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Abstract— To prevent adversaries from injecting bogus mes-
sages, authentication is required for broadcast in wireless sensor
networks. µTESLA is a light-weight broadcast authentication
protocol, which uses a one-way hash chain and the delayed dis-
closure of keys to provide the authentication service. However, it
suffers from several drawbacks in terms of time synchronization,
limited broadcast rounds, key chain management at the source
node, etc. In this paper, we propose a novel protocol, called
BAtch-based BRoadcast Authentication (BABRA) for wireless
sensor networks. BABRA does not require time synchronization,
eliminates the requirement of key chain, and supports broadcast
for infinite rounds. Like µTESLA, BABRA is also efficient due
to the use of symmetric key techniques.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) [1] have been drawing
a lot of interests because of their wide applications such as
event detection and target tracking in both civil and military
scenarios. Usually, a WSN consists of hundreds or even
thousands cheap sensor nodes, which collaborate with each
other and communicate with external world through one or
several powerful nodes, called base stations.

Broadcast is a common communication pattern to fulfill col-
laboration among sensor nodes. For example, the base station
may spread messages such as commands or requests to the
entire network through the network broadcast. Each individual
node may use the local broadcast to fulfill some specific
functions in its neighborhood, such as exchanging routing
information or cluster head election. Therefore, the correct
broadcast is critical to the collaboration objective of sensor
networks. In hostile environments, however, adversaries may
take the advantage of broadcast to inject false information,
which can raise significant havoc in the network. To defeat
such an attack, authentication is required. Each broadcasted
packet should carry some authentication information so that
the recipient node can verify its authenticity.

µTESLA [2] is a light-weight broadcast authentication
protocol, which uses a one-way hash key chain and the delayed
disclosure of keys to provide the authentication service. It is
efficient due to the use of symmetric key techniques. However,
it requires synchronization between the source and recipient,
which can be a potential security hole for adversaries [3].
Moreover, the key chain in µTESLA has limited length, and
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thus can only support limited rounds of broadcast. If the source
node needs to broadcast for a long period, it has to generate
a long key chain. But the management of a long key chain is
difficult for low-end sensor nodes. So µTESLA can only be
used by the base stations for the network broadcast.

In this paper, we propose a novel protocol, called BAtch-
based BRoadcast Authentication (BABRA) for wireless sensor
networks. BABRA broadcasts packets in batches and the
transmissions of different batches do not require time synchro-
nization. Therefore, BABRA eliminates the security hole that
µTESLA suffers. Moreover, BABRA uses independent keys
instead of a key chain for different batches, and thus supports
broadcast for infinite rounds. In addition, BABRA is also built
on symmetric key techniques and thus is efficient.

The rest of the paper is organized as follows. Section II
simply describes the µTESLA protocol. Details of BABRA
are given in Section III. Some comparisons between µTESLA
and BABRA are carried out in Section IV. The paper is finally
ended in Section V.

II. µTESLA

Though public key signatures can provide authentication
services, they are too expensive for sensor networks. There-
fore most researchers are seeking symmetric key solutions.
µTESLA is a broadcast authentication protocol, which is a
simplified version of TESLA [4]. It is based on a one-way hash
chain (OHC), which is a sequence of keys, K0,K1, . . . ,Kn,
such that Kj−1 = H(Kj), ∀j, j > 0, where the hash function
H satisfies two properties:

1) Given x, it is easy to computer y = H(x);
2) Given y, it is computationally infeasible to compute x

such that y = H(x).
The first key K0 is unicasted to all the recipient nodes as a
commitment in advance. The entire broadcast stream is divided
into continuous time slots. A broadcasted packet in the t-
th time slot carries a Message Authentication Code (MAC)
generated by using the t-th key Kt of the OHC. All the
recipient nodes dos not know Kt when they receive the packet.
After d time slots, the source node discloses Kt. Then every
node can authenticate Kt by applying the hash function to
Kt several times and checking whether Hk(Kt) = Kt−k

holds, where Kt−k is the t − k-th key that has been received
and authenticated. After that, the recipient node can use the
authenticated Kt to authenticate the packets of the t-th slot.
The delayed key release can efficient prevent malicious nodes
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from impersonating the source node, because the disclosed key
Kt can not be used to spoof packets after the t-th slot.

Though µTESLA is more efficient compared with other
public key signatures protocols, it has some strong require-
ments. The slot-based broadcast requires time synchronization
throughout the entire network. The time synchronization pro-
cedure may undergo potential threats leading to the failure
of the entire protocol [3]. The distribution of the key chain
commitment K0 to all the nodes is communication expensive
because the commitment has to be unicasted to each node
while the network can consist of large volume of nodes. The
OHC length is limited, and thus it can not support broadcast
for a long time. The complex key chain management indicates
that µTESLA can be used only by the base station for the
network broadcast.

Multilevel key chains are used to extend the lifetime of
authenticated broadcast [5], but it is still limited by the highest
level OHC. The multilevel key chains also require the source
node manage many OHCs at the same time and thus are not
suitable for sensor nodes. Moreover, time synchronization is
still a requirement.

III. BABRA DESIGN

Unlike µTESLA, BABRA do not require time synchroniza-
tion, and supports broadcast for infinite rounds. It can be used
in both the network broadcast and the local broadcast. In this
section, we give the details of BABRA.

A. Network Model

We consider the application scenarios including the network
broadcast, where the base station broadcasts messages into
the entire network, and the local broadcast, where each node
broadcasts messages in its one-hop neighborhood. BABRA
can provide authentication services for these broadcast pat-
terns. Though confidentiality is also critical to group com-
munications, the management of encryption keys is a very
challenging task [6] and is out of our considerations.

The main purpose of authenticating broadcast is to prevent
adversaries from injecting bogus packets. BABRA also uses
delayed key disclosure to counteract the bogus packet injec-
tion. In addition, adversaries can also inject radio interference
at the physical layer to disrupt communications, leading to the
DoS attack [7]. The intermittent interference can deteriorate
channel condition and cause packet loss. The continuous
jamming can even stop communications. However, due to the
large scale of network and cost considerations, adversaries
may not be able to jam the entire network. In this paper, we
assume that the impact of radio jamming only covers a portion
of the network at one time.

There are other attacks and corresponding countermeasures
discussed in the literature [7], [8]. They are out of the
scope of this paper because most of them are unrelated to
broadcast authentication. We have developed several schemes
[9]–[11] to establish pairwise keys to secure point-to-point
communications. In this paper, we simply assume that every
pair of neighboring nodes shares a pairwise key after network
initialization.

B. Architecture

In BABRA, broadcasted packets are sent in batches and
each batch is a burst sequence of packets. There is a key
associated with each batch. All the packets in one batch carry
an MAC calculated based on the associated key, and are sent
in C time units, which is the batch period (BP). At the end of
the BP, the source node starts a timer of D units, which is the
delay period (DP). During the BP and the DP, the batch key
is kept secret by the source node. When the DP timer expires,
the source node discloses the corresponding batch key in a
key disclose period (KP) of E time units. When a recipient
node gets the first packet of the batch, it starts a timer last
for C time units. Only the batch packets that arrive within
the period of C time units are accepted by the recipient. At
the end of the period, the recipient starts a new timer for D
time units as the DP. After the DP, the recipient can receive
the corresponding batch key and use the key to recalculate the
MAC to check the authenticity of the cached batch packets.
Due to the delayed key disclosure, the adversary can not use
the disclosed key to inject bogus batch packets because the
source node never sends any packet of this batch after the key
disclosure period.

However, each batch key should be authenticated before
being used to authenticate the corresponding batch packets.
BABRA achieves this goal by using an immediate authenti-
cation method proposed in [12]. Particularly, all the packets
in one batch also carry a hash of the key associated with the
next batch. Hence, each broadcasted packet consists of four
parts: the batch index, the payload, the hash of the key of
next batch, and the MAC calculated over the previous three
parts and the batch key (Fig. 1). The delayed batch key can
authenticate the corresponding batch. The hash of the key of
next batch is authenticated at the same time, and can be used
to authenticate the key of next batch.

The entire broadcast stream is depicted in Fig. 2. Before
broadcast, the source node bootstraps all the recipient nodes
with the hash H(K1) of the first batch key K1. Depending
on the scenarios where BABRA is applied, different methods
can be used to bootstrap the hash value. We will discuss this
issue later. After bootstrapping, the source node can send out
batches of broadcasted packets one by one and disclose the
corresponding batch keys lately (Fig. 2). Each batch is not
necessary to be sent right after the end of the previous batch.
Therefore, BABRA can be adapted to different data rates.

In hostile environments, the adversary can inject jamming
interference and cause packet loss. The nodes in the jammed
area will seek help from the surrounding neighbors to recover
the lost information such as keys or key hashes. To facilitate
such local collaboration, each recipient node keeps the latest
k keys received from the source node. We will discuss this
issue in Section III-E.

C. Bootstrapping

As is mentioned before, the hash H(K1) of the first batch
key K1 needs to be bootstrapped into all the recipient nodes.
To avoid using expensive public key signatures to authenticate
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Fig. 1. One batch of broadcast and the batch packet format. All the packets in one batch are sent in a batch period of C time units. At the end of the batch
period, the source node delays for a delay period of D time units and then discloses the corresponding batch key in a key disclose period of E time units.
All the packets in one batch carry an MAC calculated based on the associated batch key, and include a hash of the key associated with the next batch.
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Fig. 2. The authenticated broadcasting stream. The source node sends out batches of broadcasted packets one by one and discloses the corresponding batch
keys lately.

H(K1), we need some methods based on symmetric key
techniques.

For the local broadcast, the source node can unicast H(K1)
to each of its neighbors. Each unicast is authenticated with the
pairwise key shared between the source and the corresponding
neighbor. Because the number of neighbors is small, such
unicast bootstrapping can be finished in a very short time
period.

Though unicast can also be used to bootstrap the network
broadcast, the overhead is too much because there are too
many nodes in a network. It takes too much time for the base
station to unicast to each node. A simple way to bootstrap the
network broadcast is to preload each node with H(K1) before
deployment. It is easy to achieve this because the entire sensor
network is usually managed under a unique authority, and thus
preloading secure parameters is a common way to establish a
secure architecture for the sensor network [2], [5], [9]–[11].

D. Counteracting Bogus Packets

The parameter DP is critical to the security of the entire
broadcasting protocol. If the value of DP is small, there is a
chance that the adversary catches the key before some nodes
get the corresponding batch packets and then sends bogus
packets towards these nodes. Therefore, the value of DP should
be large enough for all nodes to get the batch before the release
of the key. For the local broadcast, the DP value Dl is larger
than maximum one-hop transmission delay, and thus can be
set as

Dl = λl

(
R

c
+ P

)
, (1)

where λl > 1 is a constant, R is the radius of node coverage,
c is the speed of light, and P is the packet processing delay.
For the network broadcast, the DP value Dn should be larger

than the time that a packet is transmitted over the maximum
diameter L of the network, and thus can be set as

Dn = λn
L

R

(
R

c
+ P

)
, (2)

where λn > 1 is a constant.

E. Countermeasures to Radio Jamming

The adversary can introduce jamming interference to disrupt
communications, leading to the DoS attack. The intermit-
tent interference can deteriorate channel condition and cause
packet loss. The continuous jamming can even stop communi-
cations. Here we discuss their impacts and countermeasures.

1) Intermittent Jamming: Each batch of broadcasting is
authenticated by the corresponding batch key. If some of
the batch packets are lost due to jamming, the recipient just
experiences lower quality of service. But if the batch key is
lost, the entire batch is useless. Therefore, to tolerate the key
loss is a very important task. Here we introduce the following
two methods to solve this problem.

To provide resilience to the key loss, the first method in
BABRA is to transmit each batch key several times during
the corresponding key disclose period. Suppose the average
packet loss rate is pl, and each batch key is transmitted t times
during its KP. The probability that the key can be received is

P = 1 − pl
t . (3)

Fig. 3 gives the key survival probabilities P versus the key
disclose times t when the packet loss rate pl varies from 0.2
to 0.8. We can see by simply disclosing multiple times, the
batch key can be received with very high probability.

It is worth noting that to disclose key multiple times is
the simplest Forward Error Correction (FEC) method to
counteract packet loss in communications. More complex and
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Fig. 3. The key survival probability P versus the key disclose times t, with
respect to different packet loss rate pl.

robust FEC methods can also be used here to increase the
resilience to the key loss. One example is to use Reed-Solomon
codes [13]. We do not discuss this issue here for the sake of
page limit.

The second method is carried out just in case that it is
unlucky that all the t receptions of batch key fail. In such a
case, the recipient node will seek help from its neighbors right
after the expiration of the KP timer. For the key loss during the
network broadcast, the node will locally broadcast a message
to request its neighbors for the lost key:

a −→ ∗ : 〈j,H(Ka
i+1),MAC(j,H(Ka

i+1,K
a
i )〉 ,

where j is the index of the batch of which the key is lost,
Ka

i+1 is the key associated with the next batch of node a’s local
broadcast stream, and Ka

i is the key of the current batch of a’s
local broadcast stream. Therefore this message is authenticated
by the local broadcast authentication. The adversary can not
spoof the message.

If a neighbor node b knows the key Kj , it will reply a
message through a local broadcast message:

b −→ ∗ : 〈Kj ,H(Kb
i+1),MAC(Kj ,H(Kb

i+1,K
b
i )〉 ,

where Kb
i+1 is the key associated with the next batch of

node b’s local broadcast stream, and Kb
i is the key of the

current batch of b’s local broadcast stream. This message is
also authenticated so that it can not be spoofed. In addition,
the key Kj is broadcasted, so node b has no bonus of replying
bogus messages because nearby nodes that also have Kj can
check whether node b lies to node a. This local monitoring has
been used in misbehavior detection. One example is discussed
in [14].

When node a gets Kj from its neighbor b, it will broadcast
Kj again through its local authenticated broadcast so that its
neighbors know that it really gets Kj .

If none of node a’s neighbors knows Kj , they will continue
the above procedure until some node can reply with Kj . For

example, if node b does not get Kj but its neighbor c knows
Kj , then b can learn Kj from c. Then b can broadcast Kj if
it has a request from a.

If multiple nodes in the neighborhood of node a knows
Kj , all of them might try to reply at the same time. But
the underlying contention resolving mechanisms at the Media
Access Layer can guarantee that one of them replies success-
fully. Other nodes that hear the replying of Kj stop trying to
broadcast Kj .

For the key lost during the local broadcast, it is easy to
resend the key from the source node to the recipient node
because it only involves one-hop communication, which can
be encrypted and authenticated by the pairwise key shared
between the source and the recipient.

2) Continuous Jamming: Continuous jamming is more se-
vere to broadcast. When the channel is jammed, the recipient
gets nothing. Because the key of each batch is authenticated
by its hash included in the previous batch, the key can not be
authenticated if all the packets of the previous batch are lost
due to the continuous jamming. Here we need some measures
to help recipient nodes recover the interrupted broadcast
stream when the jamming attack stops.

When the recipient node a gets a packet in the next batch
right after the jamming attack, node a broadcasts a message
including the index, say j, of the batch and the index i of
the last batch it receives just before the jamming attack. This
message is authenticated by node a’s local broadcast protocol,
i.e.,

a −→ ∗ : 〈j, i,H(Ka
l+1),MAC(j, i,H(Ka

l+1,K
a
l )〉 ,

where Ka
l+1 is the key associated with the next batch of node

a’s local broadcast stream, and Ka
l is the key of the current

batch of a’s local broadcast stream. Node a broadcasts the
index j for the hash H(Kj) of the key Kj associated with the
batch right after the jamming attack. In addition, the packets
of several batches just before the jamming attack are cached
in a’s buffer and not authenticated due to the loss of the
corresponding keys during the jamming attack. So node a
also broadcast the index i of the last batch just before the
jamming attack. Because every node will cache the latest k
keys disclosed by the source, if any neighbor finds in its buffer
that there are keys associated with some batches before the
jamming attack, it can reply with those keys so that node a
can authenticate the packets of those batches.

When a nearby node b, which is uninfluenced from the jam-
ming attack and has cached k latest keys Km, . . . ,Km−k+1,
replies with an authenticated broadcast message as:

b −→ ∗ : 〈H(Kj), [Ki, . . . ,Km−k+1],H(Kb
l+1),

MAC(H(Kj), [Ki, . . . ,Km−k+1],H(Kb
l+1,K

b
l )〉 ,

where Kb
l+1 is the key associated with the next batch of node

b’s local broadcast stream, and Kb
l is the key of the current

batch of b’s local broadcast stream. H(Kj) is used to authen-
ticate the key Kj of the next batch j right after the jamming
attack, and then the key Kj is used to authenticate the packets
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in the batch. Here the keys Ki, ...,Km−k+1 are optional. Node
b checks the latest k cached keys Km, . . . ,Km−k+1. If the
index i ≥ m − k + 1, node b knows that node a needs the
keys from Km−k+1 to Ki to authenticate the packets of the
last several batches just before the jamming attack. Then node
b replies with these keys.

Due to the broadcast, the surrounding nodes that also have
copies of H(Kj) can check whether node b lies to node a.
Hence node a can get correct H(Kj) and use it to authenticate
Kj later whereby to recover the entire broadcast stream. When
node a gets H(Kj) and/or Ki, ...,Km−k+1 from its neighbor
b, it will broadcast them again through its local authenticated
broadcast so that its neighbors know that it really gets them.

If all the neighbors of node a do not know the information
that a desires, they will continue the above procedure until
there is at least one node can give those information.

For the local broadcast under the jamming attack, it is
easy for the recipient node to recover after the jamming.
Through unicast, the recipient node a can get all the required
information from the source node b, where the communication
is encrypted and authenticated by the pairwise key shared
between a and b.

IV. DISSCUSSION

Each packet in BABRA and that in µTESLA both carry an
MAC as the authentication information. The difference is that
BABRA replaces the timestamp in the µTESLA packet with
a batch index and a key hash. The batch index is just like the
timestamp and thus can be represented with the same number
of bits. However, BABRA does not use limited key chain and
not require each batch to be sent right after the end of the
previous batch, so BABRA can support a longer lifetime of a
broadcast stream. Suppose each batch period be 100ms, which
is corresponding to one time slot [5]. A 32-bit batch index can
support a broadcast stream up to 4971 days if the source keeps
sending batches continuously.

As for the key hash in each BABRA packet, its length
should guarantee that no two keys have the same hash value.
Otherwise, the adversary can spoof broadcasted packets. Con-
sidering the 32-bit batch index, the number of keys in BABRA
is 232. According to the birthday paradox [15], a 64-bit key
hash is enough to guarantee that all the 232 keys generate
different hash values with a probability close to 1. Though
BABRA introduces the additional packet overhead for the
key hash, it is worth because of the elimination of the time
synchronization requirement.

Like µTESLA, BABRA also requires every node to buffer
packets before the corresponding key is disclosed. The differ-
ence is the management of keys. In µTESLA, the source node
has to manage a key chain, which has a length determined
by the lifetime of the broadcast stream. However, to manage
such a key chain may not be feasible when the source wants
to broadcast for a long time. In BABRA, all the keys are
independent. The elimination of key chains makes BABRA
suitable for both the network broadcast by base station and
the local broadcast by sensor nodes. Each node in BABRA

caches the latest k keys disclosed by the source node. The
value k can be adapted according to the buffer space of each
node.

V. CONCLUSION

Though there are many broadcast authentication protocols
proposed for conventional wired networks, few work has been
carried out for wireless sensor networks. Though µTESLA
can provide the broadcast authentication service for sensor
networks, it still suffers some drawbacks. BABRA is a batch-
based broadcast authentication protocol for wireless sensor
networks. BABRA broadcasts packets in batches and the
transmissions of different batches do not require time synchro-
nization. Therefore BABRA eliminates the security hole that
µTESLA suffers. BABRA uses independent keys in stead of
a key chain for different batches, and thus supports broadcast
for infinite rounds. BABRA can support both the network
broadcast and the local broadcast. In addition, BABRA is also
built on symmetric key techniques and thus is efficient.
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