
1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3052963, IEEE
Transactions on Mobile Computing

1

Timeliness-Aware Incentive Mechanism for
Vehicular Crowdsourcing in Smart Cities

Xianhao Chen, Lan Zhang, Student Member, IEEE, Yawei Pang, Student Member, IEEE, Bin
Lin, Member, IEEE, and Yuguang Fang, Fellow, IEEE

Abstract—Vehicular crowdsourcing is a promising paradigm that takes advantage of powerful onboard capabilities of vehicles to
perform various tasks in smart cities. To fulfill this vision, a well-designed incentive mechanism is essential to stimulate the participation
of vehicles. In this paper, we propose a timeliness-aware incentive mechanism for vehicular crowdsourcing by taking vehicle’s
uncertain travel time into account. In view of the stochastic nature of traffic conditions, we derive a tractable expression for the
probability distribution of task delay based on a discrete-time traffic model. By leveraging reverse auction framework, we model the
utility of a service requester as a function in terms of uncertain task delay and incurred payment. To maximize the requester’s utility
under a budget constraint, we cast the mechanism design as a non-monotone submodular maximization problem over a knapsack
constraint. Based on this formulation, we develop a truthful budgeted utility maximization auction (TBUMA), which is truthful, budget
feasible, profitable, individually rational and computationally efficient. Through extensive trace-based simulations, we demonstrate the
effectiveness of our proposed incentive mechanism.

Index Terms—Vehicular crowdsourcing, incentive mechanism, reverse auction, crowdsensing, edge computing.
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1 INTRODUCTION

Smart cities are the development trends for future cities,
which are expected to leverage advanced information and
communication technologies to improve city operation and
quality of life [2]. To realize this vision, a compelling idea
that has recently attracted much attention is to exploit the
under-utilized onboard resources of vehicles to complement
the existing infrastructures in supporting the ubiquitous
smart-city services [3], [4], [5]. As vehicles are becoming
connected and autonomous, they will be endowed with
significantly powerful sensing, communication, computing,
storage, and intelligence (SCCSI) capabilities in the near fu-
ture [3], [6], [7]. Therefore, the abundant onboard resources
of vehicles, if harvested and managed properly, can be
utilized to provision services in smart cities without sig-
nificantly increasing deployment cost. For example, future
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vehicles can be directly employed to sense urban areas [4],
provide edge computing services to ubiquitous resource-
constrained devices [5], or carry and forward delay-tolerant
data to intended locations [3], [7], all of which could relieve
the burden of our existing infrastructure in a cost-effective
way.

Despite the diversity of provisioned services, the
paradigms that employ vehicles to serve users’ requests
can be generalized as vehicular crowdsourcing. A typi-
cal vehicular crowdsourcing system consists of a service
requester and many participating vehicles [8], where the
requester publishes a set of location-dependent tasks for
the participating vehicles to perform. However, when per-
forming tasks, vehicles have to consume the resources of
onboard units, e.g., battery, CPU, wireless devices and stor-
age, and therefore, vehicle owners may not be interested in
participation unless they receive some incentives in return.
Consequently, a well-designed incentive mechanism is of
paramount importance to the success of vehicular crowd-
sourcing.

To incentivize the participation of vehicles, auction is a
natural choice due to its efficiency in satisfying the indi-
vidual requirements. However, the design of auction-based
incentive mechanism for vehicular crowdsourcing is high-
ly complicated. First, a well-designed auction mechanism
should prevent the strategic gaming of participants, i.e.,
guaranteeing truthfulness. As demonstrated by economic
theory, an auction mechanism failing to achieve truthfulness
is vulnerable to market manipulation and may produce very
poor outcome [9]. Second, since the service requester usually
faces budget constraint in the real world, it is non-trivial to
consider budget feasibility in mechanism design.

In addition, the timeliness of information collection,
analysis and sharing is critical for many vehicular crowd-
sourcing applications, such as video surveillance for public
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Fig. 1. An illustrative example of vehicular crowdsourcing with two tasks
and two participating vehicles. Circle and triangle represent task 1 and
task 2, respectively. In the time axes, the hallow icons denote the arrival
times, the solid icons denote the completion times. When a task is
assigned to a vehicle, the completion time is equal to the summation
of the vehicle’s travel time to the intended location and the processing
time used to perform the task.

safety, parking availability detection, and popular content
distribution, because the usefulness of tasks may decay over
time. For example, when a potential crime is reported, a
local police station needs to effectively locate the suspect.
The wireless street cameras in places of interest can transmit
the recorded videos to passing vehicles for video analytics
[10], as illustrated in Fig. 1. Since the police station will take
action according to the video analytics results, the tasks
should be completed timely. As a result, an appropriate
vehicle selection policy not only depends on vehicles’ routes
and recruitment costs as in [8], [11], but also depends on
when the tasks are expected to complete.

Despite the importance of timeliness-aware incentive
design, to our best knowledge, this problem has not been
studied in the context of vehicular crowdsourcing by con-
sidering vehicle’s travel time. Note that our considered sce-
nario is fundamentally different from the case where nearby
or parked vehicles are employed to provide computing
services without leveraging their mobility [10], [12], [13].
Although recruiting nearby vehicle may yield the shortest
delay and highest reliability, finding appropriate vehicles
(e.g., asking for low prices) on site is not always possible. In
general, vehicles demand distinct travel times to locations
of interest. The difficulty of our timeliness-aware incentive
design mainly comes from the fact that vehicle’s travel time
is inherently uncertain due to the dynamic nature of traffic
conditions, which requires a novel auction scheme that
captures the uncertain service delay and the preference of service
requester for shorter delay while preserving the aforemen-
tioned essential economic properties. The key contributions
of our work are summarized as follows.

• We model the interaction between a service requester
and participating vehicles as a reverse auction. To
factor timeliness into consideration, we characterize
the requester’s utility as a function in terms of both
task delay and incurred payment. Different from
existing auction schemes where each item has a
constant valuation, an item (i.e., a task) in our auction
model has a valuation function varying with delay.
The proposed auction model is suitable to handling
delay-aware incentive design, and more interesting-
ly, applies to the case where delay is uncertain and
follows general probability distribution.

• By considering the uncertainty of vehicle’s travel
time, we develop an efficient travel time distribution
(TTD) estimation approach based on a discrete-time
traffic model. Then, we obtain a tractable expression
for the probability distribution of task delay in vehic-
ular crowdsourcing context.

• To maximize requester’s utility under a given bud-
get, we cast the auction mechanism design as a
non-monotone submodular maximization problem
over a budget constraint. Maximizing the requester’s
utility is equivalent to achieving the optimal balance
between uncertain task delay and incurred payment.
Based on this formulation, we develop a truthful
budgeted utility maximization auction (TBUMA),
which guarantees truthfulness, individual rationali-
ty, profitability, budget feasibility, and computational
efficiency.

• We conduct trace-based simulations to demonstrate
the effectiveness of both the TTD estimation ap-
proach and the proposed incentive mechanism.

2 RELATED WORK

2.1 Vehicle as a Service

The onboard resources of vehicles can be exploited to sup-
port a wide range of smart-city applications. On the one
hand, vehicles can leverage their sensors to provide sensing
services for the general public, which is called as vehicular
crowdsensing [4], [8]. On the other hand, since autonomous
vehicles have powerful onboard servers [14], by leveraging
the underutilized computing capabilities when parked or
slowly moving, vehicles can provide computing services to
resource-limited end devices [5], [15].

The design of vehicular crowdsensing systems has at-
tracted much attention [8], [11], [16], [17]. In [11], He et al.
present a recruitment strategy for vehicular crowdsensing
systems to maximize the sensing coverage. In [8], Gao et al.
devise an incentive mechanism for vehicular crowdsensing
sby taking uncertain trajectories of vehicles into considera-
tion. In [16], Abdelhamid et al. develop a reputation-based
vehicle selection strategy to maximize the sensing coverage.
In [17], Xu et al. propose a vehicular crowdsensing system
which incentivizes taxis to move to the trajectories that
match the demand of service requester. Nevertheless, none
of the aforementioned works have taken service delay into
consideration. Another line of research leverages vehicles’
computing capabilities to provide edge computing services
[10], [12], [13], [18]. However, these works focus on the
scenario where data sources can directly connect with near-
by or parked vehicles for task offloading, thus not treating
vehicle’s uncertain travel time to intended location as a part
of task delay.

2.2 Incentive Design for Mobile Crowdsourcing

Incentive design for mobile crowdsourcing has been exten-
sively studied based on various game theoretical approach-
es [19]. In [20], Cheung et al. develop mobile crowdsourcing
systems with deadline requirements by modeling the inter-
actions between a requester and participants as a Stackel-
berg game. In [21], Zhan et al. study the incentive design
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for time-sensitive cooperative data collection by formulating
the problem as a two-user cooperative game.

In our system, each participating vehicle is allowed to
select a set of location-dependent tasks to perform based on
their own arrangements and preferences. Mathematically,
the problem of participant selection falls in the category
of combinatorial optimization. By considering incentive de-
sign, it is reasonable to model the vehicle selection as a
reverse combinatorial auction. Along this line, Yang et al.
propose an incentive mechanism for crowdsensing based on
reverse combinatorial auction, which aims to maximize the
utility of service requester [22]. In [23], Feng et al. propose
a reverse auction scheme to stimulate smartphone users to
join location-dependent crowdsensing with minimal social
cost. In [24]. Restuccia et al. design a reverse auction scheme
for mobile crowdsensing by considering budget limitation
and uncertain mobility patterns of participants. However,
their work does not rely on a vehicle-specific mobility mod-
el, and does not consider requester’s preference for shorter
service delay, which thus cannot apply to our scenario.

Some works in this domain consider budget feasibili-
ty [24], [25], [26]. Singla et al. develop a reverse auction
mechanism to stimulate participants to share their private
information [25]. Zhang et al. present a reverse auction
framework for label collection in crowdsensing by jointly
considering the budget constraint and the difficulty of label-
ing tasks [26]. Similar to [24], [25], [26], our algorithm also
guarantees budget feasibility. However, unlike the afore-
mentioned budget feasible mechanisms that aim to maxi-
mize total task valuation brought by recruited participants,
our scheme is devised to maximize requester’s utility, i.e.,
total task valuation minus incurred payment. Intuitively, the
existing schemes always intend to run out their budgets, as
their objective functions are unrelated to incurred payment.
A bad consequence of this is that, they fail to guarantee
profitability, which means that requester’s utility may even
be negative. In [27], Jiao et al. devise an auction scheme for
public blockchain networks. Mathematically, their problem
is a constrained non-monotone submodular maximization
problem, which shares the same property with our prob-
lem. However, their constraint is for computing resources
whereas our constraint is for payment. Thus, our budget-
ed mechanism is also fundamentally different from their
scheme, because payments are potentially higher than bid
prices and are not known in winner selection phase, which
is the major challenge in guaranteeing budget feasibility.

3 SYSTEM ARCHITECTURE

3.1 Basic Model
As aforementioned, the considered vehicular crowdsourc-
ing system is composed of a service requester and many
participating vehicles. The interactions between a service re-
quester and participating vehicles in this system is modeled
as a single-round reverse auction, where the participating
vehicles are the service sellers, the service requester is the
service buyer. As a crowdsourcing campaign begins, the
requester claims its budget B, and releases a set of location-
dependent tasks, where each task contains location, workload,
and task valuation function. Task valuation function will be
further elaborated in Section 3.2.

TABLE 1
Frequently used notations

Notation Description

I the set of participating vehicles
J the set of tasks
Ji the set of tasks in vehicle i’s bid
Ij the set of vehicles bidding for task j
Pi vehicle i’s path
lni the n-th link in vehicle i’s path Pi

tti,j vehicle i’s travel time for performing task j,
which is a random variable

tpi,j vehicle i’s processing time for task j,
which is a constant

ti,j vehicle i’s completion time for task j
T p
i the set of processing times for Ji

qki,j the probability that vehicle i will
complete task j in subinterval k

bi the bid price of vehicle i
ci the true cost of vehicle i
pi the payment to vehicle i
B the budget of the service requester
vkj the valuation of task j during the k-th

subinterval
K The subinterval number for task valuation
ω the set of winners

Let I = {1, 2, ..., |I|} be the set of participating vehicles,
and J = {1, 2, ..., |J |} be the set of tasks. Vehicle i ∈ I
chooses its path Pi and bids for a bundle of tasks Ji ∈ J
on the path by submitting a bid price bi, i.e., the claimed
lowest price at which vehicle i is willing to perform the set
of tasks. Since each vehicle selects tasks on its chosen route,
it is possible that Ji1 ∩ Ji2 ̸= ∅ for two vehicles i1 and i2.
Vehicle i also has an associated true valuation ci (which will
be termed as true cost) for performing the subset of tasks
Ji, which is privately known by itself. More concretely, true
cost ci is the minimum payment that vehicle i can accept to
perform the subset of tasks Ji

1. Assuming that all the vehi-
cles are selfish but rational, they attempt to maximize their
payoffs [22]. Thus, vehicle i may strategically manipulate
bid price bi to gain more payoff, so that bi is not necessarily
equal to true cost ci. Besides, vehicle i should offer the set
of processing times T p

i = {tpi,j |j ∈ Ji}, where tpi,j represents
vehicle i’s processing time for task j ∈ Ji after arrival at
the required location. Notice that in our model, the time
used by vehicle i to complete task j is the summation of
processing time tpi,j and travel time tti,j . Processing time tpi,j
is estimated by vehicle i itself according to the task work-
load and its onboard resources, and should be submitted
to the requester; travel time tti,j is directly estimated by the
service requester based on vehicle i’s planned path Pi. The

1. In general, ci = di +
∑

j∈Ji
ci,j , where ci,j is the compensation

for vehicle i’s onboard resource consumption for task j, and di is
the compensation for the driver’s effort (which is independent of task
workloads, but is related to, say, the path Pi the driver chooses in order
to perform the selected subset of tasks Ji). From the system viewpoint,
we only care about the constant ci, and therefore di and ci,j will not be
used for the subsequent development.
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requester is able to check whether tpi,j is honestly reported
by a vehicle after the vehicle arrives at the required location.
Overall, the bid submitted by vehicle i can be characterized
by a tuple βi = {Ji, T p

i , bi,Pi}. For example, if vehicle i
submits a bid βi = {{1, 2}, {10, 20}, 0.3, {l1i , l2i , l3i }}, we can
infer that vehicle i bids for task 1 and 2 with a bid price
0.3, its processing times for these two tasks are 10 and 20,
respectively, and its chosen path contains three ordered links
l1i , l2i , and l3i that the vehicle will successively traverse. More
details about road network and estimation of processing
time tpi,j and travel time tti,j will be provided in Section
3.3. The set of bids βi from all the vehicles is denoted
by B. We will use vehicles and bidders interchangeably in
the subsequent development. For readers’ convenience, the
frequently used notations in this paper are summarized in
Table 1.

3.2 Timeliness-Aware Task Valuation
To ensure timeliness, one direction is to impose a hard
deadline for each task. Based on this approach, however, a
requester cannot distinguish two task delays as long as they
are within the “maximum tolerable” deadline. To overcome
this limitation, we model task valuation as a function in
terms of delay. Each task has a valuation to the requester,
which is equal to the maximum payment the requester is
willing to pay in order to have it completed. Generally
speaking, a service requester is willing to pay higher for
a service with shorter delay, and vice versa, which implies
that task valuation function is non-increasing with delay. As
depicted in Fig. 2, we adopt a general discrete task valuation
function, which partitions interval [0, D] into K subintervals
and remains constant within each subinterval:

vj(t) =

{
vkj , if Tk−1 ≤ t ≤ Tk, ∀k ∈ [1,K],

0, otherwise,
(1)

where Tk denotes the upper bound of the k-th subinterval,
with TK = D and T0 = 0 by definition, and vkj is the
valuation of task j during the k-th subinterval [Tk−1, Tk],
satisfying v1j ≥ v2j ... ≥ vKj . It is noted that K , vkj , and
the length of each subinterval are all customized by the
requester. In other words, the discrete function vj(t) can
be in any shape to reflect the specific delay demand of a
requester. As demonstrated in Section 5.4, as K increases,
the computation complexity of our mechanism increases in
O(K).

The discrete valuation function is convenient to quantify
the contribution of a vehicle with uncertain travel time to
a task. The bottom figure in Fig. 2 shows an illustrative
example of fti,j (t), which is the probability density function
(PDF) of completion time ti,j , i.e., the time that vehicle i will
complete task j. Clearly, given fti,j (t) and if vehicle i is the
only vehicle assigned with task j, the valuation that vehicle
i will contribute to task j is simply

∑K
k=1 q

k
i,jv

k
j , where qki,j

is the integral of fti,j (t) over the range of [Tk−1, Tk]. Next,
we will show how to derive fti,j (t) or qki,j .

3.3 Estimation of Task Delay
As aforementioned, the completion time ti,j for vehicle i to
complete task j is given by

ti,j = tpi,j + tti,j . (2)
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Fig. 2. An illustrative example of task valuation function and completion
time distribution. The upper figure denotes the task valuation function of
task j, and the bottom figure is the probability density function of ti,j ,
i.e., fti,j (t), indicating when vehicle i can complete task j. qki,j is the
probability that vehicle i will complete task j in time interval k.

In this paper, processing time tpi,j is treated as a constant
whereas travel time tti,j is a random variable due to the
dynamics of traffic conditions. In what follows, we elaborate
on how to calculate these two values, respectively.

3.3.1 Processing Time Estimation
The method of estimating processing time varies according
to task type (e.g., sensing or computing task). Taking com-
puting task as an example, tpi,j can be expressed as

tpi,j =
dj
rj

+
wj

fi,j
, (3)

where dj is the input data size of task j, rj is the estimated
transmission rate from the corresponding data source to a
vehicle, wj is the computation workload of task j (in CPU
cycles), and fi,j is vehicle i’s CPU-cycle frequency allocated
to task j [28]. Here, we assume that a data source transmits
at a fixed data rate when vehicles enter its transmission
range. Moreover, by assuming that the data size of com-
puting result is negligible, we do not incorporate the time
used by vehicle to return computing result into (3).

3.3.2 Travel Time Distribution Estimation
Due to the stochastic nature of real-time traffic conditions,
travel time is essentially a random variable. The measure-
ment of trip travel time distribution (TTD) between two
points in a transportation network has attracted some at-
tention [29]. Nevertheless, existing approaches to trip TTD
estimation generally suffer from high computation complex-
ity. In vehicular crowdsourcing systems, a requester has to
estimate TTDs for all vehicle-task pairs during the auction
stage, which poses stringent requirements on computational
efficiency. In what follows, we present an efficient TTD
estimation approach, which gives a tractable expression for
travel time tti,j . Our approach comprises two phases, i.e.,
offline link TTD esimation and online trip TTD prediction.

Phase 1: Offline Link TTD estimation: Link TTD estimation
aims to estimate TTD for every link (road segment) in a
road network, which is conducted based on historical traffic
data before crowdsourcing campaign starts. Being consis-
tent with [30], we adopt a discrete-time traffic model where
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Fig. 3. Illustration of discrete-time traffic model. Due to the changing
traffic state, it is assumed that the travel time for a link follows different
normal distributions within different time slots. For illustrative purpose,
in the figure, red and blue lines represent that the link is congested and
undersaturated, respectively.

each link travel time follows a certain normal distribution
conditional on time slot τ , as illustrated in Fig. 3. We assume
that the crowdsourcing campaign starts at time 0, and use
∆, say 5 minutes, to denote the length of each time slot
in the sense that time slot τ corresponds to time interval
[(τ−1)∆, τ∆]. A smaller ∆ leads to a finer discretization for
traffic dynamics. Given historical data from probe vehicles
or traffic sensors, the estimation of link TTDs for the upcom-
ing time slots has been studied in [30], [31], [32]. Without
loss of generality, we denote the TTD for link l in time slot τ
by N (µτ

l , (σ
τ
l )

2), and treat it as a known normal distribution
in the subsequent development.

Phase 2: Online trip TTD estimation: Upon receiving bids
from vehicles, the requester conducts trip TTD estimation
for every vehicle-task pair. We assume that TTDs for dif-
ferent links are independent [32], and therefore trip travel
time is equal to the aggregation of the link travel times on
this trip. However, since the trip time is potentially greater
than the length of time slot ∆, calculating a vehicle’s trip
TTD requires us to consider the time-varying link TTDs in
the successive slots during a vehicle’s trip. Recall that path
Pi = [l1i , l

2
i , ..., l

Ni
i ] is the set of ordered links traversed by

vehicle i, where Ni is the number of links on path Pi. To
obtain the TTD for vehicle i traversing a given link on path
Pi, we should predict in which time slot it will enter this
link, because the link TTD is dependent on time slot τ . Let
ρτi,n denote the probability that vehicle i enters its n-th link
on path Pi during time slot τ . It is known that any vehicle
enters its first link during time slot 1, i.e., ρ1i,1 = 1, and
ρ2i,1 = ρ3i,1 = ... = 0. Other ρτi,n for n ≥ 2 are the parameters
that we need to derive.

We denote xn
i as the travel time for vehicle i to traverse

its first n links in Pi. Clearly, one can obtain ρτi,n as long
as the distribution of xn−1

i has been derived. Since vehicle
i enters its first link during time slot τ = 1, x1

i follows
N
(
α1
iµ

1
l1i
, (α1

iσ
1
l1i
)2
)
, where α1

i ∈ [0, 1] is the ratio of the
time vehicle i needs to traverse l1i over the time needed
to fully traverse this link. α1

i captures the fact that the
first link may not be fully traversed by vehicle i, because
vehicle i may locate at any position of its first link when
the crowdsourcing starts. Supposing that a vehicle partially
traverses link l1i from location y1 to location y2 (which are
distances to the end of the link), α1

i is equal to [30]

α1
i =

∫ y2

y1

P
l1i
Y (y)dy, (4)

where P
l1i
Y (y) is the distribution for vehicles’ locations

within link l1i . In the case where vehicles are uniformly
distributed within the link, α1

i is equal to the traversed
length |y2 − y1| over the entire link length.

For n > 1, xn
i should account for the uncertain-

ty of when vehicle i will enter its 2nd to nth links.
To make our approach tractable, we use normal distri-
bution N (

∑τmax
τ=1 ρ

τ
i,mµτ

lmi
,
∑τmax

τ=1(ρ
τ
i,mστ

lmi
)2) to approximate

the travel time that vehicle i needs to traverse its m-th link
lmi , where τmax is the index of time slot that is great enough
for all vehicles traversing their paths. Then, by leveraging
the additive property of normal distributions, we compute
xn
i ∼ N (µxn

i
, σ2

xn
i
) by summing up all the link travel times:

µxn
i
= α1

iµ
1
l1i
+

n∑
m=2

τmax∑
τ=1

ρτi,mµτ
lmi
, (5)

σ2
xn
i
= (α1

iσ
1
l1i
)2 +

n∑
m=2

τmax∑
τ=1

(ρτi,mστ
lmi
)2. (6)

Given that the vehicle starts its trip Pi at time 0, according
to the definition, ρτi,n is determined by xn−1

i :

ρτi,n = Fxn−1
i

(τ∆)− Fxn−1
i

(
(τ − 1)∆

)
= Φ

(
τ∆− µxn−1

i

σxn−1
i

)
− Φ

(
(τ − 1)∆− µxn−1

i

σxn−1
i

)
, (7)

where Fxn−1
i

(·) is the cumulative distribution function (CD-
F) of xn−1

i , and Φ(·) represents the CDF of standard normal
distribution. Notice that xn−1

i can be used to compute ρτi,n
based on (7), and then ρτi,2 to ρτi,n can be further used to
obtain xn

i from (5) and (6). In this way, by starting from
the second link of vehicle i, we can obtain ρτi,n for all the
successive links on the trip Pi. As a result, by employing
the additive property again, the travel time for vehicle
i to perform task j, i.e., tti,j , follows normal distribution
N (µtti,j

, σ2
tti,j

) with µtti,j
=
∑Ni

m=1

∑τmax
τ=1 γ

m
i,jρ

τ
i,mµτ

lmi
and

σ2
tti,j

=
∑Ni

m=1

∑τmax
τ=1(γ

m
i,jρ

τ
i,mστ

lmi
)2. Analogous to α1

i in (4),
γm
i,j ∈ [0, 1] accounts for whether and how long vehicle

i needs to traverse link lmi in order to perform task j,
as performing a specific task may not require vehicle i to
fully traverse every link on its trip Pi. Finally, by taking
processing delay tpi,j into account, the completion time ti,j
follows N (µti,j , σ

2
ti,j ) with

µti,j = tpi,j +
Ni∑

m=1

τmax∑
τ=1

γm
i,jρ

τ
i,mµτ

lmi
, (8)

σ2
ti,j =

Ni∑
m=1

τmax∑
τ=1

(γm
i,jρ

τ
i,mστ

lmi
)2. (9)

Consequently, we can compute qki,j by

qki,j =


Φ

(
Tk − µti,j

σti,j

)
− Φ

(
Tk−1 − µti,j

σti,j

)
, if j ∈ Ji,

0, otherwise.

(10)

Recall that qki,j is the probability that vehicle i will
complete task j in time interval k, as depicted in Fig. 2. qki,j is
non-zero only if j ∈ Ji, i.e., task j is in vehicle i’s bid. Since
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the values of the Φ(·) function has been tabulated, which are
readily found, one can easily obtain qki,j from (10) for every
vehicle-task pair in a large-scale crowdsourcing campaign.

Remark 1. It is noted that our algorithm development will rely
on generic qki,j values. Thus, one can also employ other TTD
estimation methods with reasonable accuracy and complexity to
compute qki,j .

3.4 Mathematical Formulation and Design Objectives

We next present the mathematical formulation and the
design objectives of our mechanism. Given the bid infor-
mation, we aim to determine a set of winners ω from the
bidding vehicles. To compute the expected valuation of task
j ∈ J brought by winner set ω, which is denoted by V j(ω),
one should consider the fact that there are potentially more
than one winning vehicles bidding for task j. Intuitively,
V j(ω) is equal to the task valuation brought by the first
vehicle completing it, which is given by

V j(ω) =
(
1−Q1

j (ω)
)
v1j +Q1

j (ω)
(
1−Q2

j (ω)
)
v2j

+ ...+
( ∏
k∈[2,K]

Qk−1
j (ω)

)(
1−QK

j (ω)
)
vKj

=
(
1−Q1

j (ω)
)
v1j

+
K∑

k=2

( ∏
m∈[2,k]

Qm−1
j (ω)

)(
1−Qk

j (ω)
)
vkj , (11)

with

Qk
j (ω) =

∏
i∈ω

(1− qki,j), (12)

where vkj is given in (1), qki,j is given in (10), and Qk
j (ω)

represents the probability that there is no vehicle completing
task j within the k-th time interval given the winner set
ω. We can interpret (11) as follows. Recall that v1j ≥ v2j ≥
... ≥ vKj in (1), and hence V j(ω) = vkj if and only if task
j is not completed during the first k − 1 time intervals, i.e.,∏

m∈[2,k] Q
m−1
j (ω) = 1, while being completed in the k-th

interval, i.e., Qk
j (ω) = 0.

To the service requester, the total valuation brought by
winner set ω is therefore expressed as

V(ω) =
∑
j∈J

V j(ω). (13)

The requester’s utility is the total valuation brought by
the winners minus the total payment:

R(ω) = V(ω)−
∑
i∈ω

pi. (14)

The payoff of vehicle i ∈ I is its received payment minus
its true cost:

ui =

{
pi − ci, if i ∈ ω,

0, otherwise.
(15)

The social welfare is the summation of the requester’s
utility and the payoffs of all the participating vehicles [33]:

U(ω) = V(ω)−
∑
i∈ω

ci. (16)

Our auction mechanism seeks a vehicle selection and
pricing strategy to maximize the requester’s utility. Maxi-
mizing the requester utility R(ω) is equivalent to striking
the optimal balance between task delay and incurred pay-
ment. Thus, we can formulate the following optimization
problem

max
ω⊆I,p

V(ω)−
∑
i∈ω

pi (17)

s.t. C1 :
∑
i∈ω

pi ≤ B, C2 : pi ≥ bi, ∀i ∈ ω,

where p represents the collection of payment pi, Constraint
C1 ensures budget feasibility, and Constraint C2 guarantees
individual rationality. We remark that the paths (or the set
of bidding tasks) of vehicles, and the travel and processing
times have been all converted to parameters qki,j (in the
term V(ω)), which can be obtained from (10). Noticing that
payment pi is potentially unequal to bid price bi, solving
Problem (17) involves not only the selection of winners, but
also the determination of payment pi. Our mechanism needs
to satisfy the following critical properties:

• Individual Rationality: Each bidder will have a non-
negative payoff by offering its true cost (valuation)
as the bid price.

• Profitability: For the requester, the total value brought
by winners is not lower than the total payment given
to them.

• Computational Efficiency: The algorithm will terminate
in polynomial time.

• Truthfulness: bi = ci is the dominant strategy for
every bidder. In other words, no bidder can improve
its payoff by claiming a bid price deviating from its
true cost.

• Budget Feasibility: The total payment will not exceed
the budget of the service requester.

The importance of truthfulness and budget feasibility
has been discussed before. To stimulate drivers to partic-
ipate, their payoffs must be non-negative. Without being
profitable, the service requester would not be interested in
outsourcing its tasks to participants. Computational efficien-
cy guarantees that the mechanism is feasible in large-scale
applications.

4 BUDGETED UTILITY MAXIMIZATION AUCTION
(BUMA)
In this section, we prove that Problem (17) with fixed pi
is a constrained non-monotone submodular maximization
problem. Then, we develop an approximation algorithm,
called budgeted utility maximization auction (BUMA), to
solve Problem (17).

It is clear that the simplest payment strategy pi = bi can
maximize the requester’s utility while guaranteeing individ-
ual rationality. Let us focus on this payment strategy in this
section. By setting pi = bi, Problem (17) is reformulated as

max
ω⊆I

V(ω)−
∑
i∈ω

bi s.t. C1 :
∑
i∈ω

bi ≤ B, (18)

To solve Problem (18), we first prove that its objective
function is submodular.
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Definition 1. (submodular). Given a set V , a function f :
2V → R is submodular if for all A ⊆ C ⊆ V and i ∈ V \C,
we have

f(A ∪ {i})− f(A) ≥ f(C ∪ {i})− f(C),

where R is the set of real numbers.

Theorem 1. The objective function of problem (17) is submodu-
lar.

Proof. By Definition 1, proving the submodularity of R(·) is
equivalent to showing that R(A ∪ {i}) − R(A) ≥ R(C ∪
{i})−R(C), for all A ⊆ C ⊆ I and i ∈ I \C. By removing
the payment terms from both sides, we only need to prove
that V(A∪{i})−V(A) ≥ V(C∪{i})−V(C). Since V(A) =∑

j∈J V j(A), it is sufficient to show that V j(A ∪ {i}) −
V j(A) ≥ V j(C ∪ {i})− V j(C) for all j ∈ J .

By the definition of V j(ω) in (11), we have

V j(A ∪ {i})− V j(A) =
(
1−Q1

j (A ∪ {i})
)
v1j

+
K∑

k=2

( ∏
m∈[2,k]

Qm−1
j (A ∪ {i})

)(
1−Qk

j (A ∪ {i})
)
vkj

−
(
1−Q1

j (A)
)
v1j −

K∑
k=2

( ∏
m∈[2,k]

Qm−1
j (A)

)(
1−Qk

j (A)
)
vkj

=
(
1−Q1

j (A)(1− q1i,j)
)
v1j

+
K∑

k=2

( ∏
m∈[2,k]

Qm−1
j (A)(1− qm−1

i,j )
)(
1−Qk

j (A)(1− qki,j)
)
vkj

−
(
1−Q1

j (A)
)
v1j −

K∑
k=2

( ∏
m∈[2,k]

Qm−1
j (A)

)(
1−Qk

j (A)
)
vkj .

After some manipulations, we obtain

V j(A ∪ {i})− V j(A)

=
( K∏
k=1

Qk
j (A)

)(
1−

K∏
k=1

(1− qki,j)
)
vKj

+
K−1∑
k=1

( k∏
m=1

Qm
j (A)

)(
1−

k∏
m=1

(1− qmi,j)
)(
vkj − vk+1

j

)
≥
( K∏
k=1

Qk
j (C)

)(
1−

K∏
k=1

(1− qki,j)
)
vKj

+
K−1∑
k=1

( k∏
m=1

Qm
j (C)

)(
1−

k∏
m=1

(1− qmi,j)
)(
vkj − vk+1

j

)
= V j(C ∪ {i})− V j(C), (19)

where the above inequality follows from Qk
j (A) ≥ Qk

j (C).
The proof is completed.

Similarly, we can prove that U(ω) and V(ω) are sub-
modular as well. Moreover, since the requester’s utility does
not monotonically increases with the winner set ω due
to the incurred payment

∑
i∈ω bi, Problem (18) is a non-

monotone submodular maximization problem over a knap-
sack constraint, which is NP-hard [34]. There are several
algorithms in the literature that could solve this problem,
and we use the 1

7+ϵ -approximation algorithm developed in
[35] due to its low computational complexity. However, the

Algorithm 1 BUMA Mechanism
Input: Set of tasks J , task valuation functions vj(t)’s, set of

bidders I , and qki,j ’s.
Output: Set of winners ω

1: Initialize ω = ∅, X1 = I ;
2: for k = 1 to 2 do
3: Sk = Greedy3(Xk);
4: if k = 1 then
5: S′

k = LocalSearch(Sk, ϵ);
6: Xk+1 = Xk \ Sk;
7: end if
8: end for
9: ω = argmaxS∈{S1,S′

1,S2} f(S);

existing algorithms, including the one in [35], require the
objective function to be non-negative, whereas the objective
function in Problem (18) can be negative. To address this
challenge, let f(ω) = R(ω) +

∑
i∈I bi. Since

∑
i∈I bi is a

constant, f(ω) remains submodular. By using f(ω) as the
objective function, we develop our algorithm based on the
algorithm of [35], which is called BUMA. As summarized in
Algorithm 1, BUMA has a multi-pass structure to construct
three candidate solutions. We briefly introduce subroutine
Greedy3 and LocalSearch in Algorithm 1 as follows.

Greedy3 first enumerates the subsets of I of cardinal-
ity 1, 2, 3. Then, for each subset of cardinality 3, Greedy3
extends it by greedily selecting the element i with the
maximum fi(ω) = f(ω∪{i})−f(ω)

bi
while satisfying the bud-

get constraint, where ω is the set of already selected ele-
ments. The greedy procedure terminates as the maximum
fi(ω) ≤ 0 or all bidders are selected. The solution is the
best from all sets of cardinality at most three that meets the
budget constraint, as well as the greedy extensions of the
sets of cardinality three. The detail of Greedy3 can be found
in Appendix B of [35].

LocalSearch is a local search technique for uncon-
strained non-monotone submodular maximization prob-
lems. After removing Constraint C1, LocalSearch search-
es for a better solution by iteratively adding or deleting
one element such that f(ω ∪ {i}) > (1 + ϵ

|I|2 )f(ω) or
f(ω\{i}) > (1+ ϵ

|I|2 )f(ω) whenever possible, where ϵ > 0.
The detail of LocalSearch can be found in [36].

It is easy to prove that BUMA achieves all the desirable
properties mentioned in Section 3.4 except truthfulness. To
demonstrate that BUMA is untruthful, let us consider a toy
example that there are two bidders (bidder 1 and 2) bidding
for three identical tasks (task 1, 2 and 3). We set budget B
to 1. As for the task valuation functions, we set D = 200,
where [0, D] is partitioned into 2 equal subintervals, satis-
fying v1j = 1, v2j = 0.5, ∀j ∈ {1, 2, 3}. Assume that bidder
1 bids for task 1 and task 2 with bid price 0.7, and bidder
2 bids for task 2 and task 3 with bid price 0.8. Moreover,
suppose that we obtain q11,1 = 0.4, q21,1 = 0.6, q11,2 = 0.2,
q21,2 = 0.7, q12,2 = 0.5, q22,2 = 0.3, q12,3 = 0, and q22,3 = 0.6.
In this case, bidder 1 is selected as the only winner and its
received payment is p1 = b1 = 0.7. However, when bidder
1 raises its bid price to 0.7 + γ, where γ ≤ 0.285, it is still
selected as the only winner, whereas payment p1 increases
to 0.7 + γ. Therefore, a bidder can increase its payoff by
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offering a bid price unequal to its real cost.
Although BUMA approximately maximizes the re-

quester’s utility under a budget constraint, the failure of
ensuring truthfulness makes it less attractive. Thus, BUMA
will only be adopted as the benchmark to examine the ap-
proximation performance of the truthful auction mechanism
presented in the next section.

5 TRUTHFUL BUDGETED UTILITY MAXIMIZATION
AUCTION (TBUMA)
In the following, we develop an approximation algorithm
to solve Problem (17) while guaranteeing the truthfulness,
which is named as TBUMA mechanism. TBUMA consists
of two steps, i.e., the winner selection procedure and the
payment determination procedure.

5.1 Winner Selection Procedure
We first define marginal valuation, i.e., the incremental
valuation that a new vehicle can contribute. Given existing
winner set ω, the marginal value brought by vehicle i is

Vi(ω) = V(ω ∪ {i})− V(ω). (20)

Similarly, given existing winner set ω, we define the
marginal social welfare brought by i as Ui(ω) = Vi(ω)− ci.
However, true cost ci is unavailable to the service requester.
Fortunately, since our mechanism is truthful (which will be
proven in Section 5.4), i.e., bidding bi = ci is the dominant
strategy for all the bidders, we can use Vi(ω)− bi instead to
denote the marginal social welfare, i.e.,

Ui(ω) = Vi(ω)− bi. (21)

As presented in Algorithm 2, the winner selection pro-
cedure first compares budget B with V(I). If B < V(I), the
algorithm searches for bidder i with the maximum Ui(ω)

bi

in line 3 (or equivalently the maximum Vi(ω)
bi

, as Ui(ω)
bi

=
Vi(ω)
bi

− 1), and check whether it satisfies the budget feasible
criterion in line 6. If yes, this bidder (termed as the candidate
bidder) is added to the winner set, and the procedure goes
to the next iteration. Otherwise, the algorithm discards this
bidder and searches for other candidate bidders (line 3 to
line 11). Line 6 is adapted from the criterion designed for
monotone submodular functions [37]. As proven in Section
5.4, while payment pi is not determined at this stage, the
criterion in line 6 strictly guarantees the budget feasibility.
If B ≥ V(I), the algorithm greedily selects the winners
without checking the budget feasible criterion (line 13 to line
19), as it is shown in Section 5.4 that the budget feasibility
is naturally satisfied in this condition. For both cases, the
selection procedure terminates when no bidder is associated
with a positive marginal social welfare (line 4 or line 14). For
ease of presentation, we denote the n-th winner (in the order
of selection) by bidder wn, the winner set including the first
n winners by ωn = {w1, w2, ..., wn}, and the final winner
set by ω in Algorithm 2 and the subsequent development.

Remark 2. Since pi has not been determined at the current stage,
TBUMA greedily selects the winner with the maximum Ui(ωn−1)

bi

(or equivalently Vi(ωn−1)
bi

). Therefore, TBUMA approximately
maximizes both requester’s utility and social welfare.

Algorithm 2 Winner Selection Procedure
Input: Set of tasks J , task valuation functions vj(t)’s, set of

bidders I , and qki,j ’s.
Output: Set of winners ω.

1: Initialize ω0 = ∅, n = 1;
2: if B < V(I) then
3: i′= argmaxi∈I

Vi(ωn−1)
bi

;
4: while Vi′(ωn−1) > bi′ and I ̸= ∅ do
5: I = I \ {i′};
6: if bi′ ≤ B

min{2,V(I)
B }

· Vi′ (ωn−1)
V(ωn−1∪{i′}) then

7: ωn = ωn−1 ∪ {i′};
8: n = n+ 1;
9: end if

10: i′= argmaxi∈I
Vi(ωn−1)

bi
;

11: end while
12: else
13: i′= argmaxi∈I

Vi(ωn−1)
bi

;
14: while Vi′(ωn−1) > bi′ and I ̸= ∅ do
15: I = I \ {i′};
16: ωn = ωn−1 ∪ {i′};
17: n = n+ 1;
18: i′= argmaxi∈I

Vi(ωn−1)
bi

;
19: end while
20: end if

5.2 Payment Determination Procedure

During payment determination procedure, each winner
is paid with critical value, i.e., the highest bid price that can
make it win. As illustrated in Algorithm 3, this procedure
determines the payment to winner i ∈ ω by executing the
winner selection procedure in the set Ii = I \ {i}. For
the winner selection for Ii, we denote the m-th winner
by wi

m, the winner set including the first m winners by
ωi

m = {wi
1, w

i
1, ..., w

i
m}, the final winner set by ωi, and the

total number of winners by M .
We first present the payment determination scheme

when B < V(I) (line 4 to line 17). According to Algorithm
2, the bid price that bidder i can make to win against winner

wi
m should satisfy

Vi(ω
i
m−1)

bi
≥

Vwi
m

(ωi
m−1)

bwi
m

, i.e.,

bi ≤ ρim =
Vi(ω

i
m−1)bwi

m

Vwi
m
(ωi

m−1)
. (22)

Besides, bidder i also needs to meet the budget feasible
criterion, i.e.,

bi ≤ νim =
B

min{2, V(I)
B }

·
Vi(ω

i
m−1)

V(ωi
m−1 ∪ {i})

, (23)

Combining (22) and (23), it follows that the highest bid
price that i can declare to win against the m-th winner is
min{ρim, νim} (line 10). In addition, after the M winners are
selected, there are no bidders that can win against i. Thus,
the bid price that makes bidder i become the (M + 1)-th
winner should meet

bi ≤ max
{
Vi(ω

i
M ), νiM+1

}
, (24)

as bidder i still needs to satisfy Vi(ω
i
M ) ≥ bi and the

budget feasible criterion. Finally, the critical value is set to
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Algorithm 3 Payment Determination Procedure
Input: Set of tasks J , task valuation functions vj(t)’s, set of

bidders I , set of winners ω, and qki,j ’s.
Output: Payment pi to winner i ∈ ω.

1: for all i ∈ ω do
2: Initialize ωi

0 = ∅, pi = 0, Ii = I \ {i}, m = 1;
3: if B < V(I) then

4: i′= argmaxx∈Ii
Vx(ω

i
m−1)

bx
;

5: while Vi′(ω
i
m−1) > bi′ and Ii ̸= ∅ do

6: Ii = Ii \ {i′};

7: if bi′ ≤ B

min{2,V(I)
B }

· Vi′ (ω
i
m−1)

V(ωi
m−1∪{i′}) then

8: ρim =
Vi(ω

i
m−1)bi′

Vi′ (ω
i
m−1)

;

9: νim = B

min{2,V(I)
B }

· Vi(ω
i
m−1)

V(ωi
m−1∪{i}) ;

10: pi = max
{
pi,min{ρim, νim}

}
;

11: ωi
m = ωi

m−1 ∪ {i′};
12: m = m+ 1;
13: end if
14: i′= argmaxx∈Ii

Vx(ω
i
m−1)

bx
;

15: end while
16: νim = B

min{2,V(I)
B }

· Vi(ω
i
m−1)

V(ωi
m−1∪{i}) ;

17: pi = max
{
pi,min{Vi(ω

i
m−1), ν

i
m}
}

;
18: else
19: i′= argmaxx∈Ii

Vx(ω
i
m−1)

bx
;

20: while Vi′(ω
i
m−1) > bi′ and Ii ̸= ∅ do

21: Ii = Ii \ {i′};

22: ρim =
Vi(ω

i
m−1)bi′

Vi′ (ω
i
m−1)

;

23: pi = max{pi, ρim};
24: ωi

m = ωi
m−1 ∪ {i′};

25: m = m+ 1;
26: i′= argmaxx∈Ii

Vx(ω
i
m−1)

bx
;

27: end while
28: pi = max

{
pi,Vi(ω

i
m−1)

}
;

29: end if
30: end for

the maximum of these M + 1 prices (line 17), i.e.,

pi = max
{

max
1≤m≤M

{
min{ρim, νim}

}
,min{Vi(ω

i
M ), νiM+1}

}
.

(25)

When B ≥ V(I) (line 19 to line 28), the payment
determination strategy runs the winner selection procedure
without checking the budget feasible criterion. Similar to
(25), we have

pi = max
{

max
1≤m≤M

ρim,Vi(ω
i
M )
}
, (26)

which corresponds to line 28.

5.3 An illustrative Example
We use a walk-through example with four tasks and four
vehicles in Fig. 4 to illustrate how TBUMA works. For task
j ∈ [1, 4], we set the deadline D = 200, and partition the
interval [0, D] into K = 5 subintervals, with task valuation
v1j = 1, v2j = 0.8, v3j = 0.6, v4j = 0.4, and v5j = 0.2
in (1). Budget B is set to 3. The arrows plotted in Fig.

veh1 veh2 veh3 veh4

task1 task2 task3 task4

[40 120 130 ∞ ] [∞  60 ∞  180] [∞  ∞  20 ∞ ][∞  ∞  ∞  80]

Bid price:

Delay vector:

0.8 0.8 0.5 0.5

Fig. 4. An illustrative example of TBUMA with four tasks and four vehi-
cles. The delay vector [task1 task2 task3 task4] denotes the mean of
time that vehicle will use to complete each task, where ∞ corresponds
to a task that the vehicle does not bid for.

4 represent which tasks are bid by each vehicle, and the
bid prices from vehicle 1 to vehicle 4 are 0.8, 0.8, 0.5, and
0.5, respectively. Moreover, we assume that the mean of
completion time µt1,1 = 40, µt1,2 = 120, µt1,3 = 130,
µt2,2 = 60, µt2,4 = 80, µt3,3 = 20, and µt4,4 = 80, and
the standard deviations σti,j = 0.05µti,j , ∀i ∈ [1, 4], j ∈
[1, 4] for illustrative purpose. Through (10), we can obtain
q11,1 = 0.5, q21,1 = 0.5, q31,2 = 0.5, q41,2 = 0.5, q31,3 = 0.062,
q41,3 = 0.938, q22,2 = 1, q42,4 = 0.0131, q52,4 = 0.9737, q13,3 = 1,
q24,4 = 0.5, and q34,4 = 0.5, while the remaining qki,j ’s not list-
ed here are approximately equal to zero. Then, we find that
V({1, 2, 3, 4}) =

∑4
j=1 V

j({1, 2, 3, 4}) = 3.0994 > B = 3.
Thus, we use line 3-11 in Algorithm 2 to select winners, and
line 4-17 in Algorithm 3 to determine payments.

Winner selection procedure (Algorithm 2):

ω0 = ∅: V1(ω0)
b1

=
∑

j∈{1,2,3} V j({1}∪∅)−V j(∅)
0.8 = 1.8614,

V2(ω0)
b2

=
∑

j∈{2,4} V j({2}∪∅)−V j(∅)
0.8 = 1.2468, V3(ω0)

b3
=

V3({3}∪∅)−V3(∅)
0.5 = 2, V4(ω0)

b4
= V4({4}∪∅)−V4(∅)

0.5 = 1.1. The
maximum value V3(ω0)

b3
= 2 (line 3). Since V3(ω0) > b3 (line

4) and b3 = 0.5 ≤ 3
min{2, 3.09943 } · 1

1 = 2.9037 (line 6), vehicle
3 wins.

ω1 = {3}: V1(ω1)
b1

=
∑

j∈{1,2,3} V j({1}∪{3})−V j({3})
0.8 =

1.375. Likewise, V2(ω1)
b2

= 1.2468, V4(ω1)
b4

= 1.1. The
maximum value V1(ω1)

b1
= 1.375. Since V1(ω1) > b1 and

b1 = 0.8 ≤ 3
min{2, 3.09943 } · 1.1

2.1 = 1.5211, vehicle 1 wins.

ω2 = {3, 1}: V2(ω2)
b2

= 0.7468, V4(ω2)
b4

= 1.1. The
maximum value V4(ω2)

b4
= 1.1. Since V4(ω2) > b4 and

b4 = 0.5 ≤ 3
min{2, 3.09943 } · 0.55

2.65 = 0.6027, vehicle 4 wins.

ω3 = {3, 1, 4}: V2(ω3)
b2

= 0.5617. Since V2(ω3) < b2, the
selection procedure terminates.

Payment determination procedure (Algorithm 3):
Since payment scheme runs for each winner

independently, we only show how to determine the
payment for winner 1. By excluding vehicle 1, we
run the winner selection for vehicle set {2, 3, 4} by
using the winner selection procedure described above.
Due to the space limitation, we directly give the
winner selection results: w1

0 = ∅, w1
1 = {3}, and

w1
2 = {3, 2} (line 11). Thus, we have min{ρ11, ν11} =

min{ 1.4891×0.5
1 , 3

min{2, 3.09943 }
1.8614
1.8614} = 0.7446 (line

10), min{ρ12, ν12} = min{ 1.1×0.8
0.9974 , 3

min{2, 3.09943 }
1.1

1+1.1} =

0.8823 (line 10), and min{V1(w
1
2), ν

1
3} =

min{0.7, 3
min{2, 3.09943 }

0.7
2.6974} = 0.7 (line 17). The payment
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for vehicle 1 is therefore the maximum of these values, i.e.,
0.8823.

5.4 Mechanism Analysis

In the following, we prove that TBUMA is truthful, individ-
ually rational, profitable, budget feasible, and computation-
ally efficient.

Before showing the truthfulness, we first demonstrate
that V(ω) is monotone.

Lemma 1. V(ω) is monotone.

Proof. According to (13), to show the monotonicity of V(ω),
it is sufficient to prove that V j(ω) is monotone for any j ∈
J . Based on (19), we have

V j(ω ∪ {i})− V j(ω) =
( K∏
k=1

Qk
j (ω)

)(
1−

K∏
k=1

(1− qki,j)
)
vKj

+
K−1∑
k=1

( k∏
m−1

Qm
j (ω)

)(
1−

k∏
m=1

(1− qmi,j)
)(
vkj − vk+1

j

)
. (27)

Since Qk
j (ω) ∈ [0, 1], qki,j ∈ [0, 1] and vkj − vk+1

j ≥ 0, we
conclude that V j(ω ∪ {i}) − V j(ω) ≥ 0, which completes
the proof.

Theorem 2. TBUMA is truthful.

Proof. The proof relies on the well-known Myerson’s char-
acterization [38]: a single-parameter mechanism is truthful
iff (i) the winner selection rule is monotone: if bidder i
wins by bidding bi, it also wins by bidding b′i < bi in a
reverse auction; (ii) each winner is paid with the critical
value, i.e., the highest bid price that makes it still win in
a reverse auction. Since V(I) is independent of bid prices, to
demonstrate truthfulness, it is sufficient to show these two
properties under the case that B < V(I) and B ≥ V(I),
respectively. Let us study the case where B < V(I).

(Monotonicity): Recall that bidder wn is the n-th winner
in ω. By lowering bwn to b′wn

, bidder wn will become a
candidate bidder for the k-th winner, where k ≤ n due to
our greedy selection rule. Denote the alternate winner set
as ω′ when bidder wn lowers its price. To become the k-th
winner, bidder wn has to meet the budget feasible criterion.
Since the first k − 1 winners are the same for two cases, we
have ω′

k−1 ⊆ ωn−1 (ω′
k−1 is the set of the first k−1 winners

in ω′). According to the submodularity and monotonicity of
V(ω), we have

b′wn
≤ bwn ≤ B

min{2, V(I)
B }

· Vwn(ωn−1)

V(ωn−1 ∪ {wn})

≤ B

min{2, V(I)
B }

·
Vwn(ω

′
k−1)

V(ω′
k−1 ∪ {wn})

. (28)

That is to say, bidder wn still wins the auction by
lowering its bid price. The monotonicity follows.

(Critical value): Considers the payment for winner i ∈ ω.
According to (25), the payment is the maximum of M + 1
values, where M is the total number of winners selected
from Ii = I\{i}. Let r = argmax1≤m≤M

{
min{ρim, νim}

}
and p(r) = min{ρir, νir}. We next show that bidding bi ≥ p(r)
prevents bidder i from becoming the first M winners. Two

cases are possible. If p(r) = max1≤m≤M ρim, it is clear
that bidding a price higher than p(r) places bidder i af-
ter the first M winners. If p(r) < max1≤m≤M ρim, there
should be some k that p(r) < ρik. Due to the maximality
of r, we have νik ≤ p(r) < ρik, implying that bidding a
price higher than p(r) violates the budget feasible criterion
for becoming the k-th winner. For the remaining k that
p(r) ≥ ρkm, bidding a price higher than p(r) would place
i after them. We therefore see that in both cases bidder
i will be placed after the M winners. Furthermore, to be
the (M + 1)-th winner, there are no bidders that could
win against i. Let p(M+1) = min{Vi(ω

i
M ), νiM+1}. Clearly,

bidding a price higher than p(M+1) could prevent bidder i
from being the (M + 1)-th winner, since it results in either
bi > Vi(ω

i
M ) or bi > νiM+1. On the other hand, if bidding

bi = max{p(r), p(M+1)}, bidder i would be either the r-th or
(M+1)-th winner. In conclusion, pi = max{p(r), p(M+1)} is
exactly the critical value for bidder i. Thus, our mechanism
is truthful when B < V(I).

When B ≥ V(I), the proof of truthfulness is similar to
the proof above, and hence is omitted. In summary, our
mechanism is truthful.

Theorem 3. TBUMA is individually rational.

Proof. . Individual rationality means that pi − ci ≥ 0 for
i ∈ I . For bidder i ∈ I \ω, the payoff is zero, and thus non-
negative. Since the truthfulness has been proved, showing
individual rationality is equivalent to demonstrating pi −
bi ≥ 0 for i ∈ ω. We only provide the proof for the case of
B ≥ V(I). For ease of presentation, we use i to denote the
n-th winner wn. Recall that wi

n is the n-th winner in ωi (via
running the winner selection for Ii = I\{i}). The first n− 1
winners are the same for both ω and ωi. If wi

n exists, we
have

ρin =
Vi(ω

i
n−1)bwi

n

Vwi
n
(ωi

n−1)
=

Vi(ωn−1)bwi
n

Vwi
n
(ωn−1)

≥ bi. (29)

The last inequality holds because bidder i is the n-th
winner other than wi

n. Based on the budget feasible criteri-
on, we can get νin ≥ bi, which follows min{ρin, νin} ≥ bi.
Thus, we obtain pi ≥ bi from (25).

If wi
n does not exist, bidder i must be the last winner in

ω. We then have Vi(ω
i
n−1) = Vi(ωn−1) ≥ bi according to

the winner selection procedure, and bi ≤ νin according to the
budget feasible criterion, yielding min{Vi(ω

i
n−1), ν

i
n} ≥ bi.

According to (25), we still have pi ≥ bi.
When B ≥ V(I), the proof is similar to the above, and

hence is omitted. Therefore, our mechanism is individually
rational.

Theorem 4. TBUMA is profitable.

Proof. Profitability means that the requester’s utility is non-
negative, i.e., V(ω) −

∑
i∈ω pi =

∑
1≤n≤N Vwn(ωn−1) −∑

1≤n≤N pwn ≥ 0, where N is the total number of winners.
Therefore, it is sufficient to prove that pwn ≤ Vwn(ωn−1) for
each 1 ≤ n ≤ N . For ease of presentation, we use bidder i
to denote the n-th winner wn. If B < V(I), let us consider
the following two cases of pi in (25).
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If pi = max1≤m≤M

{
min{ρim, νim}

}
, letting r =

argmax1≤m≤M

{
min{ρim, νim}

}
, we obtain

pi = min{ρir, νir} ≤ ρir =
Vi(ω

i
r−1)bwi

r

Vwi
r
(ωi

r−1)
≤ Vi(ω

i
r−1). (30)

The last inequality is obtained via Vwi
r
(ωi

r−1) ≥ bwi
r
.

Since the first n − 1 winners are the same for both ω and
ωi, it follows that pi ≤ Vi(ω

i
r−1) ≤ Vi(ω

i
n−1) = Vi(ωn−1),

where the second inequality follows from r ≥ n and the
submodularity.

Similarly, if pi = min{Vi(ω
i
M ), νiM+1}, we have pi ≤

Vi(ω
i
M ) ≤ Vi(ω

i
n−1) = Vi(ωn−1). Thus, the profitability

follows when B < V(I) .
If B ≥ V(I), the proof is similar to the above, and hence

is omitted. Thus, our mechanism is profitable.

Before demonstrating the budget feasibility, we first
prove the following lemma.

Lemma 2. When bwn ≤ B · Vwn (ωn−1)
V(ωn−1∪{wn}) is the budget

feasible criterion for wn, payment pwn
is upper bounded by

α ·B · Vwn (ωn−1)
V(ω) , where α = min{2, V(I)

B }.

Proof. We adapt the proof in [25] to prove this lemma, where
α = 2 in their case. We remark that the difference in α
results from the stop criterion Vi′(ωn−1) > bi′ in line 4 of
Algorithm 2. For ease of presentation, we still use i to denote
the n-th winner wn. Suppose that by raising the bid price bi
to b′i, bidder i still wins and becomes the k-th winner of
the alternate winner set ω′, where n ≤ k due to the greedy
selection rule. Since the payment is exactly the critical value,
finding the upper bound of pi is equivalent to finding the
upper bound of b′i. Letting Q = ω \ ω′

k (ω′
k is the set of the

first k winners in ω′), we use the case analysis to bound b′i.
Case 1: If Q = ∅, we have V(ω) ≤ V(ω′

k) according to
the monotonicity of V(ω). Therefore, we can obtain

b′i ≤ B ·
Vi(ω

′
k−1)

V(ω′
k)

≤ B ·
Vi(ω

′
n−1)

V(ω′
k)

= B · Vi(ωn−1)

V(ω′
k)

≤ B · Vi(ωn−1)

V(ω)
, (31)

where the equality holds because the first n− 1 elements of
both winner sets are identical. By setting b′i = α·B · Vi(ωn−1)

V(ω) ,
we obtain α ≤ 1 in this case.

Case 2: If Q ̸= ∅, we have b′i ≤ B · Vi(ω
′
k−1)

V(ω′
k)

≤ B · Vi(ωn−1)
V(ω′

k)
.

Still assuming b′i = α ·B · Vi(ωn−1)
V(ω) , we get

α ≤ V(ω)

V(ω′
k)

. (32)

Moreover, consider adding a participant into ω′
k. For

some participant r from set Q, the marginal valuation per
unit cost of r must be higher than that of the whole Q:

V(ω′
k ∪Q)− V(ω′

k)∑
x∈Q bx

≤ Vr(ω
′
k)

br
≤

Vr(ω
′
k−1)

br

≤
Vi(ω

′
k−1)

b′i
≤ Vi(ωn−1)

b′i
≤ V(ω)

α ·B
. (33)

The third inequality is obtained from the fact that bidder
i is the k-th winner instead of other bidders. Furthermore, it

can be proven that
∑

i∈w bi ≤ B (from Lemma 3.2 in [37]).
Observing that

∑
i∈Q bi ≤

∑
i∈w bi ≤ B and V(ω′

k ∪Q) ≥
V(ω), we obtain

V(ω)− V(ω′
k)

B
≤ V(ω)

α ·B
. (34)

In addition, using the criterion Vi(ω
′
k−1) ≥ b′i (line 4 of

Algorithm 2), we have

α ≤ V(ω)

B
≤ V(I)

B
, (35)

from (33). By combing (32), (35) and (34), we have α ≤
min{2, V(I)

B }. Therefore, it follows that α ≤ min{2, V(I)
B }

for both cases, which completes the proof.

Theorem 5. TBUMA is budget feasible.

Proof. According to Lemma 2, when the budget feasible cri-
terion bwn ≤ B· Vwn (ωn−1)

V(ωn−1∪{wn}) is used, payment pwn is upper

bounded by α · B · Vwn (ωn−1)
V(ω) , where α = min{2, V(I)

B }.

Therefore, by adopting bwn ≤ B

min{2,V(I)
B }

· Vwn (ωn−1)
V(ωn−1∪{wn}) as

the criterion instead, we have
∑

1≤n≤N pwn ≤
∑

1≤n≤N B ·
Vwn (ωn−1)

V(ω) ≤ B, where N is the number of winners.
However, the criterion only applies to the case of B <

V(I). If B ≥ V(I), we have
∑

i∈ω pi ≤ V(ω) ≤ V(I) ≤ B,
where the first inequality follows from the profitability. As a
result, the budget feasibility can be naturally achieved when
B ≥ V(I). The proof is completed.

Theorem 6. TBUMA is computationally efficient.

Proof. In each loop of Algorithm 2, we should calculate
the value of Vi(ωn−1)

bi
. According to (13) and (20), we have

Vi(ωn−1) = V(ωn−1 ∪ {i})−V(ωn−1) =
∑

j∈J V j(ωn−1 ∪
{i})−V j(ωn−1). Therefore, to obtain Vi(ωn−1), V j(ωn−1∪
{i}) and V j(ωn−1) should be computed O(|J |) times.
The complexity of evaluating V j(ωn−1) is O(K) accord-
ing to (11), where K is the subinterval number. Note
that Qk

j (ω) in (11) can be efficiently updated through
Qk

j (ωn) = (1 − qkwn,j
)Qk

j (ωn−1) in each loop, with wn

being the n-th winner. Furthermore, finding the maximum
Vi(ωn−1)

bi
requires computing Vi(ωn−1)

bi
at most |I| times, and

the number of iterations for the while loop is upper bounded
by |I|, yielding a total complexity of O(|I|2|J |K).

For Algorithm 3, since the payment for each winner
is computed by a process similar to Algorithm 2 and the
number of winners is limited by |I|, the total running time
is O(|I|3|J |K). The proof is completed.

6 PERFORMANCE EVALUATION

To evaluate the performance of our proposed incentive
mechanisms, we conduct trace-based simulations in this
section.

6.1 Parameter Settings
Let us consider the use case in Section 1, where a police
station intends to perform video analytics by leveraging ve-
hicular crowdsourcing. In our simulations, wireless surveil-
lance cameras are randomly distributed along the roadsides
in an approximately 1.3km ×1.4 km area in Beijing, as

Authorized licensed use limited to: University of Florida. Downloaded on January 21,2021 at 03:09:28 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2021.3052963, IEEE
Transactions on Mobile Computing

12

Fig. 5. The considered area in Beijing (latitude: from 39.9074 to 39.9192,
longitude: from 116.4287 to 116.4444). The red line marks the route
considered in Section 6.2 to evaluate our TTD estimation approach.

shown in Fig. 5. Without loss of generality, we set D = 5
minutes for the task valuation function in (1), where the
[0, D] is evenly partitioned into 5 subintervals, satisfying
v1j = 1, v2j = 0.8, v3j = 0.6, v4j = 0.4, and v5j = 0.2 for all
task j ∈ J .

The trips of participating vehicles are generated by the
widely-used traffic simulator, SUMO [39], based on the
extracted road topology. Specifically, we use RandomTrips
tool in SUMO to generate the trips. The arrivals of partic-
ipating vehicles in the considered area follow a binomial
distribution with the expected arrival rate λ ranging from
2/minute to 40/minute. Suppose the surveillance video has
the resolution of 720 × 576 and frame rate of 30fps, and
the adopted video analysis algorithm needs approximately 1
CPU cycle to process 1-bit data. We further assume that each
surveillance video is 10 minutes. The computing workload
of processing a 10-minute video (24bits for the RGB color
values of a pixel) is about 179.2G cycles. Suppose that the
available computing capability of vehicle i ∈ I , namely Fi,
is uniformly drawn from the range [10, 20]GHz [10]. In our
simulations, vehicle i sets fi,j = Fi for all j ∈ Ji, where
fi,j is its CPU-cycle frequency allocated to task j. Due to the
fact that the considered video chunk can be fast delivered to
the passing vehicles by short-range transmission technique,
we ignore the data transmission time in our simulation for
simplicity2. In this way, the processing time tpi,j in (3) can
be obtained by 179.2GHz

Fi
. In addition, each bid is associated

with a private cost satisfying ci = di + c0|Ji|, where c0 is
assumed to follow the uniform distribution over [0.3, 1] [22],
which accounts for the onboard resource consumption for
each task; di is assumed to follow the uniform distribution
over [0.5, 1.5], which accounts for the drivers’ efforts. The
evaluation is conducted using MATLAB on a laptop with
2.81 GHz Intel(R) Core(TM) i7-7700HQ CPU and 8GB RAM.

6.2 Evaluation of TTD Estimation Approach

To proceed, we validate the effectiveness of the proposed
TTD estimation approach. To reflect the time-varying traf-
fic dynamics, we let the transportation network become

2. For example, according to [40], when H.264 is adopted for video
compression, the transmission data size of the considered 10-minute
video chunk can be estimated as 75MB, whereas IEEE 802.11ac can
already achieve gigabit-per-second rate, making the transmission time
negligible.
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Fig. 6. Kullback-Leibler divergence between the estimated TTD and the
ground truth TTD for a vehicle traversing a fixed path. A larger number
of time slots corresponds to a finer discretization of the traffic conditions.

increasingly congested. Specifically, we conduct the exper-
iments for a 10-minute duration, where the transportation
network is nearly free-flowing during the first two minutes,
and after that, the vehicle arrival rate for the considered area
increases to 60/ minute, which gradually saturates the road
networks. During the offline link TTD estimation phase, we
use 100 rounds of simulations to collect massive vehicle
data to perform the fitting for each link TTD during the
10-minute duration. Then, at the 6-th minute, we pick up a
vehicle departing on the trip with 6 links from the west to
the east (the route is marked by a red line in Fig. 5) to test its
trip time. The ground truth TTD for the trip time is obtained
from 100 samples.

Fig. 6 uses Kullback-Leibler (KL) divergence as the
performance metric to measure the similarity between the
estimated TTD and the ground truth TTD versus the num-
ber of time slots that evenly divide the 10-minute period.
Smaller KL divergence indicates a closer approximation.
Since the ground truth TTD is a discrete function obtained
from data, we also approximate our estimated TTD as a
discrete function for comparison. The benchmark scheme
estimates trip TTD by assuming that each link travel time
follows a single normal distribution and summing them up.
This method is equivalent to our approach with one time
slot, which hence fails to capture the time-varying traffic
conditions of each link. As a result, when the number of time
slots is greater than 1, our approach leads to a significantly
closer approximation to the exact TTD than the benchmark
as observed from Fig. 6. Moreover, as the number of slots
increases from 1 to 6, the KL divergence decreases due to
the finer discretization of the traffic conditions. This curve
begins to fluctuate when the slot number is larger than 7
because less samples are available within each slot for offline
link TTD estimation.

6.3 Comparisons between BUMA and TBUMA

We evaluate the performance of TBUMA in terms of social
welfare and the requester’s utility by adopting BUMA as the
benchmark. In the legends of the following figures, we use
the abbreviations “SW” and “RU” to stand for “social wel-
fare” and “requester’s utility”, respectively. For comparison
with TBUMA, we assume bi = ci for BUMA, even though
it indeed fails to guarantee truthfulness. As illustrated in
Fig. 7 (a), since the winners in BUMA are exactly paid
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(a) Requester’s utility and social
welfare.
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Fig. 7. Comparison between BUMA and TBUMA. (a) Requester’s utility
and social welfare versus vehicle arrival rate λ, with |J | = 20 and B =
15. (b) Running time versus vehicle arrival rate λ, with |J | = 20 and
B = 15.

with the bid prices, the social welfare is equivalent to the
requester’s utility. In contrast, TBUMA pays the winners
with the payments that are potentially higher than their
bid prices for ensuring the truthfulness, and therefore the
requester’s utility is lower than the social welfare due to the
overpayment. Moreover, as validated by Fig. 7 (a), BUMA
always outperforms TBUMA, as the subroutine Greedy3
of BUMA is always better than or equal to the greedy
procedure adopted by TBUMA. Despite the superiority of
BUMA, the social welfare achieved by TBUMA is indeed
very close to that of BUMA. This result reveals that TBU-
MA achieves a good approximation performance. Besides,
as shown in Fig. 7 (b), BUMA demands longer running
time than TBUMA. For example, as the arrival rate goes
to 10/minute, TBUMA uses about 0.001 second, whereas
BUMA uses 8.11 seconds. Thus, in addition to achieving the
truthfulness, TBUMA is also significantly superior to BUMA
in terms of computational complexity.

6.4 Evaluation of TBUMA

In Fig. 8-10, we will evaluate the performance of TBUMA
under the impact of various factors. For comparison, we
employ the budgeted valuation maximization (BVM) mech-
anism as the benchmark, which refers to the mechanisms
in [24], [25], [26] that aim to maximize the obtained task
valuation (monotone submodular function) under budget
limitation (they can be treated as one algorithm when adapt-
ed to our scenario). By comparing TBUMA with BVM in
Fig. 8-10, we can see that TBUMA significantly outperforms
BVM in terms of both social welfare and requester’s utility
when the budget is large (in Fig. 8), vehicle number is
small (in Fig. 9), or task number is small (in Fig. 10). The
reason is as follows. Unlike TBUMA that exploits the budget
in a “conservative” way, BVM tends to recruit as many
vehicles as possible within the budget limitation, implying
that it may select vehicles whose marginal contributions
on total task valuation do not deserve their true costs or
received payments. As a consequence, the social welfare
and requester’s utility achieved by BVM diminish when
the budget is huge or vehicle number is small, since the
requester tends to utilize its budget to recruit vehicles that
do not benefit the system (i.e., contributing a negative
marginal social welfare/requester’s utility). In particular, it

is noteworthy the requester’s utility of BVM can be negative
in these figures, thus violating the critical property of prof-
itability. On the other hand, it can be observed that BUMA
and BVM achieve similar performance when the budget is
small, vehicle number is great, or task number is great, since
both algorithms rely on greedy selection rule and BVM does
not tend to “waste” if the budget is tiny.

Fig. 11 illustrates the overpayment ratio versus the mean
value of c0, namely, c, and the number of tasks, where c0 is
drawn from the interval [c− 0.3, c+ 0.3]. The overpayment
ratio is defined as γ =

∑
i∈ω pi−

∑
i∈ω ci∑

i∈ω ci
, which quantifies the

extra cost used to ensure the truthfulness. From this figure,
we observe that the overpayment ratio slightly increases
with the budget. This is because νim in (23) increases with
B, which results in the potential increase of the payment.
More importantly, it is shown that the overpayment ratio
keeps lower than 0.4 with varied parameters, revealing that
guaranteeing truthfulness does not incur significantly extra
payment in TBUMA.

Fig. 12 plots the budget utilization, i.e.,
∑

i∈ω pi

B , versus
the given budget and the number of tasks. Since the budget
utilization is lower than 1 as shown in Fig. 12, the budget
feasibility is guaranteed. An interesting observation is that
the budget utilization does not monotonically decrease with
budget B. This is because more bidders are eligible to be
selected when B ≥ V(I)

2 according to the budget feasible
criterion in line 7 of Algorithm 2, thus leading to the
improvement in budget utilization.

Fig. 13 and Fig. 14 show the individual rationality and
truthfulness of TBUMA, respectively. Fig. 13 plots the em-
pirical CDF of payoffs for all vehicles versus the given
budget. Since no vehicle has a negative payoff, the indi-
vidual rationality is demonstrated. In Fig. 14, we randomly
select a winner to change its bid price in order to observe
its received payment and payoff. The true cost and critical
value of this winner are 1.30 and 1.78, respectively. As can
be seen, the payment and payoff remain unchanged when
the bid price is lower than the critical value, while reducing
to zero when the bid price exceeds the critical value. This
phenomenon reveals that the bidder cannot increase its
payoff by lying about its true cost.

In Fig. 15, we demonstrate the timeliness-awareness of
our incentive mechanism by showing the performance of
TBUMA in handling tasks with diverse delay demands. For
comparison, we consider another task valuation function
satisfying that V (t) = 0.5 for t ∈ [0, D], which means that
the task valuation does not vary within the active interval.
We call this new task valuation function as “function 2”,
while calling the task valuation function used before as
“function 1”. We vary deadline D from 200 seconds to 600
seconds. When employing function 1, the requester prefer-
s vehicles providing shorter service delay. Instead, when
employing function 2, the requester does not differentiate
service delay within [0, D], and therefore tends to select
vehicles providing potentially long service delay yet with
low bid prices. As such, function 2 induces less payment and
longer average task delay than function 1, as demonstrated
in Fig. 15. Furthermore, in both cases, the incurred payment
decreases with D, whereas the average task delay increases
with D. This is because when D is small, the requester has
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Fig. 8. Comparison between TBU-
MA and BVM versus budget B, with
λ = 16/minute and |J | = 60.
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Fig. 9. Comparison between TBU-
MA and BVM versus vehicle arrival
rate λ, with |J | = 60 and B = 70.
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Fig. 10. Comparison between TBU-
MA and BVM versus number of
tasks |J |, with λ = 24/minute and
B = 70.
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to employ vehicles providing short service delay to meet the
stringent deadline requirement, even at the cost of incurring
more payment. The above observations indicate that our
incentive mechanism can achieve the balance between task
delay and incurred payment under different task valuation
functions customized by requesters.

7 CONCLUSIONS

In this paper, we have proposed a reverse-auction-based
incentive mechanism for vehicular crowdsourcing by explic-
itly taking the crucial factor, task delay, into consideration.
By incorporating vehicle’s travel time into task delay, we
derive a tractable expression for the probability distribution
of task delay based on a discrete-time traffic model. To
maximize the utility of a service requester under a budget
constraint, we cast the timeliness-aware winner selection
and payment determination scheme as a non-monotone
submodular maximization problem over a knapsack con-
straint. Then, we present TBUMA to solve this problem,
which is shown to be truthful, budget feasible, profitable,
individually rational and computationally efficient. Trace-
based simulations have demonstrated the effectiveness of
our proposed mechanisms in preserving nice economic
properties and achieving delay-awareness simultaneously.

For the future work, we plan to study the task-partition
model, where one task can be divided into several subtasks
and be performed by multiple vehicles in parallel. This
scenario has the requirement of integrity in the sense that
one task is completed only if all the subtasks are completed,
to which the current work cannot be simply extended.

Another important research issue is to study the case where
multiple service requesters co-exist and compete for vehi-
cles’ onboard resources.
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