, we define the subproblem

NLP(Ŷ) as follows:

min
X

fðX; ŶÞ

s.t.

gðX; ŶÞ � 0;

h1iðX; ŶÞ � 0; 8i 2 f1; 2; . . . ; Ng;
h2iðX; ŶÞ � 0; 8i 2 f1; 2; . . . ; Ng;
k1iðX; ŶÞ � 0; 8i 2 f1; 2; . . . ; Ng;
k2iðX; ŶÞ � 0; 8i 2 f1; 2; . . . ; Ng:

Definition 3. Let

� ¼   2 R4Nþ1 :   � 0 and
X4Nþ1

i¼1

 i ¼ 1

( )
:

Define

JðX;Y;   Þ ¼4  1gðX;YÞ

þ
XN
i¼1

f iþ1h1iðX;YÞ þ  iþNþ1h2iðX;YÞ

þ  iþ2Nþ1k1iðX;YÞ þ  iþ3Nþ1k2iðX;YÞg:

For any Ŷ 2 �, we define the feasibility-check problem

NLPF(Ŷ) as follows:

min
X

�

s.t.

� � JðX; Ŷ;   Þ; 8  2 �:

Definition 4. Let �� 2 R4Nþ1 and �� � 0. Define

LðX;Y; ��Þ ¼4 fðX;YÞ þ �1gðX;YÞ

þ
XN
i¼1

f�iþ1h1iðX;YÞ þ �iþNþ1h2iðX;YÞ

þ �iþ2Nþ1k1iðX;YÞ þ �iþ3Nþ1k2iðX;YÞg:

The master problem is stated as follows:

min
Y;z0

z0

s.t.

z0 � min
X

LðX;Y; ��Þ; 8�� � 0;

0 � min
X

JðX;Y;   Þ; 8  2 �:

Definition 5. The relaxed master problem RMGBD (p; q) is

stated as follows:

min
Y;z0

z0

s.t.

z0 � min
X

LðX;Y; ��iÞ; 8i 2 f1; 2; . . . ; pg;

0 � min
X

JðX;Y;   jÞ; 8j 2 f1; 2; . . . ; qg:

Based on the definitions above, an iterative algorithm
based on the generalized Benders decomposition technique
is described as follows.

5 ALGORITHMIC PERFORMANCE ANALYSIS

In this section, we analyze the feasibility and algorithmic
performance of our algorithm. To start with, we define an
upper bound Vmax on parameter V as follows:

Vmax ¼ min
i

Ei;max � Pi;max � Pi;min
Ci;max � Ci;min

: ð26Þ

Next, the optimal solution to P3 has the following
properties that are useful for the following analysis of
algorithmic performance.

Lemma 2. The optimal solution to P3 has the following properties:

1. If SiðtÞ > �V Ci;min, the optimal solution always
choose P �i ðtÞ � 0.

2. If SiðtÞ < �V Ci;max, the optimal solution always
choose P �i ðtÞ � 0.
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Proof. For each data center Di and time period t,

1. When SiðtÞ > �V Ci;min, suppose P �i ðtÞ > 0, then
we have G�i ðtÞ > m�i ðtÞH�i ðtÞ. According to
the objective of P3, in this case, the value of the
objective should always be larger than the case
that PiðtÞ ¼ 0 and GiðtÞ ¼ m�i ðtÞH�i ðtÞ where
m�i ðtÞ and H�i ðtÞ do not change. This results in
the contradiction because our algorithm is al-
ways trying to minimize the objective function.
Hence, when SiðtÞ > �V Cmin, PiðtÞ cannot be
strictly greater than zero, i.e., the battery would
not charge.

2. When SiðtÞ < �V Ci;max, suppose P �i ðtÞ < 0, then
we have G�i ðtÞ < m�i ðtÞH�i ðtÞ. Similarly, according
to the objective of P3, in this case, the value of
the objective should be always larger than the
case that PiðtÞ ¼ 0 and GiðtÞ ¼ m�i ðtÞH�i ðtÞ where
m�i ðtÞ and H�i ðtÞ do not change. This results in
the contradiction because our algorithm is al-
ways trying to minimize the objective function.
Hence, when SiðtÞ < �V Ci;max, PiðtÞ cannot be
strictly less than zero, i.e., the battery would not
discharge. tu

Then, we have the following theorem about the algo-

rithmic performance of our proposed algorithm:

Theorem 2. Suppose the initial battery energy level Ei;ini 2
½0; Ei;max�. Implementing the above algorithm with any fixed

parameter V 2 ð0; Vmax� for all periods, we have the following

performance guarantees for each data center Di:

1. The battery energy level EiðtÞ is always in the range
½0; Ei;max� for all time slots t.

2. All control decisions are feasible.
3. If AðtÞ and CðtÞ are i.i.d. over slots, then the time-

average expected electricity cost under our algorithm is
within bound B=V of the optimal value:

lim sup
T!1

1

T

XT�1

t¼0

XN
i¼1

IEfGiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCbg

� QOPT þB=V ;
ð27Þ

where B is a constant given by

B ¼4
XN
i¼1

max
�
P 2
i;min; P

2
i;max

�
2

: ð28Þ

In the following, we prove Theorem 2.

Proof.

1. To show 0 � EiðtÞ � Ei;max, according to the
definition of SiðtÞ, it is equivalent to show that
for each data center Di,

SiðtÞ � �V Ci;max � Pi;min; ð29Þ

and

SiðtÞ � Ei;max � V Ci;max � Pi;min: ð30Þ

As 0 � Ei;ini � Ei;max, the above inequalities hold
for t ¼ 0. We prove in the following that this
constraint is satisfied for all periods by induction.

Suppose inequalities (29), (30) hold for time
period t, we need to show that it also holds for
time period tþ 1

a. We first prove Siðtþ 1Þ � Ei;max � V Ci;max �
Pi;min: if

� V Ci;min < SiðtÞ � Ei;max � V Ci;max
� Pi;min;

then from Lemma 2, we must have P �i ðtÞ � 0.
Using (18) and PiðtÞ � �Pi;min, we have
Siðtþ 1Þ � SiðtÞ � Ei;max � V Ci;max � Pi;min;
if �V Ci;max � Pi;min � SiðtÞ � �V Ci;min, then
from (18) and PiðtÞ � Pi;max, we have Siðt þ
1Þ � Pi;max � V Ci;min. For any 0 < V � Vmax,
from the definition (26) of Vmax, we have

Ei;max � V Ci;max � Pi;min � �V Ci;min
þ Pi;max � Siðtþ 1Þ:

Thus, we have Siðtþ 1Þ � Ei;max � V Ci;max �
Pi;min.

b. Then, we prove Siðtþ 1Þ � �V Ci;max � Pi;min:
if �V Ci;max � Pi;min � SiðtÞ < �V Ci;max, then
from Lemma 1, we must have P �i ðtÞ � 0.
Using the (18), we have Siðtþ 1Þ � SiðtÞ � �
V Ci;max � Pi;min; if

� V Ci;max � SiðtÞ � Ei;max � V Ci;max
� Pi;min;

then from (18) and PiðtÞ � �Pi;min, Siðt þ
1Þ � �V Ci;max � Pi;min. From the above dis-
cussion, we obtain Siðtþ 1Þ � �V Ci;max �
Pi;min.

2. As the constraint on EiðtÞ for each data center Di

is satisfied as shown in 1 and we make our
decisions to satisfy all constraints in P3, combin-
ing them together, all constraints of P1 are
satisfied. Therefore, our control decisions are
feasible to P1.

3. As we mentioned before, our algorithm is always
trying to greedily minimize the R.H.S. of the
upper bound (21) of the drift-plus-penalty term at
each period t over all possible feasible control
policies including the optimal, stationary policy
given in Theorem 1. Therefore, by plugging this
policy into the R.H.S. of the inequality (21), we
obtain the following:

4V ðtÞ �

Bþ V IE
XN
i¼1

½Gstat
i ðtÞCiðtÞ þ 1fPiðtÞ6¼0gCb� j SðtÞ

( )

¼ Bþ VQREL � Bþ VQOPT :

Taking the expectation of both sides, using the
law of iterative expectation, and summing over
t 2 f0; 1; 2; . . . ; T � 1g, we have
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V
XN
i¼1

XT�1

t¼0

IEfGiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCbg

� BT þ V TQOPT � IEfLðT Þg þ IEfLð0Þg:

Diving both side by T , let T !1, and using the

facts that EfLð0Þg are finite and EfLðtÞg are

nonnegative, we arrive at the following perfor-

mance guarantee:

lim sup
T!1

1

T

XT�1

t¼0

XN
i¼1

IEfGiðtÞCiðtÞ þ 1fPiðtÞ6¼0gCbg

� QOPT þB=V ;

where QOPT is the optimal objective value, B is a

constant, and V is a control parameter which has

the maximum value given by (26). tu

6 NUMERICAL EVALUATION

In this section, we evaluate the performance of our

proposed algorithm based on real-world workload and

electricity price data sets. To reduce the overhead between

switching the servers on/off across different time periods,

the scheduling horizon is divided into discrete time periods

with 10 min at each period. We consider a request-response

type of cloud service. To accommodate other kinds of

typical cloud services such as batch computing and session-

based application, only minor modifications need to be

made for the traffic distribution constrains and application

QoS requirements in our model. We first describe the real-

world data sets and system parameters used in this paper.

Then, we illustrate the improved energy cost saving of our

scheme in comparison with some benchmark schemes. The

performance changes due to different battery capacities,

battery cost, and QoS requirements are also analyzed.

6.1 Experimental Setup

For the purpose of illustration, we consider several simu-
lated data centers where the multiple front-end proxy
servers are merged into one. The front-end proxy server
acts as a load balancer which receives the incoming traffic
requests and distributes workload to different data centers in
different locations. It is also responsible for sending control
decisions to back-end servers to configure the servers and
manage the battery charging/discharging operation. Four
different data centers, each having a battery, at different
geographic locations are assumed in this evaluation.

Electricity price data. We use the 5-min locational
marginal prices (LMP) in real-time electricity markets at
four different locations: Chicago, New York, Palo Alto, CA
and Houston, TX that host Google’s data centers. The data
set is obtained from the publicly available government
sources [18], [22]. Based on this raw data, we calculate the
average electricity price over disjoint 10 minute intervals.
The time horizon we consider in this paper is from January
1 to January 21, 2011. In total, this duration includes three
weeks or 3,024 10-min periods. A portion of the average
10-min real-time electricity prices during the first week of
January 2011 at the four different locations is plotted in
Fig. 2. The electricity price is in unit of $/MWh.

Workload data. The real-world workload data we use in
the evaluations are a set of I/O traces taken from six RAID
volumes at MSR Cambridge [23]. The original traced period
is only one week and we repeat it to get a three-week
workload traces. Fig. 3 shows the request number variations
in different 10-min periods for three days. The peak-to-
average ratio of the workload is 4.5.

System parameters. We assume that the servers at one
location are homogeneous. Note that our model is quite
general and can be easily extended into the heterogenous
case with only additional notations. The server parameters at
each locations are presented in Table 1, where the service
rate (in unit of requests per second) is estimated by the
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Fig. 2. 10-min average real-time electricity prices in 3 hours at four
locations [18], [22].

Fig. 3. 10-min average workload in three days [23].

TABLE 1
Server Parameters in Four Locations



average size of the workload request (in unit of bytes per
request) as well as CPU and server architecture. We choose
PUEi ¼ 1:3 in all our evaluations to get a conservative
estimate of the cost savings. The delay constraint at each data
center is chosen to be 1 ms, i.e., Wi;max ¼ 0:001 s.

6.2 Performance Evaluation

In order to analyze the performance improvement due to our
scheme, we compare it with the following schemes that
either represent the current practice in data center power
management or are the state-of-the-art techniques proposed
by previous work [3], [5], [20]: 1) Static load balancing (SLB):
current data centers usually runs a constant number of
servers to serve the workload. In order to satisfy the time-
varying demand, data centers usually overly provision and
keep more running servers than what is needed to meet the
peak load. In the evaluation, we assume that the data center
has complete workload information ahead of time and
provisions exactly to satisfy the peak load. Moreover, the
amount of workload routed to different data centers is
proportional to the service capacity of data centers regard-
less of electricity price. We assume that all servers are
activated at all times. However, the service rates of the
servers can be adjusted in every period; 2) Price-aware load
balancing (PLB): the scheme is similar to the heuristic
proposed by Qureshi et al. [3] that routes more jobs to data
centers with lower electricity price. In the evaluation, we
assume that the workload is first routed to the data center
with the lowest electricity price. Then, we route the
remaining workload to the data center with the second
lowest price, and so on. Again, all servers are assumed to be
activated at all times and service rates can be tuned in every
period; 3) Price-aware dynamic provisioning (PDP): this
scheme is proposed by Rao et al. [5], [20], which consider
both traffic routing and dynamic server provisioning to
exploit the spatial variation of electricity price in real-time
electricity markets. However, energy storage facilities in data
centers are not considered in these work. Therefore, the
temporal variation of electricity prices is not utilized.

In the first evaluation, we compare our algorithm with
the three benchmark schemes above using the real-world
traces. Note that the performance of our scheme depends on
the battery capacity and the battery cost. We choose Cb ¼
0:1 $ and Ei;max ¼ 300 kWh. The maximum charge and
discharge rate are set to be Pi;max ¼ Pi;min ¼ 10 kWh. The
initial battery energy level at each data center is chosen to
be zero, i.e., Ei;ini ¼ 0. Let V ¼ Vmax. The result is shown in
Fig. 4a. From the figure, we can see that both our scheme
and the PDP can get much better performance than the SLB
and the PLB because of turning off unnecessary servers
rather than leaving them idle. Also, our scheme performs
better than the PDP because of the introduction of energy
storage, which can charge when the price is low while
discharging when the price is high. In the following, we
consider the impact of individual parameters on the
performance of our scheme compared to the PDP.

Impact of battery capacity. In this evaluation, we vary the
battery capacities of data centers with other parameters
fixed. We set Ei;max ¼ f300; 400; 500g kWh and V ¼ Vmax.
The result is illustrated in Fig. 4b. From the figure, it is clear
that the larger the battery is, the more cost saving our

proposed algorithm can obtain, which coincides with the
algorithmic performance results of our algorithm in Theo-
rem 2. As we have mentioned before, the saving comes from
the fact that our algorithm would charge the battery when
the electricity price is low while discharging it when the
electricity price is low.

Impact of battery cost. Currently, the battery is still
expansive. The charging or discharging operation would
reduce the lifetime of the battery. However, it is expected
that the cost of battery would decrease greatly in the next
decade. In this evaluation, we estimate the impact of battery
cost on the cost saving of our algorithm. We set Cb ¼
f0:1; 1; 10; 100g $ and keep Ei;max ¼ 300 kWh fixed. The
result is shown in Fig. 4c. Note that when the battery cost per
operation is very large (e.g., 100 $), our algorithm would not
charge or discharge the battery at all, so it is the same as the
scheme in [20]. As the battery cost increases, the total cost
saving compared with PDP would decrease since the
opportunity to utilize the temporal variation of electricity
prices is smaller.

Impact of QoS requirement. In this setting, we adjust the
QoS requirements of customer requests while fixing other
parameters to see the impact of QoS requirement on the
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Fig. 4. (a) Comparison of the total energy cost in four approaches.
(b) The impact of battery capacity on the cost saving. (c) The impact of
battery cost on the cost saving. (d) The impact of QoS requirements on
the cost saving.



performance of our scheme. We choose Wi;max ¼ f0:001;
0:005; 0:01; 0:05g s. As observed in Fig. 4d, the increase of the
maximum average response time gives more opportunity to
optimize the energy cost, since fewer number of servers
needs to be turned on to serve the same amount of workload.

7 CONCLUSION

In this paper, we apply the Lyapunov optimization technique
to solve the problem of optimal traffic distribution, server
configuration, and battery management in data centers for
location-varying and time-varying electricity prices under
wholesale electricity markets. The algorithm we propose
matches the intuition of distributing more traffic into data
centers with lower electricity price and charging when
electricity price is low while discharging when electricity
price is high. Moreover, it is easy to implement online and can
give analytic bound on the performance. With the increase of
battery capacity, our algorithm can get arbitrarily close to the
optimal value. Numerical evaluations based on real-world
traces show that our algorithm can result in significant
energy cost reduction without scarifying the customer QoS
requirements.
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