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Abstract—The continuous convergence of machine learning
algorithms, 5G and beyond (5G+) wireless communications,
and artificial intelligence (AI) hardware implementation hastens
the birth of federated learning (FL) over 5G+ mobile devices,
which pushes AI functions to mobile devices and initiates a
new era of on-device AI applications. Despite the remarkable
progress made in FL, huge energy consumption is one of the
most significant obstacles restricting the development of FL over
battery-constrained 5G+ mobile devices. To address this issue,
in this paper, we investigate how to develop energy efficient
FL over 5G+ mobile devices by making a trade-off between
energy consumption for “working” (i.e., local computing) and
that for “talking” (i.e., wireless communications) in order to
boost the overall energy efficiency. Specifically, we first examine
energy consumption models for graphics processing unit (GPU)
computation and wireless transmissions. Then, we overview
the state of the art of integrating FL procedure with energy-
efficient learning techniques (e.g., gradient sparsification, weight
quantization, pruning, etc.). Finally, we present several potential
future research directions for FL over 5G+ mobile devices from
the perspective of energy efficiency.

INTRODUCTION

Machine learning (ML), particularly deep learning (DL), is
one of the most disruptive technologies the world has wit-
nessed in the last few years. Unfortunately, cloud-centric ML
generates tremendous traffic and also causes serious privacy
concerns, which is not suitable for many resource-constrained
applications. In order to scale and move beyond the cloud-
centric ML, Google has introduced federated learning (FL),
the currently popular distributed machine learning paradigm,
which aims to enable mobile devices to collaboratively learn a
joint global ML model without sharing their privacy sensitive
raw data [1]. With FL, distributed data stakeholders (e.g.,
mobile devices) only need to periodically upload their updated
local models to the aggregation server for global updates,
instead of uploading their potentially private raw data, thus
significantly lowering the risk of privacy leakage. However,
stakeholders in many IoT applications, like smart devices, are
resource constrained in terms of spectrum, energy, computing
and storage, which makes FL for such on-device applications
highly challenging. Recent successes in 5G and beyond (5G+)
technology [2], [3] can further facilitate the implementation of
FL over mobile devices. First, due to the advance of hardware
design, 5G+ mobile devices are usually armed with ever-
increasingly high-performance computation units, such as the
central processing units (CPUs) and graphics processing units
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(GPUs), which enable them to host computation-intensive
learning tasks. Besides, 5G standard has also embraced the
computing capability, such as multi-access edge computing
(MEC), paving the way for performing computing for edge
intelligence, and hence building an effective wireless network
architecture to support viable FL. Moreover, 5G+ wireless
transmissions featured a very high data rate and ultra-low
latency, which can be leveraged to tackle the communication
bottleneck issue for local model updates during training.
Such a combination of 5G+ and FL prompts tremendous
successful applications over 5G mobile devices, including
keyboard prediction [4], cardiac event prediction, financial risk
management, etc.

While deploying FL over 5G+ mobile devices is promising
to have so many interesting applications, FL and 5G+ mobile
devices cannot be easily married for fruitful use without
frictions. Severe challenges are foreseeable, of which energy
consumption is the dominant concern. On the one hand,
executing on-device computing and performing local model
updates are both resource-hungry, inducing a significant surge
of energy consumption on mobile devices and hence draining
significant battery power. Thus, the first mountain we have
to climb is to improve the system energy efficiency in order
to prolong the lifetime of mobile devices during training,
where the energy consumption usually comes from both the
local computing and wireless communications. On the other
hand, for FL over 5G+ mobile devices, there will be a trade-
off between computing and communication over resource-
constrained mobile devices. This stems from our observation
on the comparable energy consumption for on-device training
with high-performance processors and wireless transmissions
with advanced communication techniques. For example, to
transmit a ResNet-50 model, a commonly used deep network
for image classification, with approximately 100MB param-
eters via 100 Mbps 5G wireless uplinks typically consumes
30J for Industry IoT devices [5]. This is comparable to the
energy consumption for performing a single-step local training
on one GPU (e.g., 30J for NVIDIA Tesla V100 on ImageNet
dataset [6]). Therefore, how to make a trade-off between
computing and communications in order to accommodate
realistic computing environments is another critical issue
when deploying FL over 5G+ mobile devices.

Motivated by the aforementioned challenges, we plan to
investigate the energy-efficient FL over 5G+ mobile devices
in this paper. Our goal is to enable effective and efficient
local training on 5G+ mobile devices while minimizing the
overall energy consumption for FL over 5G+ mobile devices

Authorized licensed use limited to: University of Florida. Downloaded on June 03,2022 at 04:49:09 UTC from IEEE Xplore.  Restrictions apply. 



for both involved communications and computing. To this
end, we first give an overview on the FL over 5G+ mobile
devices and discuss the energy consumption models. Then, we
study the local computing and wireless transmission co-design
from the long-term learning perspective, where we make a
trade-off between the two parts simultaneously. In addition,
several advanced techniques, such as gradient sparsification,
gradient quantization, weight quantization, model pruning,
and dynamic batch sizing, are integrated into the proposed
design to further reduce the overall energy consumption for FL
over 5G+ mobile devices. Specifically, gradient sparsification,
gradient quantization, and dynamic batch sizing are mainly
used to save communication energy, while weight quantization
and model pruning reduce the required computing energy
consumption to cope with insufficient computing resources.
It will be ideal that all those techniques can be integrated to
enable energy-efficient FL over resource-constrained 5G+ mo-
bile devices. Finally, we conclude this paper with discussions
on potential research directions for energy efficient FL over
5G+ mobile devices.

BACKGROUNDS AND ENERGY MODELS

FL over 5G+ Mobile Devices

As an emerging decentralized learning paradigm, FL has
taken advantage of the computing resources across massive
participants. Specifically, all participants collaboratively con-
tribute to one global learning task in a distributed manner with
continuous interactions for model parameter updates. With
FL over 5G+ mobile devices, all 5G+ mobile devices (e.g.,
smartphones, laptops, automatic vehicles, etc.) can serve as
participants, and a server such as gNodeB acts as the aggrega-
tor. In particular, a 5G server first broadcasts a current global
model to the participating 5G+ mobile devices in FL. After
receiving the global model, a 5G+ mobile device conducts
the local on-device training based on the local data and its
computing capability. Second, when a 5G+ mobile device
finishes its local training in this round, it will upload its local
model updates (i.e., gradients) to the server via wireless links
with 5G+ techniques. Finally, the server does the aggregation
over all the received local gradients to update the global model
and then feeds it back to the participated mobile devices for
the next-round training. The above procedures are repeated
until obtaining a converged global model, which can be
deployed by the 5G+ devices for future utilization. A typical
paradigm of the FL over 5G+ mobile devices, including local
computation and wireless communications parts, is shown in
Fig. 1.

FL over 5G+ mobile devices has become a natural way
to implement the artificial intelligence (AI) at the edge, like
the keyboard prediction introduced by Google [4]. Such a
combination pushes AI functions to mobile devices, which
provides a flexible and convenient approach to conducting
a learning task, especially for some real-time and lifelong
learning applications. However, deploying FL over 5G+ mo-
bile devices raises tremendous challenges and difficulties, and
energy consumption is one of the most significant issues.
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Fig. 1. The illustration of the FL over 5G+ mobile devices.

Unlike other central servers with wired connections, mobile
devices have limited energy resources due to the limited
battery power. Besides, the energy consumption of wireless
transmissions is not encountered in learning scenarios with
wired servers. Both make it extremely difficult for 5G+ mobile
devices to handle the energy-hungry training tasks. In light of
this, it is worthwhile to investigate the FL’s energy model over
5G+ mobile devices to deal with energy-saving issue.

Communication and Computing Energy Models

With FL, all 5G+ mobile devices contribute to one unified
global model by continuously transferring the local model
updates with the centralized aggregator. In this process, the
energy consumption of the 5G+ mobile devices mainly comes
from the wireless transmissions of the model updates and the
local computation executed on them. Hence, brief descriptions
of the communication energy model and the computing energy
model are given as follows.

Communication: All the participating 5G+ mobile devices
transmit their computed local model updates to the central
aggregator through the wireless transmissions, which corre-
sponds to the communication energy consumption. Note that
conducting an entire FL task training with multiple communi-
cation rounds usually takes several minutes. In this situation,
the channel condition may not remain the same all the time
and may suffer from fluctuations. Therefore, one possible
way to model the transmission rate with dynamic channel
conditions for each device throughout the entire training
process is to take the expectation over the channel variations.
Besides, according to the Shannon–Hartley theorem, both the
bandwidth and the transmission power impact the transmission
rate, and the power of additive white Gaussian noise (AWGN)
needs to be considered as well. Accordingly, the overall
energy consumed by each device for wireless transmissions
during the training process can be formulated as the product
of the required number of global communication rounds and
the energy consumption in a single round. Here, the one-round
energy consumption is related to the transmission power, the
transmission rate, and the model size.
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According to the characteristics of the energy model men-
tioned above, two possible ways can be adopted to save
the energy consumption on the communication part in the
entire training process, namely, decreasing the required rounds
of global communications and reducing the communication
workloads per round. Given this observation, several ap-
proaches can be implemented to save the communication over-
head. On the one hand, global synchronizations can be done
after several local computing iterations to decrease the com-
munication frequency, i.e., the federated averaging. Similarly,
the number of required global communication rounds can also
be reduced by gradually increasing the batch size throughout
the training. Since the total amount of data computation
required for FL convergence is relatively fixed, these two
methods greatly reduce the number of communication rounds
by increasing the computing load in each communication
round. On the other hand, model compression technologies,
e.g., model sparsification and quantization, can greatly help
reduce the size of the local model to be transmitted, thus
saving the communication energy in each round.

Computing: With the ever-increasing popularity of smart
devices equipped with high-performance GPUs, 5G+ mobile
devices can undertake heavy computations even for deep
learning tasks. However, due to the powerful computational
capability and the massively parallel architecture of the GPU,
the computational energy consumption has been a significant
burden for the learning scenarios, especially for training
tasks implemented on the mobile devices with limited battery
power. Thus, more research efforts are needed to investigate
the computing energy model and the corresponding com-
puting energy-saving strategies. Here, we assume that the
5G+ mobile devices are equipped with GPUs, which are
widely assumed in modern learning training. Specifically, the
GPU computation architecture involves the memory modules
referring to data fetching and the core modules referring to
the data calculation. Under this architecture, the voltage and
the frequency of the corresponding modules can be controlled
independently.

The energy consumption for computing a mini-batch of data
in one local iteration can be calculated as the product of the
execution time and the runtime power. Here, the execution
time is determined by the device-dependent parameters, like
the memory frequency and the core frequency, and the task
specific information, such as the number of cycles for data
fetching and calculation [7]. Similarly, the runtime power
is also affected by device-dependent parameters, including
the frequency and the voltage, and coefficients related to the
specific learning tasks. Hence, the total computation energy
consumption can be computed as the product of energy
consumption for one local iteration and the total number
of iterations. Currently, model compression techniques, such
as pruning and weight quantization, together with the cor-
responding hardware co-design, can alleviate the burden of
computing energy consumption in one local iteration because
the needed number of cycles for data fetching and calculation
is decreased. The total number of local iterations will increase
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Fig. 2. Illustrative scenarios for energy-efficient FL over 5G+ mobile devices.

mildly due to the falling of the model precision in each local
iteration, but in all, the total computational energy will be
saved.

ENERGY-EFFICIENT FL VIA COMMUNICATION AND
COMPUTING CO-DESIGN

As illustrated in the previous section, the energy consump-
tion of FL over 5G+ mobile devices mainly comes from
two parts: on-device local computing and wireless commu-
nications for model updates. Thus, in this section, we focus
on how to integrate various technologies (e.g., gradient spar-
sification, gradient quantization, weight quantization, model
pruning, etc.) and develop corresponding communication and
computing co-design to reduce overall energy consumption for
FL over 5G+ mobile devices. In this section, we will survey
some recent developments focusing on the communication
and computing energy consumption co-design, which are
illustrated in Fig. 2.

Gradient Sparsification to Reduce Communication Energy

FL communication energy consumption can be reduced
by integrating the training algorithm with two state-of-the-art
communication compression strategies, namely, local compu-
tations and gradient sparsification. The former allows more
local computations performed on the 5G+ mobile device
between every two global model updates, thereby reducing
the total number of communication rounds. The latter lets
participants upload only a fraction of gradients with significant
magnitudes, thereby reducing the communication payload in
each round. Besides, error compensation is applied at each
participant after every model update to accelerate the global
convergence by accumulating the error that arises from only
uploading sparse approximations of the gradient updates,
ensuring all gradient information gets eventually aggregated.

The convergence results for our FL algorithm indicate
that, from the learning perspective, the gradient sparsity
magnitudes of all the participants jointly take impacts on
global convergence and communication complexity. Given a
target model accuracy, a lower sparsity results in a larger
number of communication rounds, potentially involving more
communications to converge. Besides, increasing the number
of local iterations within a reasonable range is likely to
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reduce the overall communication complexity, but imposes
more computing burdens on mobile devices in each commu-
nication round. In a realistic edge computing environment,
these two types of compression factors implicitly determine
the energy consumption for participating 5G+ mobile devices
by affecting the payload required for transmissions and the
workload required for processing, respectively. The above
findings reveal that there exists an intertwined trade-off be-
tween communication and computing, controlled by the com-
pression factors. Thus, they are needed to be well balanced
for each participant to accommodate the specific environment.
This can be achieved by formulating a compression control
problem using the derived convergence bound from the long-
term learning perspective [8], with the goal of optimizing the
overall energy efficiency for FL on 5G+ mobile devices over
wireless networks. We consider an FL scenario with ResNet20
deep model on the CIFAR-10 dataset, and the parameters
of the global model are initialized by the Xavier method.
As shown in Fig. 3(a), the flexible sparsification based FL
method (“FlexibleSpar”), which considers the heterogeneity
of participating 5G+ mobile devices and provides the flexible
sparsification strategies derived from an elaborated compres-
sion control algorithm, consume less energy than the other
methods. Specifically, “UnifiedSpar” makes every participant
to compress the gradients with a unified sparsity, regardless
of the heterogeneous communication condition, and “FedAvg”
is the original FL algorithm. Furthermore, Fig. 3(b) shows
the convergence rate in terms of training epochs, which
indicates that “FlexibleSpar” exhibits very similar behavior
with “UnifiedSpar” in terms of convergence rate and final
accuracy, both of which slightly underperform the baseline
approach, i.e., FedAvg [1].

Gradient Quantization to Reduce Communication Energy

Similar to the gradient sparsification technique, another
efficient compression method to reduce the communication
energy consumption is gradient quantization. After completing
the local training in one round, the computed gradients should
be uploaded to the aggregator for the global updates. With
gradient quantization, instead of uploading all raw gradients,
we can also quantify the computed local gradients with low
precision, i.e., a small number of bits, thus reducing the
communication load per round. In this way, a high gradient
quantization level corresponds to a low communication energy
consumption per round. In contrast, the required global rounds
increase due to the precision reduction, thus increasing the
total computing energy. Therefore, the gradient quantization
level needs to be controlled to make a trade-off between
the communication and computing for the overall energy
efficiency. It should be noted that local updates (i.e., gradi-
ents) refer to the communication part. Specifically, gradient
quantization can help reduce the gradient size and thus save
communication energy. However, when we download the
global model to the device, the weight quantization is related
to the forward pass in the local computing part, which will
be discussed in the following subsection.
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Fig. 3. Performance evaluation for the FL with gradient sparsification.

Weight Quantization to Reduce Computing Energy

Weight quantization is regarded as a promising solution to
decrease the energy consumption in local on-device training.
It reduces the model complexity and thus computing energy
via representing the model parameters with small bit-widths
(e.g., 8-bit or 16-bit fixed point numbers) during the training
forward pass on 5G+ mobile devices. As model weights are
represented by small bit-widths, the total data size is reduced,
which saves the energy costs of memory accesses. Besides,
the computational costs are also reduced because the fix-
point arithmetic, such as 8-bit integer, consumes 30 times
less energy than 32-bit floating point arithmetic. Considering
device heterogeneity, the quantization selections for different
participants are varying. However, the quantization induces
information loss during training. The errors between the
quantized and original values make the FL model converge to
a neighborhood of the optimal solution. Smaller quantization
levels (i.e., bit representations) lead to a higher error and push
the FL model further away from the minima. In this way, given
a model accuracy, total communication rounds are related to
the average effect of quantization strategies across mobile
devices. The participants with limited computing resources
or good wireless conditions prefer more aggressive quanti-
zation strategies (smaller bit-widths) to reduce the energy
costs. In contrast, those who face long transmission delays
would leverage higher precision training to reduce the total
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communication rounds and the overall energy consumption,
at the costs of more computing burden.

As a result, one can consider a joint design for flexible
quantization selection and bandwidth allocation to capture the
trade-off between the local computing and communications
and minimize the overall energy consumption for FL training
within allowed deadline [9]. One example of a stochastic
quantization scheme could first determine a quantization set
based on different quantization levels, and then map the model
weights to the nearest quantization point with high probability.
The participating devices could determine different quanti-
zation levels depending on their device capabilities and the
targeted model accuracy. Meanwhile, the server allocates the
wireless bandwidth to the participants considering both the
channel conditions and participants’ computing capabilities.
This process terminates when it reaches a certain global
model accuracy level. Fig. 4(a) shows the overall energy
consumption for the FL training procedure under different
learning mechanisms, and the settings of FL are the same
as those in Fig. 3. For a fixed number of training iterations,
those mechanisms equipped with quantization (“UnifiedQnt”
and “FWQnt”) consume less energy than “FedAvg” without
quantization. Specifically, the scheme “FWQnt” considers
the impacts of the quantization on FL convergence, device
heterogeneity and wireless channel conditions and enhances
the energy efficiency with x2 - x100 less energy consumption
than the other schemes in the FL training process under the
same accuracy level. Moreover, the convergence rates for the
corresponding schemes are also shown in Fig.4(b), where
both quantization based approaches slightly under-perform
“FedAvg”.

Model Pruning to Reduce Computing Energy

Another efficient learning technique that can be integrated
into the FL process is model pruning, which can save the
computing energy during training with proper underlying code
design. Generally speaking, model pruning compresses the
model by removing less contributing weights and connections,
while retaining the performance of the original dense models.
This will significantly affect the computing energy per itera-
tion. Firstly, computations are performed on an incrementally
sparser model, reducing the total number of energy-intensive
memory accesses. Secondly, pruning is performed across all
neural network layers, including each convolutional layer.
Typically, since convolutional layers dominate the overall
energy consumption in a deep neural network, pruning hence
leads to computing energy saving from the major energy
consuming layers of the model. However, a more aggressive
pruning strategy with higher pruning frequency, slows down
convergence due to network structure change, resulting in
more communication iterations. Therefore, the pruning pa-
rameters need to be carefully designed to balance the trade-off
between computation and communications for overall energy
efficiency. Besides, reducing the model size also saves the
inference time and energy, enabling the pruning method to be
much more suitable for FL training over 5G+ mobile devices.
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Fig. 4. Performance evaluation for the FL with weight quantization.

Moreover, the pruning can be coupled with the quantization
technique in FL training to address the restrictions in imple-
menting deep neural networks on resource-constrained 5G+
mobile devices. Essentially, quantization requires a smaller
number of bits to represent each pruned connection, thereby
reducing memory, bandwidth and energy consumption. To
enable a communication efficient and mobile device com-
patible FL process, we develop a three-fold compression of
double quantization along with model pruning approach [10].
In particular, the gradients and weights of uplink and downlink
models are appropriately quantified, and the gradual pruning
of the received model is utilized to reduce the computing and
communication loads. This has a dual advantage of reducing
the communication time and energy, and reducing the memory
bandwidth due to fewer memory accesses. Therefore, we
can reduce the model redundancy and make the FL process
computation, storage, and communication sufficiently efficient
to deploy large-sized deep neural networks over 5G+ mobile
devices.

Other Techniques to Save Energy

The total energy consumption can also be reduced by
capturing the intrinsic training dynamics, such as dynamically
adjusting the batch size [11]. Specifically, we can interpret
the stochastic gradient descent (SGD) training process as
integrating a stochastic differential equation (SDE) whose
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“noise scale” is related to the batch size selection. Small
batch size theoretically corresponds to large-scale random
fluctuations, which can help explore the parameter space to
avoid trapping in local minima at the initial stage in the FL
problem. At later stage, small-scale fluctuations (large batch
size) are more desirable to fine-tune the parameters when a
promising region of parameter space is reached. Therefore,
gradually increasing batch size in the training process with a
well-designed increment strategy can help reduce the commu-
nication rounds in FL training process.

Moreover, gradually increasing batch size also leads to
positive effects on computational energy-saving. Due to the
GPU’s parallelism property, the local computing energy is no
longer proportional to the batch size. Accordingly, the energy
consumption of unit data calculation is relatively small for
large batch training, especially executing on the 5G+ mobile
devices with multiple GPUs. Besides, it has been theoretically
and experimentally demonstrated that both the fixed batch
size approach and the dynamic batch sizing approach need
similar data epochs. In this case, thanks to the benefit of
large batch training at later stage, the training approach with
dynamical batch sizes is more energy-efficient. Besides, a
larger increment factor of batch size decreases the number
of required communication rounds but increases computation
in each round. Therefore, a batch size control scheme catering
to the GPU computing performances and wireless communi-
cation conditions of mobile devices can be further developed
to balance the computing and communications, thus achieving
energy-efficient FL over 5G+ mobile devices.

Balancing Communications and Computing to Reduce Overall
Energy Consumption

As aforementioned, the trade-off always exists between
communications and computing. Therefore, it is widely ex-
pected that both computing and communication parts need
to be considered in the energy-efficient FL training process.
When integrating both in the FL training process, the needed
number of global communication rounds is a critical element.
One possible way to approximate the needed global rounds
is to conduct the FL theoretical convergence analysis. After
identifying the specific dataset and the training model, the
bound of the required number of communications can be
derived based on the required training accuracy under some
mathematical assumptions. Note that some learning settings,
e.g., batch size, local iteration numbers, etc., also impact the
required number of communications. Accordingly, the total
energy consumption corresponding to the required number
of global rounds can be obtained, which exhibits a global
view of the overall energy consumption in the FL training
process. Despite employing the computing or communication
efficient learning techniques, the energy efficiency cannot be
significantly improved without elaborately controlling the key
training parameters from a global perspective. This requires us
to optimize the training parameters, so that communications
and computing can be well balanced. This is why, in the above
subsections, we firstly study the efficient communication

(e.g., gradient sparsification, gradient quantization and dy-
namic batch sizing) or efficient local computing (e.g., weight
quantization and pruning [12]) methods in order to find the
effective schemes. We then integrate these efficient methods
with resource allocation strategies to strike a good balance
between communications and computing, thus minimizing the
energy consumption for FL over 5G+ mobile devices.

CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Although there are a few pioneering research works done
on the energy efficiency for FL over 5G+ mobile devices,
the relevant study is still in its infancy and requires more
thorough investigation. In this section, we summarize some
existing challenges and potential future directions.

Energy-Efficient FL over Heterogeneous Mobile Devices
Most of the existing energy-efficient FL algorithms assume

certain homogeneity of mobile devices, while they may be
considerably different in practice. The heterogeneity across
participating devices may lie in local training data, comput-
ing capability, and wireless channel condition, etc., which
require flexible and customizable training strategies for each
participant. Thus, it is expected to develop advanced design
methodology for efficient FL over 5G+ mobile devices across
multi-dimensional heterogeneity. Accordingly, the quantiza-
tion granularity, the pruning strategy, and compression levels
for different participants can vary to accommodate their
realistic environments for energy-saving. For example, the
device with powerful GPUs but poor channel conditions may
choose to compute more and communicate less and vice
versa. In these situations, it is also significant to optimize
the personalized compression or pruning strategy, adapting to
the heterogeneous devices’ capability for total energy saving
by balancing communications and computing.

Energy-Efficient FL under Flexible Aggregation
The practical scenarios with heterogeneous data and devices

demand higher requirements on the aggregation strategies.
On the one hand, the updated local models across devices
may differ in size or even structure, which invalidates the
current FL aggregation schemes (e.g., FedAvg [1]) if averag-
ing model parameters directly. Thus, we need to investigate
more powerful and more flexible aggregation schemes for FL
over heterogeneous 5G+ mobile devices, while mitigating the
energy consumption to the same extent as the baseline FL
algorithms. On the other hand, due to the Non-IID (Indepen-
dent and Identically Distributed) data sources and different
precision for local models, each participant may have different
contributions to the global model in terms of accuracy and
convergence. Therefore, from the energy perspective, only a
proportion of the participants need to contribute their models
in each communication round, or the aggregation will be
performed in an asynchronous way [13], thus reducing more
energy compared with the original inefficient aggregation
method. Overall, flexible and asynchronous aggregations are
efficient methods to further reduce energy consumption, which
deserves further investigation.
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Energy-Efficient FL with Privacy Preservation

One of the inherited features of FL over 5G+ mobile devices
is the privacy preservation of the users’ sensitive raw data.
Unfortunately, the private information can still be inferred
from local updates communicated between user devices and
the aggregation server with some recently developed attack
mechanisms. Therefore, such a distributed learning, which
needs to exchange intermediate model parameters, brings
in a significant design challenge for privacy protection. A
common strategy to enhance the privacy and security for
participating users is to introduce perturbations into the FL
training framework, such as adding the noise. Fortunately,
some early research works have already shown that pruning,
quantization, and other energy-efficient methods can introduce
randomness into the FL training process and provide the en-
hanced privacy guarantee, i.e., intrinsic privacy preservation.
Under such conditions, energy-saving strategy and privacy
protections are perfectly combined, where the privacy will be
preserved without additional noisy computation. However, the
related research is still in its initial stages and needs deeper ex-
ploration, especially for the differential privacy preservation,
where the privacy level can be precisely quantified.

Extensive Applications of Energy-Efficient FL

With the massive growth of personal data with end users
and the rapid popularization of the power-efficient mobile
edge devices, FL over 5G+ mobile devices can be applied to a
large number of applications [14] and can be involved in every
area of daily life. With energy-efficient training strategies,
FL over 5G+ mobile devices is perfectly compatible with
lifelong on-device learning that requires a constant training
process and is battery-driven. For example, it can be applied to
some real-time assisting services like the voice UI, keyboard
prediction, and some low-latency control scenarios such as
gaming and automated guided vehicles [15]. Moreover, along
with the exponential improvement in on-device AI capabili-
ties, more sensing data from smart sensors like the cameras,
microphones, and compass, can be effectively utilized in
Industrial IoT, e-health, finance, and social networks, etc.

CONCLUSION

This paper has studied the FL over 5G+ mobile devices
to address the issue on energy consumption during the FL
training process. We have investigated how to properly con-
serve energy and allocate resources during FL training. We
start with introduction of wireless communications and on-
GPU computing models. Then, we discuss several energy-
efficient training techniques, including gradient sparsification,
gradient quantization, weight quantization, model pruning,
and dynamic batch sizing, to save energy. At the same time,
the resource allocation strategies are adapted to reasonably
manage energy resources by balancing communications and
computing energy consumption. We conduct extensive simula-
tions to demonstrate the efficacy of the techniques mentioned

above for FL over 5G+ mobile devices. Finally, we have pre-
sented some existing design challenges and the corresponding
research directions.
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