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Abstract—Mobile cloud computing is an emerging cloud computing paradigm that integrates cloud computing and mobile computing to

enable many useful mobile applications. However, the large-scale deployment of mobile cloud computing is hindered by the concerns

on possible privacy leakage. In this paper, we investigate the privacy issues in the ad hoc mobile cloud computing, and propose a

framework that can protect the location privacy when allocating tasks to mobile devices. Our mechanism is based on differential privacy

and geocast, and allows mobile devices to contribute their resources to the ad hoc mobile cloud without leaking their location information.

We develop analytical models and task allocation strategies that balance privacy, utility, and system overhead in an ad hoc mobile cloud.

We also conduct extensive experiments based on real-world datasets, and the results show that our framework can protect location

privacy for mobile devices while providing effective services with low system overhead.

Index Terms—Mobile cloud computing, location privacy, task allocation, reputation.
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1 INTRODUCTION

NOWADAYS, mobile devices such as smartphones and tablets

have gained tremendous popularity. These devices are often

equipped with a variety of sensors such as camera, microphone,

GPS, accelerometer, gyroscope, and compass. The data (e.g., posi-

tion, speed, temperature, and heart rate) generated by these sensors

enable many useful mobile applications, including location-based

services [1], [2], mobile sensing [3], and mobile crowdsourcing

[4], [5]. Although improved largely over the past several years,

mobile devices are still resource-constrained mainly due to the

limited battery lifetime. On the other hand, cloud computing has

widely been regarded as the next-generation computing paradigm

which provides “unlimited” cloud resources to end-users in an

on-demand fashion. The rich cloud resources in cloud computing

can be exploited to increase, enhance, and optimize capabilities

of mobile devices, leading to the concept of mobile cloud com-

puting (MCC). According to [6], MCC integrates cloud computing

technologies with mobile devices to make the mobile devices more

capable in terms of computational power, memory, storage, energy,

and context awareness.

There are generally two types of mobile clouds in MCC:

infrastructure-based and ad hoc [6]. The infrastructure-based mo-

bile cloud consists of stationary computing resources and provides

services to the mobile users via the Internet. Alternatively, in the

ad hoc mobile cloud, a collection of mobile devices (hereafter

referred to as “mobile servers”) performs as cloud resources and

provides access to local or Internet-based cloud services to other

mobile users (hereafter referred to as “mobile clients”). In this
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paper, we focus on the second case, namely, the ad hoc mobile

cloud. The main benefit of utilizing ad hoc mobile cloud resources

is their distributed and context-awareness features. As explained

in [7]–[10], incentivized by the mobile cloud computing platform

(CCP), individual mobile users contribute their mobile devices

as mobile servers in the ad hoc mobile cloud, and these mobile

servers can be used to perform location-dependent tasks such as

epidemic monitoring, traffic monitoring, image/video capturing,

and price checking for mobile clients.

Despite many promising applications, ad hoc mobile clouds

pose several challenges. First, mobile cloud resources in an ad

hoc mobile cloud are dynamic and diverse. As a result, some

mobile servers may drop the task they are performing and leave the

cloud. Some mobile servers may be “spammers” that only want

to collect rewards and submit arbitrary answers without looking

at the specific task. Moreover, some mobile servers may not be

powerful enough to provide sensing data at the required accuracy.

Therefore, how to allocate tasks to ensure the quality of the service

provided by these dynamic mobile servers is challenging. Second,

as pointed out by [7], security and privacy of mobile devices as

service providers is a critical concern in the ad hoc mobile cloud.

In order to allocate tasks and provide effective services, mobile

servers in an ad hoc mobile cloud need to share their location data

with the CCP, which could reveal a lot of personal information

such as a user’s identity, health status, personal activities, and

political views [11]. Hence, it is mandatory to provide privacy

guarantee in order to engage more mobile devices in the cloud.

Finally, there is an inherent conflict between quality of service

(i.e., utility) and privacy in task allocation. If an ad hoc mobile

cloud ensures privacy of mobile servers, it is difficult to guarantee

the utility of their MCC service. Finding a solution that ensures

privacy while guaranteeing utility for task allocation is a major

challenge in such systems.

Several solutions to privacy issues in mobile applications have

been proposed. For example, aggregation is a common approach

to hiding individual sensitive information when only statistics of
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users are required [12]. However, this approach only calculates

statistics and thus cannot be used to select mobile servers in an

ad hoc mobile cloud. Another approach is used in location-based

services, where accurate locations are obfuscated in location-based

queries, and the service provider returns results based on the

obfuscated query [13], [14]. In our scenario, however, the private

information is no longer part of a location-based query, but the

result of a location-based query regarding the task. Some papers

[15], [16] consider queries on private locations in an outsourced

database, but they only protect private data from an intermediate

service provider while assuming a trust relationship between the

data owner and the querying entity. This is not true in our scenario

because mobile servers and the CCP may not share an inherent

trust relationship. A recent work by To and Ghinita [17] has been

proposed to protect location privacy of crowdsourcing workers in

spatial crowdsourcing. However, their solution does not consider

worker reputation, and thus cannot provide any quality control

over the final result. Therefore, it can not be easily applied to the

mobile cloud computing scenario where service quality is very

important.

In this paper, we propose a framework that provides solutions

to the above challenges, where both location privacy and service

quality are considered. In our framework, the CCP only has

access to sanitized location data of mobile servers according to

differential privacy (DP). Since every mobile server is subscribed

to a cellular service provider (CSP) with which it already has a

trust relationship, the CSP can integrate mobile server location and

reputation information, and provides the data to the CCP in noisy

form according to DP. To generate the noisy mobile server data, we

adapt the Private Spatial Decomposition (PSD) approach proposed

in [17], [18], and construct a new structure called Reputation-

based PSD (R-PSD). Since fake points need to be created in the

DP model, geocast is used to disseminate tasks to mobile servers

to prevent the CCP from identifying these points.

To summarize, our main contributions are as follows:

1) We identify the specific challenges for task allocation

in ad hoc mobile clouds, and propose a framework that

can achieve differential privacy for mobile server location

data while providing high service quality.

2) We introduce a new structure called R-PSD that partitions

the space based on both reputation and location informa-

tion, and develop an efficient search strategy that finds

appropriate R-PSD partitions to ensure high quality of

service.

3) We use a geocast mechanism when disseminating tasks

to mobile servers to overcome the restrictions imposed by

DP, and the overhead during this process is incorporated

into the design of the search strategy.

4) We conduct extensive experiments based on real-world

datasets to show the effectiveness of the proposed frame-

work.

The remainder of this paper is organized as follows. We

present background on several techniques we use in Section 2.

In Section 3, we describe the system model for the proposed

framework. Section 4 and Section 5 describe the detailed solutions,

i.e., R-PSD generation and task allocation based on R-PSD.

Thereafter, we discuss the experimental results and evaluate the

system overhead in Section 7. Section 8 reviews the related work

and Section 9 concludes the paper.

2 BACKGROUND

In this section, we introduce background on differential pri-

vacy (DP) and Private Spatial Decomposition (PSD).

2.1 Differential Privacy

The privacy guarantee provided in our framework is ǫ-
differential privacy [19], [20]. DP provides protection of datasets

against adversaries with arbitrary background information. By

sanitizing the data, DP prevents an adversary from knowing

whether a certain individual record is present or not in the

database. Formally speaking, we have the following formal defi-

nition.

Definition 1. A randomized algorithm F satisfies ǫ-DP if for any

two datasets D1 and D2 which differ in only one element, and

∀O ⊆ range(F), the following inequality holds:

ln
Pr[F(D1) ∈ O]

Pr[F(D2) ∈ O]
≤ ǫ. (1)

In the definition, the parameter ǫ bounds the ratio of probability

distributions of two datasets differing on at most one element. It

specifies the amount of privacy protection, and a smaller value of

ǫ indicates better protection. We call this parameter the privacy

budget.

In order to achieve ǫ-DP in a dataset, the raw data is sanitized

by adding random noise to the released query set QS. The amount

of noise is determined by the sensitivity of QS, which is defined

as follows:

Definition 2. Given any two datasets D1 and D2 which differ in

one element, the sensitivity of the released query set QS is

σ(QS) = max
D1,D2

‖QSD1
−QSD2

‖
1
. (2)

Given the sensitivity, a sufficient condition to achieve ǫ-DP is to

add to each query result randomly distributed Laplace noise with

mean λ = σ(QS)/ǫ [21].

The results from a database usually involve several stages

of analyses Mi. The privacy level of the composition of several

stages can be computed by the following results [22]:

Theorem 1 (Sequential composition). If Mi are a set of analy-

ses, each providing ǫi-DP, then their sequential composition

satisfies (
∑

i ǫi)-DP.

Theorem 2 (Parallel composition). If Mi are a set of analyses,

each providing ǫi-DP, then their parallel composition satisfies

maxi (ǫi)-DP.

These theorems enable us to calculate privacy level of an aggre-

gated result based on the privacy level of each individual result.

2.2 Private Spatial Decomposition (PSD)

The Private Spatial Decomposition (PSD) approach is first

introduced in [18] to construct a spatial dataset that achieves DP.

A PSD is a spatial index where each index node is associated with

a spatial region, and the value for each node is the noisy count

of data points (mobile servers in our scenario) in that region. The

data structure for spatial index can be grids, k-d trees, or quad-

trees [23].

Choice of data structure and its parameters (fan-out and

height) can heavily influence the accuracy of PSD. In space-

based partitioning PSD such as grids and quad trees, the splitting
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Fig. 1: Privacy-preserving framework for task allocation in MCC.

positions of space is independent of MS locations. Thus privacy

budget is only consumed when calculating the noisy count of

mobile servers. Typically, index nodes at the same level cover

non-overlapping extents, resulting in a low sensitivity of 2 (i.e.,

the location change of a single MS affects at most 2 cells in a

level). The privacy budget ǫ is distributed across levels according

to geometric allocation strategy in [18], where leaf nodes are

allocated more budget than higher level nodes. Space-based PSD

are easy to construct, but they can become unbalanced when

mobile servers are not uniformly distributed in space.

On the other hand, object-based structures such as k-d trees

[18] split space based on the locations of mobile servers. Since

location data are used both for calculating splitting positions

and computing noisy counts, the privacy budget should be split

between the two processes as well. Object-based structures are

expected to be more balanced than space-based PSD; however,

they are not very robust in the sense that their accuracy may

decrease abruptly with a slight change of the PSD parameters or

input dataset distributions.

The work in [24] proposes an adaptive grid (AG) approach

with two-level grids. The first-level grid is uniformly divided,

and the granularity of the second-level grid depends on the noisy

counts obtained in the first-level. AG is a hybrid approach that

inherits the simplicity and robustness of space-based approach,

but still utilizes some data-dependent information when choosing

the granularity for the second-level grid. In this paper, we adapt

their approach to construct our PSD.

3 PROBLEM FORMULATION

There are various types of MCC applications with varying sys-

tem models. In this paper, we consider an emerging MCC system

model favored by several recent studies [9], [10], [25]. A unique

feature of this system model is that various mobile devices such

as smartphones, tablets, and handheld computing devices play

the role of servers based on cloud computing principles. Benefits

of this system include the proximity of the mobile resources to

mobile clients and context-awareness of the mobile resources [7].

In the following, we present the system model in Section 3.1,

describe the mobile server characteristics in Section 3.2, outline

our threat model and assumptions in Section 3.3, and discuss our

performance metrics in Section 3.4.

3.1 System Model

The system model for our proposed privacy-preserving frame-

work is shown in Fig. 1. There are mainly four parties in the

system: the CCP, the CSP, mobile servers, and mobile clients.

The CCP has a pool of mobile servers as its cloud resources, and

assigns a reputation score to each of these mobile servers based

on its historical task completion performance. Mobile clients send

requests to the CCP to utilize its cloud resources for completing

various tasks. The CSP is a trusted third-party that guarantees

privacy of mobile servers while enabling efficient MCC services.

Our system works as follows. First of all, mobile servers send

their locations extracted from their GPS sensors, and reputation

scores learned from the CCP to the CSP (Step 1) who then

collects updates and releases a Reputation-based Private Spatial

Decomposition (R-PSD) according to the privacy budget ǫ agreed

upon with mobile servers (Step 2). When the CCP receives a task

request from mobile clients (Step 3), it uses the R-PSD to decide

a geocast region that contains mobile servers in close proximity to

the task and with high reputation level. Then, the CCP initiates a

geocast communication process [26] to all mobile servers within

the geocast region (Step 4). Geocast is used in our framework

to keep the CCP from directly contacting mobile servers. Note

that when sanitizing a dataset based on DP, it is required to

create some fake locations in the R-PSD. If allowed to contact

mobile servers directly, the CCP can easily identify these fake

points, and therefore breach privacy whenever it fails to establish a

communication channel with some mobile servers. After receiving

the task, a mobile server decides whether to accept the task or not.

If the mobile server decides to accept the task, it replies with a

message confirming its availability to the CCP (Step 5). Otherwise,

it does not reply and remains invisible to the CCP.

In such an MCC system, we focus on protecting location

privacy of mobile servers. The most challenging issues in the

proposed framework are the following:

1) How to incorporate the reputation into the traditional PSD

to construct the R-PSD?

2) How to choose an appropriate geocast region in order to

ensure high service quality given the uncertain nature of

the R-PSD?

3) How to disseminate tasks to mobile servers in the chosen

geocast region with low overhead?

As shown later, we propose novel and efficient approaches to

address all of these challenges.

3.2 Task and Mobile Server Characteristics

Tasks considered in the system are location-dependent, i.e.,

they must be performed at specific locations. Typical examples

include sensing tasks and those in location-based services. In

many cases, the mobile server needs to travel physically to the

location associated with the task. Therefore, most mobile servers

that perform a task will be located in close proximity to the task

location. Furthermore, it is not uncommon that some tasks need to

be performed by more than one mobile server.

Mobile servers are mobile devices that have diverse comput-

ing, communication, and sensing capabilities. They could be either

voluntary resources that are donated by mobile users [27] similar

to that in participating sensing, or recruited by the CCP using

some incentives similar to that in crowdsourcing [28]. Due to their

heterogeneity, mobile servers may have different performances

when completing a task. We use reputation as a means to evaluate

the quality of results received from mobile servers. It reflects the

trustworthiness of the returned results. Here, we assume that the

CCP has already implemented a reputation system that assigns

reputation scores to each mobile server. Several reputation systems
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[29]–[32] have been proposed in the literature, and they can be

used in our system. Similar to [31], the reputation score of a

mobile server is a number in the range of 0 and 1. A mobile server

with a high reputation indicates that it has been providing reliable

results for past tasks. Note that the reputation of a mobile server

is updated periodically by the CCP based its past performance.

3.3 Threat Model and Assumptions

We aim to protect the location privacy of mobile servers before

they accept a task. Note that once a mobile server accepts a task,

it may by itself reveal its information to the CCP or the client

who requests the task. However, information disclosure at this

stage is out of our scope. We only focus on privacy leakage before

the mobile server accepts a task due to two reasons. First, before

accepting a task, all mobile servers are candidates for real-time

task allocation, and thus their location information is monitored

continuously. The volume and timescale of information exposure

make privacy protection mechanisms a necessity. On the other

hand, only a few mobile servers will accept the task and expose

their information at later stage. Second, a mobile server explicitly

consents to reveal its location information after accepting a task,

which is unavoidable in our scenario. The influence of such

leakage can be mitigated by hiding its identity, which is done

in Tor [33]. On the other hand, few papers consider the more

challenging problem of preserving privacy at early stage.

We consider the CCP not trustworthy when protecting servers’

privacy. Any information learned by the CCP may be leaked to ad-

versaries when it is compromised. On the other hand, the CSP has

already established a trust relationship with mobile servers through

cellular service contracts and mutually agreed rules regarding

information disclosure. Moreover, the CSP already has access to

the locations of mobile servers through localization techniques

such as cell tower triangulation. Hence, reporting mobile server

locations discloses no additional information. Although the CSP

is trusted to learn mobile server locations, we could not rely on

it when allocating tasks among mobile servers. The reason is

obvious: task allocation involves multiple issues such as profile

management and mobile client categorization, and the CSP has

no expertise or incentive to get involved with such services.

Therefore, in our framework, the CSP is considered as a trusted

third-party that helps protecting privacy of mobile servers.

We also assume secure, reliable, and authenticated communi-

cation channels among the CCP, the CSP, and mobile servers.

3.4 Performance Metrics

This section presents a task allocation model that effectively

allocates tasks among mobile servers in the MCC system while

providing differential location privacy for mobile servers. Adding

privacy protection to task allocation greatly complicates the prob-

lem since the CCP can no longer allocate a task among mobile

servers based on their exact locations. Due to the uncertain nature

of DP, it is possible that there is no mobile server in a geocast

region, even if the noisy count shows positive. Thus the task may

not be completed as no, or an insufficient number of mobile servers

are actually notified. Also, if the task is allocated to mostly mobile

servers with low reputation scores, the result may not satisfy the

quality-of-service requirement for the task. Finally, the CCP may

need to contact more mobile servers than what is needed in the

privacy-oblivious case, increasing system overhead.

Therefore, we focus on the following performance metrics for

the proposed framework:

• Acceptance Rate. Due to the uncertainty of R-PSD, the

CCP may fail to find enough mobile servers for a task.

The acceptance rate of task allocation captures the ratio of

accepted tasks to all task requests.

• Service Quality. Even if a task is accepted by some

mobile servers based on their location information, they

may not fulfill the task successfully to meet the quality-

of-service requirement for the task. High service quality

could be achieved by selecting only mobile servers with

high reputation score; however, this may result in low

acceptance rate. Therefore, one needs to balance service

quality and acceptance rate when choosing the geocast

region.

• System Overhead. Additional system overhead is incurred

due to privacy protection, as more mobile servers would

be contacted when the CCP does not know their precise

locations. We use the average number of notified mobile

servers to quantify the communication overhead of notify-

ing mobile servers in the task dissemination process and

the computational overhead of geocast region determina-

tion.

4 CONSTRUCTING THE R-PSD

In this section, we solve the first challenging issue, that is,

how to incorporate the reputation to build the R-PSD. We first

describe the method of building a PSD without considering any

reputation information and then, add reputation levels into the

previous method to construct an R-PSD.

4.1 Constructing Private Spatial Decompositions

To build a PSD based on the locations of mobile servers, we

follow the state-of-the-art Adaptive Grid (AG) approach proposed

in [17], [24] due to the advantages mentioned in Section 2.2.

The AG approach overlays a two-level grid onto a region. At

the first level, the location domain is uniformly partitioned into

m1 ×m1 cells. To minimize errors due to DP partition, the level-

1 granularity m1 is chosen as

m1 = max

(

10,

⌈

1

4

√

N × ǫ

k1

⌉)

, (3)

where N is the total number of mobile server locations, ǫ is the

total privacy budget, and k1 is a small constant depending on the

datasets. This heuristic method is data-independent, and thus does

not consume any privacy budget. Extensive experiments in [24]

suggest that k1 = 10 works well for different sizes of datasets

and different privacy budget ǫ.
After the level-1 grid is determined, the CSP issues a noisy

count query for each level-1 cell using a small portion of the

privacy budget: ǫ1 = α× ǫ, where parameter α ∈ (0, 1) decides

how the privacy budget is divided between two levels. Then the

CSP further partitions each level-1 cell into m2×m2 level-2 cells,

where m2 is chosen as:

m2 =

⌈

√

N ′ × ǫ2
k2

⌉

, (4)

where ǫ2 = ǫ − ǫ1 is the remaining privacy budget for noisy

count in each level-2 cell, N ′ is the noisy count of mobile server
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Fig. 2: Example of an adaptive grid.

locations in the level-1 cell, and k2 is a constant depending on

datasets. In [17], To et al. argue that the PSD count should be small

to provide fine granularity, but should be larger than the standard

deviation of added noise. Here we set k2 =
√
2, which provides a

good balance between these two considerations according to [17].

An example of an adaptive grid is illustrated in Fig. 2. There

are 4 level-1 cells, A1, A2, A3, A4, in the level-1 grid, which

is determined by (3). The noisy count of each level-1 cell is

calculated by adding random Laplace noise with mean 1/ǫ1 to

the actual count. These level-1 cells are further divided into level-

2 cells based on the noisy count of mobile servers in each cell. The

number of level-2 cells in each level-1 cell is m2×m2, where m2

is calculated by (4). In the figure, the noisy count for the level-1
cell A1 is 200 and A1 is divided into a 3×3 grid. In the same way,

other level-1 cells, A2, A3, A4, are all divided into 2 × 2 level-

2 grids. The AG approach finally gives noisy counts of mobile

servers for each level-2 cell, which are calculated by adding

random Laplace noise with mean 1/ǫ2. Finally the CSP publishes

these noisy counts together with the structure of AG. The AG

approach provides ǫ-DP guarantee according to Theorem 1.

4.2 Constructing Reputation-Based Private Spatial De-

composition

Note that the PSD constructed before does not contain the

reputation information of mobile servers, and therefore the CCP

cannot control the quality of the answers. Integrating reputation

information into our framework, however, is non-trivial. First,

incorporating reputation into the PSD adds a new data dimension,

which increases the difficulty of applying DP. Specifically, the CSP

should both provide a noisy count of mobile servers following

DP and reveal the reputation associated with each mobile server.

Thus we design a new data structure, which is a unique feature

of our framework. Second, to ensure service quality, the CCP

prefers mobile servers with high reputation score. However, MCC

resources may be scarce, and it may take a long time to wait for

a mobile server with high reputation score. This is impractical

for many time-critical tasks. As a result, the CSP should balance

between acceptance rate of task allocation and service quality. In

the following, we first propose a new data structure, R-PSD, that

integrates location and reputation information without compro-

mising mobile server location privacy. Task allocation based on

the proposed R-PSD will be detailed in Section 5.

1st sub-PSD

2nd sub-PSD

Fig. 3: Example of R-PSD with two reputation levels.

The R-PSD consists of multiple layers of sub-PSDs. The range

of mobile server reputation scores is first divided into several

reputation levels, and mobile servers whose reputation scores fall

into the same level are grouped together. The number of levels re-

flects the granularity of reputation that a specific task needs. Finer

granularity leads to better quality control, but incurs higher system

overhead in computing R-PSD, choosing the geocast region, and

contacting mobile servers. A sub-PSD is constructed, in the same

way as constructing a PSD, for each group of mobile servers with

the same reputation level. The only difference between a sub-PSD

and a PSD is the number of data points. We label sub-PSDs based

on its corresponding reputation level. For example, sub-PSD for

mobile servers with reputation level i is named as the i-th sub-

PSD. Fig. 3 shows an example of R-PSD with two reputation

levels.

The privacy budget allocated to all sub-PSDs is set to be ǫ.
Since sub-PSDs are calculated based on disjoint subsets of mobile

servers, the privacy budget for the combination of sub-PSDs is the

maximum of privacy budget consumed in each sub-PSD according

to Theorem 2, which is equal to ǫ. The resulting cells in each sub-

PSD are different from each other when reputation level is not

uniformly distributed among mobile servers.

5 TASK ALLOCATION

In this section, we solve the second challenging issue as

explained in Section 3. To allocate a task among mobile servers,

the CCP queries the R-PSD and computes a geocast region. All

mobile servers in the region are notified of the task. The goal of

the CCP when determining the geocast region is to achieve high

acceptance rate of task allocation while meeting the quality-of-

service requirement of the task and reducing the system overhead.

5.1 Acceptance Rate Characterization

The mobile cloud in our scenario consists of proximate mo-

bile computing entities instead of distant cloud-based resources.

Considering the cost incurred by traveling or communication, a

mobile server is more likely to accept a nearby task than a distant

one [34]. We model the probability of accepting a task for a mobile

server as a function of the distance between the mobile server and

the task. For simplicity, we use a linear model to characterize the

relationship between individual acceptance rate and mobile server-

task distance. Let pa denote the probability for a mobile server to

accept a notified task and d denote the distance between the mobile

server and the task. Then we have

pa = p0a − βd, 0 ≤ d ≤ dmax (5)
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where p0a denotes the acceptance rate of a server within the same

level-2 cell as the task, β is a positive parameter, and dmax is

a threshold over which the acceptance rate of a server is zero.

Obviously, in this model, as the distance increases, the acceptance

rate decreases linearly. Note that other models depending on

different applications could be used in our framework as well.

Now we propose an analytical model that enables the CCP to

estimate the expected acceptance rate of task allocation ARk, i.e.,

the probability that at least k mobile servers accept the task in a

given geocast region. It is determined by the acceptance rate of

each individual mobile server and the number of mobile servers in

the geocast region.

First, assume we have m independent mobile servers in a

single level-2 cell of the PSD (hence each server has the same

pa), and the task requires at least k mobile servers to perform the

task. The overall acceptance rate ARk is calculated as follows:

ARk = 1−
k−1
∑

i=0

(

m

i

)

(pa)
i
(1− pa)

m−i
. (6)

Next, if a geocast region contains multiple level-2 cells, the

overall acceptance rate can be calculated iteratively: We first start

with an empty set and initialize ARk to 0. Then a new cell is

added to the set, and the value of ARk is updated. The process

continues until we have added all cells in the geocast region.

Let ARold(j) denote the probability that exact j mobile servers

accept the received task in the original region, ARnew(j) denote

the probability that exact j mobile servers accept the received task

in the new region, and AR+(j) denote the probability that exact

j mobile servers accept the received task in the added region. We

have the following update equation:

ARnew(j) =

j
∑

n=0

(

ARold(n)×AR+(j − n)
)

. (7)

Then the probability that at least k mobile servers accept a task in

the geocast region is calculated as:

ARk = 1−
k−1
∑

j=0

ARnew(j). (8)

Note that each task can have a minimum requirement on its

acceptance rate. When constructing the geocast region, the CCP

needs to ensure that the region can satisfy this threshold ARk.

5.2 Service Quality Characterization

Besides the acceptance rate of task allocation, the CCP also

needs to ensure the quality of results. Intuitively, the quality of

results depends on the reputation of participated servers. However,

it is hard to learn which servers will participate in the task

allocation process, since the CCP can only disseminate a task

to a region and wait for mobile servers to reply. Suppose a task

needs k mobile servers to perform, the CCP will allocate the task

to the first k mobile servers who reply. The above factor makes it

difficult to directly control the quality of results.

Our proposed R-PSD provides noisy counts of mobile servers

with different reputation levels in a region, which enables the CCP

to determine the cells in which more trustworthy mobile servers

are located. Therefore the problem of selecting reliable mobile

servers can be transformed into the problem of determining a

geocast region that contains enough trustworthy mobile servers.

Note that in our system, multiple mobile servers can perform

the same task, and their results need to be aggregated together

to get the final result. Suppose we have servers with l different

reputation levels, and the number of servers for each reputation

level is wi, i = 1, 2, . . . , l. The quality of results can be cap-

tured by a function ρ(w) where w = [w1, w2, . . . , wl] denotes

the reputation distributions. Intuitively, ρ(·) is a positive-valued

function, and its value increases monotonically when the portion

of servers with high reputation level increases. The function ρ(·)
quantifies different aspects of the result under different application

scenarios. In application that monitors the value of certain metrics,

such as epidemic monitoring, ρ(·) may represent the accuracy

of estimation. On the other hand, in applications that requires

decision making, such as forecasting an epidemic outbreak, ρ(·)
may denote the detection and false alarm probabilities. Here, we

assume that the minimum service quality indicated by the task is

represented as a threshold ρ, which must be satisfied by the CCP.

5.3 Geocast Region Construction with PSD

Given a task, the geocast region should be constructed to

balance three goals: (1) acceptance rate of task allocation should

be close to 100%, (2) the number of notified mobile servers should

be small, and (3) the aggregate result of participating mobile

servers should be trustworthy. However, it is not hard to see

that optimizing these three design goals simultaneously may be

impossible in practice. For instance, to get a high acceptance rate

of task allocation and a small number of notified mobile servers,

the CCP has to select mobile servers whose individual acceptance

rate is high (i.e., nearby mobile servers) despite of their trust

levels, which makes the service quality suboptimal. On the other

hand, if we want to improve the service quality, the CCP should

notify mobile servers with high reputation levels, which increases

the difficulty of getting enough mobile servers. In this case, either

the acceptance rate is reduced, or the number of notified mobile

servers is increased.

For ease of presentation, we first present in this section an

algorithm of geocast region construction which only considers

the first two goals. The algorithm takes task t and the PSD of

mobile servers as input, and outputs the geocast region where

task t is allocated to. The basic idea of our algorithm is to first

initialize the geocast region with the level-2 cell that covers task

t, and determines the acceptance rate AR of this cell by (6). At

each step, the cell that produces the largest increase of acceptance

rate is added. Considering the relationship between acceptance

rate and distance, we first choose cells that are closer to task t.
The geocast region stops expanding either when AR exceeds the

threshold ARk, or when the size of the geocast region is larger

than 2 × dmax since AR cannot increase any further beyond this

range. Algorithm 1 gives the detailed steps of the proposed greedy

algorithm.

In summary, Algorithm 1 expands the geocast region by

adding the cell with the maximum marginal AR at each step,

which depends on the cell position and mobile server distributions

in that cell based on (6).

5.4 Geocast Region Construction with R-PSD

Now we present the greedy algorithm that considers all three

goals, and determine a geocast region based on the R-PSD. Note

that in the R-PSD, each sub-PSD partitions the space in their

own ways, and thus cells in different sub-PSDs may overlap. The
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Algorithm 1 Greedy Algorithm with PSD

Input: Task t, dmax, ARk, k
Output: Geocast region Ω

1: Initialize Ω = ∅, ARk = 0;

2: Let U denote the square of length 2 × dmax centered at the

task location;

3: Let AR(·) denote the overall acceptance rate ARk of a

region;

4: Q← {the level-2 cell that covers task t};
5: repeat

6: if Q = ∅ then

7: return Ω
8: else

9: c∗ ← argmaxc∈Q AR (GR ∪ c);
10: Q ← Q \ {c∗};
11: Ω← Ω ∪ {c∗};
12: ARk ← AR(Ω);
13: S ← ({neighbors of c∗} \ Ω) ∩ U ;

14: Q ← Q∪ S;

15: end if

16: until ARk ≥ ARk

17: return Ω;

1st sub-PSD

2nd sub-PSD

Task locationGeocast region

Fig. 4: Illustration of a geocast region with R-PSD.

geocast region in this case is a combination of cells in all sub-

PSDs for the R-PSD. An example of a geocast region is illustrated

in Fig. 4.

The input to the algorithm is task t, R-PSD with l sub-PSDs,

and parameters dmax, ARk, ρ, and k. The variable wi represents

the noisy count of servers included in the geocast region GR
that belongs to the i-th sub-PSD, i = 1, 2, . . . , l. In addition to

the constraint ARk ≥ ARk considered in Algorithm 1, we add

a new constraint ρ({wi}l1) < ρ, which guarantees the service

quality of the chosen mobile servers. The geocast region GR is

first initialized to an empty set and then expanded iteratively. In

each iteration, a new cell that both best improves ARk and ensures

ρ({wi}l1) < ρ is selected and added to GR. The geocast region

stops expanding when no new cells within distance of dmax can

be added or until ARk exceeds ARk. The algorithm is a greedy

approach that always chooses the cell with the highest acceptance

rate while guaranteeing service quality at each iteration.

6 GEOCAST COMMUNICATION PROCESS

To solve the third challenge as explained in Section 3, task

dissemination in the selected geocast region can be implemented

Algorithm 2 Greedy Algorithm with R-PSD

Input: Task t, R-PSD with l sub-PSDs, dmax, ARk, ρ, k
Output: Geocast region Ω

1: Initialize Ω = ∅, ARk = 0, wi = 0, i = 1, 2, . . . , l;
2: Let U denote the square of length 2 × dmax centered at the

task location;

3: Let AR(·) denote the overall acceptance rate ARk of a

region;

4: Let ρ(w1, w2, . . . , wl) denote the service quality given

w1, w2, . . . , wl;

5: for i = 1, 2, . . . , l do

6: Qi ← {level-2 cell in i-th sub-PSD that covers task t};
7: end for

8: repeat

9: if Qi = ∅, ∀i then

10: return Ω
11: else

12: for i = 1, 2, . . . , l do

13: c∗i ← argmaxci∈Qi
AR(Ω ∪ ci);

14: end for

15: Sort c∗i , i = 1, 2, . . . , l in decreasing order of AR(Ω ∪
{c∗i });

16: Compute ρ(w1, w2, . . . , wt) for Ω ∪ {c∗i } in the previ-

ously computed order until we meet a c∗j that satisfies

ρ(w1, w2, . . . , wt) ≥ ρ;

17: ARk ← AR(Ω ∪ {c∗j});
18: Qj ← Qj \ {c∗j};
19: Ω← Ω ∪ {c∗j};
20: for i = 1, 2, . . . , l do

21: Si = ({neighbors of c∗i } \ Ω) ∩ U ;

22: Qi = Qi ∪ Si;
23: end for

24: end if

25: until
(

ARk ≥ ARk

)

∧ (ρ(w1, w2, . . . , wl) ≥ ρ)
26: return Ω

with the infrastructure of the CSP. The CSP either directly sends

a message to each mobile server in the region, or notifies the mes-

sage to several mobile servers and let the servers relay the message

hop-by-hop. The communication cost for the former approach is

proportional to the average number of notified mobile servers,

which may be high when a large number of mobile servers should

be notified. Hence it is suitable only when servers are sparsely

distributed. On the other hand, the hop-by-hop approach reduces

the overhead for the CSP. An efficient way to deliver packets

in a geographic region is using geographic routing, i.e., geocast.

Geocast has the advantage of lower overhead and faster response

to dynamics over ad hoc routing protocols when a message needs

to be broadcasted to a geographic area. Geocast in our protocol is

slightly different from that in previous papers [26], [35] by adding

a new dimension, the reputation level. Only mobile servers that

satisfy both the reputation and the location requirements of the

geocast region will be notified. This is possible since the CSP

already has access to locations and reputation scores of mobile

servers when calculating R-PSD. In this paper, we use the average

number of notified mobile servers to measure the system overhead

which includes the geocast overhead.
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Fig. 5: (a) Current locations of mobile servers; (b) Reputation

distribution of mobile servers.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed

framework using real-world datasets.

7.1 Experimental Setup

We use two real-world datasets: Gowalla [36] and Crowd-

Flower [37]. The Gowalla dataset is used to simulate the spatial

distribution of mobile servers in our experiments, which contains a

total of 6, 442, 890 check-ins on a location-based social network-

ing website from Feb. 2009 to Oct. 2010. We use the check-in

history of Gowalla users as the task allocation history of mobile

servers. We consider Gowalla users as the mobile servers. We

assume all check-ins of a Gowalla user, except the latest one,

are tasks that have been completed by him/her, and the latest

check-in location is treated as his/her current location. Due to

data sparsity, there are no data points in some area of the dataset.

Hence we overlay the dataset with a set of uniformly distributed

mobile servers. The resulting mobile server distribution is shown

in Fig. 5a, where each cross in the figure represents the current

location of a mobile server.

We extract the reputation scores of mobile servers based on

a study carried out in [38], which asks participants to report

traffic events in Dublin. They created and assigned approximately

4000 tasks and calculated reputation scores of participants based

on the ground truth of the tasks and historical performance

in CrowdFlower. We randomly assign the reputation scores to

Gowalla users so that we would get a dataset which contains both

task performance history and reputation scores of servers. The

reputation distribution is given in Fig. 5b.

As we presented in Section 5, the service quality of the task

can be captured by function ρ(·). In our experiment, we use the

results in [39] to estimate the service quality of the task when k
mobile servers with potentially different reputation levels perform

the same task. In their paper, the error rate of completing a task,

denoted as ER, is the metric to quantify the service quality.

Suppose we use the majority voting to aggregate the results of

mobile servers for a task. It is proved in [39] that the error rate

ER, the required number of servers k, and the collective quality

Q satisfy the following inequality:

kQ2

4
≤ ln

1

ER
. (9)

The collective quality Q is calculated in the following way. Define

X as a random variable to describe the event that a mobile server

submits a correct answer. We have Pr(X = True) = pr and

Pr(X = False) = 1 − pr , where pr is the reputation score of a

mobile server in our scenario. If the reputation scores of mobile

servers are independent and identically distributed, we have

Q = E
[

(2pr − 1)2
]

, (10)

where the expectation is take with respect to the distribution

of reputation scores. Therefore, given an error rate requirement

ER for a task and the number of required mobile servers k, we

can deduce a corresponding requirement on the reputation score

distribution in the geocast region.

In our experiments, we suppose that mobile servers are divided

into two groups whose reputation scores fall into [0, 0.5] and

(0.5, 1], respectively. The number of servers in each group is w1

and w2, respectively. For a given geocast region, the collective

quality depends on the ratio of the number of mobile servers in

each group, i.e., w1/w2. If the reputation score in each reputation

level follows a uniform distribution, the collective quality Q can

be calculated from (10) as

Q = E
[

(2pr − 1)2
]

=

∫ 0.5

0

w1

w1 + w2

(2x− 1)2
1

0.5
dx

+

∫ 1

0.5

w2

w1 + w2

(2x− 1)2
1

0.5
dx

=
w1

(w1 + w2)× 3
. (11)

Given a requirement on ER and the number of mobile servers

k, we can deduce a lower bound for Q and further calculate

a requirement on w1 and w2. When constructing the geocast

region, the CCP needs to ensure that the region can satisfy this

requirement.

We randomly generate 1, 000 tasks which are uniformly

distributed in an area, and use our algorithms to calculate GR

regions for each task. We also implement a baseline algorithm

that is privacy-oblivious. The baseline algorithm has access to

exact locations of all servers and always adds the nearest server to

a set until the acceptance rate of the set surpasses the acceptance

threshold ARk.

7.2 Experimental Results

7.2.1 Evaluation of system overhead for achieving privacy

We first evaluate the system overhead (i.e. the average number

of notified mobile servers) incurred by our privacy-preserving
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with ǫ = 0.5

method. Fig. 6 presents the system overhead for our private

algorithm (the greedy algorithm based on PSD) and the baseline

algorithm when varying privacy budget ǫ. As ǫ increases, which

means mobile servers are less sensitive to their privacy breach,

the PSD provides more accurate data for geocast, and the geo-

cast overhead decreases as well. Additionally, we can observe

that compared with the baseline, our private algorithm does not

significantly increase the system overhead, especially when the

privacy budget ǫ is larger than 0.3. This shows the ability for our

algorithm to choose nearby mobile servers for a task.

7.2.2 Effect of varying acceptance rate threshold on system

overhead

We evaluate the performance of Algorithm 1 and Algorithm 2

by varying the threshold of the expected acceptance rate ARk. We

use the privacy budget ǫ = 0.5 for both PSD and R-PSD. Fig. 7

illustrates the impact of increasing ARk. As one would expect,

for a higher ARk, a larger GR region should be selected, and thus

the overhead will increase.

7.2.3 Acceptance rate and reliability

Fig. 8 compares Algorithm 1 and Algorithm 2 with different

ratios of mobile servers with different reputation levels. We can

see that as the threshold ρ decreases, i.e., more mobile servers

with good reputation are needed, the advantage of Algorithm 2

over Algorithm 2 becomes larger. Note that we use the reputation
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Fig. 8: Effect of reputation threshold ρ on the number of tasks

that reaches the threshold of service quality when (a) ARk = 0.7,

ǫ = 0.5; (b) ARk = 0.9, ǫ = 0.5.

distribution in Fig. 5b for our experiment, where a large portion of

mobile servers have high reputation scores. However, in practice,

the resource of highly reliable servers are usually scarce, and thus

the advantage of Algorithm 2 will become more prominent.

8 RELATED WORK

Mobile cloud computing (MCC) extends the concept of cloud

computing into the mobile domain. There are generally two

types of mobile clouds in MCC: infrastructure-based and ad hoc

[6]. The infrastructure-based mobile cloud consists of stationary

computing resources and provides services to the mobile users

via the Internet. Research in this direction generally focuses on

reducing the cost and complexity of using cloud resources. Chun

et al. [40] propose a CloneCloud that clones the mobile platform

into the cloud VM and enables the remote server to execute

computation-extensive part of a job. In [41], Zhang et al. partition

a job into multiple small tasks which are least dependent on each

other. These small tasks are either executed locally or remotely

based on the resource intensity.

Alternatively, in the ad hoc mobile cloud, a collection of

mobile devices performs as cloud resources and provides access to

local or Internet-based cloud services to other mobile users. In this

paper, we focus on the second case. There are only a few papers
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along this line [7]–[10]. The work in [10] exploits the resource of

nearby mobile devices to perform intense computation jobs and

designs a scheme to alleviate frequent disconnections of mobile

servers. On the other hand, Huerta-Canepa and Lee in [9] use an

ad hoc cluster of nearby mobile devices to enhance computing

capabilities of a mobile device with minimum network latency

and traffic. Their system continues monitoring traces of mobile

servers and establishes peer-to-peer connection among them. The

work in [7] provides a preliminary framework that pays nearby

smartphones to run resource-intensive tasks.

As emphasized in [7], security and privacy of mobile servers

is a critical concern in ad hoc mobile cloud. Moreover, it is also

challenging to ensure the quality of the service provided by these

dynamic mobile servers. There is an inherent conflict between

quality of service (i.e., utility) and privacy in task allocation,

which complicates the problem. None of previous works focus

on the privacy issue of mobile servers. In this paper, we propose a

framework that provides solutions to the above challenges, where

both location privacy and service quality are considered.

Several solutions to privacy issues in mobile applications have

been proposed. For example, aggregation is a common approach

to hide individual sensitive information when only statistics of

users are required. In [12], a user can learn traffic condition based

on reports of other mobile users, and thus the location information

of all the users are learned by the service provider. To protect

location privacy, individual sensitive information is hidden through

aggregation, and only statistics of users are provided. However,

this approach only calculates statistics and thus cannot be used to

select mobile servers in an ad hoc mobile cloud. Another approach

is used in location-based services, where the true locations are

obfuscated in location-based queries, and the service provider

returns results based on the obfuscated query. In [13], Duckham

and Kulik provide a mechanism to calculate location that balances

location privacy and the need for high quality location-based

service. With the mechanism, the location-based service provider

only learns minimum information to provide service of required

quality. In [14], Shokri et al. propose a game-theoretic framework

that provides an optimal location-privacy protection mechanism

and consider the adversarial knowledge during mechanism design.

In our scenario, however, the private information is no longer part

of a location-based query, but the result of a location-based query

regarding the task. Some papers [15], [16] consider queries on

private locations in an outsourced database, but they only protect

private data from an intermediate service provider while assuming

a trust relationship between the data owner and the querying

entity. This is not true in our scenario because mobile servers

and the CCP may not share an inherent trust relationship. In our

scenario, however, we want to protect location privacy from the

mobile cloud computing provider (CCP), who needs locations to

perform task allocation. In [42], Andrés and Bordenabe define

geo-distinguishability to protect exact locations while exposing

approximate information. However, in our scenario, approximate

location information would undermine the performance of task

allocation. The approaches in [43] and [44] encrypt sensitive

information to protect them against eavesdroppers, while our

approach protects sensitive information against data processors.

Thus, they are complementary to our paper.

9 CONCLUSION

In this paper, we have investigated the privacy issues in the

ad hoc mobile cloud computing, and have proposed a framework

that protects the location privacy of mobile servers when allo-

cating mobile cloud computing tasks. Considering the dynamic

and diverse nature of mobile servers, we have designed a new

data structure R-PSD and developed an efficient search strategy

that finds appropriate R-PSD partitions to ensure high service

quality. We have conducted extensive experiments based on real-

world datasets to demonstrate the effectiveness of our proposed

framework.
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