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Private Data Analytics on Biomedical Sensing
Data Via Distributed Computation
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Abstract—Advances in biomedical sensors and mobile communication technologies have fostered the rapid growth of mobile health
(mHealth) applications in the past years. Users generate a high volume of biomedical data during health monitoring, which can be
used by the mHealth server for training predictive models for disease diagnosis and treatment. However, the biomedical sensing data
raise serious privacy concerns, because they reveal sensitive information such as health status and lifestyles of the sensed subjects.
This paper proposes and experimentally studies a scheme that keeps the training samples private while enabling accurate construction
of predictive models. We specifically consider logistic regression models which are widely used for predicting dichotomous outcomes
in healthcare, and decompose the logistic regression problem into small subproblems over two types of distributed sensing data, i.e.,
horizontally partitioned data and vertically partitioned data. The subproblems are solved using individual private data, and thus mHealth
users can keep their private data locally and only upload (encrypted) intermediate results to the mHealth server for model training.
Experimental results based on real datasets show that our scheme is highly efficient and scalable to a large number of mHealth users.

Index Terms—Private data analytics, mobile health, predictive model training, logistic regression.
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1 INTRODUCTION

Mobile health (mHealth) technologies, including remote mon-
itoring, wearable devices, and embedded sensors, have grown
rapidly in the past years and shown great potential to improve the
quality and efficiency of healthcare. In mHealth, long-term and
continuous health monitoring is enabled by mobile devices that
wirelessly connect biomedical sensors. The biomedical sensors
can be manufactured to be light, durable, and comfortable at low
cost and can sense a large variety of biomedical signals or phys-
ical activities, such as electrocardiogram, glucose concentration,
breathing rate, pulse rate, blood pressure, peripheral oxygen satu-
ration, and body motion [1], [2]. An example of such biomedical
sensors is the “biostamp” designed by a company called MC10,
which is quarter-size, waterproof, and breathable, and costs just
tens of cents under batch production [3]. The sensed data can be
transmitted to a remote mHealth server, which conducts analysis
on the biomedical data and returns timely advices to the sensed
subject. Health monitoring through biomedical sensors enables
timely intervention and better management of individual health
status, thus significantly improving healthcare quality.

Biomedical sensing data collected in health monitoring have
attracted much research interest. First, the subjects of biomedical
sensing include both patients and healthy people. The data of
healthy people are not available in traditional healthcare because
medical data are only collected when patients visit clinics. How-
ever, biomedical data from healthy people can be used as positive
samples for training predictive models and will add important in-
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sights of disease prevention and prediction. Second, since biomed-
ical sensors can monitor the human body day and night over a
long time span, the data collected by biomedical sensors have
much larger volume than traditional medical data. Data collected
at this scale enable fine-grained diagnosis and treatment such
as personalized medicine, and may largely improve healthcare
quality and efficiency [4]. Due to the huge potential of biomedical
sensing data in healthcare, researchers from the Institute of System
Biology have initiated a project called 100K Wellness Project,
which aims to intensely monitor 100, 000 healthy individuals and
observe their physiology for 25 years [5]. It is envisioned that
analysis on large-scale biomedical sensing data will reveal the
earliest harbingers of killer diseases such as cancer and heart
disease.

In this paper, we focus on logistic regression, a classic
machine learning technique which is appropriate for predicting
dichotomous outcomes and thus widely used for making decisions
in medical diagnosis and prognosis [6]. For example, logistic
regression can be used for calculating the probability that a patient
will suffer cardiovascular disease [7], diabetes [8], and postpartum
depression [9]; and it is also used for predicting the mortality
probability in blunt trauma [10] and after a heart surgery [11].
Due to the diversity of human physiology, classifiers trained
on individual datasets may not be robust over a wide range of
input data. The availability of large-scale biomedical sensing data
paves the way to collaborative learning [12], which overcomes the
limitation by utilizing multiple user datasets with enough diversity.
In collaborative learning, multiple individuals confide their data to
a centralized party (e.g., a cloud server or a research institution,
hereafter called mHealth server) as training samples [13]–[15].
The centralized party then constructs mathematical models based
on the data. For mHealth applications, the collaborative learning
may engage patients with the same disease, patients under similar
treatment, or patients carrying certain genetic patterns. For ease of
presentation, we use the term “Patient” to represent the subject of
sensing, including both healthy persons and patients. Note that the
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first character of the term is capitalized to remind readers of its
broad meaning.

Although collaborative learning based on biomedical sensing
data can be effective in predictive model training, it also raises
serious privacy concerns. Medical data have always been pri-
vate in nature. However, privacy issues in mHealth is especially
prominent in multiple aspects. First, the mHealth server collects
a wide range of health information including both physiological
and physical activity data. While physiological data reflect health
status of Patients and are private in nature, physical activity data
may reveal sensitive information about lifestyles and activities
of Patients. Second, mHealth devices usually collect user data
continuously over a long time period, and thus the sensing data
contain more private information than medical data collected in
traditional clinic visits. Third, mHealth applications can be run by
a wide range of parties. Thus the data may not only be learned by
healthcare providers, but also insurance companies, diet advisers,
athletic coaches or home-care providers. In such a setting, Patients
may not trust the mHealth server with their private data. Hence,
to incentivize mHealth users to contribute their data for model
construction, we should guarantee their data privacy.

In this paper, we develop a privacy-preserving collabora-
tive learning scheme that utilizes continuous sensing data from
multiple Patients towards training logistic regression models in
mHealth. The scenario we consider here is that the training sam-
ples are private while the resulting models are publicly available.
We innovatively combine a distributed algorithm with a modified
version of homomorphic encryption and give a scalable and
practical solution for private model training in mHealth without
an active third party. Unlike previous approaches, we leverage the
intrinsic structure of the logistic regression model and decompose
the collaborative learning problem into multiple subproblems that
can be locally solved. An aggregate classifier is then computed
by averaging locally trained parameters. The local training and
averaging steps are repeated multiple rounds until the aggregate
classifier converges. Specifically, we consider two different cases
of distributed sensing data:

• Horizontally partitioned data: All Patients have a database
of sensing data that are sensed by the same set of sensors.
A typical setting is data collected through mobile health
monitoring programs such as fitness tracking applications,
where Patients’ activities and sleep patterns are collected
through a certain type of wearable devices.

• Vertically partitioned data: Each Patient only owns a few
sensors and has a database sensed with partial sensors.
With collaborative learning, we try to exploit these partial
sensing data to find a common health pattern among the
users. A typical setting is for the analysis of group therapy,
where each Patient in the group senses her own data during
every group meeting.

Our scheme is highly efficient and incurs low computational and
communication overhead for each Patient, thus scalable to a large
number of Patients.

The remainder of this paper is organized as follows. We
first present the system model in Section 2. Then we develop
distributed algorithms to decompose the logistic regression model
in Section 3. We further present a secure summation protocol that
enhances the privacy of the distributed algorithms in Section 4.
Section 5 demonstrates experimental results and the performance
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Fig. 1. Architecture of Model Training based on Biomedical Sensing
Data.

analysis. We summarize related work in Section 6. Finally, Sec-
tion 7 concludes the work.

2 SYSTEM MODEL

In this section, we first outline the system architecture for
private predictive modeling and describe the threat model and
design goals. We then cover background on logistic regression
and present the motivating scenarios in which private computation
on Patient data is desirable.

2.1 System Architecture
We focus on patient-centered mHealth systems where Patients

share their private sensing data with an mHealth server for model
training. The system architecture is shown in Fig. 1. As shown
in the figure, the Patient is continuously monitored by multiple
sensors, generating a large volume of data such as heart rates,
hydration levels, activity levels, and glucose levels. These sensors
are wirelessly connected to a mobile device, which collects and
stores the sensed data. The raw sensing data in a certain time
period may be preprocessed and transformed into a feature vector.
The task for the mHealth server is to construct a logistic regression
model which enables computation of the outcome’s probability
given a new feature vector. The model needs to be collaboratively
learned using datasets from multiple Patients.

In order to tune the logistic regression model based on the
distributed datasets, we design an iterative algorithm which de-
composes the original logistic regression model training problem
into small subproblems. In each iteration, Patients use their own
private data to construct intermediate local classifiers, which are
aggregated later at the mHealth server. Since local classifiers are
trained based on the data of each individual Patient, they may
contain sensitive information about Patients. To prevent privacy
leakage in local classifiers, we decompose the logistic regression
problem in a way such that in each iteration, the mHealth server
only needs to perform a simple average operation over local
classifiers. We further protect the information of local classifiers
by layering an efficient secure summation protocol onto the dis-
tributed algorithm so that the mHealth server learns nothing other
than the aggregated result in each iteration. Individual Patient data
are thus masked out in the aggregates which are safe to release.

2.2 Threat Model
We have the following security assumptions. The mHealth

server is assumed to be Honest-but-Curious (HbC). On one
hand, the mHealth server will honestly follow the protocol and
is trustworthy to correctly compute predictive models. This is
reasonable since it will be in the best interest of the mHealth server
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to obtain an accurate and unbiased model. The mHealth server has
no incentive to tamper intermediate aggregates or prevent/delay
the convergence of the algorithms. On the other hand, the mHealth
server is curious about the private feature vectors of Patients which
they do not want to share. To this end, the mHealth server may
(passively) attempt to infer private inputs of Patients or collude
with some of the Patients to infer private information about other
honest Patients.

We also assume that Patients are HbC. This means that Patients
will faithfully follow the protocols, but they may collude with
the mHealth server or some Patients to infer the inputs of other
Patients. Nevertheless, we assume that only a small fraction of
Patients will collude with the mHealth server. Note that it is
possible that some Patients are not HbC and are incentivized to
bias the computation results. However, when these Patients send
largely biased data for model training, the uncommon data may
be detected through signal processing techniques [16]. Thus, to
avoid detection, they are assumed to only send slightly biased
data, which are masked out in the aggregates of data from a large
population of Patients and cannot have much influence on the
accuracy of the computation results. Hence, we argue that in our
setting HbC security is sufficient.

We do not consider outsider attacks because such attacks can
be mitigated with system level protection and standard network
security techniques. Specifically, we assume that the mobile device
at each Patient is secure (i.e., the data stored at the mobile devices
are protected from intrusion), and all the communication channels
are reliable, encrypted and authenticated. Due to limited resources
of biomedical sensors, lightweight cryptography schemes should
be employed for data transmission from sensors to mobile devices,
such as the one introduced in [17].

2.3 Design Goals
Our goal is to provide a practical privacy-preserving solution

for real world model training under aforementioned security
assumptions. To this end, we identify three key properties for a
practical privacy-preserving solution.

• Privacy. Since the mHealth server is not trusted to learn
the training samples, they should be kept locally at the
Patient’s side. How can we design a collaborative learn-
ing scheme based on distributed data? We will answer
this question with distributed approaches which iteratively
train and aggregate local classifiers. Second, even if data
can be locally trained, the resulting local classifiers still
need to be aggregated at the mHealth server in each iter-
ation. These local classifiers are trained based on private
personal data and could reveal sensitive information about
Patients [18]. How can we ensure no private information
is leaked during the aggregation process?

• Scalability. Our scheme should be scalable to a large
number of mHealth users so that the training samples
provide sufficient diversity for training robust classifiers.
The main factor that influences scalability is the computa-
tional complexity. Considering the limited computational
resources and battery lifetime of mobile devices, we need
to keep the computational and communication overhead
at the Patient side low even with a large number of
participating Patients.

• Efficiency. Our training scheme must be efficient for time-
series sensing data. In mHealth monitoring, samples are

continuously generated over multiple time periods. The
predictive model may be periodically updated when new
training samples arrive. This observation motivates us
to design a scheme with low amortized computational
overhead (i.e., the average computation cost for each time
period).

2.4 Logistic Regression

Logistic regression is a classic machine learning technique that
is commonly used in predicting dichotomous outcomes in medical
diagnosis and prognosis [6]. Here we briefly discuss the basics of
logistic regression. Without loss of generality, we focus on binary
class logistic regression, but our solution is directly applicable to
the case of k-class logistic regression.

Consider a supervised learning task with a set of labeled train-
ing samples {(xi, yi), i = 1, . . . , N}, where xi ∈ Rn denotes
a feature vector and yi ∈ {−1,+1} denotes the corresponding
binary class label. The ℓ1 regularized logistic regression problem
[19] is defined as

min
N∑
i=1

log
(
1 + exp

(
−yi

(
wTxi + v

)))
+ λ ∥w∥1 , (1)

where the weight vector w ∈ Rn and intercept v ∈ R are the
parameters of the logistic regression model, and λ > 0 is the
regularization parameter.

With the trained regularized logistic regression classifier
(w, v), a logistic regression models the conditional probability
distribution of the class label y ∈ {−1, 1} given a feature vector
x ∈ Rn as follows.

Pr(y = 1|x) = 1

1 + exp (− (wTx+ v))
, (2)

Pr(y = −1|x) = 1

1 + exp (wTx+ v)
. (3)

The resulting classifier can predict the class label of a new feature
vector, and thus is particularly suitable for disease state prediction
(healthy or unhealthy) and decision making (yes or no) in medical
diagnosis and prognosis. For instance, in [8], Tabaei and Herman
conduct a diabetes study which screens diabetes based on logistic
regression classifiers. In their study, each Patient generates a
private feature vector, which consists of age (years), sex (0 =
male and 1 = female), body mass index (BMI), postprandial
time (PT), and random capillary plasma glucose level (RPG).
Each feature vector is associated with a label yi, which is an
indicator of fast plasma glucose (FPG) and plasma glucose 2h
after a 75g oral glucose load (2-h PG), both indicating the risk
of having diabetes. Specifically, when FPG ≥ 140 mg/dl or 2-
h PG ≥ 200, yi = 1; otherwise, yi = −1. The mHealth
server collects data from 1, 032 Patients and uses the data to
train a logistic regression classifier. The resulting classifier is
(w, v), where w = [0.0331, 0.0308, 0.2500, 0.5620, 0.0346]
and v = −10.0382. Given a feature vector x, the classifier can
predict the probability that FPG ≥ 140mg/dl or 2-h PG ≥ 200
according to (2) and (3).

Although having many benefits in medical field, logistic re-
gression poses significant threats to user privacy since it involves
the usage of private sensing data such as blood level, activity,
and age. Therefore, a scheme to preserve user privacy while not
sacrificing utility of the medical sensing data is needed.
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3 PRIVATE PREDICTIVE MODEL TRAINING VIA
DISTRIBUTED COMPUTATION

In this section, we describe a practical privacy-preserving
scheme that enables collaborative model learning over distributed
data. During collaborative model training, each Patient contributes
a set of training samples. Each training sample is associated with
a label (“+1” or “-1” for binary class). The training samples are
considered private as they may reveal sensitive information such
as health status and unusual activities of individuals. Our scheme
is based on an algorithm called alternating direction method of
multipliers (ADMM). The algorithm provides a possible way to
decompose the logistic regression model into smaller subproblems
that can be locally computed. In this section, we first give some
background on ADMM. Then we use ADMM to design privacy-
aware distributed algorithms that solve logistic regression under
two cases of Patient data: horizontally partitioned data and ver-
tically partitioned data, which correspond to different application
scenarios.

3.1 Basics of ADMM
In the following, we describe the basics of ADMM. ADMM

is a distributed algorithm that solves a large-scale optimization
problem by decomposing it into smaller subproblems that are
easier to solve. ADMM is first introduced by Glowinski, Marroco,
Gabay, and Mercier [20], [21] in 1976 and has found applications
in many areas since then [22]. The algorithm solves problems in
the following form:

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c

x ∈ X , z ∈ Z
(4)

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.
We assume that functions f and g are convex, and X and Z are
non-empty polyhedral sets. The variables are split into two parts x
and z, and the objective function is separable across the splitting.

We can form the augmented Lagrangian for (4) as

Lρ(x, z, y) =f(x) + g(z) + yT (Ax+Bz − c)

+ (ρ/2) ∥Ax+Bz − c∥22 ,
(5)

where ρ > 0 is the penalty parameter and the last term is the
regularization term. We can view the augmented Lagrangian as
the Lagrangian associated with the following problem

minimize
x,z

f(x) + g(z) + (ρ/2) ∥Ax+Bz − c∥22
subject to Ax+Bz = c,

x ∈ X , z ∈ Z.

(6)

Since the regularization term equals zero for any feasible x and
z, the above problem is equivalent to problem (4). The introduced
regularization term ensures that L is strictly convex even when f
and g are affine and helps to improve the convergence property of
the algorithm.

ADMM consists of three steps in each iteration k:

1) x-minimization with z and y fixed:

xk+1 := argmin
x∈X

Lρ(x, z
k, yk). (7)

2) z-minimization with x and y fixed:

zk+1 := argmin
z∈Z

Lρ(x
k+1, z, yk). (8)

3) Dual variable y update:

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c), (9)

where the step size equals to the penalty parameter ρ.

Note that in ADMM, x and z are updated sequentially instead of
jointly as in dual ascent algorithm. The order of x-update step and
z-update step can be reversed, leading to a variation on ADMM.
The optimality and convergence of the ADMM algorithm is given
by the following theorem, whose proof can be found in [23].

Theorem 1 ( [23]). Assume that the optimal solution set of (4) is
non-empty, and either X is bounded or ATA is nonsingular. Then
a sequence {xk, zk, yk} generated by the iterations (7)(8)(9) is
bounded, and every limit point of {xk, zk} is an optimal solution
of (4).

In practice, ADMM usually converges to modest accuracy
within a few tens of iterations.

3.2 Horizontally Partitioned Data

The term “horizontally partitioned data” is initially used in
databases where the data are partitioned based on rows. In our
mHealth scenario, Patients have the same set of biomedical sen-
sors and each Patient generates sensing data with the same number
of features, as shown in Fig. 2a. Each Patient stores several rows of
sensing data with each row containing the sensing results collected
in a single sampling period. A motivating scenario that generates
such data is mobile health monitoring for diabetes management.
Consider that a research institute wants to study the risk factors
that influence the glucose level and construct a predictive model
that predicts whether the glucose level will be normal or not
given these risk factors. The institute recruits a group of Patients
for its study. As part of the study, a Patient wears a mobile
device provided by the institute that continuously monitors factors
including medication (e.g., insulin intake), physical activity (e.g.,
light exercise), food intake (e.g., carbohydrates), and other biolog-
ical (e.g., dawn phenomenon) and environmental (e.g., altitude)
factors. The Patient also records his/her blood glucose levels at
fixed frequencies (e.g., three times per day) and labels the blood
glucose levels as either ‘positive” or “negative” by comparing
them with a safety threshold. Both feature vectors and labels are
sent to the institute, who then trains a model that predicts whether
the blood glucose level is above or below the safety threshold.
Such a model will help diabetics better monitor their blood glucose
levels and reduce the frequencies of unpleasant blood tests.

In the case of horizontally partitioned data, Patients are
equipped with the same set of sensors and each Patient obtains
a set of feature vectors. Specifically, each Patient i has a local
set of training samples Di := {(aij , bij), j = 1, . . . ,mi}, where
aij ∈ Rn is a feature vector, bij ∈ {−1,+1} is the corresponding
label of the outcome variable, and mi is the number of training
samples owned by Patient i. The label is owned by the Patient
and assumed to be private. The ℓ1 regularized logistic regression
problem becomes the following: Given a set of labeled training
samples ∪Ni=1Di from N Patients, solve

min
N∑
i=1

mi∑
j=1

log
(
1 + exp

(
−bij

(
wTaij + v

)))
+ λ ∥w∥1 ,

(10)
where w ∈ Rn, i = 1, ..., N and v ∈ R.
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Fig. 2. Illustration of (a) Horizontally and (b) Vertically Partitioned Data.

The above problem cannot be directly solved by ADMM since
the objective function is not separable over two sets of variables.
To address this challenge, we introduce a set of auxiliary vari-
ables {(wi, vi)}, i = 1, . . . , N and reformulate the optimization
problem as

min
N∑
i=1

mi∑
j=1

log
(
1 + exp

(
−bij

(
wT

i aij + vi
)))

+ λ ∥w∥1

s.t. wi = w, vi = v, i = 1, . . . , N. (11)

It is obvious that the new problem (11) is equivalent to the original
problem (10). Note that the objective function in the problem
(11) is now separable over two sets of variables {(wi, vi), i =
1, . . . , N} and (w, v). We can view (wi, vi) as the copy of
regression parameters at Patient i and (w, v) as the copy of
regression parameters at the mHealth server side. These two sets
of variables are connected through equality constraints.

In the following, we demonstrate that through these auxiliary
variables the problem can be decomposed into several subprob-
lems. For simplicity of notation, we define α := {(w, v)} and
β := {(wi, vi), i = 1, . . . , N}. Following the framework of
ADMM, we formulate the augmented Lagrangian of (11) as

Lρ(α, β, γ) =
N∑
i=1

mi∑
j=1

log
(
1 + exp

(
−bij

(
wT

i aij + vi
)))

+ λ ∥w∥1 +
N∑
i=1

(
(wi −w)Tγi,w + γi,v(vi − v)

)
+

N∑
i=1

(ρ/2)
(
(wi −w)T (wi −w) + (vi − v)2

)
, (12)

where γ := {(γi,w, γi,v), i = 1, . . . , N} are the dual variables
corresponding to the constraints in (11).

We then solve the problem by updating α, β, and γ sequen-
tially. Specifically, at the (k + 1)-th iteration, the α-minimization
step involves solving the following problem:

min
α

λ ∥w∥1 + (ρN/2)wT
(
w − 2wk − 2γk

w/ρ
)

+ (ρN/2)v
(
v − 2vk − 2γk

v/ρ
)
, (13)

where the overline notation (·) denotes the average of a vector
over i = 1, . . . , N . A closed-form solution of the above problem

can be computed using subdifferential calculus [24]. Specifically,
the optimal solution is given by

wk+1 :=
[
wk + γk

w/ρ− (λ/ρN)
]
+

−
[
−wk − γk

w/ρ− (λ/ρN)
]
+

(14a)

vk+1 := vk + γk
v/ρ, (14b)

where the operator [·]+ means taking the maximum of zero and
the argument inside.

After obtaining αk+1 from the α-minimization step, the β-
minimization step consists of solving the following:

min
β

N∑
i=1

mi∑
j=1

log
(
1 + exp

(
−bij

(
wT

i aij + vi
)))

+
N∑
i=1

(ρ/2)wT
i (wi − 2wk+1 + 2γk

i,w/ρ)

+
N∑
i=1

(ρ/2)vi(vi − 2vk+1 + 2γk
i,v/ρ), (15)

which is decomposable over all Patients. Effectively, each Patient
i only needs to independently solve the following subproblem:

min
βi

mi∑
j=1

log
(
1 + exp

(
−bij

(
wT

i aij + vi
)))

+ (ρ/2)wT
i (wi − 2wk+1 + 2γk

i,w/ρ)

+ (ρ/2)vi(vi − 2vk+1 + 2γk
i,v/ρ).

(16)

This per-Patient subproblem has a much smaller scale and uses
the Patient’s own private information. Standard methods such as
Newton’s method or the conjugate gradient method can be applied
to solve the subproblem efficiently.

After we obtain αk+1 and βk+1, the dual update is as follows:

γk+1
i,w := γk

i,w + ρ
(
wk+1

i −wk+1
)
, (17a)

γk+1
i,v := γk

i,v + ρ
(
vk+1
i − vk+1

)
. (17b)

The entire procedures of our algorithm are described in
Algorithm 1. Obviously, our problem meets the conditions in
Proposition 1, and the proposed algorithm converges to the optimal
solution. At the end of the algorithm, each Patient i will learn the
global optimal classifiers w and v without sending his/her local
training set to others. Therefore, this system can preserve user
privacy without sacrificing the utility of the learning function.
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Algorithm 1 Distributed Algorithm for Horizontally Partitioned
Data

1: The mHealth server initializes k ← 0, w0 ← 0, v0 ← 0.
2: Each Patient i initializes k ← 0, γ0

i,w ← 0, and γ0
i,v ← 0.

3: repeat
4: The mHealth server gathers (wk

i , v
k
i ) and (γk

i,w, γ
k
i,v) from

all Patients i ∈ N and averages them to get wk, vk, γk
w,

and γk
v . Then it updates wk+1 and vk+1 according to (14)

and broadcasts them to all Patients.
5: After receiving wk+1 and vk+1, each Patient i solves the

per-Patient subproblem (16) independently using his/her
own training set and then updates independently the dual
variables according to (17).

6: Each Patient sends the optimal solution (wk+1
i , vk+1

i ) and
(γk

i,w, γ
k
i,v) to the mHealth server.

7: k ← k + 1
8: until Convergence criteria is met

3.3 Vertically Partitioned Data

The term “vertically partitioned data” refers to partitioning
data based on columns in databases. In vertically partitioned
datasets, each row represents data sampled at the same time
slot or under the same context, and the data in each row are
collaboratively sensed by all Patients as shown in Fig. 2b. Instead
of exploiting the diversity of individuals for robustness as in the
horizontally partitioned case, we try to involve more features of
sensing data. We assume that Patients own disjoint subsets of
sensors, and we aim to fit models with sensing data from the
union of all these sensors. A motivating scenario is the analysis of
group therapy. Consider a therapy group where a therapist treats
a group of Patients. After each group meeting, the therapist will
evaluate the group meeting as effective (“+1”) or ineffective (“-
1”), which is the label of this meeting. Each participant of the
group is equipped with sensors to sense his/her own biological
and emotional status during the group meeting. The feature vector
of a group meeting is the sensing data from all Patients. A series
of group meeting will be held during some period, resulting in a
vertically partitioned distributed dataset.

The vertically partitioned case is particularly useful when we
need to monitor the data of all members in a group for group
effect evaluation, as in the group therapy case. It is also very useful
in a high dimensional data setting where the number of features
(i.e., sensed metrics or risk factors of a disease) is very large.
In this case, it would be a great commitment for an individual
to use all sensors on his/her body, especially under a continuous
sensing environment, because it is cumbersome and inconvenient.
Thus an individual may hesitate to participate in such projects.
Moreover, in many cases the training data are by-products of other
health monitoring programs where Patients only use a small set of
sensors that are closely related to their own health statuses.

In the case of vertically partitioned data, each Patient i is
equipped with a subset of sensors and obtains partial feature
vectors over a specified time interval. Specifically, each Patient i
poses a set of training samples D̂i := {(âij , b̂j), j = 1, . . . ,m},
where âij ∈ Rni is a partial feature vector, b̂j ∈ {−1, 1} is the
corresponding label of the outcome variable, m is the number of
training samples owned by each user, and

∑N
i=1 ni = n. As with

other papers [25] in literature, the labels {b̂j , j = 1, . . . ,m} are
assumed to be known by all Patients and not private. Then, the

ℓ1 regularized logistic regression problem becomes the following:
Given a set of labeled training samples ∪Ni=1D̂i, solve

min
m∑
j=1

log

(
1 + exp

(
−b̂j

(
N∑
i=1

wT
i âij + v

)))

+ λ
N∑
i=1

∥wi∥1 , (18)

where wi ∈ Rni , i = 1, . . . , N and v ∈ R.
To solve the above problem with ADMM, we first introduce a

set of auxiliary variables {zij , i = 1, . . . , N, j = 1, . . . ,m} and
reformulate the optimization problem as

min
m∑
j=1

log

(
1 + exp

(
−b̂j

(
N∑
i=1

zij + v

)))
+ λ

N∑
i=1

∥wi∥1 ,

s.t. wT
i âij − zij = 0, i = 1, . . . , N, j = 1, . . . ,m. (19)

It is obvious that the new problem (19) is equivalent to the original
problem (18). The objective function now is separable over two
sets of variables {(v, zij), i = 1, . . . , N, j = 1, . . . ,m} and
{wi, i = 1, . . . , N}.

In the following, we demonstrate that through these aux-
iliary variables the problem can be decomposed. For simplic-
ity of notation, we define α̂ := {wi, i = 1, . . . , N} and
β̂ := {(v, zij), i = 1, . . . , N, j = 1, . . . ,m}. Following the
framework of ADMM, we formulate the augmented Lagrangian
as

Lρ(α̂, β̂, γ̂) =
m∑
j=1

log

(
1 + exp

(
−b̂j

(
N∑
i=1

zij + v

)))

+ λ
N∑
i=1

∥wi∥1 +
m∑
j=1

N∑
i=1

γij
(
wT

i âij − zij
)

+
m∑
j=1

N∑
i=1

(ρ/2)
(
wT

i âij − zij
)2

,

where γ̂ := {γ̂ij , i = 1, . . . , N, j = 1, . . . ,m} are the dual
variables corresponding to constraints (19).

Our algorithm works as follows. At the (k + 1)-th iteration,
the α̂-minimization step involves solving the following problem
for each Patient i in parallel:

minλ ∥wi∥1 + (ρ/2)
m∑
j=1

wT
i âij

(
wT

i âij − 2zkij + 2γ̂k
ij/ρ

)
.

(20)
After obtaining α̂k+1 from the α̂-minimization step, the β̂-

minimization step consists of solving the following:

min
m∑
j=1

log

(
1 + exp

(
−b̂j

(
N∑
i=1

zij + v

)))
(21)

+ (ρ/2)
m∑
j=1

N∑
i=1

zij
(
zij − 2(wk+1

i )T âij − 2γ̂k
ij/ρ

)
.
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The β̂-minimization problem can be further simplified as
follows. Let zj denote the average of zij across all i. The β̂-
update problem can be rewritten as

min
m∑
j=1

log
(
1 + exp

(
−b̂j (Nzj + v)

))
(22a)

+ (ρ/2)
m∑
j=1

N∑
i=1

zij
(
zij − 2(wk+1

i )T âij − 2γ̂k
ij/ρ

)

s.t. zj = (1/N)
N∑
i=1

zij (22b)

Note that in the above problem, minimizing over zij , ∀i with zj
fixed has the solution

zij =(wk+1
i )T âij + γ̂k

ij/ρ+ zj

− (1/N)
N∑
i=1

(
γ̂ij

k/ρ+ (wk+1
i )T âij

)
.

(23)

Therefore, Problem (22) can be computed by solving the following
unconstrained optimization problem:

min
m∑
j=1

(
log
(
1 + exp

(
−b̂j (Nzj + v)

))
+ (ρN/2)z2j

− ρzj

N∑
i=1

(
γ̂k
ij/ρ+ (wk+1

i )T âij
))

(24)

and then applying (23) to obtain zij .
By substituting (23) for zk+1

ij in the dual update equation gives

γ̂k+1
ij := ρ

(
(1/N)

N∑
i=1

(
γ̂k
ij/ρ+ (wk+1

i )T âij
)
− zk+1

j

)
,

(25)
which does not depend on i. Therefore, the dual variables
γ̂k+1
ij , i = 1, . . . , N are all equal and can be replaced by a single

dual variable γ̂k+1
j .

In summary, by substituting γ̂j and (23) into the α̂-
minimization, β̂-minimization, and dual variable update equation,
our final algorithm consists of the following iterations:

wk+1
i := argmin

wi

λ ∥wi∥1 + (ρ/2)
m∑
j=1

(
wT

i âij
)2

(26)

− ρ
m∑
j=1

wT
i â

T
ij

(
(wT

i )
kâij + zkj +

γ̂k
j

ρ
− 1

N

N∑
i=1

(wT
i )

kâij

)

β̂k+1 := argmin
z,v

m∑
j=1

(
log
(
1 + exp

(
−b̂j (Nzj + v)

))

− γ̂k
j Nzj +

ρN

2
z2j − ρzj

N∑
i=1

(wT
i )

k+1âij

)
(27)

γ̂k+1
j := γ̂k

j + ρ

(
1

N

N∑
i=1

(wT
i )

k+1âij − zk+1
j

)
. (28)

The entire procedures of our algorithm are described in Algo-
rithm 2. At the end of the algorithm, Patients will learn the global
optimal regression parameters w and v without disclosing their
local training set to others.

Algorithm 2 Distributed Algorithm for Vertically Partitioned Data

1: Initialization: k ← 0, (wT
i )

0 ← 0, z0j ← 0, and γ̂0
j ← 0.

2: repeat
3: Each Patient i solves the per-Patient subproblem (26) in-

dependently using his/her own training set to obtain the
optimal solution wk+1

i and then sends {(wT
i )

k+1âij , j =
1, . . . ,m} to the mHealth server.

4: After gathering {(wT
i )

k+1âij , j = 1, . . . ,m} from all
Patients i = 1, . . . , N , the mHealth server averages them
to obtain (1/N)

∑N
i=1(w

T
i )

k+1âij , j = 1, . . . ,m. Then
it updates vk+1 and {zk+1

j , j = 1, . . . ,m} according to
(27), and dual variables {γ̂k+1

j , j = 1, . . . ,m} according
to (28).

5: The mHealth server broadcasts zk+1
j , γ̂k+1

j , and
(1/N)

∑N
i=1(w

T
i )

k+1âij to all Patients.
6: k ← k + 1
7: until Convergence criteria is met

4 PRIVATE AGGREGATION OF LOCAL REGRES-
SION PARAMETERS

In this section, we describe a secure summation protocol that
enhances the privacy of the distributed algorithms. The protocol
computes the sum over encrypted values such that only the sum is
learned by the mHealth server.

4.1 Private Computation at the mHealth Server

In the distributed algorithm for horizontally partitioned data,
each Patient i sends his/her local optimal solution (wk+1

i , vk+1
i )

and (γk
i,w, γ

k
i,v) to the mHealth server (Line 4, Algorithm 1).

However, these local regression parameters are trained on individ-
ual private data and may leak sensitive information about Patients
[18]. We observe that in each iteration, the mHealth server only
needs to know the average of these local optimal solutions, i.e.,
wk, vk, γk

w, and γk
v . Similar observation can be made for the

distributed algorithm for vertically partitioned data, where the
mHealth server gathers {(wT

i )
k+1âij , j = 1, . . . ,m} from all

Patients i = 1, . . . , N but only needs to know the averages
(1/N)

∑N
i=1(w

T
i )

k+1âij , j = 1, . . . ,m (Algorithm 2, Line 4).
Hence, the privacy issues in both algorithms can be mitigated if
the mHealth server can calculate the average (or sum) without
knowing the individual values.

We will first describe a naive approach that enables secure
summation over distributed private values but leaks private values
under collusion attacks. Then we will present a solution that
mitigates such attacks with low computational and communication
overhead. For simplicity we only describe how the mHealth server
can obtain vk from distributed values vk+1

i , i = 1, . . . , N without
learning them. Without loss of generality, we assume that vk+1

i

is an integer. Averaging over other types of distributed values
(i.e., real numbers or vectors) can be calculated in a similar
way: (i) When vki is a real number, a given precision is chosen
in advance, and real numbers at the precision can be scaled by
the corresponding factor to make them integers for encoding,
as described in [26]; (ii) Averaging vectors can be treated as
aggregating scalars at each component of the vectors. When the
context is clear, we omit the superscript k and k + 1.

Naive approach. A naive solution to averaging distributed
private values is the secure summation protocol proposed by
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Fig. 3. Aggregation of Private User Data.

Clifton et. al. [27]. Using their protocol, patients are arranged
in a unidirectional ring with one patient acting as the protocol
initiator. The protocol initiator selects a random number and adds
the number to his/her own data, then the sum is passed along
the ring, with Patients along the ring adding their own data to
the sum. When the protocol initiator receives the sum again,
he/she subtracts the random number from the sum and obtain the
accurate sum of all Patient’s data. The average can be directly
computed by dividing the sum by N . Since the values passed
between Patients are masked by a random value, which is only
known by the protocol initiator, these values are kept private.
However, this approach is not secure against collusion: If the two
neighbors of a Patient collude, they can infer the private value of
the Patient. Moreover, this protocol requires Patients to interact
with each other whenever a sum needs to be calculated, which is
undesirable for computation over multiple iterations as required in
our algorithms.

Modified approach. To overcome the two aforementioned
shortcomings, we use a homomorphic approach that is robust
against collusion attacks and highly efficient for computation over
multiple iterations [28]. With this approach, secure summation can
be achieved without any active trusted third-parties. Moreover,
this approach has low amortized computational overhead and is
thus efficient for our iterative algorithms. The overview of this
approach is shown in Fig. 3. At the beginning of the aggregation
process, each Patient i has a secret key ski and the mHealth server
has a secret key sk0, where

∑N
i=0 ski = 0. The Patient encrypts

his/her private data vi as vi + ski and sends the ciphertext to the
mHealth server. The mHealth server sums all the ciphertext and
decrypts the sum as

∑N
i=1 vi =

∑N
i=1(vi + ski) − sk0. Since

the mHealth server does not know the secret values of ski, the
individual ciphertexts are meaningless random numbers from the
view of the mHealth server. This scheme prevents collusion attack
because each private value is randomized by a separate secret key
and will only be revealed if the mHealth server colludes with all
other Patients, which is unlikely.

In order to guarantee that
∑N

i=0 ski = 0, secret keys should be
collaboratively generated in every iteration. This process requires
an active trusted third party and is not practical for our itera-
tive algorithms. To overcome this challenge, we rely on a hash
function H that maps an integer to an appropriate mathematical
group. In the kth iteration of our algorithms, each Patient i
computes H(k)ski and the mHealth server computes H(k)sk0 .
From

∑N
i=0 ski = 0, we have

∏N
i=0 H(k)ski = 1, which can be

leveraged to generate secret keys without interactive communica-

tion in each iteration. We summarize the protocol below.
Let G denote a cyclic group of prime order p for which

Decisional Diffie-Hellman problem is hard. Let H : Z → G
denote a hash function.

• Key generation: A trust authority chooses a random gen-
erator g ∈ G and random secrets sk1, . . . , skN ∈ Zp.
The public parameter is g. Each user i obtains a private
key ski , and the mHealth server obtains its private key
sk0 = −(sk1 + . . .+ skN ).

• Encryption: During iteration k, Patient i encrypts his/her
private value vi as follows:

ci ← gvi ·H(k)ski .

• Decryption: Given the ciphertext c1, c2, . . . , cn, compute

P ← H(k)sk0

n∏
i=1

ci,

where P = H(k)sk0
∏n

i=1 ci = H(k)
∑n

i=0 ski ·
g
∑n

i=1 vi = g
∑n

i=1 vi . The sum of vi can then be cal-
culated by computing the discrete log of P base g.

The scheme allows untrusted mHealth server to periodically
estimate the sum

∑N
i=1 vi without knowing each individual value

of vi, i = 1, 2, . . . , N . The average v can then be readily
calculated by dividing the sum by the total number of Patients
N . Since Patients do not need to communicate with each other for
sharing secrets after the initial key generation process, we only
require a passive trusted authority during initialization. Hence,
the computational overhead of secret keys does not increase
with the iteration process, achieving low amortized computational
overhead.

The computational overhead for the aggregation process in
each iteration comes from two parts: encryption and secret key
generation. Encryption operation in the construction includes one
hash, one multiplication in a Diffie-Hellman group, and two
modular exponentiations. The two modular exponentiations takes
much longer than other operations and thus dominate the running
time. According to the benchmarking report of eBACs project
[29], it takes around 0.3ms to compute a modular exponentiation
using high-speed elliptic curves on a modern 64-bit computer.
Hence, the construction is practical and poses low computational
overhead for the Patients in mHealth applications.

4.2 Provable Privacy
We prove the privacy of our approach from the following two

aspects:
First, we show that our computation protocol leaks no infor-

mation beyond the intermediate and final aggregated regression
parameters. We note that the homomorphic approach we use in our
scheme is “aggregator oblivious” in the sense that the aggregator
(i.e., mHealth server) learns only the sum for each time period
and nothing more. Detailed proof of this property can be found
in [28]. Basically, their proof is based on the assumption that the
Decisional Diffie-Hellman problem is computationally infeasible
for probabilistic polynomial-time adversaries. The “aggregator
oblivious” property of the homomorphic approach guarantees that
the mHealth server cannot learn any unintended information other
than what can be deduced from its auxiliary knowledge and the
revealed computation results. From the mHealth server’s view, the
input data of the aggregation protocol, i.e., Patients’ intermediate
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regression parameters, are indistinguishable from data uniformly
chosen at random from the plaintext space.

Second, We show the information leakage during the iterations
of our algorithms is bounded. Intuitively, we can view the sum of
local parameters revealed in each iteration as “global” information
and thus privacy-preserving in common practice. We can provide
a strong privacy guarantee, (ϵ, δ)-differential privacy (DP) [30],
[31], which ensures that the privacy risk of a user does not
substantially increase if the user participates in collaborative learn-
ing despite of the auxiliary knowledge of adversaries. Formally
speaking,

Definition 1. ∀ϵ, δ ≥ 0, a randomized algorithm F gives (ϵ, δ)-
DP if for any two datasets D1 and D2 which differ in only one
element, and ∀O ⊆ range(F), the following inequality holds:

ln
Pr[F(D1) ∈ O]− δ

Pr[F(D2) ∈ O]
≤ ϵ. (29)

Here the parameter ϵ bounds the ratio of probability distributions
of two datasets differing on at most one element, and δ relaxes the
strict relative shift at events that are not especially likely.

Most solutions that achieve differential privacy are based on
perturbing the response with additive noise [30], [32] or perturbing
the computation with external randomness [18], [33]. This can
also be achieved in our scheme. Note that we want to add
the proper amount of noise to the aggregated result rather than
each individual local parameter, because the noise for the the
latter case would be larger under the same privacy requirement.
Meanwhile, we need to ensure that the aggregated results are
perturbed before they are decrypted by the mHealth server. A
feasible way to achieve this is to introduce a proxy which can
be another server at the mHealth service provider, and let the
server and the proxy collaboratively add noise before decrypting
the aggregated results, as proposed in [28]. Since the aggregation
process in our algorithms is repeated iteratively, the noise added
in each iteration would accumulate. However, due to the good
convergence properties of our algorithms (usually converge within
a few tens of iterations), the total added noise can be controlled at
a low level, ensuring the accuracy of the final results.

Furthermore, we note that the process of aggregation have
already incorporated randomness, thus providing certain privacy
protection itself. In fact, Duan [34] has provided a rigorous proof
that differential privacy can be achieved by aggregating vectors
from a large number of entities under certain constraints, as
summarized in the following theorem:

Theorem 2 ( [34]). Let f be the sum of N n-vectors wi, i =
1, . . . , N , wi ∈ [0, 1]n. Assuming w1, w2, . . . , wN are i.i.d. with
E[wi] = τ, E[wiw

T
i ]− ττT = V <∞, the summation is (ϵ, δ)-

DP if N is sufficiently large and

λmin(V ) >
2n2 log(2n/δ)

(N − 1)ϵ2
, (30)

where λmin(V ) is the smallest eigenvalue of matrix V .

This theorem provides a theoretic basis for achieving differ-
ential privacy in the aggregation process. Even if for a given set
of (ϵ, δ), the constraint (30) is not satisfied, i.e., the aggregation
process can not provide enough privacy protection, we may still
achieve (ϵ, δ)-DP with the perturbation approach, and the amount
of noise required in the perturbation approach may be further
reduced with Theorem 2.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our approach
based on real-world datasets. All the simulations are conducted in
MATLAB using a notebook with 1.6GHz CPU and 4G memory.

To provide benchmarks for the performance of our distributed
approach, we compare it with the following two baselines:

• Centralized approach: In this approach, the mHealth
server has access to all Patient data and solves the logistic
regression problem centrally. Although this algorithm can
obtain the optimal performance, it violates Patient privacy
and thus is privacy-oblivious.

• Local approach: In this approach, each Patient trains the
logistic regression model solely based on his/her own local
data. Since the performance of the model highly depends
on the size of training set, the local approach has lower
performance than the centralized approach. In other words,
the local approach protects Patient privacy at the cost of
utility or accuracy.

5.1 Results on Activity Recognition Task (Horizontally
Partitioned Dataset)

We first demonstrate the performance of our distributed ap-
proach for horizontally partitioned data (Algorithm 1). We test
our approach on the dataset for the physiological data modeling
contest at the International Conference on Machine Learning in
2004 [35]. The dataset was collected from users using BodyMedia
wearable body monitors. We use a subset of the dataset to classify
two states of activities, which includes 4413 positive samples
(context 1) and 98172 negative samples (context 2). Each sample
contains 9 dimensional physiological data and 3 characteristics
(denoted as “char” 1, “char” 2, and sex) of the users. Thus, we
construct a 102585 × 12 matrix from the monitoring data. The
label for each row is the context of the user when the sample
is collected: When the user is under context 1, we label it as 1;
otherwise, we label it as −1. We aim to train a logistic regression
model that predicts the label based on a new sample. In each
experimental trial, we randomly select 14000 training samples
(4000 positive samples, 10000 negative samples) and 1413 testing
samples (413 positive samples, 1000 negative samples). The test
error rates of algorithms are averaged results of 10 experimental
trials.

We implement our distributed algorithm and observe good
convergence properties for different numbers of Patients N . Since
the convergence properties for different N are similar, we only
demonstrate the convergence results for N = 1000. The conver-
gence property of our distributed algorithm is depicted in Fig. 4,
which shows the change of the logistic regression parameters
w.r.t. the iteration number k. The x-axis of the plot represents
the number of iterations k, and the y-axis of the plot represents
the norm of the distance between the global optimal regression
parameters and the intermediate regression parameters in each
iteration. We can see from the figure that the logistic regression
parameters obtained by our approach converges fast (around 40
iterations) to the optimal ones. To demonstrate the accuracy loss of
the distributed approach w.r.t. the centralized approach, we show
in Fig. 5 the change of the objective function value w.r.t. iteration
number k. The solid line indicates the objective value obtained
by our approach, and the dashed line denotes the global optimal
objective value obtained by the centralized approach. As shown in
the figure, the objective value of our approach decreases very fast
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Fig. 4. Convergence of the logistic regression parameters obtained from
our distributed approach on the horizontally partitioned dataset.
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Fig. 5. Comparison of the objective of our approach (solid line) and the
optimal objective (dashed line) on the horizontally partitioned dataset.

in the first few iterations and finally approaches the optimal value
after 40 iterations. This indicates that our distributed approach can
achieve the same accuracy as the centralized one, thus preserving
privacy at no cost for accuracy.

As we have shown in Fig. 4 and Fig. 5, the model computed
from the centralized approach is the same as that from our dis-
tributed approach. Therefore, we only need to compare the testing
error rates of models computed by the distributed approach and
the local approach. Since for the local approach, the performance
depends on the size of training set for each user, we compare them
under different user numbers N to see the influence of local data
size on the error rates. Note that when N = 1, the performance
of the two approaches are the same since both are identical to the
centralized approach. We set N = 100, 200, . . . , 1000 and then
randomly divide the original datasets into smaller training sets,
respectively. The testing error rates of our distributed approach
and the local approach are shown in Fig. 6. On one hand, the error
rate of the local approach increases as N increases (i.e., sample
size per user decreases) due to the lack of diversity through data
sharing. On the other hand, the error rate of our approach does
not change w.r.t N because our algorithm always converges to the
global optimal solution. This shows the advantage of collaborative
learning by utilizing datasets sensed by multiple users.

The maximum computation time for any user at each iteration
in our algorithm is 0.007 sec. The total time for the distributed
approach to converge is around 0.12 sec. Therefore, our approach
converges fast to the global optimal solution and incurs small
computation overhead for each user.
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Fig. 6. Testing errors for our distributed approach and the local approach
on the horizontally partitioned dataset.

5.2 Results on Imagery Task Classification (Vertically
Partitioned Dataset)

In this section, we demonstrate the performance of our dis-
tributed approach for vertically partitioned data (Algorithm 2).
Since no vertically partitioned medical database is readily avail-
able, we utilize dataset I of the Brain-Computer Interface Compe-
tition III (BCI-III-I) [4], [36] to simulate our scenario. The dataset
records electrocorticography (ECoG) data of epileptic patients.
In the original setting, each patient is sensed by 64 implanted
electrodes covering certain locations of the cortex. However, here
we assume that data for each trial is collaboratively sensed by
64 patients with 1 electrode implanted in each patient. A total
of 278 trials are performed for data collection. Each trial starts
with a cue of an imagery task (tongue or finger movement), and
patients are required to mentally follow the cue. Their ECoG data
during a 3-second imagination phase are sampled at sampling
rate of 10Hz, resulting in 30 × 64 data points or a 1920-
dimensional feature vector per trial. The data for all 278 trials
form a 278 × 1920 matrix. Each row of the matrix represents
data sampled with the same imagery cue by all 64 patients and
has the same label (+1 or −1 for two different imagery tasks,
respectively). The number of available training points is relatively
small compared to the dimensionality of the data signal, which
is a common case for vertically partitioned databases and can
be effectively addressed by our distributed approach. Note that
we use data sensed by a single patient to simulate data sensed
by 64 patients, thus the training result may deviate from the
original vertically partitioned setting. However, the goal of this
experiment is to test the performance of our distributed approach
rather than obtaining the regression parameters, thus this deviation
does not invalidate our conclusion. In each experimental trial, we
randomly select 200 training samples (100 positive, 100 negative)
and 78 testing samples (36 positive, 36 negative) with each sample
collaboratively sensed by 64 users. The testing error rates are the
average results of 10 experimental trials.

Once again, we observe good convergence properties of our
algorithms for different numbers of Patients N and therefore, for
simplicity, we only show the convergence results of our distributed
algorithm for N = 64. Fig. 7 illustrates the change of the
logistic regression parameters w.r.t. the iteration number k when
the dataset is vertically partitioned into N = 64 subsets. The
figure shows that the difference between the regression parameters
obtained by our algorithm and the optimal parameters converges
to zero within tens of iterations. Fig. 7 shows the change of the
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Fig. 7. Convergence of the logistic regression parameters obtained from
our distributed approach on the vertically partitioned dataset.
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Fig. 8. Comparison of the objective of our approach (solid line) and the
optimal objective (dashed line) on the vertically partitioned dataset.

objective function value w.r.t. iteration number. The solid line
indicates the objective value obtained by the distributed approach,
and the dashed line denotes the optimal objective value obtained
by the centralized approach. As shown in the figure, the objective
value of our approach decreases fast in the first few iterations
and finally approaches the global minimum after 50 iterations.
Therefore, our distributed approach can achieve the same accuracy
as the centralized one.

Next, we compare the error rates of models computed by the
distributed approach and the local approach. Since for the local
approach, the performance depends on the size of training set for
each user, we compare these two approaches under different user
numbers N to see the influence of local data size on the error rates.
When N = 1, the performance of the two approaches are the
same since both are identical to the centralized approach. We set
N = 2, 4, 8, 6, 32, 64 and randomly partition the original datasets
into smaller training sets, respectively. Fig. 9 shows the error rates
of our distributed approach and the local approach. We can see
that the error rate of the local approach increases as N increases
(i.e., sample size per user decreases) due to the lack of diversity
through data sharing. The performance of our distributed approach
does not depend on N since it always converges to the optimal
solution after tens of iterations. The figure shows the benefit of
data sharing in the vertically partitioned data.

The maximum computation time for any user at each iteration
in our algorithm is 0.023 sec and the total time spent until conver-
gence is 1.15 sec. Therefore, our approach is highly efficient even
with 1960-dimensional data.
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Fig. 9. Testing errors for our distributed approach and the local approach
on the vertically partitioned dataset.

6 RELATED WORK

There are a number of papers on private computation on
medical data, but most of them focus on simple computations such
as searching on encrypted medical data [37], computing statistical
functions such as sum and variance [38], or performing predictive
analysis tasks on encrypted data [26]. Few papers consider private
model learning based on large-scale medical data despite of its
great potential for healthcare quality and efficiency improvements.
There are, however, several approaches for private model learning
in general as summarized below.

Anonymization: One of the most popular ways for privacy-
preserving learning is to anonymize the data by hiding the identity
of the data source [39], [40]. However, it is possible to re-identify
the data source. Narayanan and Shmatikov design a linkage
attack that identifies personal information by linking two or more
separate datasets [41]. A recent study in medical data demonstrates
that individuals with detailed medical profiles are re-identified
among anonymized medical data [42].

Perturbation-Based Approach: Another approach is to per-
turb the data content before transmitting it to the centralized party
[43]–[46]. Fong and Weber-Jahnke [43] transform the original
training samples into unreal data samples and use the unreal
data samples for decision tree learning. However, perturbation
always introduces error in the modeling process, trading accu-
racy for privacy. A modern privacy definition related with this
approach is differential privacy, which requires that the output of
a computation be equally likely with or without an input record
[31]. The most common way to achieve differential privacy is
through adding random noise [32]. In [47], McSherry and Mironov
design a privacy-preserving scheme for training a recommendation
system by adding differentially private noise to user data. Our
approach is orthogonal to differential privacy due to differences
in threat models. Differential privacy protect private information
contained in the final computational results by injecting noise to
the results, while we aim to protect private information during
the computation process such that the party who performs the
computation learns nothing more than the computational results.

Secure Multi-Party Computation: Secure multi-party
computation-based approach is a conventional approach to training
classifiers based on private data owned by multiple parties. A com-
bination of cryptographic techniques is used to compute a function
of their private data [48]–[50]. This approach usually guarantees
that none parties can learn anything beyond what is contained
in the final result. However, the cryptographic techniques used
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in secure multi-party computation usually incur high computation
cost, which is impractical for mHealth applications due to limited
computing resources of mobile devices.

Homomorphic Encryption: Gentry [51] provides a fully
homomorphic encryption solution for privacy-preserving com-
putation, which avoids the need for two non-colluding parties.
However, logistic regression involves a large number of both mul-
tiplication and addition steps. In this situation, current solutions
for fully homomorphic encryption are not quite efficient [52], [53].
Although Lauter et al. [53] mention that their fully homomorphic
encryption scheme can be used for regression, they do not show
its performance. Graepel et al. train encrypted classifiers on
encrypted training data using leveled homomorphic encryption
[52], however, the efficiency of their approaches degrades rapidly
when the size of the training data increases.

For model learning based on large-scale biomedical sensing
data, it is important that the training algorithms scale well as
the number of Patients increases. Most of the aforementioned
cryptographic solutions incur high computation or communication
load at the Patient side, and thus cannot be directly applied to
our scenario. We address the scalability problem by decomposing
the centralized optimization problem into subproblems such that
the computation cost per Patient does not greatly increase with
the number of Patients. Specifically, the decomposition algorithm
we use is based on ADMM, which has been previously used for
decomposing support vector machine (SVM) in [54]. Due to the
decomposition, only the average of locally optimal parameters
are needed by the mHealth server. Thus we can utilize a simple
secure summation protocol with low amortized computational cost
to protect private intermediate results. This paper is an extension
of its conference version [55], with a new solution for vertical-
partitioned healthcare data, more in-depth explanations of our
approach, and a more extensive experimental evaluation.

7 CONCLUSION

In this paper, we have proposed a private scheme for learning a
logistic regression model based on distributed biomedical sensing
data. Our scheme enables mHealth users to control their raw data
and only share necessary intermediate results during the training
process. We have further provided a solution to protecting the
private information of intermediate results during the aggregation
process. Experimental results on real-world datasets show that the
proposed approaches converge quickly and provide performance
closely to the optimal result. Our schemes have low computational
overhead for each user even when the number of users is large,
and are thus practical for mHealth monitoring scenarios. We
have focused on the logistic regression problem in this paper.
However, our scheme may be generalized to other classification
problems (e.g., support-vector machine) in mHealth applications
which constitutes our future work.
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