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ABSTRACT

In this paper, we have introduced a new class of artificial neural
networks whose activation function is Gaussian instead of sigmoidal
function and proved that this network can also approximate any
continuous mapping. Moreover, a close relationship between this
network and the well-known Shannon’s sampling theorem is

discovered.



THE LAYERED NEURAL NETWORKS WITH GAUSSIAN ACTIVATIONS

INTRODUCTION

Multilayered neural ﬂetworks habe been found to be very useful
in applications. They have been sucessfully used in pattern
recognitions and related area, recently used in the modeling of
nonlinear systems, adaptive control and identifications ([11).
Although it has been shown ((2],[3]1,[4]) that any continuous
mapping or any measurable mapping can be approximated by the
multilayered neural net, it is witnessed that to find such net
(i.e., the number of nodes) is very difficult, therefore training
the net is a difficult task. In general, the activation functions
in the multilayered net is sigmoidal function with saturation.
Intuitively, this kind activation has the following interpretation:
when a neuron fires, it will fire forever. This is the main
difference between the artificial neurons and the biological
neuraons. In this paper, we will use the Gaussian activation
function and prove that such layered networks can also approximate
any continuous or measurable mapping. Since Gaussian activation
. functions can be used to approximate the impulse function, we can
obtain the bound of the number of neural network we need to
approximate the continuous mapping according to Shannon’s Sampling
Theorem.

Most of the proofs for the above approximation relied upon the
well-known Stone-Weierstrass’s theorem which is just existence

proof. In this paper, we present a constructive proof, which does
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not need the Stone-Weierstrass’s theorem.
MATN RESULTS
Theorem 1. Suppose' that {WN} is a sequence of positive
definate matrices, which has the minimal eigenvalues approximate to

infinity as N becomes large, then

2={g(x) |g(x) =;: ciexp (- (x-t,) TWy(x-t,)), t,€R 7, CiERl,N,mEZ’}
al

can approximate any continucus mapping on any compact set.
Proof. We use the idea from the probability theory and the

following result: for any continuous function f£{x), we have

£(x) =ff(t-x) 8 (¢t)dt

" where 46(t) is the Dirac function.

Define D to be the compact set of R*, and

Dy={x||x|sK, x€R ?}

Since D is compact, it is also bounded, hence for large X, D is
contained in Dg. For any given continuous function £(x), let
F(x)=f(x), when x is in D, and F(x)=0 otherwise. Since F(x) is
continuous on D,, from Cantor’s theorem, F(x) is uniformly
continuous on Dy, i.e., for any é>0, there exists $>0, so that for

any x, and x, in Dy, the following holds:



|F(x,) -F(x,) |<e whenever |x,-x,|<&.
We first prove that the following holds:

£(x)=limy K| F(t)exp(-(x-t) TW,(x-t))dt (1)

uniformly on D, where t and x are in R", and K, satisfying the

following condition:

Ky[exp (- (x-£) Wy (x-£)) dt = 1,

Notice that since W, is positive definate, the condition is
equivalent to say that K, exp(-(x-t)™,(x-t)) is the Gaussian
density function with mean x and variance matrix 2w,'. Then we

obtain

Notice that DcD,cD,,, hence for any teD,°, xeD, we have
I t=xl 2l t] -] x| 22K-K=K>8>0
and also there exists M>0, such that | £(x)| <M on D,,, therefore, (2)

becomes

From the Gaussian distribution theory, we can obtain that K, = (det
Wy /n")Y?. Since W, is positive definite, there exists an
orthonormal matrix U, such that Wy = U® diag{e,?,~,0,%} T with U® =
U™ where 6, is the eigenvalue of W,. Ther from (3), we obtain

where A(N) is the square root of the smallest eigenvalue of Wy
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A, & |f(x)-K, J‘f(t)exp(—(x—t)" W, (x-t)) dt

Ky

x] J”"f(x)exp(-(t-x)T W, (t-x)) dt-K, J-:-f(t)exp(—(t—x)" W, (t-x)) dt

[Z(£x)-2(t)) exp(-(t-x)7 Wy (t-x)) dt

A

K, [T |£(x)-F(£) | exp(-(t-x)7 W, (t-x)) dt

K, _[Dn | £(x)-F(t) |exp(-(t-x)7 W, (t-x))dt
+Ky [, |£(x) |exp(-(t-x)" W, (t-x))dt
Do
< K, | £(x)-£(t) |exp(-(t-x)T W, (t-x))dt

Daje m ( It-x)<d )

+ Ky | £(x)-£(t) |exp(-(t-x)" W, (t-x))dt
Daje s { 1E-x] 28 )

+K, [ |£(x)]exp(-(t-x)" W, (t-x))dt (2)
Pak

- -3y T -
Ay < x,,sfpnm ooxtes , &P (=) T Wy (£-x)) dt

+2MK,
G DoV Be-x12d )

+1kﬂ{NfD2§exp (-(t-x)T W, (t-x))dt

exp(-(t-x)T W, (t-x))dt

seKy[ exp(-(t-x)T Wy (£-x))dt

-(t-x)T -
+2MK,, e 2Mexp( (t-x)T Wy (t-x))dt
= -(t-3)T -
e +2MK,, (It_xlzmeXD( (E-x)T w, (t-x))dt
= -tT 3
e+21\ﬂq\,ﬁltm)exp( t Tw,t) dt (3)

From the assumption of W,, we know that A(N) goes to infinity as N
goes to infinity, thus for the e>0, there exist N,=N,(e), such that

for any N>N,, we have

2 exp(t Tt) de<e

=
78 (e1282(M)

From (4), we have the following for N>N,
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a0 )
A, < e+2M#f exp (- (Ut) T diaglo?, -, a2} (Ut)) dt
m (1t]z8)
G0
=g+2M—2_Adet (U?)
“n
fs P
se+2M 21 Oa [ exp(-tTdiagle?,~,at) dt
(1tlz8)

yn?

f exp (-t Tdiagle?, -, o%tt) dt
(U telzd)

M T
=2 e -t *t)de
*e /“nflldiag{ai",-,c,',]tlzbl xp { )
M T
< -t¥t)ydt 4
er2 ﬁf(ltlz&l(ﬂﬂexp( ) (4)
A, < 2e.

Therefore, the sequence

{KNf_:'?(:) exp (- (£-%)T Wy {t-x) )dt}

is uniformly convergent to the function £(x). With small

modification of the above procedure, we can prove that

£(x) = lim,., KNfo(t) exp(~(t-%)T Wy (£-x))dt  (5)

-

uniformly.
Now we use (5) to obtain the desired sequence in . From (5},

we know that for any e>0, there exists an N,, such that

Iftx) - K[ £(E)exp (- (£-2) T W, (t—x))dt:‘si—- (6)

Using the discretization for the integral in (6), for e>0 we have

e/4>|KLf( £) exD (- (£-2) Wy, (£-%) ) dE-TP_ exp (- (x-t,) Wy (x-t,))



where ¢; are coefficients obtained from the definition of
integration and t;, are vectors. From this inequality and the

previous one, we obtain

- (x-t 1) Wy, (x-£,) _ - (x-£) Wy, (x-~t)
|£(x)-Y2_ cie |s|£(x) xfpf(t) e dt|+

= (x~£) Wy, (x=t) —lx-e) Wy (x-c5) & &
|KLf(t)e dt 25-1 cye I<—Z+Z<e

Thus, we have proved Theorem 1.

Suppose that we choose the following special matrix sequence
Wy~=diag{l/e¢,,1/6,,+..,1/0,}, where 0<o,~0 as N~=, then we obtain the
following interesting

results.

Corollary 2. Define

- - 2
2={g(x) |g(x) <32 co Tin G/ epr 3 e, c,€R*, Nez,}

then for any continuous function f£(x) on a compact set K, we can
find a sequence in I which is uniformly convergent to f{x), i.e.,
f(x) can be approximately represented by the layered net 2 through
the choice of the weights c; and o, and translation tyy.

Observing the function of W, in the proof of Theorem 1, we can
obtain the following simpler artificial neural nets to represent

any continuous mapping. Choosing W,=diag{N,N,...,N}, we obtain



Corcllary 3. Define

Sel (xy~ty4)2
2={g(x) lg(x) =37  ce whin U~ ,tijERl,CiE'Rl,pEZ+,N€Z+}

then any continuocus mapping on a compact set can be approximately
represented by the artificial neural network I, i.e., for any
continuous mapping on a compact set K in R®, there exists a
sequence in %, which uniformly converges to the mapping.

Remark. This kinds of artificial neural networks belongs to
what is called functional link nets ([5]). The activation function
is in the form: exp(-x?), which is similar to Guassian density
function in probability theory.

For the one-dimensional case, it deserves a special attention
because it is the simplest case. We formulate as the following

Theorem 4. Let C[a,b] denotes the linear normed space of
continuous functions defined on [a,b]. For any fixed positive

sequence {o,} satisfying o0,~0 as k-w, define

21'—'{9'(}{) |Q’(X) =y 7 cie-(x'ci)zfata

o1 +Cyo tieRl,pez,}

then for any continuous function f(x) in C[a,b], there exists a
sequence in %,, which uniformly approximate f(x) on [a,b].

Proof. This can be proved directly from Theorem 1.

Remark. The constructive proof in this theorem suggests a
interesting interpretation. From distribution theory, we can

cbserved that



lim,, —1e~(t-0/9*=p (£-x)
7O

hence we have

{x) =f_:-f(t) § (t-x) dt=1im,_, \/%o ﬁ:f(t) o-tt-x)3/0 g1

where &(x) is the Dirac function. From this, we can see that the
right hand side of the above equality is nothing but the limit of
a sequence in the neural net 2,. Let f(t) denote a continuous
signal, it is well-known in signal processing that using the
sample, say, f(t.), of f(t), we can recover the signal f(t) under

certain condition, i.e.,

£(0) =Y, F(£) 8 (-t -3, %e-(c-m:/ua.

Thus we can see that our neural network representations of
continuous mappings are directly related to signal representation
and recovery problem. It is easily see that Shannon’s Sample
Theorem can be used to estimate the number of nodes needed to
represent a given continuous mapping by our artificial neural
networks. This issue will be addressed in a separate paper.

We can also observed that in our proof the crucial point is
that we use the Gaussian function to “‘approxmate’’ the Dirac
function, it is well-known ([6]) that there are many functions
which can be approximate Dirac function, therefore we can construct
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as many as poosible artificial neural networks and use Shannon’s
sample theorem to estimate the structure. It is also possible to
find some networks in this way so that the training may be much
easier. Notice that because of the arbitrary choice of the sequence
0,, we can choose suitable sequence to simplify the model and the
training procedure. The following is one extremely simple

artificial neural network.

Corollary 5. Define

= ' 2
B,={g(0) |g(x) =7 | c,e” N, ¢y, £,eR?, N, pez ),

then any continuous function defined on [a,b] can be approximated
by the artificial neural network X,.
This kind of artificial neural networks can be illustrated in

the following figure.

where SUM indicates the summation and g in the circle is the
Gaussian activation function, i.e., g(x)=exp(-x?).
CONCLUSIONS

In this paper, we have proposed a new class of artificial neural
networks which can be used as universal approximators for any
continuous or measurable mapping. More importantly, this class of
artificial neural networks is closely related to the Shannon‘s
sampling theorem in signal processing and the signal recovery

theorem can be used to estimate the structure of the given



X

Figure 1: ANN with Gaussian Activation

continuous mapping by observing its spectrum. To the author’s
knowledge, this is first paper to address the relationship between
the artificial neural networks and signal processing. Further
research in this direction will enhance our understanding to the
structure of artificial neural network and it will be of

potentiality in applications.
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