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Abstract—In this paper, we investigate the minimization of the
total energy cost of multiple residential households in a smart
grid neighborhood sharing a load serving entity. Specifically,
each household may have renewable generation, energy storage
as well as inelastic and elastic energy loads, and the load serving
entity attempts to coordinate the energy consumption of these
households in order to minimize the total energy cost within this
neighborhood. The renewable generation, the energy demand ar-
rival, and the energy cost function are all stochastic processes and
evolve according to some, possibly unknown, probabilistic laws.
We develop an online control algorithm, called Lyapunov-based
cost minimization algorithm (LCMA), which jointly considers the
energy management and demand management decisions. LCMA
only needs to keep track of the current values of the underlying
stochastic processes without requiring any knowledge of their sta-
tistics. Moreover, a decentralized algorithm to implement LCMA
is also developed, which can preserve the privacy of individual
household owners. Numerical results based on real-world trace
data show that our control algorithm can effectively reduce the
total energy cost in the neighborhood.

Index Terms—Demand response, energy management, energy
storage, inelastic and elastic energy loads, Lyapunov optimization,
renewable generation, smart grid.

I. INTRODUCTION

T HE GROWING demands of electricity and concerns
over global climate change and carbon emission have

motivated the grid modernization, which transforms the current
power grids to the future “smart grid.” As stated in [1], the
smart grid will enable deep penetration of renewable genera-
tion, customer driven demand response, widespread adoption of
electric vehicles, and electric energy storage. Sensing, commu-
nication, computation, and control technologies in conjunction
with advances in renewable generation, energy storage, power
electronics, etc., are critical to realizing the vision and promise
of the smart grid.
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Within the smart grid, demand side management (DSM) is
a key component, which can help reduce peak load, increase
grid reliability, and lower generation cost [2]. There are mainly
two types of demand side management techniques: direct load
control (DLC) and demand response based on time-varying
pricing [3]. In DLC, the load serving entity, usually a utility
company, enters into a contract with the consumers beforehand,
so that certain amount of energy load can be curtailed during
the peak hours in order to release the congestion on the power
grid or to avoid the operation of high cost peak generators.
Currently, it is mainly employed by large industrial and com-
mercial customers. On the other hand, the demand response
based on time-varying pricing encourages the customers to
either reduce or shift their normal energy consumption based
on the pricing signal issued by the load serving entity (LSE)
in return for some benefits, such as electricity bill reduction.
Several popular schemes already exist in this regard, such as
critical-peak pricing (CPP), time-of-use (TOU) pricing, and
real-time pricing (RTP). With the introduction of the advanced
metering infrastructure (AMI), which can provide two-way
communication between utility companies and smart meters,
it is expected that there will be a widespread deployment of
such demand response programs for residential and business
customers in the smart grid [4].
Meanwhile, nearly 7% of electricity is lost during trans-

mission and distribution (T&D) from remote power plants to
distant homes [5]. Distributed generation (DG) from many
small on-site energy sources deployed at individual homes and
businesses can be used to decrease both T&D losses and carbon
emissions. Typical examples of these small on-site energy
sources include rooftop solar panels, fuel cells, microturbines,
and micro-wind generators. Distributed energy storage devices
are usually used in combination with these renewable sources
to better utilize them. We envision residential households in
the smart grid which use on-site renewable generation, modest
energy storage, and the electric grid to meet their energy de-
mands, within which some are elastic and can be served in a
flexible manner. How to simultaneously manage these compo-
nents for households within a neighborhood in order to reduce
the total energy cost as well as the impact on the distribution
network of the power grids is a challenging problem, especially
considering the random dynamics in the system.
There have been many previous studies on energy consump-

tion scheduling in households, renewable energy integration,
and demand response schemes. On the residential energy con-
sumption scheduling side, Mohsenian-Rad et al. [6] formulate
the optimal control of multiple flexible appliances as a linear
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program to achieve a desired trade-off between the electricity
payment and the waiting time for the operation of each appli-
ance in a household, where customers are subject to a real-
time pricing tariff combined with inclining block rates. A game
theory based approach is proposed in [7] to handle the case
of multiple households. Kim et al. [8] use dynamic program-
ming to solve the problem of scheduling power consumption of
a single appliance in order to minimize the expected cost. On the
side of renewable energy integration, the problem of supplying
renewable energy to demand-flexible customers is investigated
in [9], [10]. Specifically, Papavasiliou et al. [10] address the op-
timal allocation for renewable sources to demand-flexible cus-
tomers in a real-time pricing environment using dynamic pro-
gramming, while in [9], the authors develop a Lyapunov opti-
mization based method. Bitar et al. [11] consider optimal selling
strategies for uncertain and variable wind production into the
current electricity market. On the demand response side, Li et
al. [12] consider the problem of optimal demand response as
a convex optimization problem and study the role of dynamic
pricing. Jiang et al. [13] propose a model that integrates two-pe-
riod electricity markets, uncertainty in renewable generation,
and real-time dynamic demand response, and derive the optimal
control decisions to optimize the social welfare. However, most
of the previous studies either only consider optimization for one
household, or assume perfect future information, or do not con-
sider on-site distributed generation and energy storage.
This paper extends the single household case in our previous

work [14] to that of multiple households within a smart grid
neighborhood. In our work, not only does the energy cost of an
individual household matter, but also the total energy cost in a
neighborhood is of equal importance.We show that, through our
collaborative and decentralized energy consumption scheduling
algorithm in multiple households, the impact of the household
energy consumption on the power system and the total energy
cost can be greatly reduced. Due to the decentralized and on-
line properties of our proposed algorithm, it can be easily im-
plemented in the smart grid. In summary, our paper makes the
following contributions:
• In the setting of multiple households within a neighbor-
hood, we propose a new system architecture to incorporate
the following essential components in the smart grid: dis-
tributed renewable generation, energy storage, demand re-
sponse, and smart appliances.

• We develop a decentralized online algorithm, called Lya-
punov-based cost minimizing algorithm (LCMA), to ap-
proximately minimize time-average total energy cost for
households within a neighborhood without the knowledge
of the statistics of related stochastic models.

• Through theoretical analysis, we show that our algorithm
can obtain an explicit trade-off between cost saving and
energy storage capacity. Moreover, through extensive sim-
ulations based on real-world data sets, we demonstrate the
effectiveness of our proposed algorithms.

The paper is organized as follows. In Section II, we describe
our systemmodel and formulate the problem as a stochastic pro-
gramming problem.We describe the design principle behind our
algorithm and present an online algorithm in Section III. We

Fig. 1. A schematic diagram of household energy management in a smart grid
neighborhood.

then analyze our algorithm in Section IV. We present numer-
ical results based on real-world data in Section V. Finally, some
concluding remarks are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we provide mathematical descriptions for the
load serving entity (LSE), energy load, energy storage, and dis-
tributed renewable generation in residential households. Based
on these definitions, we will formulate our control problem as a
stochastic program.
Consider a set of households/customers that are served

by the LSE in a smart grid neighborhood setting as depicted
in Fig. 1. The LSE may be a utility company and the smart
grid neighborhood may cover all households connected to a
step-down transformer in the distribution network. The LSE
may participate into wholesale electricity markets (day-ahead,
hour-ahead, real-time balancing, ancillary service) to purchase
electricity from power generators and then sell it to the cus-
tomers in the retail market. The electricity price in the retail
market is typically set at a fixed level that reflects the broad
average of the hourly costs to serve customers over a year or
season. However, it does not encourage efficient usage of elec-
tricity, causing high peak demand and low load factor. We con-
sider a time-slotted model with an infinite horizon. Each slot
represents a suitable period for control decisions (e.g., 1 hour or
15 min) and is indexed by .1

A. Load Serving Entity

The LSE serves as an agent that is responsible for purchasing
enough electricity from wholesale electricity markets to serve
the energy demand of the households in its service area. The re-
tail price is set in order to at least recover the running cost of
the LSE. In the future smart grid, a field area network (FAN)
would be deployed, which can provide convenient communi-
cations between utility companies and smart meters of residen-
tial households. For simplicity, we make the assumption that the
cost of the LSE can be represented by a cost function that
specifies the cost of providing amount of electricity to the
customers during one period. We assume that the cost function

is increasing, continuously differentiable, and convex in

1In this paper, all power quantities such as
are in the unit of energy per slot, so the energy produced/consumed in time
period is , respectively.
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with a bounded first derivative. We use and to de-
note the minimum and the maximum first derivatives of ,
respectively.

B. Energy Load

In general, the energy loads in a household can be roughly di-
vided into two categories: inelastic and elastic loads. Examples
of inelastic energy loads include lights, TVs, microwaves, and
computers. For this type of energy loads, the energy requests
must be met exactly at the time when needed. In contrast,
there are some energy loads in households that are elastic in the
sense that they can be controlled (using smart appliances, for
example,) to adjust the times of their operations and the amount
of their energy usage without impacting the satisfaction of cus-
tomers. Examples include refrigerators, dehumidifiers, air con-
ditioners, and electric vehicles. As observed in [15], while the
elastic energy loads comprise less than 7.5% of the total loads
in a household, they account for 59% of the average energy
consumption. Therefore, there is great hidden potential in ex-
ploiting the inherent flexibility of such elastic loads for various
important individual and system level objectives.
Inside a household, electric loads can communicate with the

smart meter via the home area network (HAN), which may be
Wi-Fi or ZigBee. For each household , denote by
the inelastic energy loads (in unit of kWh) and by the
elastic energy loads (in unit of kWh) at time . As in [9], we as-
sume that the elastic energy loads are “buffered” (i.e., the energy
requests are held or delayed) first in a queue before being
served. Denote by the amount of energy that is used for
serving the queued energy loads at time . Then the dynamics
of are as follows:

(1)

For each , we assume that

(2)

where so that the queue can always be stabi-
lized. For any feasible control decision, we need to ensure that
the average delay of the elastic loads in the queue is finite. In
other words, the service of elastic energy loads cannot be de-
layed for an arbitrarily long time. This can be stated as follows:

(3)

C. Energy Storage

In addition to energy loads, each household may have some
kind of energy storage device, possibly in the form of the bat-
tery in the PHEV. For each household , we denote by
the battery capacity, by the energy level of the battery at
time , and by the power charged to (when )
or discharged from (when ) the battery during slot .
Assume that the battery energy leakage is negligible and bat-
teries at households operate independently of each other. Then
we model the dynamics of the battery energy level by

(4)

For each household , the battery usually has an upper bound
on the charge rate, denoted by , and an upper bound on
the discharge rate, denoted by , where and
are positive constants depending on the physical properties of
the battery as well as the charging infrastructure. Therefore, we
have the following constraint on :

(5)

The battery energy level should always be nonnegative and
cannot exceed the battery capacity. So in each time slot , we
need to ensure that for each household ,

(6)

However, the cost of battery use cannot be ignored. In prac-
tice, batteries can only be charged a finite number of times. Be-
sides, conversion loss occurs both in charging and discharging
processes. Stored energy is also subject to leakage with time. All
these factors depend on how fast/much/often it is charged and
discharged. Instead of modeling these factors exactly, we use an
amortized time-invariant cost function (in unit of dollars)
to model the impact of charging or discharging operation on
the battery during one slot for household . Each battery cost
function is assumed to be continuously differentiable in
with a bounded first derivative and . We use

and to denote the minimum and the maximum first deriva-
tives of for each household , respectively.

D. Renewable Distributed Generation (DG)

Each household may possess a distributed renewable gener-
ator installed on its site, such as rooftop PV panel or small wind
turbine. Since renewable sources such as wind and solar, are
usually intermittent, uncertain, and uncontrollable, we model
the renewable energy generated by the renewable DG by a dis-
crete time random process , which has the maximum value
given by its nameplate capacity . Therefore, we have

(7)

Note that the power generation from a renewable generator is
usually lower than the normal power consumption of residen-
tial households. Residential households need to connect to the
utility electric grid for backup power and, therefore, are mostly
grid-tied systems. In this paper, we assume that the marginal
cost of renewable energy is zero and should be utilized as much
as possible.

E. Problem Formulation

With the above models for the battery and the distributed re-
newable generator, at each time , the total power demand of
household needed from the utility electric grid is

(8)

Note that in the formula above, we have assumed that power
cannot be fed from the household into the utility electric grid
through, for example, net metering. Since we assume that each
household has an energy storage device, excess renewable en-
ergy generation can be stored into it without spillage as long as
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the storage has enough capacity. We plan to incorporate the op-
tion of two-way energy flow in our future investigation.
In this paper, we are interested in minimizing the LSE’s total

cost of providing the electricity to the whole smart grid neigh-
borhood in a sufficiently long horizon. Note that reducing the
cost of supplying electricity for the LSE is both beneficial to the
LSE as well as individual customers since the cost will be finally
transferred to the customer’s electricity bill. Therefore, the con-
trol problem can be stated as follows: for the dynamic system
defined by (1) and (4), design a control strategy which, given
the past and present random renewable supplies, the battery en-
ergy levels, the energy demands, and the energy cost function,
chooses the battery charge/discharge vector and the elastic
load serving rate vector such that the time-average total en-
ergy cost of the whole smart grid neighborhood is minimized.
It can be formulated as the following stochastic programming
problem, called :

(9)
subject to constraints (1), (2), (3), (4), (5), and (6).
Here the expectation in the objective is w.r.t. the random

renewable generation , the random inelastic energy loads
, and the random elastic energy loads for each

household. Define as the infimum time average cost asso-
ciated with , considering all feasible control actions subject
to the queue stability and the finite battery energy level. We will
design a control algorithm, parameterized by a constant ,
that satisfies the constraints above and achieves the average cost
within of the optimal value , while guaranteeing
that the worst-case delay is within .

III. ONLINE DECENTRALIZED ALGORITHM

In this section, we design algorithms to solve . One
challenge of solving the stochastic optimization problem above
is the uncertainty of future renewable generation, time-varying
cost function, inelastic or elastic energy loads. Moreover, the
constraints on bring the “time-coupling” property to
the stochastic optimization problem above. That is to say, the
current control action may impact the future control actions,
making it more challenging to solve. Our solution is based
on the technique of Lyapunov optimization [16] and requires
minimum information on the random dynamics in the system.

A. Delay-Aware Virtual Queue

Since the constraint only ensures finite average
delay for the elastic energy loads in household , worst-case
delay guarantee is usually desired in practice. For this purpose,
we leverage the technique of “virtual queue” in the Lyapunov
optimization framework. Specifically, the following virtual
queues , are defined to provide the
worst-case delay guarantee on any buffered elastic energy loads
in :

(10)

where is an indicator function that is 1 if
or 0 otherwise; is a fixed positive parameter to be specified
later. The intuition behind this virtual queue is that since
has the same service process as , but has an arrival process
that adds whenever the actual backlog is nonempty, this en-
sures that grows if there are energy loads in the queue

that have not been serviced for a long time. The following
lemma shows that if we can control the system to ensure that
the queues and have finite upper bounds, then any
buffered energy load is served within a worst-case delay as fol-
lows:
Lemma 1: Suppose we can control the system to ensure that

and for all slots , where
and are some positive constants. Then, the worst-case
delay for all buffered energy loads in household is upper
bounded by slots where

(11)

Proof: See Appendix A.
We will show that there indeed exist such constants

and for all households later.

B. The Lyapunov-Based Approach

The idea of our algorithm is to construct a Lyapunov-based
scheduling algorithm with perturbed weights for determining
the optimal power usage. By carefully perturbing the weights,
we can ensure that whenever we charge or discharge the battery,
the energy level in the battery always lies in the feasible region.
First, we choose a perturbation vector (to be

specified later). We define a perturbed Lyapunov function as
follows:

(12)

Now define , and define a one-slot
conditional Lyapunov drift as follows:

(13)

Here the expectation is taken over the randomness of load ar-
rivals, cost function, and renewable generation, as well as the
randomness in choosing the control actions. Then, following the
Lyapunov optimization framework, we add a function of the ex-
pected cost over one slot (i.e., the penalty function) to (13) to
obtain the following drift-plus-penalty term:

(14)
where is a positive control parameter to be specified later.
Then, we have the following lemma regarding the drift-plus-
penalty term:
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Lemma 2: For any feasible action under constraints (2), (5),
and (6) that can be implemented at slot , we have

(15)

where is a constant given by

(16)

Proof: See Appendix B.
We now present the LCMA algorithm. The main design prin-

ciple of our algorithm is to choose control actions that approxi-
mately minimize the R.H.S. of (15).
Lyapunov-Based Cost Minimization Algorithm (LCMA):

Initialize and . At each slot , observe
, and , and do:

• Choose control decisions and as the optimal solution
to the following optimization, called :

(17)

• Update according to the dynamics (1), (4), and (10),
respectively.

The intuition behind our algorithm is trying to store excess
renewable energy for later use, recharge the battery during the
period of low electricity price while discharging it during the pe-
riod of high electricity price, and delay elastic energy loads to
later slots with lower electricity price. Note that we do not need
to consider the time-coupling constraints (6) of the battery en-
ergy level in the algorithm, since they can be automatically sat-
isfied during our operation of the queues, as proven in Theorem
1 below. Moreover, the algorithm only requires the knowledge
of the instantaneous values of system dynamics and does not
require any knowledge of the statistics of these stochastic pro-
cesses. However, the algorithm above should be able to run in
a decentralized manner in order to be implemented in practice.
In the ensuing subsection, we design a decentralized algorithm
to solve the optimization problem .

C. Decentralized Algorithm to

First, we introduce the following slack variables: to
upper bound individual grid power demand and to upper
bound the total grid power demand. Then, we can transform
into the following formulation, called :

(18a)

(18b)

(18c)

(18d)

where the maximum grid power consumption is imposed
because of security and reliability considerations for household
, and is the transformer capacity. Since is a strictly
increasing function, we can easily prove by contradiction that
the formulation above and are equivalent and have exactly
the same optimal solutions in terms of and . Since is
a convex optimization problem and has decomposability struc-
tures, it motivates us to design the following distributed subgra-
dient-based algorithm to iteratively solve it based on the idea
of consistency price in network utility maximization [17], [18].
In each time slot , the algorithm implements the steps as indi-
cated in Algorithm 1. The flow chart for Algorithm 1 is shown
in Fig. 2. When the constant step-size is small enough, the al-
gorithm above converges to the optimal solution [19]. Note that
other types of step-size can also be used with different conver-
gence properties [20]. A desirable feature of our decentralized
algorithm is that the LSE does not need to know the detailed in-
formation about the energy usage in each individual household
and only requires the total grid energy usage for all house-
holds. By operating in this manner, our algorithm can help pre-
serve the privacy of homeowners, who are shown to be con-
cerned with some privacy issues associated with the the smart
grid [21].

Algorithm 1: Decentralized Algorithm to

1 Initialization: Set equal to some nonnegative value,

2 foreach Iteration

3 while Not satisfying convergence criterion do

4 The home energy management system (HEMS) in
household ’s smart meter updates , , and
after receiving the Lagrangian multiplier according to
the solution to the following optimization problem:

(19a)
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Fig. 2. Flow chart for the Algorithm 1.

(19b)

(19c)

(19d)

(19e)

5 The LSE collects the predications of total utility power
demands from all households over the FAN.
Then, its neighborhood energy management system (NEMS)
obtains the optimal generation power and updates the Lagrange
multiplier as follows:

(20)

(21)

where is a constant step-size, and then, broadcasts
to all households over the FAN

6 Set

Note that the optimal Lagrangian multiplier is similar
to the dynamic electricity retail price charged by the LSE to each
household at time .

IV. PERFORMANCE ANALYSIS

In this section, we analyze the performance of LCMA under
the case that the renewable energy generation , energy
load arrival processes and are all i.i.d.
Note that our results can also be extended to the more general
setting where , , and all evolve
according to some finite state irreducible and aperiodic Markov
chains according to the Lyapunov optimization framework [16].

Theorem 1: If and
for all households , then under the LCMA al-

gorithm for any fixed parameters , and
, where

(22)

we have the following properties:
1) The queues and are deterministically upper
bounded by and at every slot, where

(23)

(24)

Further, are upper bounded by where

(25)

2) The worst-case delay of any buffered elastic energy load is
given by:

(26)

3) The energy queue satisfies the following for all time
slots :

(27)

4) All control decisions are feasible.
5) If , , and are i.i.d. over slots,
then the time-average expected operating cost under our
algorithm is within bound of the optimal value, i.e.,

(28)

where is the constant specified in (16).
Proof: The proof is also a straightforward extension of the

results in our previous work [14] into the case of multiple house-
holds.We provide the sketch of our proof as follows. Details can
be found in our technical report [22].
1) We prove the results by induction. First, if

, the maximum increase during one slot is .
Therefore, we obtain the upper bound in this case. Second,
if , LCMAwill choose
the maximum possible value for since the partial
derivative of the objective function in w.r.t. is
negative. The arrival amount can not be larger than the
served amount by our assumption. Therefore, the queue
length cannot increase. This completes the proof. The
upper bound of and can be proved
similarly.

2) This follows directly from Lemma 1.
3) Once again, we prove the result by induction. If

, then LCMA will
choose the maximum value for . Therefore the bat-
tery would charge as much as possible, i.e.,
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. Second, assuming that
,

then
, where we have used the upper bound of .

Third, suppose ,
then LCMA will choose the minimum value for .
Therefore, the battery would discharge as much as pos-
sible, i.e., .
This completes the proof.

4) Since we choose our decisions to satisfy all constraints in
, combining it with the results above together, all con-

straints of are satisfied. Therefore, our control deci-
sions are feasible to .

5) As we have mentioned before, the LCMA is always trying
to greedily minimize the R.H.S. of the upper bound (15) of
the drift-plus-penalty term at every slot over all possible
feasible control policies. Therefore, by plugging this policy
into the R.H.S. of the inequality (15), and comparing it
with a stationary, randomized control policy to the problem
without the time coupling constraint (6), we can obtain
the performance result following the performance result
derivation in Lyapunov optimization framework.

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical results based on real-
world data sets to complement the analysis in the previous sec-
tions.

A. Experiment Setup

We consider a simple power system consisting of eight house-
holds in one neighborhood that share the same load serving en-
tity and have on-site renewable generation, energy storage, and
elastic and inelastic energy loads. The households are divided
into two categories. For the first type of households (indexed
by , 2, 3, 4), both the elastic and inelastic energy load ar-
rivals during one slot are i.i.d. and take value from [1, 5] kWh
uniformly at random. For the second type of households (in-
dexed by , 6, 7, 8), both the elastic and inelastic energy
load arrivals during one slot are also i.i.d. and take value from
[1.5, 7.5] kWh uniformly at random. For the renewable gener-
ation, we use the hourly average solar irradiance data for Los
Angeles area from the Measurement and Instrumentation Data
Center (MIDC) [23] at the National Renewable Energy Labo-
ratory. The period we consider in this paper is half a year from
January 1, 2011 to June 30, 2011. In total, this duration includes
181 days or 4344 1-hour slots. The control interval is chosen to
be one hour. We use different scaling factors to characterize the
heterogeneity of households. Specifically, we choose the scaling
factors such that the average solar energy production during one
slot is about 3 kWh for the first type of households and 4.5 kWh
for the second type of households. We fix the maximum charge
and discharge rates of batteries in households as follows: for

, , , and for
, , . Also,

we choose for all . As [12], the battery cost is
assumed to be a simple quadratic function as follows:

(29)

where is a constant coefficient. For the purpose of simple
illustration, we choose the same battery cost function for all
households in the evaluations.
For the LSE, we assume that the energy cost function is a

smooth quadratic function as follows:

(30)

where , , and are constant coefficients. We choose
, , and in our evaluations.

B. Results and Analysis

In order to analyze the performance improvement due to our
LCMA, we compare it with the following two approaches: i) No
storage, no demand response (B1): The household tries to use
the renewable energy as much as possible. When the renewable
energy is not sufficient, the household draws energy from the
utility grid. Unused renewable energy is wasted; ii) Storage, no
demand response (B2): The household uses renewable energy
only as a supplement to the grid by consuming it whenever it
is available. The household stores any extra renewable energy
in its battery, but never charges the battery from the grid. The
stored energy would be used to serve the future demands. Note
that LCMA differs from the approaches above in the sense that
LCMA would actively charge the battery when the grid power
is cheap while discharging it when the grid power is expensive.
Moreover, LCMA differentiates between inelastic and elastic
energy loads and delays the elastic energy loads to later time
when the grid power cost is low.
First, we start by considering the convergence of the distri-

bution algorithm. Fig. 3(a) illustrates the convergence of Algo-
rithm 1. We use a step size and the algorithm shows no
sign of lack of convergence.
Then, we compare our algorithm with the two approaches

above using the real-world solar power generation. Note that the
performance of LCMA depends on the battery capacity, the bat-
tery cost, and the control parameters and . We choose
, , , and ,

. The initial battery energy level at each house-
hold is chosen to be zero. Let and .
As can be seen in Fig. 3(b), our proposed LCMA can reduce
the total energy cost by approximately 20% compared with B1
and 13% compared with B2 in the six-month period. Also, the
slopes of the lines are different, meaning that the savings are
unbounded as the time increases. Meanwhile, the LCMA has
on average a much smaller delay than the worst-case guarantee
(11), as shown in Fig. 3(c).
In the following, we consider the impact of varying control

parameters on the performance of LCMA.
• Impact of Battery Capacity: In this evaluation, we
vary the battery capacities of households with other
parameters fixed. We set
for , for

, and . The result is illustrated
in Fig. 4(a). From the figure, it is clear that the larger the
capacity is, the more cost saving LCMA can obtain, which
coincides with the algorithmic performance results of our
algorithm in Theorem 1. As we have mentioned before,
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Fig. 3. (a) Convergence of Algorithm 1; (b) comparison of the total energy cost in three approaches; (c) histogram of delay for the elastic demands in the service
queue for one household.

Fig. 4. (a) The impact of battery capacity on the cost saving; (b) the impact of battery cost on the cost saving; (c) the impact of on the cost saving.

the saving comes from the fact that our algorithm charges
the battery when the marginal energy cost is low, while
discharging it when the marginal energy cost is high.

• Impact of Battery Cost: Currently, batteries are still ex-
pensive. The charging or discharging operation would re-
duce the lifetime of the battery. However, it is expected that
the cost of the battery would decrease greatly in the next
decade. In this evaluation, we estimate the impact of bat-
tery cost on the cost saving of our algorithm. We set

and keep , ,
and , fixed. The result is shown
in Fig. 4(b). Note that when the battery cost per usage
during one period is very large (e.g., 200 $), our algo-
rithm would not charge or discharge the battery at all, so
it is the same as the approach B1. As the battery cost in-
creases, the total cost saving of LCMA compared with B1
would decrease until they are the same since the opportu-
nity to utilize the temporal variation of electricity prices is
smaller.

• Impact of Worst-case Delay Requirement: In this set-
ting, we adjust the parameters while fixing other param-
eters to see the impact of the worst-case delay guarantee
for elastic energy loads on the performance of LCMA. We
choose , respectively. As observed
in Fig. 4(c), the increase of (i.e., the worst-case delay)
gives more opportunity to optimize the energy cost, since

the elastic energy loads are more likely to be served in the
low energy cost period.

VI. CONCLUSIONS

In this paper, we present an algorithm (LCMA) for the de-
centralized and coordinated stochastic optimization of flexible
energy resources in a smart grid setting. The total system cost
can be reduced if more energy loads are elastic and can tol-
erate being served with some delay. Our algorithm is simple
and was shown to be able to operate without knowing the statis-
tical properties of the underlying dynamics in the system. With
the increase of energy storage capacities, the performance of
our algorithm is proved to be arbitrarily close to the optimal
value. Moreover, our algorithm provides an explicit relation-
ship between energy storage capacity, worst-case delay, and cost
saving. Extensive numerical evaluations based on real-world
data sets show the effectiveness of our approach.

APPENDIX A
PROOF OF LEMMA 1

Here we prove Lemma 1.
Proof: For all households , consider any slot for which

. We will show that this energy load is served
on or before time slot by contradiction. Suppose not,
then during slots , it must be that
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. Otherwise, the energy load would have been
served before . Therefore, , and from the update
(10) of , we have for all :

(31)

Summing the above over yields:

(32)

Rearranging the terms and using the facts that
and yields:

(33)

Since the energy loads are queued in a FIFO manner
and , they would be served on or before
time whenever there are at least units of en-
ergy served during . Since we have
assumed that the energy loads are not served by time

, it must be that . Comparing
this inequality with (33) yields:

(34)

which implies that , contradicting
the definition of in (11).

APPENDIX B
PROOF OF LEMMA 2

Proof: From (4), subtracting both sides by , and squaring
both sides, we have for each household ,

(35)

Moreover, we have the following inequality:

(36)

Taking expectations of both sides of (4) given , and sum-
ming over all households , we can get the following upper
bound for the Lyapunov drift for :

(37)

Also, from (1), squaring both sides, and using the following
inequality:

(38)

we obtain

(39)

Similarly, from (10), we have

(40)

Then, we obtain the following inequality:

(41)

Combining these three bounds together, summing over
all households, taking the expectation w.r.t. on both
sides, and adding penalty term

to both sides of the above inequality, we
arrive at the conclusion in the Lemma.
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