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Abstract—In this paper, we investigate energy-efficient channel
switching for secondary users (SUs) in cognitive radio networks.
Unlike existing schemes where SUs adopt the same channel
switching strategies regardless of which channel they currently
stay at, our scheme allows SUs to adapt their channel switching
strategies to the primary users’ (PUs’) behaviors on the current
channels and apply different channel switching strategies on
different channels. Considering the unknown PUs’ behaviors, we
formulate a reinforcement learning problem which allows SUs
to learn channel switching schemes by interacting with the envi-
ronment. Through simulations, we demonstrate the effectiveness
of the learned channel switching scheme.

Index Terms—Channel switching, cognitive radio networks,
reinforcement learning

I. INTRODUCTION

To guarantee the performance of primary users (PUs) in
cognitive radio networks, secondary users (SUs) need to vacate
the channels once PUs reclaim them. In this case, SUs can
switch to another vacant channel to continue data transmis-
sions, which is known as the channel switching process. With
channel switching, SUs can more efficiently use under-utilized
spectrum resources to support desired services, such as video
streaming [1]–[3]. Unfortunately, channel switching is not
always preferred due to high energy consumption during the
switching process, particularly for energy-constrained devices
[4]–[7].

In [6], Agarwal et al. compare the energy efficiency of a
multi-channel dynamic spectrum access (MC-DSA) scheme
and a single channel dynamic spectrum access (SC-DSA)
scheme. In the MC-DSA scheme, when PUs reclaim the chan-
nels, SUs immediately switch to another channel and continue
transmissions. In contrast, the SC-DSA scheme allows SUs to
exploit the delay tolerance of the data to stop transmissions and
wait on the current channels for spectrum access opportunities.
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According to their analysis, the MC-DSA scheme is not always
more energy-efficient than the SC-DSA scheme. In other
words, once the current channel is sensed busy, it might be
more energy-efficient for SUs to wait on the current channel
if their data is delay-tolerant. Based on this observation, Wang
et al. design an energy-efficient spectrum sensing and channel
switching scheme by jointly considering imperfect spectrum
sensing, the throughput and delay requirements of secondary
transmissions [4]. Similarly, Wu et al. consider a cognitive
radio network where SUs proactively search for target channel
to switch to and develop a channel switching scheme to mini-
mize the energy consumption of transmitting a piece of delay-
constrained data [5]. Despite their inherent energy-efficient
design, these schemes might not be effective since they ignore
heterogeneous PUs’ behaviors on different channels and adopt
the same channel switching strategy regardless which channel
SUs currently stay on. If PUs reclaim the current channel only
for a very short period of time, SUs can wait on this channel
so that the energy consumed due to channel switching can be
saved and the data can still be timely transmitted. In contrast, if
the current channel remains occupied for a long time, waiting
on the same channel might not be energy-efficient since later
SUs still need to switch away from the current channel to
meet the delay constraint. Thus, a good channel switching
scheme should consider the heterogeneous PUs’ behaviors on
different channels and make channel switching decisions based
on the PUs’ behaviors on the current channel. Noticing that
SUs might not always know PUs’ behaviors in advance, in
this paper, we formulate a reinforcement learning problem
which allows SUs to learn to make channel switching decisions
through its past interactions with the environment. Based on
the formulated reinforcement learning problem, we obtain a
current channel aware (CCA) channel switching scheme via
Q-learning. Through extensive simulations, we demonstrate
the effectiveness of the learned CCA scheme and show its
superiority over existing schemes.

II. NETWORK MODEL

We consider a time-slotted system where M channels are
owned by PUs and a secondary link intends to access these
channels for data transmissions when they are not occupied
by PUs. Two SUs of the secondary link are d meters away,
and the transmitter, denoted as SUt, attempts to deliver N data
packets of length L bits to the receiver, denoted as SUr, in T
slots. In each time slot, SUs can communicate on one of the M
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channels if it is sensed idle. Following [5], [8], the availability
of each channel, which remains unchanged during each time
slot, is modeled as a two-state Markov chain. Specifically,
when the mth channel is occupied in the current time slot, it
will become idle in the next time slot with probability pm.
When the mth channel is idle in the current time slot, it will
be occupied in the next time slot with probability qm. At
the beginning of each slot, SUt conducts wideband spectrum
sensing to determine the availability of these M channels,
which consumes Es energy. If the current channel is idle,
SUt will transmit on this channel during the corresponding
time slot. Otherwise, SUt can choose to wait on the current
channel without transmitting or switch to another idle channel
to continue transmitting. The energy consumed during each
channel switching is Esw. From [9], [10], when transmitting,
the total power consumption of SUt is P/η+Pc, where P is
the transmit power of SUt, η is the efficiency of the RF chain,
Pc is the circuit power consumption during transmissions. The
power consumption of SUt is 0 when it waits on current
channel without transmitting.

Since pm’s and qm’s might not be known to SUt, it can
hardly predict future channel availability and make judi-
cious spectrum switching decisions accordingly. To address
this challenge, we will formulate a reinforcement learning
problems in the next section, which allows SUt to make
reasonable channel switching decisions by learning from its
past interactions with the environment.

III. REINFORCEMENT LEARNING FOR CHANNEL
SWITCHING

When the current channel is sensed busy, SUt makes
channel switching decisions based on the availability of other
channels, the amount of data to be transmitted, and which
channel it currently stays at. We collect these information in
a vector st as

st = (εt,Nt, ιt, t) , (1)

where t is the index of the current time slot, εt ∈ {0, 1}1×M
represents the availability of the M channels at the tth slot, and
the mth channel is idle in the tth slot when εt[m] = 1. Nt is
the number of packets to be transmitted at the beginning of the
tth slot, and ιt is the index of the channel where SUt stays at
the beginning of the tth slot. st summarizes all the information
which SUt needs to make channel switching decisions and will
be called state in the following analysis.

Based on st, SUt can choose its action at in the correspond-
ing slot. The actions available at the tth slot are collected in a
set At ⊂ {−1, 0, 1, · · · ,M}. When at = −1, SUt waits on the
current channel without transmitting. When at = 0, SUt trans-
mits on the current channel. When at = m, m 6∈ {−1, 0, ιt},
SUt switches to the mth channel and continues transmission.
At is closely related to st. For example, 0 ∈ At only when
εt[ιt] = 1, and 1 ∈ At only when εt[1] = 1. According to [11],
the mapping from st to at is called policy and is denoted as
π, i.e., π(st) = at.

After applying at, SUt finds itself in a new state st+1 at the
beginning of the (t+1)th slot and receives a reward rt+1. To

facilitate the learning of an energy-efficient channel switching
scheme, we use the energy consumption of SUt in each slot
as the reward signal, namely,

rt+1 =

 −et
−et
−et − φ

st+1 /∈ ST
st+1 ∈ ST ,Nt = 0

st+1 ∈ ST , t = T,Nt > 0
, (2)

where et is the energy consumption of SUt in the tth slot, and
ST is the set of terminal state. The terminal states are states
where the data transmission process terminates, which happens
either when the delay constraint is achieved or when all the
packets are delivered. In other words, ST contains states with
either t = T or Nt = 0. If the process terminates at a state
with t = T,Nt > 0, a penalty of φ as shown in (2) will be
incurred since the delay constraint is violated. In contrast, if
the process terminates at a state with Nt = 0, the data packets
are successfully delivered and no penalty will be incurred. This
is how the delay constraint T is considered in our formulation
given the state st defined in (1).

From Section II, when at = 0, the energy consumption is
due to spectrum sensing. When at > 0, channel switching will
incur additional energy consumption besides spectrum sensing.
Thus, et can be expressed as

et =

 Es

Es + Etx

Es + Esw + Etx

at = −1
at = 0
at > 0

, (3)

where Es is the amount of energy spent on spectrum sensing,
Etx is the energy consumption due to data transmissions.
Clearly, Etx is closely related to the number of packet de-
livered in the tth slot. According to [12], the capacity of the
secondary link is1

C = B log2
(
1 + γPd−k

/
σ2
)
, (4)

where B is the bandwidth of the current channel, γ is an
antenna related constant, k is the path loss exponent, and σ2 is
the power of the noise. Then, the number of packets delivered
in the tth slot can be derived as

nt = min

{⌊
C (τ − τs)

L

⌋
,Nt

}
, (5)

where τ is the length of slot and τs is the time spent on
spectrum sensing. b.c is the floor function and the min operator
is used to ensure that the number of packets transmitted during
the tth slot is no more than that to be transmitted at the
beginning of the corresponding slot. Based on the discussions
in Section II, Etx can be derived as

Etx =
(P/η + Pc)Lnt

C
. (6)

Then, the reward received by SUt during each time slot
can be derived based on (2)–(6). To facilitate energy-efficient
channel switching, we are interested in a policy, π∗, which

1To highlight the impact of PUs’ behaviors on SUs’ channel switching
strategies, we do not consider channel fading in our model. However, wireless
channel fading can be easily considered in our model by either introducing
another element to the state st or incorporating it into εt by viewing the
channel fading as a part of PUs’ behaviors.
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maximizes E
[

T∑
t=1

rt

]
, the expected accumulated reward re-

ceived during the data delivery process. Note that the policy
π∗ gives us the optimal channel switching scheme. Due to the
lack of knowledge about pm’s and qm’s, the state transition
probabilities are not known to SUt. In this case, SUt cannot
obtain the optimal channel switching scheme, i.e., the policy
π∗, directly by formulating and solving a Markov decision
process. As a result, Q-learning, a model-free reinforcement
learning scheme, is adopted, which allows SUt to find the op-
timal channel switching scheme through its previous actions,
observed states, and received rewards. Specifically, SUt intends
to learn a function Q(st, at) which is an approximation of
the optimal action-value function q∗(st, at). q∗(st, at) is the
maximum expected accumulated reward starting from state
st and taking action at [11]. With q∗(st, at), the optimal
channel switching scheme, i.e., the policy π∗, can be obtained
as π∗(st) = arg max

at∈At

q∗ (st, at). The learning process breaks

naturally into episodes. SUt attempts to transmit N packets
during each episode, and an episode ends when those packets
are delivered or the delay constraint is achieved.

Each episode starts with a state where Nt = N and t = 1.
For each slot within this episode, SUt selects an action based
on st and the ε-greedy policy and obtains a reward rt+1 [11].
With rt+1, SUt updates Q(st, at) as

Q (st, at)← Q (st, at) + α

(
rt+1+ max

a′∈At+1

Q (st+1, a
′)

−Q (st, at)

)
, (7)

where α is a step-size parameter, and At+1 is the set of
available actions in the (t+1)th slot. With the learned function
Q(st, at), SUt can obtain an energy-efficient channel switch-
ing scheme as π (st) = arg max

at∈At

Q (st, at). This implies that,

at state st, SUt always selects the action which is expected
to minimize energy consumption. In other words, when SUt
decides to switch to another channel, the available channels
will not be eqully likely selected if PUs’ behaviors on these
channels are different.

From above discussions, the computational complexity of
the learning algorithm mainly comes from the derivation of the
updated function Q(st, at) based on (7). As a result, we can
analyze its computational complexity based on how often (7)
is computed and the complexity to compute (7). If the training
process takes I episodes, (7) will be computed O(IT ) times,
where T is the delay constraint and thus the upper bound of
how many times (7) is computed per episode. The computation
in (7) includes 3 additions/substractions, 1 multiplication, and
|At+1| − 1 comparisons, where |At+1| is the cardinality of
At+1. Noticing that each of these operations takes constant
time and |At+1| is bounded by M + 2, the complexity of
(7) is O(M), where M is the number of channels to be
considered. Based on above discussions, if the training process
takes I episodes, the complexity of the learning algorithm is
O(ITM).
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Fig. 1. Energy consumption under different schemes.

IV. PERFORMANCE EVALUATION

To evaluate the performance of the learned channel switch-
ing scheme, we consider a scenario with M = 3 channels
which can be opportunistically accessed by SUs for data
transmissions. Each channel has a bandwidth of 1MHz. The
parameters related to PUs’ behavior are set as p1 = 0.9, q1 =
0.8, p2 = 0.1, q2 = 0.5, p3 = 0.9, q3 = 0.8. The distance
between the transceivers of the considered secondary link is
d = 100m. In each episode, SUt attempts to deliver N = 10
packets of length 1500Bytes in T = 15 slots. The length of
each slot is τ = 10ms and the first τs = 2ms of each slot
is dedicated to spectrum sensing. SUt adopts a fixed power
P = 18mW for data transmissions, and the circuit power con-
sumption during transmissions is Pc = 30mW . The parameter
η is set to 1. In each slot, SUt will spend Es = 0.06mJ on
spectrum sensing. SUt will spend Esw = 0.2mJ per channel
switching [4], [6]. Noticing that the noise power spectral
density at the receiver is −110dBm/Hz, the power of the
noise σ2 is 1. The signal propagation related parameters are
set to γ = 1 and k = 3. During the learning process, we set the
step-size parameter α to 0.1 and adopt a ε-greedy policy with
ε = 0.1 for exploration. The following performance evaluation
is conducted based on the channel switching policy learned
after 104 episodes.

In Fig. 1, we present the energy consumption of our CCA
channel switching scheme. To evaluate the effectiveness of
our scheme, we compare it with the current channel unaware
(CCU) channel switching scheme introduced in [4]. Unlike our
CCA channel switching scheme, the CCU channel switching
scheme does not consider the heterogeneous PUs’ behaviors
on different channels and always adopts the same channel
switching strategies regardless which channel SUt currently
stays at. Specifically, in the CCU channel switching scheme,
SUt switches to another channel with probability ps as long as
the current channel is sensed busy. The energy consumption of
the CCU channel switching scheme under various ps is shown
in Fig. 1. Besides the CCU channel switching scheme, we also
present the energy consumption for a basic channel switching
scheme where SUt makes channel switching decisions with-
out considering the energy consumption incurred by channel
switching. It should be noted that all the results presented in
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Fig. 2. The number of delay violation under different schemes.

Fig. 1 are averaged over 200 episodes. From Fig. 1, the basic
channel switching scheme has the highest energy consumption.
Notice that the basic scheme does not consider the energy
consumption incurred by channel switching when making
channel switching decisions. Under such a scheme, SUt always
attempts to switch to another idle channel when the current
channel is sensed busy, which leads to many unnecessary
channel switching actions and high energy consumption. Thus,
it is important to consider the energy consumption due to
channel switching when making channel switching decisions.
As shown in Fig. 1, the CCU channel switching scheme has the
least energy consumption when ps is small, and the CCA chan-
nel switching scheme gradually becomes more advantageous
when ps increases. For the CCU channel switching scheme
with small ps, channel switching is seldom used and SUt
mostly exploits a single channel for data transmissions, which
limits SUt’s spectrum access opportunities. In other words,
the low energy consumption of the CCU channel switching
scheme with small ps is the result of limited data transmis-
sion opportunities and minimized channel switching actions.
Clearly, with less transmission opportunities, it becomes more
difficult for the packets to be delivered before the deadline. In
other words, when ps is small, the small energy consumption
of the CCU scheme is achieved at the cost of violating delay
constraints. This can be corroborated by the results in Fig. 2
where we present the corresponding number of episodes with
delay violation under different schemes during the experiment.
According to Fig. 2, the CCU scheme with small ps could
result in a very large number of delay violations. Although the
number of delay violations decreases when ps increases, the
energy consumption of the CCU scheme increases. In contrast,
as shown in Fig. 1 and Fig. 2, our CCA scheme can achieve a
small energy consumption with 0 number of delay violations.
This implies that, when compare with the CCU scheme, our
CCA scheme can more effectively balance data transmissions
and energy consumption. This result not only demonstrates
the effectiveness of our CCA scheme but also highlights the
importance of adapting SUs’ channel switching decisions to
the PUs’ behaviors on the current channels.

In Fig. 3, we study how the energy consumption of our CCA
channel switching scheme varies with the delay constraint T .
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Fig. 3. Average energy consumption per slot v.s. delay constraints.

In the experiment, we adopt the same parameter settings used
in Fig. 1 except T , and the results are obtained by averaging
the energy consumption in 200 episodes. The CCU channel
switching scheme is not compared in Fig. 3 since it does
not consider the delay constraint. From Fig. 3, the energy
consumption of our CCA scheme increases with decreasing
T , whereas, the energy consumption of the basic scheme is
not affected by the variations in T . Given the considerable
amount of energy consumption during channel switching, the
basic idea of our CCA scheme for energy saving is to exploit
the delay tolerance of the data to avoid unnecessary channel
switching. Specifically, once PUs reclaim the channels, instead
of immediately switching to another channel, our CCA scheme
lets SUt wait on its current channel for spectrum access
opportunities as long as the delay constraints are not violated.
With decreasing T , the data packets need to be delivered in
a shorter time period, which renders SUt less flexibility in
handling these data packets. To ensure timely data delivery,
SUt might have to switch to another channel for transmissions
rather than waiting on the current channel for future spectrum
access opportunities. Thus, the energy consumption of our
CCA scheme increases with decreasing T . When T is small
enough, our CCA should let SUt take almost all possible
opportunities for data transmissions. This explains why the
energy consumption of our CCA scheme gets close to that of
the basic channel switching scheme.

Finally, the convergence of the learning algorithm is studied
in Fig. 4. We use the same parameter settings as defined at
the beginning of this section. The only difference is that we
also consider the case with the step-size parameter α = 0.5.
From Fig. 4, the learning algorithm can converge in 2000
episodes with a step-size parameter α = 0.5 and 6000 episodes
with α = 0.1. In practice, we can adopt advanced learning
algorithms (e.g., using function approximators) to expedite the
learning process and exploit the periodical pattern in PUs’
activities to enable the reuse of the previous training results
[11], [13], [14].

V. CONCLUSION

In this paper, we develop an energy-efficient channel
switching scheme for cognitive radio networks based on Q-
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Fig. 4. The convergence of the learning algorithm.

learning. Unlike existing work, in our scheme, SUs’ channel
switching strategies is closely related to the PUs’ behaviors
on the current channel. Through comparison with existing
channel switching schemes, we demonstrate that our scheme
can more effectively balance data transmissions and energy
consumption. Our results imply that, with properly designed
channel switching schemes, we can effectively exploit the
delay tolerance of the data to avoid unnecessary channel
switching and achieve considerable energy saving.

REFERENCES

[1] Y. Zhao, Z. Hong, Y. Luo, G. Wang, and L. Pu, “Prediction-based
spectrum management in cognitive radio networks,” IEEE Syst. J.,
vol. 12, no. 4, pp. 3303–3314, Dec. 2018.

[2] Y. Wu, F. Hu, S. Kumar, Y. Zhu, A. Talari, N. Rahnavard, and J. D.
Matyjas, “A learning-based qoe-driven spectrum handoff scheme for
multimedia transmissions over cognitive radio networks,” IEEE J. Sel.
Areas Commun., vol. 32, no. 11, pp. 2134–2148, Nov. 2014.

[3] F. Tang, B. Mao, Z. M. Fadlullah, and N. Kato, “On a novel deep-
learning-based intelligent partially overlapping channel assignment in
sdn-iot,” IEEE Commun. Mag., vol. 56, no. 9, pp. 80–86, Sept. 2018.

[4] S. Wang, Y. Wang, J. P. Coon, and A. Doufexi, “Energy-efficient
spectrum sensing and access for cognitive radio networks,” IEEE Trans.
Veh. Technol., vol. 61, no. 2, p. 906, Feb. 2012.

[5] Y. Wu, Q. Yang, X. Liu, and K. S. Kwak, “Delay-constrained opti-
mal transmission with proactive spectrum handoff in cognitive radio
networks,” IEEE Trans. Commun., vol. 64, no. 7, pp. 2767–2779, Jul.
2016.

[6] S. Agarwal and S. De, “Impact of channel switching in energy con-
strained cognitive radio networks,” IEEE Commun. Lett., vol. 19, no. 6,
pp. 977–980, Jun. 2015.

[7] J. Ren, Y. Zhang, N. Zhang, D. Zhang, and X. Shen, “Dynamic channel
access to improve energy efficiency in cognitive radio sensor networks,”
IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3143–3156, May
2016.

[8] K. Wu, H. Jiang, and C. Tellambura, “Sensing, probing, and transmitting
policy for energy harvesting cognitive radio with two-stage after-state
reinforcement learning,” IEEE Trans. Veh. Technol., Accepted for pub-
lication 2018.
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