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Abstract—In this paper, we introduce a network entity called point of connection (PoC), which is equipped with customized powerful
communication, computing, and storage (CCS) capabilities, and design a data transportation network (DART) of interconnected PoCs
to facilitate the provision of Internet of Things (loT) services. By exploiting the powerful CCS capabilities of PoCs, DART brings both
communication and computing services much closer to end devices so that resource-constrained loT devices could have access to the
desired communication and computing services. To achieve the design goals of DART, we further study spectrum-aware placement of
edge computing services. We formulate the service placement as a stochastic mixed-integer optimization problem and propose an
enhanced coarse-grained fixing procedure to facilitate efficient solution finding. Through extensive simulations, we demonstrate the
effectiveness of the resulting spectrum-aware service placement strategies and the proposed solution approach.

Index Terms—Internet of Things (loT), edge computing, spectrum allocation, service placement

1 INTRODUCTION

To fulfill the vision of the Internet of Things (IoT) and smart
cities, numerous devices are expected to be interconnected
for data transmissions and service provisioning. Accord-
ing to recent projections, there will be around 30 billion
connected IoT devices in the near future [1]. The inter-
connection of these devices will not only facilitate various
kinds of IoT applications, such as environment monitoring,
smart parking, online virtual reality gaming, augmented
reality navigation, and smart healthcare, but also pose a
great challenge to our already congested communication
networks [2]. To deal with the spectrum shortage, gov-
ernments, academia and industries have already started
revisiting spectrum allocation issues, and cognitive radio
(CR) technologies are considered as a promising solution.
Unfortunately, in most research work, CR is employed for
single-hop communications under the premise that end
devices are equipped with corresponding communication
capabilities, which might severely limit the effectiveness of
such emerging technologies due to relatively high costs or
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implementation complexity, particularly when applied to
resource-constrained small devices [3].

To fully exploit the benefits of CR technologies, we
advocate a network-level approach where, instead of relying
on resource-constrained IoT devices for spectrum sensing
and establishing one-hop communications, the network ex-
ploits CR technologies to bring networking services closer to
end devices. Then, IoT devices can connect to the network
with potentially shorter distance and thus lower transmit
power, which improves not only the energy efficiency of
end devices but also frequency reuse of the spectrums
that end devices are allowed or licensed to use. As a
result, JoT devices can enjoy the benefits of CR technolo-
gies and obtain the desired networking services without
having to conduct resource-consuming spectrum sensing
and decision making. To achieve this goal, we introduce
a network entity, called Point of Connection (PoC), which
can tune to IoT devices’ radio interfaces to offer them
desired network connections. These PoCs can be wirelessly
interconnected via, for example, CR technologies. They can
collect data from IoT devices and collaboratively deliver the
aggregated data to data networks or intended destinations
through CR technologies and harvested spectrum resources,
in which they act as routers. In addition, according to
specific applications, PoCs can be customized with power-
ful computing capabilities and sufficient storage space so
that they can be interconnected to form a localized cloud
computing facility at the network edge to offer desired edge
computing functions/services, which aligns well with the
current initiatives on edge computing [4]. In practice, both
a (small) base station in cellular systems and a cognitive
radio router (CR router) in cognitive radio networks can
be considered as a PoC as long as they have the afore-
mentioned communication, computing, and storage (CCS)
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capabilities which are collectively called the CCS capability
[3]. Depending on the customers’ needs or the premises of
interest, PoCs can be customized accordingly. These PoCs
can either be fixed at strategic locations, such as roadsides or
road intersections, acting as road side units or be mounted
on light-weight vehicles, acting as mobile PoCs to carry
and forward data [5]-[7]. With these PoCs in place, end
users can gain communication and/or computing services
by searching for them at a closer proximity. Information
contents of common interest can also be distributed to the
locations where consumers are likely to be. Finally, PoCs can
also serve as temporary storage facilities for big data to be
opportunistically transferred to the cloud or the intended
locations of consumption.

To fully exploit the potential of PoCs for service pro-
visioning, we further develop a data transportation network
(DART) where a secondary service provider (SSP) coordi-
nates the deployed/recruited PoCs to make connections
for end devices so that they can get desired communica-
tion/computing services. Noticing the convergence of com-
munications, computing, and storage in service provision-
ing for the emerging IoT applications, data may have to be
transported to the appropriate locations for processing or
computing [8]], [9]]. To facilitate efficient service provisioning,
the SSP needs to coordinate PoCs to gather information on
available spectrum and computing resources in DART and
jointly manage the spectrum and computing resources to
support relevant IoT applications. When necessary, the SSP
can organize a localized computing entity at the network
edge for IoT applications with both its deployed computing
resources, such as that colocated with PoCs, and the spec-
trum/computing resources harvested from other parties
[10]. For example, when an “Amber Alert” is issued, the SSP
can organize a temporary localized computing entity with
PoCs to pre-process and analyze both the video streams
coming from surveillance cameras and crowdsourced video
streams in order to facilitate license plate identification. In
this way, we can not only efficiently utilize the collected
data for service provisioning but also reduce the traffic on
backbone networks [11]]-[13].

To effectively support these data processing services in
DART, the SSP should assign them to appropriate edge com-
puting facilities so that their input data can be delivered to
the places where their demands for computing resources can
be satisfied [14], particularly in a smart city environment.
As mentioned in [13]], [15]-[17], a large number of smart-
city applications will rely on edge computing services for
data processing and intelligence extraction. For example,
video surveillance applications depend on edge comput-
ing services to analyze the video feeds from surveillance
cameras to detect, for example, suspicious people or ab-
normal events [13]], [18]. Traffic management applications
need edge computing services to analyze the data collected
from roadside sensors, traffic cameras, and vehicles, to
understand current traffic conditions and identify reckless
driving behaviors [17]. Crowdsensing applications employ
edge computing services to remove redundancy and sensi-
tive information in the crowdsourced data [16]. To support
these edge computing services, we should not only provide
enough computing resources to host the services but also of-
fer enough communication resources to continuously move
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the input data from end devices to the computing facili-
ties hosting the corresponding services. Unlike the cloud,
the computing resources available at each edge computing
facility is limited. In addition, the amount of data which
can be moved between end devices and each computing
facility is restricted by the available spectrum resources.
Given the increasing number of smart-city applications and
their demands for edge computing services, a critical issue is
how the computing and communication resources available
at the network edge could be efficiently used to simul-
taneously support more edge computing services. Since
different edge computing services might have different sizes
of input data and different requirements for computing
resources, the placement of edge computing services will
greatly affect resource utilization at the network edge [19].
For example, the inappropriate placement of a service with
large-sized input data and low demand for computing re-
sources might prevent other services from being placed in
the corresponding computing facility, which results in the
waste of the spare computing resources at the computing
facility. On the other hand, the inappropriate placement
of a service with high demand for computing resources
and small-sized input data might force other services to be
deployed to the computing facilities that are far from the
corresponding end devices, which unnecessarily increases
the level of contention in the network. The above observa-
tion motivates us to study the placement of edge computing
services in DART by jointly considering available comput-
ing and communication resourcesﬂ [15], [20]. To articulate
our approach, we consider a DART with fixed PoCs which
are deployed by an SSP. Under the supervision of the
SSP, PoCs gather data from IoT devices and collectively
deliver the data, via harvested licensed /unlicensed bands,
to PoCs with available computing resources for processinﬂ
As aforementioned, the SSP will jointly consider spectrum
resources and computing resources for service placement
and thus need a spectrum aware service placement (SASP)
scheme. By jointly considering spectrum allocation, service
placement, and the potential variations in spectrum avail-
ability, we cast the SASP schematic design as a stochastic
optimization problem and reformulate it as mixed inte-
ger linear programming (MILP). We propose an enhanced
coarse-grained fixing procedure to facilitate solution finding
[21]. Through extensive performance evaluation, we demon-
strate the effectiveness of the obtained service placement
strategies and the proposed solution approach. As a first
phase study, we only focus on theoretical evaluation in this
paper and demonstrate the effectiveness of the obtained
service placement strategies via simulations. The prototype
design and real-world evaluation are left for future work.

The major contributions of this paper are summarized as
follows:

1. Although not explicitly addressed in this paper, the storage capa-
bility is indispensable for the efficient utilization of the communication
and computing capabilities of PoCs. With the storage capability, PoCs
can temporarily store received data and wait for spectrum access
opportunities for data delivery. Moreover, for service placement, PoCs
need to store the associated libraries and databases to support a specific
service type.

2. For current study, we only consider the computing resources
colocated with or embedded in PoCs.
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e In view of resource-constrained end devices, we ad-
vocate a network-level approach, which leverages
the capabilities of PoCs and network-side manage-
ment/coordination, to facilitate IoT applications. To
achieve this goal, we introduce the concept of PoCs
and design DART based on interconnected PoCs to
support communication and computing services for
IoT applications.

e Noticing the importance and popularity of data pro-
cessing services at the network edge, we further
study an edge computing service placement problem
in DART. By jointly considering spectrum alloca-
tion, service placement, and the variations in spec-
trum availability, we formulate the service placement
problem as a stochastic optimization problem.

o We reformulate the stochastic optimization problem
as MILP and develop an enhanced coarse-grained
fixing procedure for efficient solution finding.

The rest of this paper is organized as follows. Related
work is reviewed in Section 2. The architecture of DART
and the considered scenario are introduced in Section 3.
The SASP schematic design is formulated as a stochastic
optimization problem, which is further recast as an MILP
in Section 4. In Section 5, an enhanced coarse-grained fix-
ing procedure is introduced for efficient solution finding.
Performance evaluation is conducted in Section 6. Finally,
conclusions are drawn in Section 7.

2 RELATED WORK

Although we have advocated network-level architectural
design to take full advantage of CR technologies [3]|, [5],
we only focused on the communications aspect [22], [23]. In
this paper, we refine our design and introduce the concept
of PoC so that the designed DART architecture can not only
provide significantly better communication services but also
efficiently support mobile computing and opportunistic
storage, commonly observed in various future IoT appli-
cations. Different from our previous proposals, PoCs enable
the desired connections of end devices for both communica-
tion and computing services. Thus, in addition to communi-
cation capabilities, PoCs should be endowed with sufficient
computing capabilities to facilitate service discovery and
provisioning [24]. The systems developed by Microsoft bear
some similarity to DART as both of them utilize network
connecting devices and under-utilized spectrum resources
to serve end devices [25], [26]. However, their design goals
are different. Microsoft introduces network connecting de-
vices so that the favorable signal propagation characteristics
in TV White Spaces can be exploited to extend network cov-
erage over a large area and provide cost-effective solutions
to sensory data collection and Internet service provisioning.
In contrast, the design goal of DART is on how to exploit
PoCs and the under-utilized spectrum resources, besides
TV White Spaces, to support the increasing wireless traffic
and facilitate service provisioning. In DART, communication
and computing resources should be jointly managed, and
thus the SSP needs novel resource management schemes to
provide the needed communication and computing services
for IoT applications.
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How to efficiently place computing services at different
edge computing nodes has been studied in [27]-[32]. Gener-
ally speaking, the service placement schemes are designed
by jointly considering the computing resources requested
by each service and the communication resources used to
deliver the input data. In [28], Yu et al. consider a fog radio
access network (F-RAN) where a group of fog nodes are
interconnected via backhaul links to serve users’ requests,
and a long-term service placement problem is formulated to
minimize the incurred backhaul traffic. Other than backhaul
connections, service providers often need to rent edge com-
puting resources for service provisioning. In view of this,
Yang et al. study a cost-aware service placement and load
dispatch problem for mobile cloudlets in order to balance
the average latency of users’ requests and the cost of service
providers [30]. Similar problems have been considered in
[31], [32]. In [31], Gu et al. design cost-efficient service place-
ment schemes for cellular networks with colocated edge
computing resources to support medical cyber-physical sys-
tems. By further considering base station association, the
corresponding problem is formulated as a mixed integer
nonlinear programming, which is linearized and solved via
a linear programming based two-phase heuristic algorithm.
In [32]], Chen et al. investigate a collaborative service place-
ment problem where multiple small cell base stations collab-
oratively provide edge computing services to end users. By
transforming the formulated utility maximization problem
into a cost minimization problem, an efficient distributed
algorithm is designed to facilitate solution finding. In all
the aforementioned scenarios, the input data is delivered
via wired transmissions or at most one-hop wireless trans-
missions, whereas, PoCs in DART could collaboratively
harvest licensed /unlicensed spectrum resources and deliver
the input data to corresponding edge computing facilities
through multi-hop wireless transmissions. To facilitate effi-
cient service provisioning, the SSP should jointly consider
service placement, spectrum allocation, flow routing, which
is much more challenging than the cases considered in
existing work. Particularly, given the uncertain activities of
licensed /unlicensed users, the SSP should consider poten-
tial variations in spectrum availability when making service
placement decisions. Thus, existing schemes might not be
efficient in these situations, and how to place computing
services in DART needs further exploration.

Our work and existing literature on multi-resource
schedulers are focused on different aspects of resource
sharing, which are on different time scales. Specifically, we
investigate where each edge computing service should be
placed during the considered period of time so that more
edge computing services can be simultaneously supported.
In other words, instead of real-time scheduling, we study
a service placement problem which determines the set of
services to share a specific group of resources. In contrast,
existing work on multi-resource schedulers, such as the
Dominant Resource Fairness (DRF) scheduler and the DRFH
scheduler, is interested in how to schedule the tasks of
different services in real time so that a group of resources
are shared among a set of services and each service gets
its promised/allocated resources [33], [34]. In other words,
given the placement of services, existing work on multi-
resource schedulers is focused on real-time task scheduling
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Fig. 1. The Network Architecture of DART. The symbols between
loT devices and r-PoCs represent data transmissions between
these entities.

policies which facilitate resource sharing among the set of
services assigned to the same group of resources.

3 NETWORK ARCHITECTURE AND MODELS
3.1 The Network Architecture of DART

As shown in Fig. [I, DART consists of a set of PoCs de-
ployed/recruited and coordinated by an SSP.

PoCs are network entities which can tune to end devices’
radio interfaces to communicate, and have sufficient com-
puting resources and storage space to push/pull computing
and data services close to end devices. PoCs in DART can
be either fixed or mobile. The fixed PoCs are deployed
at strategic locations by the SSP to transport data and
provide basic network services. Some fixed PoCs connect to
data networks such as the Internet via wired connections
or sustainable and reliable wireless connections, serving
as agents for the SSP to manage available resources and
data transportation and offering the presence of network
connections to the backbone networks. These PoCs are
also called connected PoCs, or c-PoCs for short. Other fixed
PoCs that do not have direct network connections serve as
relaying nodes for IoT devices and/or collecting points for
computing tasks and /or opportunistic caching nodes. These
fixed PoCs are called relaying PoCs (r-PoCs). The mobile
PoCs are mainly utilized to transport data around, which
are generally installed on vehicles. Depending on where
they are installed, the communication, computing, and stor-
age capabilities (CCS capabilities for short) of PoCs can
be customized accordingly to perform communication and
computing tasks. It should be noted that “PoC computing
resources” in Fig. [1| refers to the computing resources colo-
cated with or embedded in c-PoCs where edge computing
tasks are executed, which is similar to edge servers deployed
at base stations or WiFi access points [11], [35].

The SSP could be an independent service provider or
an existing service operator such as a cellular operator, but
must have its own reliable bands (e.g., cellular bands if the
SSP is a cellular operator), called basic bands, which are
used to support common control signaling or services with
stringent quality-of-service (QoS) guarantee. The network
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control functions of the SSP are implemented through,
for example, the computing resources colocated with or
embedded in the c-PoCs. These network control functions
manage the operations of PoCs and available communica-
tion/computing resources in DART to connect IoT devices
to the desired data and edge computing services. The SSP
employs PoCs to collect various kinds of information, such
as locally available spectrum bands, computing, and storage
resources. Based on the collected information, the network
control functions make decisions on spectrum allocation,
data delivery, and edge computing service placement. The
corresponding decisions are sent to PoCs via the SSP’s basic
bands to coordinate the operations of PoCs so as to support
requested services.

To elaborate on our approach, in the following, we
study the placement of streaming data processing services
in DART with CR routers introduced in [3], [5] as PoCs.
As a result, in the following development, the high-speed
wireless transmissions between PoCs are achieved by har-
vesting and exploiting a wide range of under-utilized lin-
censed/unlicensed spectrum. Before getting into the mod-
eling part, we will give an example of the streaming data
processing services considered in this paper.

3.2 An Example of Edge Computing Services

A relevant example is edge video analytics to locate a lost
child [16]. When a child has gone missing during a large
public event, such as a parade, the local police station can
issue service requests to the SSP to analyze video feeds from
surveillance cameras to search for a child wearing a specific
type of clothes. The corresponding system diagram is shown
in Fig.[2} To better illustrate how the SSP processes a service
request, in Fig. |2} we consider a DART with an SSP, a r-PoC,
and a c-PoC with available computing resources for task
execution. Since such a service will involve continuously
receiving and processing of the video feed from a camera,
the SSP determines where the service should be placed
by jointly considering available spectrum and computing
resources and coordinates PoCs for service provisioning.
Specifically, when the SSP receives the service request, it
places the service to the PoC (c-PoC in Fig. [2) which best
meets the computing and bandwidth requirements of this
servicdﬂ Then, it makes spectrum allocation and data rout-
ing decisions for PoCs in order to establish a connection
between the source (a surveillance camera in Fig.[2) and the
selected PoC for input data delivery. Once such a child is
found, the corresponding images will be sent to the the local
police station, through data networks, for further analysis to
determine if it is the lost child.

In this example, each service request corresponds to
analyzing the video feed from a specific surveillance cam-
era. Thus, its bandwidth requirement corresponds to the
bandwidth requirement of a surveillance camera, and its
computing requirement is the processing power required to
analyze the corresponding video feed. According to [37],

3. Once the SSP makes the service placement decisions, it will directly
instantiate the services at the selected PoCs if they have the copies of
the corresponding services [12]. Otherwise, it will extract the services
from a service repository and send them to the selected PoCs for service
instantiation [36].
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Fig. 2. Edge video analytics to locate a lost child. The arrows
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the bandwidth requirement of a surveillance camera is
closely related to the video resolution, the frame rate, the
image quality level, the complexity of the scene, and the
adopted compression algorithm, which makes it difficult to
exactly predict the bandwidth requirement. In practice, such
bandwidth requirement can be obtained through real-world
measurements. When H.264 is used for video compression,
the estimated bandwidth requirements of a surveillance
camera under different parameter settings are provided
in [37]. For example, a video with high image quality,
resolution 720 x 576, and frame rate of 6fps requires a
bandwidth of 0.5Mbps. When the frame rate of this video
increases to 30 fps, its bandwidth requirement will increase
to 1Mbps. The computing requirement can be estimated
from the resolution of the video, the frame rate and the
adopted processing algorithms. From [38], the computing
requirement can be estimated through the product of the
size of input data and the number of CPU cycles needed to
process 1-bit of the input data. For example, if the adopted
algorithm needs 10 CPU cycles to process 1-bit of the input
data, we will need 9.95 x 107 CPU cycles to process an
image with resolution of 720 x 576. Thus, a video feed with
resolution 720 x 576 and frame rate of 30fps requires the
processing power of 2.99GH .

3.3 Network Configuration and Related Models

We consider a DART where N fixed PoCs, indexed as
N ={1,---, N}, are deployed by the SSP. The c-PoCs with
computing resources available for executing computing
tasks are collected in a set V C N. These PoCs are connected
to data networks via wired connections or sustainable and
reliable wireless connections. For each PoC ¢ € V, denote
its available computing capability (i.e., CPU cycles per sec-
ond) as A;. There are K streaming data processing service
requests, such as the requests for edge video analytics
mentioned in Section 3.2, and the SSP attempts to support
as many services as possible by assigning these services to
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appropriate c—PoCsﬂ The kth service is characterized by a
tuple (sk,7k,0r), where si is the source PoC where the
input data of the kth service is collected, 7 is the data
rate required to move the input data of the kth service to
assigned PoCs, and ¢, is the computing capability required
by the kth servicd’|[14].

The data transmissions and interfering relationships be-
tween different PoCs are characterized via the transmission
range Rr and the interference range Rj, respectively. We
call the link from PoC 4 to PoC j as link (i, 7). Link (3, j)
exists only when the distance between PoC ¢ and PoC j is
less than R7. When the distance between PoC i and PoC [ is
larger than Ry, the interference incurred by the transmission
of PoC 1 is negligible at PoC I.

Due to spatial variations in spectrum availability, the
set of available spectrum bands at different PoCs might be
different. Denote the set of spectrum bands available at PoC
i as M;. M, is a subset of M={1,--- ;m,--- , M}, where
M is the total number of spectrum bands in the considered
system. Thus, the bands in M; N M, can be utilized to
support the data transmissions over link (4, j). Since these
bands are harvested via CR technologies, the SSP needs to
vacate these bands when primary users (PUs) reclaim them.
Noticing that the SSP might not be able to accurately predict
the activities of PUs and thus the duration when these bands
can be used for its transmissions, we model the equivalent
bandwidth of band m € M; N M; available to the SSP as
a random variable w;; and assume w;}’s are independent
and identically distributed (i.i.d.) for illustrative purposes.

Based on these models, we will formulate the SSP’s
spectrum aware service placement (SASP) schematic design
as a stochastic optimization problem in the next section.

4 PROBLEM FORMULATION

As aforementioned, the SSP should jointly consider avail-
able communication and computing resources when de-
termining its service placement strategy. In this paper, we
employ a 0-1 integer variable y;, i € V, to represent the
SSP’s service placement strategy, and 6, equals 1 only when
the kth service is assigned to PoC i € V. Table [1] lists the
important notations used in this paper.

4.1 Flow Routing and Spectrum Allocation Constraints

For effective service placement, the SSP must ensure the
input data of different services can be delivered to the
assigned c-PoCs. In this paper, we consider a case where
each edge computing service can be placed in at most one
PoCinV,ie,,

ngzg]-ake{laaK} (1)
i€V
Since the SSP’s placement decision for each service is not
known in advance, the kth service could be placed at
any PoCs in V, which implies that any PoCs in V' could
potentially be the destination for input data delivery. In

4. For the current study, we use c-PoCs and their colocated comput-
ing resources interchangeably.

5. 0’s are submitted to the SSP by the clients when requesting edge
computing services.
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TABLE 1
The List of Important Notations and Definitions.

Notation Definition
N The number of fixed PoCs
N The set of fixed PoCs
V The set of c-PoCs with colocated computing resources
A The computing capability of the computing
‘ resources colocated with PoC i € V
K The number of stream processing service requests
s The PoC where the input data of the kth
k service is collected
Tk The bandwidth requirement of the kth service
Ok The computing requirement of the kth service
M; The set of spectrum bands available at PoC ¢
wm The equivalent bandwidth of band m € M; N M;
J available to the SSP
0. = 1if the kth service is placed at
ki PoCi € V and is 0 otherwise
fikj The flow rate of the kth flow allocated to link (%, 5)
m =1 if band m is allocated to link (, j) and
Yij is 0 otherwise

view of (1), we introduce a virtual sink node dj, as the
virtual destination for the data of the kth service to facilitate
problem formulation. We add a directed link from PoC i € V
to dj, with capacity 0;; Y, where T is large enough so that
the link between di and PoC ¢ € V will not become the
bottleneck when 0;; = 1. It should be noted that d;,’s and the
corresponding directed links are virtual nodes and virtual
links added to ease the formulation of the flow routing
constraints. No actual data flow will go through the added
directed links, nor will any spectrum resources be allocated
to these added links.

Noticing that the capacity of the link from PoC ¢ € V
to dj, is positive only when 8;; = 1, i.e., the kth service is
placed at PoC i € V, the amount of data delivered from s, to
di, equals that delivered from sy, to the c-PoC where the kth
service is placed. As a result, with dy, the SSP can determine
the amount of data potentially delivered from PoC s, to the
PoCs in V, which depends on both the available harvested
spectrum resources and the SSP’s data routing strategies,
according to the following flow routing and link scheduling
constraints.

We call the flow incurred by delivering the input data of
the kth service as the kth flow, denoted as f k Let Z@- be the
flow rate of the kth flow allocated to the link from PoC i to
PoC j. Since PoC sy, is the source node for the kth flow, we

have
k
> fi=m @
i=s1,J€Tey
k
> i =0, 3)
{ilsk€Ti La=sw
where 7, is the PoCs within the transmission range of PoC
sk. {i|sk € T; } is the set of PoCs with PoC s; staying in
their transmission range.
For other PoCs, the kth flow must satisfy the following
flow balance constraints

SNooth= > fViENj# sk Fde, @)
GliET: } 1€7; Uk

where Z, = {di}if j € Vand Z, = 0if j ¢ V.

6

Since dj, is the destination of the kth flow and we only
consider the link from PoC ¢ € V to di, the flow routing
constraint at dj can be formulated as

> =k 5)

i€V, j=dy

Noticing that d}, is the destination for the kth flow, we have
b =0,YieV,k #F.

Clearly, the amount of flow carried over each link cannot
exceed the achievable data rate of the corresponding link,
which is closely related to the SSP’s spectrum allocation
strategy. We introduce a 0 — 1 integer variable y;7 € {0,1},
i,j € N, m € M; N Mj, to represent the SSP’s spectrum
allocation decisions. y;7 = 1 only when band m is allocated
to link (¢, 7). To ensure efficient data delivery, a PoC cannot
simultaneously transmit to or receive from multiple PoCs
on the same band, which leads to the following constraints

Yy <1LVie Nyme M, 6)
{j€TilmeM;}

>

{jli€Tj,meM; }

vy < 1L,Vie Nym e M, 7)

where {j € T;m € M} represents the set of PoCs in 7;
with available band m, {j|i € T;,m € M;} is the set of
PoCs with PoC i in their transmission range and available
band m.

To avoid self-interference, a PoC cannot simultaneously
transmit and receive on the same band, i.e.,

>

{3’ €TilmeM,}
VjeN,ieT;,meM;NM,, (8)

where M; N M, is the set of available bands for link (3, j).
Besides above constraints, the SSP should ensure the
operations of different links will not interfere with each
other. That is, if link (4, j) is scheduled, all other links that
interfere the operation of link (7,j) cannot be scheduled.
Thus, we have the following link scheduling constraints

S yh<LYjeNieTme MM,
{leT;lmeM;}

Yyi + yiy <1,

yii +

j/ € {Jl |7’ S Ij',j/ #:%m S Mj’}7
&)

where I/ is the set of PoCs within the interference range of
PoC j'.

Notice that f*’s are feasible only when the correspond-
ing flow rate over each link can be supported by the allo-
cated spectrum resources. For link (i,9),1 € N,j €T, if the
values of w;}’s are known, the SSP can ensure the feasibility
of f*’s by imposing the following constraints

K
d s >
k=1

meM;NM;
where c is the spectral efficiency of link (¢, j) over any band
me M; N M e
Unfortunately, due to the uncertain activities of li-
censed /unlicensed users, the values of w!"’s are not known
in advance, which implies that cannot be directly ap-
plied in our formulation. To incorporate the uncertainty of

yijewi, Vi e Nyje T, (10)
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w7 in the formulation, we quantify the achievable data rate
of link (%, j) by the following chance constraint

K
D M
k=1

mEMiﬂMJ

ygewy | >a,Vie N,jeT,

)

where « is the confidence level for the chance constraint.
means that s are considered to be feasible if it can be
supported by the spectrum resources allocated to link (3, j)
with at least probability a.

4.2 Optimal Spectrum Aware Service Placement

Given the above constraints, the SSP can make optimal
spectrum placement decisions by jointly considering the
available communication and computing resources. Notic-
ing that the computing resources requested by the placed
services cannot exceed the capabilities of the corresponding
PoCs, we have the following constraints

K
D Oridy < Ay Vi€ V.
k=1

12)

To support as many services as possible, the SSP needs
a service placement strategy to maximize the number of
supported services while satisfying the communication and
computing resource constralntsﬂ The desired strategy can
be obtained from the following optimization problem

K
OPT: maximize 9 = Z Z Ori (13)

k=1:i€V

@~ @ @ .
E>0ieN,jeT, kel
fho>0ievke{l,--- K},
fE o =00eV kK e {1, K} k#K,
O €{0,1}, ke {l,--- ,K},i €V,

v €{0,1},i e N,j € Ti,m € M; N M.

K},

Clearly, since OPT aims to efficiently utilize available com-
munication and computing resources to support as many
services as possible, it will consider placing the services
next to the corresponding IoT devices when possible. Once
placed, the services will not be reallocated for a period
of time. As time goes on, the placement might not be
optimal and the SSP can reallocate these services based on
OPT. When the SSP should reallocate these services is an
interesting research problem and will be explored in our
future work.

Due to the stochastic constraint, it is challenging for us
to take advantage of existing solution approaches to solve
OPT. In the next subsection, we will reformulate OPT to
facilitate solution finding.

6. Due to resource constraints, the SSP might not be able to support
all these services. In this case, the SSP can, for example, harvest
extra computing resources from other systems for service provisioning,
which will be addressed in future work.

4.3 Problem Reformulation
For simplicity, let x;; = >

mEMiﬂMJ
largest value which satisfies P (x;; > xsj (o)) > . Then,
(11) is equivalent to

yijwii and x;; (o) be the

K
Do fl<exij(@)ieN,jeT. (14)
k=1

Since w]’s are assumed to be ii.d. for our case study,
the distribution of x;; is a sum of iid. random variables
and the number of these random variables is determined by

> y;;- Let x7; be the sum of 7 i.i.d. random variables
meM;NM;

with the same distribution as w;} and x7; (o) be the largest
value which satisfies P (X” X ( )) > o. Then, x;; (a)
can be expressed as

[IMinM;|
Xij (@) = nxij (a),ie N,jeT, (15

T=1

where | M; N M| is the cardinality of M; N M. n]; is a 0-1
integer variable and equals 1 only when > Yy =T
meM;NM j

This implies that 7;;’s should satisfy the following con-

straints
[MiNM;|
o= Y yBieNGET (16)
=1 meM;NM;
|M1/mMj|
17)

Y n<LieNjeT,
=1

where /’ ensures that at most a single nf;, 7 =
s [Mi 1 Ml equals 1. (16) and (17 . guarantee that 77

equals 1 only when y” =T
meM; ﬁM
Thus, the chance constraint in is equivalent to a set

of linear constraints shown in (14), (I ., and (17). By

replacing (1I) in OPT with (14), . (16), and (17), we can

obtain an equivalent optimization problem of OPT as

K
OPT1: maximize 9 = Z Z Ok

k=1ic€V

s.t.. Other constraints in OPT except (T1)),

[M;NM; |
Z 5 <

¢ Y mhxgla)ieN,jET,
T=1

\MmMﬂ

ooomi= Y yhdeNJET,
=1 mGMiﬁMj

[MinM;|

Y o <lieN,jET,
=1

n; €{0,1},ieN,j €T
TE{l,--- ,\./\/liﬁ./\/lj|},
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where fL’B, Ok, y;7,and n;; are decision variables. Clearly, the
objective function and the constraints in OPT1 are linear.
Noticing that 0;, yz’? and 77¢Tj are integer variables, OPT1
is a mixed integer linear programming (MILP), which is
NP-hard in general, and the number of integer variables
in the MILP increases with the size of the network. Be-
sides, as pointed out in [21]], due to the spectrum allocation
constraints ((6)-(9)), solving the formulated MILP could be
equivalent to searching the maximum independent set of
a graph, which is not only NP-hard but extremely difficult
to approximate as well. Particularly, as mentioned in [21],
the maximum independent set problem is hard due to the
existence of odd holes and odd anti-holes in the correspond-
ing graphs and the spectrum allocation constraints in the
formulated MILP could give rise to a graph with many
odd holes and odd anti-holes. In other words, the spectrum
allocation constraints in the MILP hinder us to develop
approximation algorithms to solve the formulated MILP
with analytical performance guarantee. In the following
subsection, we will introduce a heuristic algorithm, called
basic coarse-grained fixing procedure, to find the solution.

4.4 A Basic Coarse-Grained Fixing Procedure for Solu-
tion Finding
Clearly, the difficulty in solving OPT1 primarily comes from
the spectrum allocation constraints where the number of
involved integer variables, y;7, increases as the size of the
considered network grows. As long as the values of y;}’s are
fixed, the values of other variables can be easily fixed via
off-the-shelf optimization software. Thus, the key to solve
OPT1 is to develop good heuristics to fix the values of y;’}’s.
Motivated by the coarse-grained fixing procedure de-
veloped in [39], we attempt to fix the value of y;}’s by
relaxing y;7’s and 77;’s to [0, 1] and solving a sequence of
relaxed optimization problems. After solving each relaxed
optimization problem, we set the values of certain y;7’s
to either 0 or 1 according to their values in the obtained
solution. For y;7’s with values close to 1 in the obtained
solution, if they are set to 0, the achievable data rates of the
corresponding links will be significantly reduced and the
value of the objective function is more likely to be adversely
affected. Thus, if y;7;’s have values close to 1 in the obtained
solution, we will fix them to 1. Specifically, we pick the yZL ’s,
which have not been fixed yet, with the values larger than
0.5 in the obtained solution and set them to 1 to obtain
another optimization problem which will be solved as the
next optimization problem. If all such y;’}’s are less than 0.5
in the obtained solution, the y{}‘ with the largest value is
set to 1. Once the value of y;} is set to 1, we can also fix a
set of other y;7’s based on the conflicting relationships by
the spectrum allocation constraints. When all y;’}’s are fixed,
we solve the resulting optimization problem to obtain the
final results. The above procedure is called the basic coarse-
grained fixing procedure and is shown in Algorithm 1.

5 AN ENHANCED COARSE-GRAINED FIXING PRO-
CEDURE FOR SOLUTION FINDING

While fixing y;/’s with the basic coarse-grained fixing pro-
cedure, we might encounter the case where two conflicting

Algorithm 1 : Basic Coarse-Grained Fixing Procedure

Input: The parameters of OPT1.
Output: A solution to OPT1.
1: Relax y}7’s and 7)/;’s to the interval [0, 1] and collect y;'s
not yet fixed in a set ¢;
2: Solve the relaxed optimization problem and collect y;7’s
with values larger than 0.5 in a set ¥;
: if ¢ N # () then
Fix y/i’sin¢ to 1;
else
Search for the y;7 with the largest value in ¢ and set
the obtained yl’? to 1;
7: end if
8: Based on the fixed y;7’s, try to fix other y;7’s according

2]

to the constraints @-@) Remove the fixed y;?’s from ¢;

AR L

9: if o = () then
10:  Go to Line 14;
11: else

12:  Reformulate the relaxed optimization problem with
the lately fixed y;’’s and go to Line 2;

13: end if

14: Reformulate OPT1 with all fixed y;}’s and solve the
reformulated optimization problem to obtain the max-
imum objective value 1} and the corresponding solution
Z;

15: return v and z;

variables, say y;7 and y;7,, have values around 0.5. For
example, we have the following scenario: y;7 is 0.52 and Yy
is 0.48. In this case, it is difficult to determine which variable
will have larger impact on the value of the objective function
merely based on their values in the obtained solution. If
we set ;7 to 1 according to the aforementioned procedure,
y;5» will be automatically set to 0. Noticing that y;7, in
the obtained solution is very close to 0.5, directly fixing
y;; to 1 might significantly impair the achievable rate of
link (i,7’) and thus adversely affect the final performance.
To facilitate efficient spectrum allocation, we introduce a
revised optimization problem which is obtained from the
original relaxed problem by reducing the bandwidth per
harvested band. With a reduced bandwidth, the solution to
the original relaxed problem becomes infeasible. In other
words, the flow rates allocated to different links can no
longer be supported based on the y;7’s obtained by solving
the original relaxed optimization problem. Since the flow
rates on different links have different impacts on the objec-
tive function, to maintain the performance, we should try
to keep the flow rates of the links which affect the objective
function the most. Thus, more spectrum resources should
be allocated to these important links, which might push
y;;’s away from 0.5 and thus facilitate more efficient spec-
trum allocation. Based on this idea, we further introduce
an enhanced coarse-grained fixing procedure as shown in
Algorithm 2 for OPT1 by noticing that the set of y;"’s, which
are fixed to 1 during parameter fixing procedure, will be
affected by the parameter-fixing decisions in the initial step.

In the enhanced coarse-grained fixing procedure, OPT1
is first solved by following the basic coarse-grained fixing
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Algorithm 2 : Enhanced Coarse-Grained Fixing Procedure

Input: The parameters of OPT1.
Output: A solution to OPT1.

1: Solve OPT1 via the basic coarse-grained fixing proce-
dure to obtain a solution z; and the corresponding value
of the objective function ¥;;

2: Obtain a revised version of OPT1 by reducing the
bandwidth of each harvested band and updating the
corresponding constraints in OPT1;

3: Relax y}t’s and 7];’s to the interval [0, 1] and collect y;7’s
not yet fixed in a set ¢’;

4: Solve the relaxed version of the revised optimization
problem and collect y;7’s with values larger than 0.5
in a set ¢’;

5: Repeat the procedure from Line 3 to Line 8 of Algorithm
1 with ¢ replaced by ¢’ and 1) replaced by ';

6: if ¢’ = () then

7:  Repeat the procedure in Line 14 of Algorithm 1 and

obtain a solution x5 and the corresponding value of
the objective function ¥s;

8 Go to Line 13;

9: else

10:  Reformulate OPT1 with the fixed y;}’s;

11:  Repeat the procedure from Line 1 to Line 14 of Al-
gorithm 1 for the reformulated problem and obtain
a solution x2 and the corresponding value of the
objective function ¥;

12: end if

13: return ¥ = max{¥1,¥2} and Targ max{o1,92};

procedure to obtain a solution x; and the corresponding
value of the objective function ;. Then, OPT1 is solved
again through the basic coarse-grained fixing procedure but
with a different set of y;}’s fixed in the initial step. This
set of y;;’s are determined by solving a revised version of
OPT1 with the bandwidth of each harvested band reduced
and the integer variables relaxed to [0, 1]. By following this
procedure, we obtain another solution z to OPT1 and the
corresponding value of the objective function 1J,. Finally,
the solution to OPT1 is chosen from x; and x5 based on the
values of 1, and .

6 PERFORMANCE EVALUATION

To evaluate the effectiveness of our SASP scheme as well
as the proposed heuristic algorithms, we consider a DART
with N = 10 PoCs and a scenario where the SSP receives
K = 10 computing service requests and makes service
placement decisions for received service requests to maxi-
mize the number of supported services. These 10 services
have the same source PoC, and two of the 10 PoCs are c-
PoCs with available computing resources for task execution.
The PoCs are randomly distributed in a 500 x 500m? area to
form a connected network. We randomly pick a PoC from
these PoCs to serve as the source of the K service requests
and select two other PoCs to be the c-PoCs with available
computing resources for task execution. For simplicity, we
assume the computing resources colocated with each c-

TABLE 2
Maximum Number of Supported Services

somm wMHz) o sl g5 |6|7]8]09
M =4 olution ]
Optimal 415666678
Algorithm 1 45|54 |5[]6|7]4
Algorithm 2 41566 [5]6[7]8
o wMHz) 5 3l 45 |6|7|8]9
M=5 olution ]
Optimal 516677888
Algorithm 1 514 |5[4|7[6|7]38
Algorithm 2 516 [5]7[7]8]71]8

PoC have the same computing capability of 10GH zﬂ ie,
A; = A = 10GHz, Vi € V. The rate requirement of
each service request is randomly drawn from the inter-
val [0.5,1]Mbps according to a uniform distribution and
the processing power required by each service is within
[1,2]GHz [18], [41]. The transmission range and the interfer-
ence range are 150m and 250m, respectively. For illustrative
purpose, the same set of spectrum bands is assumed to
be available at each PoC and all bands are assumed to
have the same bandwidth of wM Hz as well as the spectral
efficiency of 1bit/s/Hz. Due to the uncertain activities of
licensed /unlicensed users, for each band, the ratio of the
available bandwidth to the total bandwidth follows a trun-
cated exponential distribution on interval [0,1] as shown
in [42] with A = 2. The confidence level for the chance
constraint « is set to 0.8. All the evaluations are conducted
using MATLAB on a laptop with 2.6 GHz Intel(R) Core(TM)
i5-3320M CPU and 8GB RAM.

6.1 Results and Analysis

Based on above settings, we compare the performance of
the enhanced coarse-grained fixing procedure with that of
the optimal solution and the basic coarse-grained fixing
procedure. To proceed, we first solve OPT1 via the enhanced
coarse-grained fixing procedure to obtain the maximum
number of supported services. Specifically, in step 2 of Al-
gorithm 2, we reduce the bandwidth of each harvested band
by setting it to w — 1. Then, the same problem is optimally
solved via the branch and bound algorithm. Finally, we
solve OPT1 via the basic coarse-grained fixing procedure.
The results are shown in Table |2, where M is the number
of harvested bands. For simplicity, we assume the same set
of harvested bands is available at each PoC. From Table
our enhanced coarse-grained fixing procedure (Algorithm
2) can achieve almost the same performance as that of the
optimal solution and outperforms the basic coarse-grained
fixing procedure (Algorithm 1), which demonstrates the ef-
fectiveness of the enhanced coarse-grained fixing procedure.

To further evaluate the effectiveness of the enhanced
coarse-grained fixing procedure, we have conducted ex-
periments with N = 20 PoCs and K = 20 computing

7. This computing capability could come from a multi-core CPU. For
example, Intel®Core™2 Quad Q6600 processor has a CPU speed of
4 x24GHz = 9.6GHz ~ 10GH z [40].
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Fig. 3. The average number of supported services under the
proposed algorithm v.s. the upperbound.

service requests. To incorporate the case where the comput-
ing resources colocated with different c-PoCs might have
different computing capabilities, A; (i € V) is drawn from
the interval [10, 15]G H z. Specifically, we randomly generate
10 network topologies. For each of these topologies, 20 PoCs
are randomly deployed in a 500 x 500m? area to form a
connected network and the source of the service requests
and the c-PoCs with computing resources are randomly
chosen from these 20 PoCs. The other parameter settings
are the same as those introduced at the beginning of this
section. When N = 20, it is difficult to optimally solve the
formulated MILP and obtain the corresponding maximum
number of supported services in reasonable time. Thus, we
relax the 0-1 integer variables in the formulated MILP to
[0,1] and solve the relaxed problem to obtain an upper-
bound of the maximum number of supported services as
a benchmark to evaluate the performance of the enhanced
coarse-grained fixing procedure. For each of the 10 topolo-
gies, we solve the relaxed problem to obtain an upperbound
and solve the formulated MILP with Algorithm 2. After that,
we take the average value over these 10 topologies as the
final results shown in Fig.[3] As shown in Fig. 3] the max-
imum number of services supported under the enhanced
coarse-grained fixing procedure is close to the upperbound.
Noticing that the maximum number of services supported
under the enhanced coarse-grained fixing procedure serves
as a lower bound of that supported under the optimal
solution, the results in Fig.[8|demonstrate the effectiveness of
the enhanced coarse-grained fixing procedure. Thus, in the
following, we will study the impact of various parameters
on service placement based on the enhanced coarse-grained
fixing procedure.

In Fig. 4| we evaluate how the availability of communi-
cation resources affects the maximum number of supported
services, namely, ¥}. The parameter settings are the same as
those introduced at the beginning of this section. It can
be observed from Fig. [4] that ¥ increases with either the
number of harvested bands M or the bandwidth of each
harvested band. In both cases, the SSP has more commu-

10

4r —— W=2MHz| ]
= = =w=5MHz

3 4 5 6 7 8 9 10

Fig. 4. The maximum number of supported services v.s. the num-
ber of harvested bands. ¥ is the maximum number of supported
services.

nication resources to handle the service requests so that
their rate requirements are satisfied, which leads to the
increase in ¥. This result implies that, by exploiting PoCs for
spectrum harvesting, the SSP can potentially support more
edge computing services.

As aforementioned, the SSP should jointly consider the
communication resources, represented by the number of
harvested bands M, and computing resources, represented
by A, when making service placement decisions. In view
of this, we study how the maximum number of supported
services varies with the availability of communication and
computing resources in Fig. [5| The parameter settings are
the same as Fig. {4} and the only difference is that w is set to
S5M Hz. From Fig. |5, more services can be supported when
more communication and computing resources are avail-
able, which is consistent with the design goal of the place-
ment algorithm. It can be observed from Fig. [fthat, when A
is small, the number of harvested bands M does not have
significant impact on the maximum number of supported
services 1. In this case, 1 is limited by the availability of
computing resources instead of communications resources,
and thus an increase in M does not make much difference.
This observation can also be demonstrated from the fact
that, once A is large enough, there is a considerable rise in ¢
when M increases from 4 to 8. A large A implies that suffi-
cient computing resources are available for edge computing
services and ¥ is limited by the available communication
resources. When compared with the case where M = 4,
with M = 8, the SSP has more communication resources
to facilitate efficient utilization of the available computing
resources. This is the reason why, with A increasing, a more
significant increase in ¥ can be observed when M = 8. After
A reaches a certain value, for example, A = 8 for the case
where M = 8, the SSP cannot accommodate more services
due to the lack of communication resources and ¥ stops
further increasing as shown in Fig. [f] The results in Fig. [f
indicates that the maximum number of supported services
depends on the availability of both the spectrum resources

1536-1233 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2018.2883952, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

Fig. 5. The impact of spectrum and computing resources on
the maximum number of supported services. ¢ is the maximum
number of supported services.

and computing resources. This observation will be further
demonstrated in Fig.

In Fig. [f} we investigate how the confidence level for
the chance constraints, «, affects the maximum number of
supported services . The parameter settings are the same
as those introduced at the beginning of this section other
than M = 8. Intuitively, a reflects how the SSP utilizes the
harvested bands. A larger a implies that the SSP exploits
the harvested bands in a more conservative way, and a
smaller o« means the SSP exploits the harvested bands more
aggressively. Thus, it is not surprising that, under the same
circumstance, the SSP can accommodate more computing
services with a smaller «, as shown in Fig. @ However,
in this case, the SSP needs to handle the PUs’ uncertain
activities during the service provisioning process with a
higher probability, as shown in Fig. [/} The probability of
overestimation in Fig.[7]is the probability that the achievable
data rate over at least one link has been overestimated.
According to Section 4, the SSP estimates the achievable
data rate of each link based on and « to facilitate
service placement decision making. In other words, the SSP
considers the data rate to be achievable over a link as long as
the constraints in are satisfied with probability c. Thus,
1 — «a is the probability that the SSP overestimates the data
rate of the corresponding link, which is actually achievable
during the service provisioning process. With a smaller ¢,
the SSP will overestimate the achievable data rate of each
link with a higher probability and thus will need to harvest
extra spectrum resources and adjust data routing during
the service provisioning process with a higher probability.
From Fig. |7] the probability of overestimation decreases as
the bandwidth of the harvested band, w, decreases. Notice
that the achievable data rate of a link is closely related
to the equivalent bandwidth of each harvested band, wz”f
As mentioned in Section 3.3, w;] equals the product of
the bandwidth w and the ratio of the available bandwidth
to the entire bandwidth, and the randomness of w?} is
resulted from the ratio of the available bandwidth to the

11
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Fig. 6. The maximum number of supported services v.s. the
confidence level for the chance constraints.
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0.8- 1
0.7 q

The Probability of Overestimation

Fi

g. 7. The probability of overestimation under different values of

entire bandwidth. Given an estimate of the ratio of the
available bandwidth to the entire bandwidth, a larger w
will result in a larger discrepancy between the estimated
w;; and its actual value, which explains the results in Fig.
In practice, the SSP should carefully choose the value of «
in order to efficiently utilize the harvested bands. Since how
to determine the value of « is out of the scope of this paper,
we will address this problem elsewhere and regard « as a
known constant in this paper.

In Fig. 8] we investigate the effectiveness of our SASP
scheme by comparing its performance with a computation
based service placement (CBSP) scheme. The CBSP scheme
is an adapted version of the service placement scheme in-
troduced in [30], where the edge computing services are as-
signed to different nodes based on the computing resources
requested by each service and that available at each node.
In Fig. [8] we compare the performance of our SASP scheme
with that of the CBSP scheme. To obtain the maximum
number of supported services under the CBSP scheme,
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Fig. 8. The performance of the SASP scheme v.s. the perfor-
mance of the CBSP scheme. ¥ is the maximum number of
supported services.

we first determine the placement of the services through
the CBSP scheme and then allocate spectrum resources to
maximize the number of services which can be supported.
The parameter settings are the same as those introduced
at the beginning of this section, and the only differences
are that the computing resources colocated with PoCs have
a computing capability of 15GH z and the number of har-
vested bands is M = 5. To investigate the importance of
simultaneously considering communication and computing
resources for service placement, we consider the case where
the 4th and the 5th bands are not available around the PoC
which is randomly picked from the two c-PoCs with colo-
cated computing resources. From Fig. [8, the performance
of our SASP scheme outperforms that of the CBSP scheme,
which demonstrates the effectiveness of our SASP scheme
as well as the importance of the joint consideration of
communication and computing resources for service place-
ment. Unlike the CBSP scheme, our SASP scheme explicitly
takes spectrum availability information into consideration
when making service placement decisions. Thus, it could
avoid placing too many services to the same PoC where the
available spectrum resources is not enough for input data
delivery, which explains the superiority of our SASP scheme
over the CBSP scheme.

7 CONCLUSION

In this paper, we design a network architecture, DART,
based on interconnected PoCs to facilitate IoT applications.
To exploit the benefits of DART, we study an edge com-
puting service placement problem and design a spectrum-
aware service placement scheme through a mixed inte-
ger linear programming. Through simulation results, we
demonstrate that available spectrum resources and com-
puting resources should be jointly considered to achieve
optimal performance and the obtained spectrum-aware
placement strategy can facilitate effective service placement.
Through DART, we advocate a network-level approach
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to jointly managing communication, computing, and stor-
age resources to provide services for resource-limited IoT
devices such that resource-constrained IoT devices could
gain access to the desired communication and computing
services. We hope this work will inspire more research
efforts into the network-level orchestration of in-network
resources to more effectively address various challenges in
IoT applications.
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