
A Privacy-Preserving Task Recommendation
Framework for Mobile Crowdsourcing

Yanmin Gong∗, Yuanxiong Guo†, and Yuguang Fang∗

∗ Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 USA
† School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078 USA

E-mail: ymgong@ufl.edu, richard.guo@okstate.edu, fang@ece.ufl.edu

Abstract—Mobile crowdsourcing enables mobile workers to
complete a broad range of crowdsourcing tasks anywhere at any
time. However, recommending suitable crowdsourcing tasks to
mobile workers requires sensitive information such as location
and activity, which raises serious privacy concerns. In this paper,
we formulate the task recommendation process as an optimization
problem which balances privacy, utility, and efficiency. We
show that this optimization problem is NP-hard, and present a
greedy solution which approximates the optimal solution within
a factor of 1 − 1/e. We also design an efficient aggregation
protocol to compute statistics of mobile workers required in the
optimization problem while providing strong privacy guarantee.
Both numerical evaluations and performance analysis are carried
out to show the effectiveness and efficiency of the proposed
framework. To the best of our knowledge, our work is the first
to consider privacy issues in task recommendation for mobile
crowdsourcing.

Index Terms—Mobile crowdsourcing, privacy, security, task
recommendation

I. INTRODUCTION

Crowdsourcing is a distributed problem-solving model in

which a crowd of undefined size is engaged to solve complex

problems through an open call [1]. Traditional crowdsourcing

platforms are online websites such as Google MapMaker and

Amazon MTurk. With the rise of the mobile era, mobile

crowdsourcing has great potential to thrive. Nowadays, many

people carry smartphones or other mobile devices with them

wherever they go, while having no computers at home. The

ubiquity and advanced sensing capabilities of mobile devices

enable users to share richer information anywhere at any time,

and therefore complete a broad range of tasks. Attracted by

these opportunities, several mobile crowdsourcing applications

have emerged on topics such as traffic monitoring (e.g.,

VTrack [2]) and indoor localization (e.g., Airplace [3]).

In crowdsourcing applications, users who accomplish tasks

can get paid for qualified work. Since there are huge amount

of available tasks (e.g., more than 280, 000 tasks for MTurk),

it is cumbersome to find the “right” task to accomplish. On

traditional crowdsourcing platforms, workers may search for

tasks by themselves. However, for mobile users, such task

search process can be quite inefficient due to the limited screen

and keyboard on a mobile phone. Moreover, many mobile

crowdsourcing applications are time-sensitive, which means

that tasks should be actively pushed to the crowd in order to

receive timely responses. These factors underscore the need

This work was supported in part by the U.S. National Science Foundation
under grants CNS-1343356 and ECCS-1129062.

for task recommendation service by mobile crowdsourcing

platforms.

Task recommendation systems actively recommend tasks

based on the contexts of workers such as location and activity.

For example, the tasks to monitor noise at night are only

recommended to residents in the target area. These contexts

contain sensitive information that can be used to uniquely

identify an individual. As a result, workers may be reluctant

to share such information. Motivated by this observation, we

propose a privacy-aware task recommendation framework.

The proposed task recommendation framework (1) models

how to select tasks based on the context of a worker, and (2)

gathers statistics of user contexts used in the previous model.

Intuitively, both modules require access to private information.

However, in our framework, workers can decide how much

information they would like to share with the platform. In the

task selection module, a worker can control how detailed his

context is revealed to the server, and receive recommendations

based on the information he provides. We show the trade-

off among privacy, utility and efficiency in this model, where

privacy indicates how much information is shared, utility

indicates the usefulness of the recommendations, and effi-

ciency refers to the number of tasks recommended at a time.

We jointly consider the three aspects and formulate the task

selection process as an optimization problem that maximizes

the total expected utility of the recommended tasks with

constraints on privacy and efficiency. For statistics collection,

workers can choose whether to contribute his data or not, and

differential privacy is guaranteed if they choose to do so.

Related Works. There are a few works in task recom-

mendation for web-based crowdsourcing applications [4], [5].

These works assign heterogeneous tasks to workers based

on their skill sets and interests. For mobile crowdsourcing,

however, task recommendation should be based on sensitive

information such as location and activity, which has not been

addressed by these works. Previous works on privacy issues

in mobile applications mainly focus on location privacy [6],

[7] and preserve privacy through obfuscation or aggregation

approaches. None of these works discuss how to recommend

tasks in the absence of accurate information.

The remainder of this paper is organized as follows. We

first present our framework in Section II. Then we describe the

task selection module as a constrained optimization problem in

Section III. Section IV develops an approximation algorithm to

solve the optimization problem. Section V presents a privacy-

preserving protocol for statistics gathering, and experimental

978-1-4799-3512-3/14/$31.00 ©2014 IEEE

Globecom 2014 - Communication and Information System Security Symposium

588

Server

(Croudsourcing Platform)

Mobile Workers

Recommended tasks

Generalized contexts

Statistics

collection

module

Task

selection

module

Statistics Detailed contexts

Fig. 1. Framework of the recommendation system

results and performance analysis are given in Section VI.

Section VII concludes the work.

II. FRAMEWORK

A. Overview

There are three parties in a typical mobile crowdsourcing

setting: task requesters, mobile workers (hereafter also re-

ferred to as users), and the crowdsourcing platform. The task

requester initiates crowdsourcing tasks by submitting them

to the crowdsourcing platform. The crowdsourcing platform

then recommends a list of suitable tasks for each mobile

worker, pushing the list to his mobile device. When the mobile

worker receives a list of recommended tasks, he chooses a

task, completes it within deadline, and returns the answer to

the platform. The platform forwards the answer to the task

requester, who decides whether or not the answer is qualified.

The user receives payments for qualified answers, and the plat-

form also receives a portion of the payments as its commission.

The focus of this paper is the task recommendation part, where

tasks are selected and pushed to a user based on his context.

B. Privacy Model

As shown in Fig. 1, the proposed task recommendation

framework consists of two modules, i.e., task selection and

statistics collection. In the first one, the server tailors a list of

recommended tasks for a specific user based on his context.

The user context may contain sensitive information which

may uniquely identify a user, such as location and activity.

Hence, users may be reluctant to share this information with

the server. Instead of providing a detailed context, we allow

the user to share only a generalized context with the server.

The user is able to decide which level of generalization he

is comfortable with based on the sensitivity of his detailed

context. For example, if he is walking in a crowded city, he

may be comfortable to share a detailed location without the

concern of being identified; on the other hand, if he is passing

through a rural area, he may want to provide a generalized

location to protect his privacy.

The statistics collection module gathers statistics that are

used in the first module. Statistics are gathered by asking

users to vote based on their detailed contexts and historical

performance. This process is optional for a user, so a user

can decide whether or not to contribute his data. But in either

way, his privacy is guaranteed. The privacy guarantee provided

for participating users is (ǫ, δ)-differential privacy [8], which

discourages adversaries with arbitrary background knowledge.

Formally speaking,

Definition 1: A statistics collection algorithm F satisfies

(ǫ, δ)-differential privacy if for any two datasets D1 and D2

which differ in one row, the following inequality holds:

Pr[F(D1) ∈ O] ≤ exp(ǫ)× Pr[F(D2) ∈ O] + δ, (1)

where O ⊆ range(F).
In the definition, ǫ bounds the ratio of probability distributions

of two datasets differing in at most one row, and δ permits us

to relax the relative shift at events that are not likely to happen,

bounding the probability of a privacy breach. If the outputs of

statistics collection module achieve (ǫ, δ)-differential privacy,

the fact whether a user provides information or not to the

recommendation server will not change the server’s knowledge

on him.

III. OPTIMIZATION MODEL FOR TASK SELECTION

A. Definitions

Before proceeding further, we give a list of definitions used

in the paper as follows.

Definition 2: Contexts and Tasks

• Denote by C = {c : c = 1, 2, . . . , C} the set of all

detailed contexts. Each worker has a detailed context c.
• Denote by Ĉ = {ĉ : ĉ = 1, 2, . . . , Ĉ} the set of all

generalized contexts. Each detailed context is transformed

into a generalized context, and a generalized context

corresponds to multiple detailed contexts.

• Denote by T = {t : t = 1, 2, . . . , T} the set of all

tasks. For simplicity of notations, we treat tasks that

have the same requirements for user contexts and the

same payment as one task. Each task may have multiple

instances. The payment for a task t is denoted as ρt.

Definition 3: Click and Approval Rate (CAR): The plat-

form can earn the commission for a task only when the task

has been completed and the answer has been approved. These

two conditions are characterized by the click through rate and

the approval rate, respectively. We define a metric CAR that

combines these two rates as follows.

• CAR is calculated as W1, the total number of users with

context c who have completed task t, divided by W2, the

total number of all users with context c, i.e., CAR(t|c) =
W1/W2.

B. Trade-Off

The optimization model of task selection specifies how to

choose tasks based on limited information about a user. There

are three conflicting design goals in this model: utility, privacy,

and efficiency.

Utility. Utility represents the usefulness of a list of rec-

ommended tasks, which is reflected in the revenue obtained

by recommending the tasks. For the crowdsoucing platform,

higher utility means larger commission. For the user, higher

utility means better payment. Note that only when a task is

completed and the result is approved will the platform and the

user get paid.

Privacy. User contexts used for task recommendation may

contain sensitive information that leads to identification of a

Globecom 2014 - Communication and Information System Security Symposium

589

specific user. To reduce the risk of being identified, instead of

providing the detailed contexts, a user provides only a gener-

alized context which obfuscates privacy sensitive information

such as location and activity. A more generalized context leads

to a higher level of privacy.

Efficiency. The number of recommended tasks directly in-

fluences the easiness for users to select a task from the list

of recommended tasks. Larger number of tasks needs more

time to read and select, thus leading to lower efficiency for

task selection at the user side. Therefore, the recommendation

system should recommend a small amount of tasks at a time

for efficiency concern.

It can be easily shown that these three goals cannot be

optimized simultaneously. Consider the case when utility and

efficiency are maximized, then the server recommends only

one task with a maximized utility for the user. However, this

can be hardly achieved if the server does not have a detailed

knowledge on user context. Hence, a maximized utility and

efficiency leads to a low level of privacy. To jointly consider

these three aspects, we formulate the task selection process

as an optimization problem that maximizes the total expected

utility of the recommended tasks with constraints on privacy

and efficiency.

C. Optimization Model

In the task selection process, a user first shares some

information on his contexts with the server. The server then

selects L tasks based on this information, and sends them to

the user. Lastly, the user selects a task from the recommended

list, and completes it. Therefore, the final task is selected

jointly by the server and the user.

As mentioned before, there are three conflicting goals. Al-

though these goals cannot be optimized simultaneously, there

are several candidate objective functions, which optimizes the

goals from different aspects. In the following, we choose an

optimization objective function that represents the utility, and

model the other two goals (i.e., efficiency and privacy) as

constraints.

In the optimization model of recommending tasks, the

server needs to select L tasks that maximize the utility of

the crowdsourcing platform based on the partial information

ĉ given by the user. We assume that the server has prior

knowledge on the statistics, i.e., CARs and distributions of

detailed contexts. For the crowdsroucing platform, the utility

is the expected commission of the list of tasks. Since the

crowdsourcing platform gets commission when the user selects

a task and returns a qualified answer, the amount of commis-

sion is determined by how the user behaves. Assume that a

user selects a task that maximizes his own revenue based on

his detailed context c. Consider the probability of all detailed

contexts that generalize into ĉ, the expected commission of a

list of recommended tasks T is defined as follows:

E[Commission(T |ĉ)] =
∑

c:c→ĉ

Pr[c|ĉ] · α ·max
t∈T

ρt · CAR(t|c),

(2)

where α is the portion of revenue that the platform can obtain

for each successful transaction. As we have discussed before,

L reflects the efficiency of task selection at the user side, and ĉ

is chosen by the user according to his privacy concern. Given L
and ĉ, the server needs to select a set of tasks which maximize

the above objective function, i.e.,

T ∗ = argmax
T⊆T :|T |=L

E[Commission(T |ĉ)]. (3)

When a user receives a list of recommended tasks, he selects

the task with the maximized utility for him, which can be

modeled as

t∗ = argmax
t∈T

ρt · CAR(t|c). (4)

IV. ALGORITHM FOR THE OPTIMIZATION PROBLEM

In this section, we examine the hardness of the proposed

optimization model and present a greedy approach to solve

the model efficiently. The optimization problem at the user

side can be easily solved because he only needs to choose a

task among L tasks, where L is usually small. On the other

hand, it is nontrivial for the server to select L tasks from the

entire task space T . Actually, we have the following fact:

Proposition 1: Given a generalized context ĉ, it is NP-hard

to find a set of tasks T ∗ such that:

T ∗ = argmax
T⊆T :|T |=L

∑

c:c→ĉ

Pr[c|ĉ] · α ·max
t∈T

ρt · CAR(t|c). (5)

Proof: The proposition can be deduced from the hardness

of the maximum coverage problem. Given a collection of sets

S = {S1,S2, . . . ,Sm} over some finite universe U and a

number L as input, the maximum coverage problem wants to

select at most L of these sets such that the maximum number

of elements in the universe U are covered.

Consider the settings of task selection problem as follows:

the set of contexts that generalize to ĉ equals the universe U .

For each context c ∈ U , we set Pr[c|ĉ] = 1/|U|. For each

set s in the collection S, we define a task t such that for all

elements c ∈ s, CAR(t|c) = 1 and 0 for all other elements.

Moreover, we set ρt = 1, ∀t and α = 1. Then, for a given set

T of L tasks, the expected commission is represented as:

∑

c:c→ĉ

1

|U|
max
t∈T

CAR(t|c), (6)

which can be viewed as the total number of elements covered

by the corresponding set of sets S divided by the universe

size. By using the above transformation, any instance of the

maximum coverage problem can be reduced to a instance of

our task set selection problem in polynomial time. Therefore,

the task recommendation problem is harder than the maximum

coverage problem. Since the maximum coverage problem is

known to be NP-hard, our problem is also NP-hard.

To solve the NP-hard problem (5) efficiently, we design a

greedy heuristic algorithm as shown in Algorithm 1 below.

By repeatedly choosing a task that maximizes the utility

improvement, the greedy algorithm can be proved to approxi-

mate the optimal value within 1−1/e. Due to space limit, the

proof of this approximation ratio is omitted here for brevity.

Globecom 2014 - Communication and Information System Security Symposium

590

Algorithm 1: Greedy Algorithm of Task Set Selection for

Maximizing Profit

Input: all available task set T , generalized context ĉ, and

set cardinality L
Output: recommended task set T
Initialize T = ∅;
Define F (T)

.
= E[Commission(T |ĉ)];

repeat
Choose t ∈ T that maximizes the marginal utility

F (T ∪ t)− F (T);
Let T ← T ∪ {t};

until |T | = L;

return T ;

V. PRIVACY-PRESERVING STATISTICS AGGREGATION

Note that in previous sections, we assume that the server has

prior knowledge on statistics such as Pr[c|ĉ] and CAR(t|c).
These statistics can be computed by counting the number

of users based on their detailed contexts and CARs. In this

section, we describe how to collect these statistics while

preserving user privacy.
Design Goals. There are mainly three design goals for

statistics collection: Firstly, user privacy should be protected

during statistics collection. Secondly, the final statistics should

not be distorted by a small portion of malicious users. Thirdly,

the system should be scalable to a large population of users,

which means that the proposed protocols should be highly

efficient.
The statistics collection module consists of three parties,

users, server, and proxy. Users contribute data regarding their

detailed contexts and CARs. The server collects the answers

and transforms them into statistics. The proxy is a new party

who mediates between users and the server, and adds noise to

the statistics. The proxy is introduced to achieve differential

privacy under a distributed setting at an acceptable cost.

A. Adversarial Model

We assume that the server is malicious and seeks to compro-

mise user privacy with or without the help of dishonest users.

Users are potentially malicious. They may generate false or

illegitimate data to distort the final statistics. We also introduce

an “honest-but-curious” proxy to help aggregate user data and

preserve differential privacy in the distributed setting. The

proxy may be paid by the server but acts as an independent

party, which means it will not collude with the server.

B. A Privacy-Preserving Aggregation Protocol

To calculate a statistic, the server sends queries which

describes a certain status to users. Users would return “yes”

or “no” answers. The statistic Pr[c|ĉ] is computed as the ratio

of the number of users with context c to the number of users

with generalized context ĉ. The server sends queries “Are you

in context c?” to all the users whose generalized context is

ĉ. Users respond with either 1 (“yes”) or 0 (“no”). Then the

server can get Pr[c|ĉ] by dividing the number of “yes” by

the number of total answers. The other statistic CAR(t|c) is

calculated as the ratio of the number of completed tasks among

Proxy

Recommendation Server

(Croudsourcing Platform)

Coins

Buckets

of coins

Add noise Mobile Workers

Fig. 2. The framework of the aggregation process

users with context c to the total number of users with context

c. Similarly, the server first sends a query which contains the

following three “yes” or “no” questions, representing three

possible statuses of the user: (1) The context of the user is c,
but the user does not complete task t; (2) The context of the

user is c, and the user completes task t; (3) The context of the

user is not c. When a user receives such a query, he responds

with a vector of 3 bits, each indicating the answer to one of

the three questions.

Now, we describe the detailed protocols of the statistics

gathering process. When the server needs to calculate a

statistic, it constructs a query request with a sequence number

SN . The query is forwarded to the proxy. The proxy would

broadcast the query to target users whose contexts are related

to the query, only when the number of target users is large

enough. If a user decides to respond with an answer, he

constructs a vector which includes his answers. Before sending

the vector out, the user encrypts the vector bit by bit with the

public key of the server and attaches the sequence number

SN to the ciphertext. We call the resulting message a coin.

For example, if the vector is (0, 0, 1), the final coin would be

e(0)||e(0)||e(1)||SN , where e(·) is the encryption operation

under the public key of the server.

The coin is then encrypted once more with the public key

of the proxy, and sent to the proxy. The proxy decrypts all the

messages, groups the coins with the same sequence number,

puts them in a bucket, and sends them to the server. The

proxy does not know the bits encrypted in the coin, hence

it gains no additional information on the detailed contexts of

users. After the server gets enough coins from the proxy, it

decrypts all the coins and calculates the votes for a specific

request. Once calculated, the statistics can be updated at low

cost, considering that only newly collected coins need to be

decrypted. Since the server cannot tell who constructs the

coins, the identities of users are anonymized. The aggregation

framework is illustrated in Fig. 2.

C. Generating Encrypted Answers

We propose to use the Goldwasser-Micali (GM) cryptosys-

tem [9] for generating the coins. It is designed to encrypt data

bit by bit, which fits our scenario well. An interesting property

of this scheme is that it is a homomorphic encryption scheme,

where the result of addition on plaintexts can be obtained by

decrypting the result of computations on the ciphertexts. In the

GM cryptosystem, the plaintext is either 1 or 0. Other forms

of plaintext can be easily detected and discarded. Hence, a

malicious user could only distort the final result by at most

one.

Globecom 2014 - Communication and Information System Security Symposium

591

The protocol of GM encryption is as follows.

• Key generation: Let N = p·q, where p and q are two large

primes independent of each other. Choose a non-residue

x such that the Legendre symbol x/p = x/q = −1 and

hence the Jacobi symbol x/N = +1. The public key is

(N , x), and the private key is (p, q).

• Encryption: Let b be the message we want to encrypt.

Choose a non-zero random number r ∈ Z
∗
N . The cipher-

text e is given by

e = r2 · xb mod N. (7)

• Decryption: Given the ciphertext e, the receiver uses

the prime factorization (p, q) to check whether e is a

quadratic residue mod N . In order to do this, he first

computes ep = e mod p and eq = e mod q. If both

e
(p−1)/2
p ≡ 1 mod p and e

(q−1)/2
q ≡ 1 mod q hold, e

is a quadratic residue mod N . He then sets b = 0 if the

result is yes, and sets b = 1 otherwise.

In the GM cryptosystem, the legitimacy of the ciphertext

can be checked by calculating the Jacobi symbol: only the

ciphertext whose Jacobi symbol equals +1 is legitimate. Hence

with this cryptosystem, we can easily achieve one of the design

goals, i.e., the final statistics should not be distorted by a small

portion of malicious users. Since a user can distort the final

result by at most 1, the deviation of the final result is bounded

by m if there are at most m malicious users.

D. Preserving Differential Privacy

With the GM cryptosystem, the answers from users are

aggregated so that individual users are anonymized from the

server. However, this approach alone cannot protect against

malicious servers who have auxiliary information. Hence, we

further add differentially private noise to the statistics with the

help of the proxy. The amount of noise required to achieve

(ǫ, δ)-differential privacy is calculated in [8], and described as

follows.

Proposition 2: Let n be the number of unbiased coins

added in a bucket, i.e., the amount of Binomial noise. The

statistics collection algorithm achieves (ǫ, δ)-differential pri-

vacy if

n ≥
64 ln(2δ)

ǫ2
. (8)

The parameter δ is selected by the server. Let M be the total

number of queried users. Suppose that every query of every

person is sensitive, then δ > 1/M indicates the disclosure of

at least one person’s privacy. Therefore, δ is selected to be

smaller than 1/M . With this constraint, the amount of noise

for each bucket should satisfy

n ≥
64 ln(2M)

ǫ2
. (9)

Hence, to achieve (ǫ, δ)-differential privacy, the proxy gen-

erates n noisy coins following a Binomial distribution which

yields success with probability 0.5, and adds the noisy coins to

each bucket. In order to generate unbiased and blinded coins,

the proxy should collaborate with users. This is because if the

proxy generates the unbiased coins by itself, it would know

the accurate value of the noise, and then when the server

Activities

Low Speed High Speed

Gaming DiningSurfing

Online

Shopping Jogging Hiking

Static

... Commuting in

Public Transit
Driving Traveling

by train

...

Fig. 3. A taxonomy of user activities

publishes the obfuscated statistics, the proxy would be able

to recover the accurate statistics. On the other hand, if the

users are trusted to generate the noise coins alone, they may

intentionally distort the final statistics by generating biased

noise coins. Hence, following a flipping approach in [10], we

let the users generate n coins first, which are flipped by the

honest-but-curious proxy. This is possible due to the following

homomorphic property of the GM cryptosystem:

Homomorphic property of GM cryptosytem. For any

b1, b2 ∈ {0, 1}, we have E(b1) · E(b2) = E(b1 ⊕ b2 mod N),
where E(·) is the encryption operation of the GM cryptosys-

tem.

In the XOR operation, as long as one of the two operators

is unbiased, then the final result would be unbiased. Hence

multiplying a coin generated by users and a unbiased coin

generated by the proxy results in a flipped coin that is both

unbiased and hidden from the proxy. In this way, we can

generate a pool of unbiased coins for noise addition.

When the server receives the noisy answer for a certain

request with sequence number SN , it first decrypts all the

coins with its secret key and sums up the plaintexts. Then it

can recover the statistics unbiasedly by subtracting n/2 from

the sum, where n is the number of noise coins. As described

at the beginning of this section, both Pr[c|ĉ] and CAR(t|c)
can be calculated following the protocols.

VI. EXPERIMENTS

Due to the lack of real-world data on crowdsourcing tasks,

we evaluate our proposed method based on synthetically

generated data sets. The details are given in the following.

A. Experimental Setup

Context instantiations. Users can generalize their detailed

contexts according to a hierarchy predefined by the recom-

mendation system. Quantifiable contexts can be easily divided

into multiple levels. For example, the location information,

represented in the form of (latitude, longitude), can be divided

into 5 levels. If a user chooses level-a generalization (a ranges

from 0 to 4), he should keep a decimal digits for both the

latitude and the longitude. If a context is not quantifiable, it

can be described in a tree taxonomy. Fig. 3 shows an example,

which describes activities with different precisions. If a user

chooses level-b precision to describe his current or future

activities, but does not want the server to know in detail (b
ranges from 0 to 2), he can describe it using the descriptions in

the level-b nodes. For example, if a user dining in a restaurant

chooses level-2 generalization, he would only tell the system

server that he is static.

Globecom 2014 - Communication and Information System Security Symposium

592

2 4 6 8 101 3 5 7 9
0.05

0.06

0.07

0.08

0.09

0.1

L

R
ev

en
u

e

Detailed Context

Generalized Context

Non−Context Information

(a)

1 2 5 10 25 50
0.6

0.7

0.8

0.9

1

0.6

0.7

0.8

0.9

of generalized contexts

R
ev

en
u

e

Detailed Context

General Context

Non−Context Information

(b)

Fig. 4. (a) Impact on utility when varying the size of the list L; (b) Impact
on utility when varying the total number of generalized contexts

We assume such a task selection setting: a population of

users with 100 different detailed contexts are being recom-

mended from a pool of 1000 tasks. Statistics Pr(c|ĉ) and

CAR are generated by random functions. We compare the

final revenue obtained by three approaches: task selection with

detailed context, task selection with generalized context (our

approach), and task selection with no information on user

context. For the second approach, we use Algorithm 1 to get

an approximate solution.

B. Numerical Evaluation

We evaluate the performance of the above approaches in

terms of the total revenue of users, which is proportional to the

commission of the crowdsourcing platform. Fig. 4(a) shows

the impact on the total revenue when varying the size of the

list L. We can see that the revenue of the proposed approach

increases as L increases, and converges to the first approach

(task selection approach with detailed context) after L exceeds

4. This is reasonable because when L is small, users would

have more tasks to choose from, resulting a higher utility,

but when L exceeds certain threshold, the added tasks result

in little marginal improvement on utility, and the proposed

approach performs the same as the first approach, i.e., task

selection with detailed context.

We divide detailed contexts into subsets, each corresponding

to a generalized context. If the number of resulting generalized

contexts is small, users are provided a high level of privacy.

Fig. 4(b) shows the impact of varying privacy levels on the

expected commission with L fixed at 3. We can see that

when privacy level decreases, the gap between task selection

with detailed context and with generalized context becomes

small. However, the gap is always within a small range,

which indicates that the performance of our privacy-preserving

approach is close to that of the privacy-oblivious one.

C. Performance Analysis

Now we analyze the computation overheads of the pro-

posed aggregation protocols, where a lot of encryptions and

decryptions are involved. We assume the following statistics

collection setting: a population of 1000 users have the same

generalized context, which can be further divided into 100 dif-

ferent detailed contexts. For the specific generalized context,

there are 90 tasks. We also assume that the key length for

the GM cryptosystem is 1024-bit. Suppose 10% of the users

participate in the statistics collection process, the proxy needs

to execute 340 encryptions and 340 homomorphic XORs for

a single statistic query when the privacy parameter ǫ is set to

1 according to (9).

A smartphone running Android 2.2 with 1GHz processor

can execute 800 GM encryptions per second [10]. Hence the

computation overhead for mobile users is negligible. A proxy

needs to execute 340 ∗ 27200 encryptions and 340 ∗ 27200
homomorphic XORs in the assumed setting; if we implement

the proxy with Apache Tomcat 6.0.33, it takes 10 minutes and

75 seconds, respectively. The server needs to carry out 840 ∗
27200 decryptions; if it is implemented with Apache Tomcat

6.0.33, it takes 58 minutes to complete all the executions. Note

that the statistics only needs to be calculated once. After it has

been calculated, it can be updated at a low frequency, which

involves even lower overheads.

VII. CONCLUSION

We have addressed in this paper the privacy issues in task

recommendation for mobile crowdsourcing. We have proposed

a framework that describes the trade-off among utility, privacy,

and efficiency. We have shown that the task set selection

problem under privacy and efficiency constraints is NP-hard

and then proposed an approximation algorithm to solve it. We

have also proposed a privacy-preserving protocol for statistics

collection in our framework. Both numerical experiments

and performance analysis are conducted to demonstrate the

effectiveness of our proposed approach.

REFERENCES

[1] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yazti, “Crowdsourcing with smartphones,” Internet Computing, IEEE,
vol. 16, no. 5, pp. 36–44, 2012.

[2] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “Vtrack: accurate, energy-aware road
traffic delay estimation using mobile phones,” in Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems. ACM,
2009, pp. 85–98.

[3] C. Laoudias, G. Constantinou, M. Constantinides, S. Nicolaou,
D. Zeinalipour-Yazti, and C. G. Panayiotou, “The airplace indoor posi-
tioning platform for android smartphones,” in Mobile Data Management
(MDM), 2012 IEEE 13th International Conference on. IEEE, 2012,
pp. 312–315.

[4] M.-C. Yuen, I. King, and K.-S. Leung, “Task recommendation in crowd-
sourcing systems,” in Proceedings of the First International Workshop
on Crowdsourcing and Data Mining. ACM, 2012, pp. 22–26.

[5] V. Ambati, S. Vogel, and J. Carbonell, “Towards task recommendation
in micro-task markets,” in Proceedings of The 25th AAAI Workshop in
Human Computation, 2011.

[6] M. Duckham and L. Kulik, “A formal model of obfuscation and
negotiation for location privacy,” in Pervasive computing. Springer,
2005, pp. 152–170.

[7] J. W. Brown, O. Ohrimenko, and R. Tamassia, “Haze: Privacy-preserving
real-time traffic statistics,” in Proceedings of the 21st ACM SIGSPATIAL
International Conference on Advances in Geographic Information Sys-
tems. ACM, 2013, pp. 530–533.

[8] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our
data, ourselves: Privacy via distributed noise generation,” in Advances
in Cryptology-EUROCRYPT 2006. Springer, 2006, pp. 486–503.

[9] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play
mental poker keeping secret all partial information,” in Proceedings of
the fourteenth annual ACM symposium on Theory of computing. ACM,
1982, pp. 365–377.

[10] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke, “Towards statistical
queries over distributed private user data,” in Proceedings of the 9th
Symposium on Networked Systems Design and Implementation (NSDI),
2012.

Globecom 2014 - Communication and Information System Security Symposium

593

