
A Multi-hop Privacy-Preserving Reputation Scheme in
Online Social Networks

Linke Guo∗, Xiaoyan Zhu†, Chi Zhang∗ and Yuguang Fang∗†
∗Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA

†National Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
Email: {blackglk@, xiaoyanzhu@, zhangchi@, fang@ece.}ufl.edu

Abstract—Online Social Networks (OSNs) are becoming im-
mensely popular nowadays, and they change the ways people think
and live. In this paper, we propose a novel reputation system which
allows users to find potential connections between unfamiliar people
and obtains a relative objective globally meaningful reputation
value. To some extent, our scheme provides a way to judge people
in OSNs without real interactions, but based on the existing overall
attitudes on particular people. Moreover, our scheme can protect
the confidentially of the potential relationships in which no one
is able to acquire the detailed connections between two end nodes.
Contrary to those which publish each individual’s reputation online,
we treat the reputation value in our system as a private issue that
has been carefully guaranteed in our scheme.

Index Terms—Reputation Value, Reputation Path, Structured
Encryption, Homomorphic Encryption, Signature.

I. INTRODUCTION

Online Social Networks (OSNs) such as Facebook and Twitter
enable people to communicate with other people or to share their
own profiles on their web pages. People can use any wired or
wireless devices to obtain the OSNs’ services, and are also happy
to remotely chat with their friends, or share images and video
clips with each other. Nowadays, the phenomenon of pervasive
usage of OSNs has been studied among several unique academic
areas, such as psychology, business, and social science. One of
the interesting functionality of OSNs is the reputation system
which provides a way to evaluate a merchant, a company or
even one person. Furthermore, it has been prevalent implemented
due to its intuitive explanation which directly reflects the level
of QoS (Quality of Service) or the degree of trust. However, we
also observe thousands of hundreds of people complain about the
leaking privacy information from such kinds of OSNs, especially
among the commercial interactions on eBay. According to the
newest report from Facebook, it has already reached 500 million
users and still greatly increase, half of the active users log on
in any given day, all of which seems gratifying the services.
Due to the open nature of OSNs, people are allowed to view
friends’ information and friend list as well as they are checking
their local storage, and also that kind of information has been
leaked to the service providers as well. As far as we know,
existing OSNs providers do not well protect the relationship
information, which means the relationship between friends might
be potentially leaked, leading to severe problems particularly in
e-commerce environment. Therefore, there is an urgent need to
prevent relationship and reputation information breaches while
maintaining the original functionality of existing OSNs.

Related Works: A through survey [1] on the reputation system
for online service provision describes the current trends and
development in this area. There are various way to define the
reputation or trust value in literature [2]–[6]. Our scheme does
not focus on the definition and the derivation of the reputation
value, instead, we are along the line of securely transmitting

and collecting the value. In spite of various model of trust or
reputation, several papers discuss the implementation of trust
model on different types of networks, which, to some extent,
further develop this area. For example, Xiong et al. in [7] design
a reputation-based trust supporting framework to help estimate
the trustworthiness of peers in P2P online community. Srinivasan
et al. give the brief summary of reputation system in the ad hoc
and sensor networks [8]. On the other hand, Guha et al. [9]
firstly incorporate the trust and distrust in a computational trust
propagation setting, which formulates the transitivity of the trust
propagation, and our work is based on part of their work. In [10],
Zhang et al. first-time define a formal framework to formalize
the trust-based routing protocols by using routing algebra in
WANETs, which also considers the problem of transitivity of
trust. The results show the possibility of implementing the
reputation system in OSNs, and all of these papers indicate the
promising future of trust or reputation systems.

Our Contributions: In this paper, we focus on setting up
relationship between two unknown nodes in OSNs while their
potential links will provide an objective level of reputation. We
extend the existing OSNs, where the rating is only implemented
between two directly connected nodes, to a multi-hop scenario
which reflects the real situation in OSNs. Our scheme satisfies
the anonymous and confidential requirements for the potential
relationships and the reputations, all of which are hidden from
the service providers.

II. PRELIMINARY AND SYSTEM MODEL

A. Preliminary

1) Bilinear Pairings: Bilinear pairing operations are per-
formed on elliptic curves [11]. Let G1 and G2 be an additive
group and a multiplicative group, respectively, of the same prime
order q. Discrete logarithm problem (DLP) is assumed to be hard
in both G1 and G2. Let P denote a random generator of G1 and
e : G1×G1 → G2 denote a bilinear map constructed by modified
Weil or Tate pairing with the following properties:

1) Bilinear: e(aP, bQ) = e(P,Q)ab, ∀P,Q ∈ G1 and ∀a, b ∈
Z∗
q , where Z∗

q denotes the multiplicative group of Zq , the
integers modulo q. In particular, Z∗

q = {x | 1 ≤ x ≤ q−1}
since q is prime.

2) Non-degenerate: ∃P,Q ∈ G1 such that e(P,Q) 6= 1.
3) Computable: there exists an efficient algorithm to compute

e(P,Q), ∀P,Q ∈ G1.
Pairings are the basic operations in the identity-based cryp-

tosystem used as the authentication backbone in our scheme.
2) Proxy Re-Encryption: Proxy Re-encryption (PRE) is a

cryptographic primitive which allows a proxy to convert the
existing ciphertext encrypted with Alice’s public or secret key
into another one that can be decrypt by Bob’s private or secret key

2

without learning the detail about the underlying plaintext. PRE
has two classifications, one is asymmetric re-encryption where
given the proxy re-encryption key, it can translate the ciphertext
under public key pka into that under another public key pkb,
and vise versa; on the other hand, we apply the symmetric re-
encryption scheme in our system, where apart from transforming
ciphertext using public keys, we re-encrypt the message by using
another domain’s secret key which satisfies both the efficiency
and security requirements for revoking members in OSNs.

B. Definitions and Assumptions

We further define several entities and terminologies that we
use in our proposed system. Besides, we also make assumptions
for the behaviors of entities and the underlying scheme.

1) Key Distribution Center: It is responsible for system setup
and distributing public/private key pairs to the members in the
system. It will work offline unless there is a new user needed to
be granted the access right.

2) Central Storage: We define a Central Storage (CS) for
storing the reputation relationships. CS will respond to the query
for neighbor information and updating the data storage. However,
we assume that the CS will not be responsible for storing the
reputation values, which is the same as the pervasive social
networking sites nowadays, e.g., Facebook, Twitter and so on.
For security concerns, we would not allow the members to upload
information in the plaintext form onto the CS; on the contrary,
we apply the cryptographic primitives to store both the social
relationship and node information in ciphertext form.

3) Reputation Value: We define the reputation value as asym-
metric numeric value with r ∈ [0, 1] between two members,
where 0 denotes lowest reputation level which may destroy the
whole reputation path, 1 represents the highest level with full
trust, respectively. Also, we assume that the reputation value is
transitive, and the value of multiple path is the product of hop
value. Furthermore, the asymmetric value means the directional
reputation values can be different according to different trust
levels. We also assume that the reputation value towards other
members is a private issue to each member, in which members
along the reputation path should not be aware of the reputation
value to themselves, meanwhile, they cannot tell the reputation
value to a specific member one hop further from him. We need
to clarify that we cannot monitor the change of one node’s
reputation value towards others. More specifically, it is his right
to arbitrarily change his “ratings” to others in the sense that we
cannot treat this as a misbehavior.

4) Anonymity: In our scheme, the reputation path should be
discovered and maintained confidentially to every member in
the system, also hide from the CS. Furthermore, the reputation
value along with the path should be kept anonymously and
confidentially from other members who only act as “relay” nodes
in the social networks, in the sense that an intermediate node
would learn nothing concerning both the ancestor and successor
nodes one hop away from it. We cannot perform the anonymity
to one’s friends in our scheme, since there are many means to
trace back to the sender of a packet, i.e. IP address. Therefore,
we only provide the scheme which offers the anonymity to the
intermediate nodes along one path to the nodes that at least one
hop further from them.

C. Security Objectives

The main security objective of our proposed scheme is to
guarantee the privacy in the neighbor search during the path

discovery and secure transmission of reputation values. Mem-
bers’ privacy includes the anonymous reputation value towards
other interacted members and hiding the reputation path from all
intermediate members. Anonymous reputation value requires that
no intermediate member could tell the reputation value to his/her
non-interactive members. Hiding reputation path implies that
every nodes along the reputation path cannot obtain the routing
table of the whole path. The members’ privacy requirement
should be fulfilled regardless of access rights of entities.

D. Adversary Model

The adversary model defines the attackers and their possible
attacks on our proposed scheme. The predefined CS is a semi-
trusted authority which is curious but honest. It will work online
for the response of launched queries, but will not launch the
malicious attacks (e.g., denial-of-service attack). CS will store
the relationship information of the underlying members in the
system as a whole. We allow the CS to eagerly acquire the
information for every query. The members in the social networks
will tend to acquire the reputation value not only to themselves,
but also between arbitrary two members. Gaining such values
will help them to intentionally build a reputation path based
on their willings, which may make the final reputation value
subjective and invalid. Malicious members in the system will
attempt to be someone that have directly interaction with the
target member, in which they will pretend to be the most trustful
member compared to any other members but actually they may
even have no connections at all, so that more reputation paths
would be directly built from these attackers, which makes the
system untrustworthy. Also, passive eavesdroppers will attempt
to intercept the transmitted packets on the fly. We prohibit the
collusion attacks in our scheme.

III. SYSTEM DESIGN

In this section, we present the design details for our privacy-
preserving reputation scheme for OSNs which includes two main
procedures: reputation path discovery and anonymous reputation
value transmission.

A. Main Idea

We assume our scheme as a relatively stable system in which
members maintains a relatively stable reputation values. Based on
the careful observation on the pervasive online social networks
nowadays, the central server will keep the record of friend list
and allow people to update at any given time. Similarly, our
reputation path discovery scheme is run recursively, in which
each node will update his/her friend list to the CS continuously.
We first apply the structured encryption [12] together with the
proxy re-encryption for both the enquiry of neighbor nodes in an
encrypted manner and update friend list without disclosing the
detail to the server. Apart from these operations, we also design
the new user grant and user revocation in an efficient and secure
way. Each user will keep a star-like structure which maintains
his relationships with the center and his friends (along with the
updated indirected friends). When there is a request in search of
a particular node, one will check his structure to discover that
node. If it is involved in the structure, the request packet will be
processed and passed along the reputation path. Thus, we hide
the detail of the specific path, in the sense that every intermediate
node only knows the next hop and the final destination, which
provides the path anonymity and confidentiality.

3

B. Reputation Path Discovery

We use Fig. 1 as an example to illustrate our proposed scheme.
In this figure, S node denotes the source node who will initiate

C1 DS C2 C0
τ

τ

L
is
t_
C
0

Lis
t_
C2

Li
st
_C
1

GB

E

A F

Central Storage

Fig. 1. Reputation Path Discovery.

the reputation transmission, while D node is the destination in
which S is looking for. Note that S and D have no direct
relationship stored in the CS. Other nodes are the potential
nodes which would build up the reputation path when the
transmission procedure is initiated. The red solid line represents
the distribution of token, while the blue solid line denotes the
query by using the previous required token. After CS process
the query, it will return a set of nodes to whom is launched the
request. Then, the node which launched the request will update
a new set of nodes as the green dash line shows.

1) System Setup: In our scheme, we apply the ID-based
cryptographic technique for securing the reputation value trans-
mission. In the system setup, the PKG will assign the ID-
based public/private key pairs for each node in the system, and
then PKG will go offline as we have assumed before. The key
generation procedures are as follows [11]:

1. Input the security parameter ξ to the system and output a
parameter tuple (q,G1, G2, e, P,H).

2. Randomly select a domain master secret ς ∈ Z∗
q and

calculate the domain public key as Ppub = ςP .
The PKG publishes the domain parameters tuple

(q,G1, G2, e, P,H, Ppub) and maintain ς confidential, where
H(·) is defined before as H(·) : {0, 1}∗ → G1, and P is a
generator of G1. Given a specific public ID ∈ {0, 1}l, the
public/private key (pkID/skID) pair is H(ID)/ς · H(ID),
which are distributed by the PKG during the initiation process.
Each node will keep the private key secretly.

2) Data Uploading and Data Query: Now, we will introduce
the basic uploading data scheme without exposing the data file in
plaintext form, in which we call it anonymous storing. We utilize
part of the structured encryption scheme proposed by Chase and
Kamara in [12].

Initiation: Taking C0 and C1 as an example, C1 will first
generate a key tuple (α, β, κ) from a secret parameter k, where
the process is operated by each possible device in the social
network (laptop, PC, or a mobile device). We select two pseudo-
random functions F and G, and a semantic secure symmetric key
encryption E , and the key for the following scheme are α, β and
κ, respectively:

F : {0, 1}k × V → {0, 1}max(L)·log n

G : {0, 1}k × V → {0, 1}k

E : {0, 1}k × {0, 1}l → {0, 1}l

where v ∈ V is the ID of vertex (node) in graph G : (V,E),
and L(vi) denotes the label associated to each node of the set

{vj ∈ V : (vi, vj) ∈ E}. Note that all the nodes (given the label
L(vi)) can be seen as starting from the node vi, all of which
form a star-like structure.

Based on the ID-based cryptosystem, we can also encrypt a
message by using a symmetric key and the receiver can derive his
symmetric key based on his local computation. Here, we assume
KC1,C0

, and KC0,C1
represent symmetric keys generated by C0

and C1, respectively:

KC1,C0
= e(H(IDC0

), ςH(IDC1
))

= e(H(IDC0
), H(IDC1

))ς

= e(ςH(IDC0
), H(IDC1

)) = KC0,C1
.

C0 will transmit the symmetric key to its neighbors to decrypt
the message obtained from CS as follows,

C0 → C1 : EKC0,C1
(κ), t1, HMAC(EKC0,C1

(κ)||t1)

where t1 is the timestamp designed to prevent reply attack
and HMAC is key hash message authentication code used for
checking and verifying the integrity of the encrypted value. C1

can acquire the decryption key for the packet generated by C0.
Encryption: As we described before, we not only encrypt the

data items on the node side, but also encrypt the data structure
and stored in the CS. The data structure hidden from the server
will disclose the corresponding nodes who have the authority to
decrypt both the structure and the data file. We propose a efficient
threshold structured encryption scheme which supports both data
and user update.

We first define a random permutation π : [n]→ [n], where [n]
is the total number of friends of a particular node. The friends
or neighbors of vi are stored in a sequential manner, which are
represented as the element mı ∈ m, 1 6 ı 6 n. Apparently,
the element in m is the ID of vi’s friends in a plaintext manner.
Consider the correlation between the plaintext of vi’s friends
located in m and the location of their corresponding ciphertext,
we define, c. More precisely, let the random permutation π such
that for a given ı ∈ [n], mı := Dκ(cπ(ı)), where the D denotes
the decryption process opposite to E .

The encryption scheme includes two main parts: one is to
encrypt the structure of the data items, the other is to encrypt
the corresponding data set. In our scheme, nodes will upload a
set of nodes undisclosed with a certain threshold, e.g., C0 defines
a threshold for his uploading policy in which δC0

= 0.6, which
means C0 will store his neighbor nodes associated the reputation
value greater than δC0

. We use term δC0
(L(C0)) to denotes the

set of nodes in LC0
that satisfy the requirement of reputation.

Furthermore, this implies that any query based on token issued by
C0 will return the set of nodes with C0’s reputation value greater
than 0.6. The proposed encryption is as follows, also taking C0

as an example:

1. C0 chooses a unique random permutation πC0
: [n]→ [n].

2. Compute the pseudo-random function by given key tuple
β, let kw := Gβ(C0).

3. Store (πC0
(ı)ı∈δC0

(L(C0)))⊕Fα(C0) onto the server with
the search key kw, all of which form a encrypted structure
T .

4. Permute mı → m, where ← πC0
(ı). For 1 6 6 n, let

c = Eκ(m).

Thus, the server will store a structure T and a set of corre-
sponding ciphertext c. We need to note that the entries stored in
the server include all the encrypted pointers which concatenate
with each other to XOR with Fα(C0), such that the maximum
length of the results of F would be max(L) · log n. If there

4

are not enough bits, we need to pad dummy bits to satisfy the
length.

Decryption: Node C0 will issue the query token to each of
his friends whom C0 consider it is certain, in the sense C0 has
the flexibility to choose whom to upload and issue the token.
Decryption procedure is as follows,

1. Token issue: C0 issues the token τ := (Fα(C0),Gβ(C0))
to C1 and a certain set of nodes.

2. Search: C1 would be able to search by utilizing the token
kw = Gβ(C0), and compute XOR for Fα(C0) and the
given entry. If the given token is not in T , then output
⊥; otherwise, the search result would be the pointers set
J = (1, ..., n).

3. J points to the ciphertext which satisfies the token re-
quirements and C0’s threshold. C1 uses his symmetric key
κ to decrypt the set of ciphertext that J points to, where
m = Dκ(c), 1 6 6 n.

3) Data and User Update: Our scheme requires each node in
the system updates its own friend list recursively, which is used
for the discovery of the reputation path. We also assume that the
update process is run during the operation of the system.

Data Update: Data update is for the purpose of adding indirect
friends to both nodes themselves and central storage. Taking
C1 as an example, first, it needs to update its own local path
structure; second, it has to check whether the new updated node
satisfy its own policy, e.g., if the C0 upload the nodes with
its reputation value greater than δC0

= 0.6, δC1
= 0.5 and

r(C1, C0) = 0.7, C1 needs to verify whether the node set
obtained from C0 satisfies δC1

; finally, C1 rearranges its node
set and updates to the server. We assume that every node will
know its friends’ threshold, e.g., C1 will notice that δC0

= 0.6.
Thus, in this case, the reputation value range that C1 towards
C0’s uploaded nodes is between 0.42 and 0.7. Broadly speaking,
there might have three possible conditions in large if comparing
the own threshold and received reputation range,

Φ, δC1
> r(C1, C0)

S ⊆ S
δC0

Ω , δC0
· r(C1, C0) < δC1

< r(C1, C0)

S
δC0

Ω , δC1
6 δC0

· r(C1, C0)

where Φ denotes uploading nothing to the server and S is the
subset of the whole set of the node C0 uploaded to the server
S
δC0

Ω . C1 will upload the set of nodes to the server correspond-
ingly according to their satisfaction toward the given reputation
range. Now, we consider the most complicated condition where
δC1

is between that two given values. However, as for C1, it has
little knowledge concerning which one or at most three of the
received nodes are below its threshold. We design a negotiation
process to handle this problem, which still achieves the security
requirement for the system and we will discuss in later section.
The negotiation process is as follows,

1. C1 → C0 : Ngt, t2, EKC1,C0
(

δC1

r(C1,C0)
||S

δC0

Ω),

HMAC(Ngt||t2||EKC1,C0
(

δC1

r(C1,C0)
||S

δC0

Ω)).
2. C0 → C1 : Rsp, t3, EKC0,C1

(S),
HMAC(Rsp||t3||EKC0,C1

(S)).

where Ngt and Rsp denote that the packets’ purpose are for
the negotiation of the uploaded nodes and response for that
negotiation, respectively. Note that C1 will transmit a quotient
of δC1

r(C1,C0)
without disclosing the detail of the two values. After

C0 receives these packets from one of its friends, it will process
and return the nodes S ⊆ SΩ with its reputation values greater

than that required quotient. Thus, C1 can upload this set of nodes
to the server which satisfy its own threshold δC1

.
We divide the data update process into two phases. The first

phase is to rearrange the data sets and the following is to secure
update file in the server along with the keyword. We first show
the data rearrangement procedure in the local storage of C1 as
shown in Fig.2. Note that we exclude the node F because the C0

C1

D

C2 C0

G

B

C1

DC2 C0GB

Local Storage Structure Upload Structure

Fig. 2. Data Set Rearrangement.

deletes that node in response of C1’s negotiation request. If every
node in the system uploads the corresponding nodes as above, it
will hide the detail of the path from the node who asks for the
token. If C1 uploads this set of nodes as above, the node who
requests the friend list from C1 will know it can reach D via C1

without knowing the detail who “relay” the packet to D.
During the phase of uploading updated data, C1 needs to

define a new random permutation π′
C1

and re-encrypt the
message by using the original key κC1

. Then, C1 needs to
replace the original entry of the keyword with the new one
(π′

C1
(ı)ı∈δC1

(L(C1))) ⊕ FαC1
(C1) without changing the token

τC1
:= (FαC1

(C1),GβC1
(C1)) and also the kwC1

. Thus, the
friends of C1 can obtain the new set of friends by querying to
the server by using the original token and decryption key, which
saves the communication burden between C1 and its friends.

User Update: We design the user update as part of our
scheme to leverage the issue of new users grant and revocation
of misbehaved users. We define the user who uploads data in
terms of Data Owner. Compare to user revocation, the operation
of new user grant is relatively simple and efficient. Since our
scheme implement semantical symmetric key encryption for the
nodes around data owner, it can directly issue the secret key κ
and token to the new user if it satisfy the requirement of token
policy (which is set by data owner). However, if the new user also
needs to be updated to the server for other neighbors’ search, the
data owner can follow the algorithm of data updating to enlist
that new user as well.

User revocation involves the key update and data re-encryption.
Traditional ways incur extra computation and communication
costs to the data owner. Since our scheme is based on the
symmetric key encryption from end to the server, we only need
upload newly re-encrypted data to the server and distribute the
new symmetric key to the neighbors without including revoked
users, which prevents the revoked users from decrypting the
ciphertext using an original key. Thus, we propose to use proxy
re-encryption scheme based on the assumption that CS is honest
and will not launch malicious attacks (e.g., Denial of Service).
Comparing to data update which has little effort on saving the
communication costs but to re-upload one’s friend list, or the
search process will be messed up, the user revocation process
needs to decrease the computation efforts on the user side. Taking

5

C0 as an example, E is qualified to acquire the friend list from
C0, although E is not on C0’s uploaded friend list. C0 may
find that E behave badly which largely decreases C0’s reputation
value and E is not able to query the friend list, so C0 wants to
revoke that user from obtaining the friend list. The process is as
follows,

1. C0 → CS : Rvk, t4, E(SKρ
C0

), σskC0
(rvk||t4||E(SKρ

C0
))

2. CS : re-encrypt the ciphertext c → c
ρ
 := ESK

ρ

C0

(c),
1 6 6 n.

3. C0 → SΩ\E : Keyupd, t5, EKC0,Ω\E
(SKρ

C0
),

HMAC(Keyupd||t5||EKC0,Ω\E
(SKρ

C0
)).

where SKρ
C0

represents the proxy re-encryption key that is used
to encrypt the ciphertext, and E(·) denotes encryption function
between CS and corresponding nodes. Here we clarify the
different sets of nodes related to data owner, where S is a subset
of vi’s uploaded nodes S

δvi
Ω and SΩ(vi) denotes all the possible

nodes that are given the token to query for the data. Apparently,
S
δvi
Ω ⊆ SΩ(vi) denotes data owner will issue the token to the

nodes which have been already uploaded to the server; on the
other hand, it is the data owner’s flexibility to choose to give the
set S ′ 6⊂ S

δvi
Ω but S ′ ⊂ SΩ(vi) the token. Specifically speaking,

the user revocation process happen when the above condition
holds. If a node has already uploaded and needs to be revoked,
the data update and user revocation process should be operated
accordingly. More generally, the policies based on different nodes
will vary greatly, and we need to have fine-grained access control
towards them.

C. Secure Anonymous Reputation Value Transmission

The reputation path algorithm helps us find the reputable
path while maintaining the anonymity to the predecessors and
successors, in the sense that the intermediate node will only relay
the packets to the next node according to its own routing table
without knowing the predecessors and successors. For example,
when all the nodes in the system update their friend list according
to our proposed scheme, S in Fig.1 will notice that it can find D
via C2 without knowing the detail of the path “after” C2 if C2

enlists D as its direct node. However, although S notices that D
is on C2’s uploaded list and may know the threshold δC2

, it may
not be proper to evaluate the objective reputation value toward
D if δC2

is extremely lower than S’s expectation. Therefore,
we need to obtain an objective and accurate reputation value to
evaluate that corresponding nodes in the system. We propose a
secure reputation value transmission scheme which allows S to
obtain an objective reputation value to D.

Before presenting our system setup, we need to clarify our
design objective for the secure reputation value transmission.
We keep the reputation value and reputation path as privacy
issues which should be carefully protected, in the sense no
intermediate nodes will notice the path and each one’s reputation
value in a disclosed form. However, keeping destination nodes
confidentially from the intermediate node becomes meaningless
since every interacted node needs to check its local storage
(routing table) to find the destination. On the other hand, learning
the destination nodes will not help the intermediate nodes find the
path in detail. For example, C1 should not know the path detail
“before” C2 whatever S is on C1’s local friend list, even if S is on
its list, C1 cannot distinguish whether it directly connects to C2

or not, all of which fulfill the requirements of path confidentiallity
and anonymity.

1) System Setup: Our construction makes use of an IK-
CPA (Indistinguishable Key under Chosen Plaintext Attacks)
encryption scheme which offers a multiplicative homomorphism.
Informally, the key privacy property ensures it is infeasible to
match a ciphertext with the public key used to produce it;
this property is used to achieve path anonymity, which means
attackers cannot distinguish the packets generated for different
paths. Below, we give our key generation and distribution process
based on IK-CPA secure scheme for the nodes on the existing
reputation path.

1. Setup: Input the system with a security parameter λ and
output a set of parameters, where Γ = (f, ~) ∈ G1 and
f, ~ are the generators of G1, in which every node on a
specific path will be aware of the path parameter Γ.

2. Key Genereation: To generate a public/private key pair for
a specific path, S will select a secret pair (a, b) as its private
key (usk), where a, b ∈ Zp, and compute the corresponding
public key upk := (fa, ~b) ∈ G1.

Note that S will generate different upk for different paths if
there are multiple potential choices for S, in order to get more
objective reputation value as a whole.

2) Anonymous Reputation Value Transmission: As mentioned
before, the value of reputation is kept as a decimal between 0
and 1. However, the message space in our constructed encryption
scheme is on a bilinear group G1. Hence, we need to map the
reputation value r ∈ [0, 1] to our desired group, in the sense that
we define a mapping function U(·) : r ∈ [0, 1]→ {0, 1}ℓ ∈ G1,
where ℓ is a fixed length of any given element in the group. We
also further assume that the results (elements) in multiplicative
group G1 satisfy the property of computebility, especially, multi-
plicativeness. After collecting the accumulative reputation value,
any arbitrary node is able to find the original reputation value
by applying the inverse function U−1(·). For simplicity, we will
still use r to represent the reputation value, where now r ∈ G1.
Therefore, we have the following interactions where the node-to-
node secure communications are ensured, and we briefly write
r1, r2, r3 and r4 instead of r(S,C2), r(C2, C1), r(C1, C0) and
r(C1, D) for simplicity. Note that, as for S, it will not be aware
of this path S → C2 → C1 → C0 → D, but we use this path as
an example to illustrate the scheme from outside of the system.
We now construct the encryption and decryption scheme for the
reputation value:

Encryption: To encrypt an arbitrary reputation r ∈ G1 under
the public key upk :=(fa, ~b), we select two random exponents
µ, ν ∈ Zp and compute the ciphertext as:

Eupk(r) = C :=< r · (fa)µ · (~b)ν , fµ, ~ν >=< C1,C2,C3 > .

Decryption: For the source node, it will decrypt all the
accumulated reputation values on different paths. By using the
private key (a, b), the decryption algorithm is executed as follows:

C1 · C
−a
2 · C

−b
3 =

r · (fa)µ · (~b)ν

(fµ)a · (~ν)b
=

r · faµ · ~bν

faµ · ~bν
= r.

Accordingly, the transmission procedure is as follows,
1. S → C2 : RPtran, seq, (EpkD

(S), D), Eupk(r1), t6,
SIGskS

(Eupk(r1)||t6);
2. C2 → C1 : RPtran, seq, (EpkD

(S), D), Eupk(r2) ·
Eupk(r1), t7, SIGskC2

(Eupk(r2) ·Eupk(r1)||t7);
3. C1 → C0 : RPtran, seq, (EpkD

(S), D),∏3
ι=1 Eupk(rι), t8, SIGskC1

(
∏3

ι=1 Eupk(rι)||t8)
4. C0 → D : RPtran, seq, (EpkD

(S), D),∏4
ι=1 Eupk(rι), t9, SIGskC0

(
∏4

ι=1 Eupk(rι)||t9)

6

where RPtran not only denotes that this packet is for the
purpose of transmitting reputation value, but also includes public
parameters for this specific path (upk,Γ), and seq is an unique
binary string represents each reputation path. In (EpkD

(S), D),
note that D is able to decrypt and obtain the source ID S,
and D is for the use of checking each node’s routing table in
its local storage. Note that each packet is encrypted under the
symmetric encryption described before, in which all the packets
are transmitted in a secure manner. Each node will encrypt the
reputation value on the next node and multiply it with received
encrypted value, then it will generate a signature for that product
and transmit it to the following node according to its local
storage.

3) Secure Reputation Value Response: We take the previous
example to illustrate the scheme as well. when D receives:

Ctotal = Eupk(r1) ·Eupk(r2) ·Eupk(r3) · Eupk(r4)

= <

4∏

ι=1

Crι,1,

4∏

ι=1

Crι,2,

4∏

ι=1

Crι,3 >

= <

4∏

ι=1

rι · (f
a)µι · (~b)νι ,

4∏

ι=1

fµι ,

4∏

ι=1

~
νι >

D will first check the field (EpkD
(S), D) and know that the

destination node is itself. Then, it needs to prepare a returning
packet letting S know the verifiable accumulative reputation
value. We apply the an efficient ID-based Signature [13] based
on pairing, which is based on the assumption that weak Diffie-
Hellman problem is hard.
D → S :< EpkS

(Ctotal), t10, SIGskD
(EpkS

(Ctotal)||t10) >
Note that the returned packet is encrypted by KD,S and HMAC

is used to protect non-repudiation. Then S will decrypt the
message by using the private key usk := (a, b) in the following
way:

Rω = Ctotal,ω,1 · C
−a
total,ω,2 · C

−b
total,ω,3

=

∏4
ι=1 rω,ι · (f

a)µι · (~b)νι

(f
∑

4

ι=1
µι)a · (~

∑
4

ι=1
νι)b

=

4∏

ι=1

rω,ι ·
fa·

∑
4

ι=1
µι · ~b·

∑
4

ι=1
νι

(f
∑

4

ι=1
µι)a · (~

∑
4

ι=1
νι)b

=

4∏

ι=1

rω,ι.

S can derive the accumulative reputation value, and apply the
inverse function U−1(Rω) to obtain the real decimal reputation
value R̂ω. Let Ω̂ be the set of reputation values from which
reputation values of paths have returned the corresponding values.
Then, S can generate a relative reputation value for this specific
node D:

R̃ =

∑
ω∈Ω̂ R̂ω

|Ω̂|
,

where the |Ω̂| represents the cardinality of the set Ω̂ and ω ∈ Ω̂
denotes each unique reputation path in Ω̂.

Accordingly, S finally acquires the global reputation value on
a node that it has never met before. Based on such value, S can
perform any possible interactions, e.g. commercial transactions,
with D if the value satisfies the demand of S.

IV. SECURITY ANALYSIS

We briefly discuss the security objectives that our proposed
scheme has achieved. Our scheme preserves the data confiden-
tially in both the friend list query and anonymous reputation
transmission processes, because our encryption schemes that

used in uploading encrypted data, data queries and reputation
value encryption are CPA-secure. To some extent, the ciphertexts
which the scheme outputs do not reveal any partial information
about the corresponding plaintexts even to an adversary who can
adaptively query an encryption oracle. Another possible attack
concerning data confidentiality is launched by attackers who
intercept the packets transmission on the fly. However, all the
encryption schemes we used during the transmission between
two nodes are based on the assumption that Bilinear Diffie-
Hellman Problem is hard. Our scheme also satisfies the security
requirements of authentication and access control since nodes
need to bilaterally verify each other by using each other’s key
pair to derive the symmetric keys. On the aspect of preserving
the anonymous path, our scheme will not disclose the path
information to any party in the system, since each node only
keeps its next node as the records and uploads indirect nodes
to the CS without exposing detailed paths. As a result, nodes
cannot tell the previous and following nodes one hop away from
them which perfectly protects anonymous reputation paths.

V. CONCLUSION

In this paper, we propose a privacy-preserving reputation
scheme for online social networks, which securely find a rep-
utation path between a pair of unknown nodes and also one can
tell the globally reputation value on another one by implementing
anonymous reputation value transmission procedure. Our scheme
implements structured encryption with data update to form the
reputation path to each node, meanwhile, it perfectly hide the
detail routing information from the intermediate nodes along
one path. Also, we treat one’s reputation value on other nodes
as a privacy issue which has been carefully treated and our
scheme can let the intermediate nodes pass the reputation value
without disclosing each hop’s values, but the end user can find
an objective reputation value in a disclosed form.

REFERENCES

[1] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation systems
for online service provision,” Decis. Support Syst., vol. 43, pp. 618–644,
March 2007.

[2] Y. Sun, Z. Han, and K. J. Ray Liu, “Information theoretic framework
of trust modeling and evaluation for ad hoc networks,” IEEE Journal on
Selected Area in Communications, vol. 24, pp. 305–317, 2006.

[3] G. Theodorakopoulos and J.S. Baras, “On trust models and trust evaluation
metrics for ad hoc networks,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 2, pp. 318 – 328, Feb. 2006.

[4] A. Jøsang, “An algebra for assessing trust in certification chains,” Pro-
ceedings of the Network and Distributed Systems Security Symposium
(NDSS’99). The Internet Society, 1999.

[5] S. Capkun, L. Buttyan, and J.-P. Hubaux, “Self-organized public-key
management for mobile ad hoc networks,” Mobile Computing, IEEE
Transactions on, vol. 2, no. 1, pp. 52 – 64, Jan. 2003.

[6] C. Zhang, Y. Song, and Y. Fang, “Modeling secure connectivity of
self-organized wireless ad hoc networks,” INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE, pp. 251 –255, Apr. 2008.

[7] L. Xiong and L. Liu, “Peertrust: supporting reputation-based trust for peer-
to-peer electronic communities,” IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no. 7, pp. 843 – 857, July 2004.

[8] A. Srinivasan, J. Teitelbaum, J. Wu, M. Cardei, and H. Liang, “Reputation-
and-trust-based systems for ad hoc networks,” Algorithms and Protocols
for Wireless, Mobile Ad Hoc Networks, Wiley, 2008.

[9] R. Guha, R.Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust
and distrust,” Proceedings of the 13th international conference on World
Wide Web, pp. 403–412, 2004.

[10] C. Zhang, X. Zhu, Y. Song, and Y. Fang, “A formal study of trust-based
routing in wireless ad hoc networks,” INFOCOM, 2010 Proceedings IEEE,
pp. 1 –9, Mar. 2010.

[11] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” Advances in Cryptology —CRYPTO 2001, pp. 213–229, 2001.

[12] M. Chase and S. Kamara, “Structured encryption and controlled disclosure,”
ASIACRPTO ’10, vol. 6477, pp. 581, 2010.

[13] F. Hess, “Efficient identity based signature schemes based on pairings,”
Selected Areas in Cryptography, pp. 310–324, 2003.

