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ABSTRACT

The capacity region of wireless networks with per-destination (PD) queueing model has been studied extensively in the
literature. However, the PD queueing structure is not scalable because the number of queues in a node can be as large as
the number of all possible source–destination pairs. In this work, we study the capacity region of wireless networks with
per-link (PL) queueing model. The advantage of the PL queueing structure is that the number of queues in a node can be
reduced significantly to the number of its neighboring nodes. In this paper, the capacity region of a wireless network with
PL queueing structure is characterized, and a dynamic routing and power control policy, namely, DRPC-PL, is proposed
to stabilize the network whenever the input rate is within the capacity region. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless networks are acting as ubiquitous infrastructure
for many applications with increasing capacity demand.
As introduced in [1,2], the capacity region of a wireless
network theoretically characterizes the set of the input
rates that the network can support under stability. There-
fore, it is of great importance to derive the capacity region
of a wireless network because (i) fair and effective net-
working techniques can be designed to take full advantage
of the network resource; (ii) the capacity region provides
important information for admission control; and (iii) the
capacity region can serve as a theoretical guidance in deriv-
ing effective dynamic control policy to improve the net-
work performance, for example, throughput and network
utilities.

In wireless networks, there are two commonly used
queueing structures: the per-destination (PD) queueing
model as in [1,3–5] and the per-link (PL) queueing model
as in [3,6,7]. In the PD queueing networks, every node
needs to maintain a queue for each flow, that is, every pos-
sible source–destination pair, which could be prohibitive in
a large-scale network. In contrast, it is shown in [7] that
the PL, queueing structure requires less complexity and
preserves good design features such as network decom-
position [8]. By “per-link queue," we mean that packets
destined to the same next hop node are put into the same

queue. Thus, the number of queues for a node to maintain
is the number of its neighbors within one hop.

Most existing works on capacity region analysis
are based on the PD queueing structure, for exam-
ple, [1,2,9–15]. The seminal work [2] first defines the
stability region of a wireless network and proposes a
throughput optimal algorithm MaxWeight, also known as
back-pressure algorithm, which has been studied exten-
sively in the literature, for example, [13–15]. In [1], Neely
et al. further explore the capacity region of a stochastic net-
work with time-varying channels and derive the necessary
and sufficient conditions of the capacity region on the basis
of the Lyapunov drift method [11]. The proposed dynamic
routing and power control (DRPC) algorithm [1] can stabi-
lize the network in the capacity region. Song et al. propose
a minimum energy scheduling in [9], which achieves both
minimum energy consumption and throughput optimality
by considering link retransmissions. In [6], Bui et al. pro-
pose a shadow algorithm under PL queueing model and
use counters to mimic the PD queueing dynamics with
static routing.

In this work, we study the capacity region of wire-
less networks with PL queueing structure and propose
a dynamic routing and power control policy (DRPC-
PL) to stabilize the network. Our system model shares
some similarities with the route-dependent case in [3,6].
Whereas existing works assume static routing under the PL
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queueing model, our work relaxes this assumption by con-
sidering all possible power allocation and routing schemes
that can stabilize the network. Although the Lyapunov
drift method provides a powerful tool to study the net-
work stability issue, as in [11], the input and output of the
PL queues are difficult to characterize, which makes the
problem challenging. Our key result is to derive the suffi-
cient and necessary conditions of the capacity region with
PL queueing and propose a stabilizing routing and power
control algorithm to stabilize the network.

The rest of the paper is organized as follows. In
Section 2, we describe the system model for the PL queue-
ing networks. In Section 3, we define the capacity region
and derive the necessary and sufficient conditions, fol-
lowed by a stabilizing control policy DRPC-PL. Section
4 theoretically analyzes the performance of the proposed
DRPC-PL, and Section 5 concludes the paper.

2. THE NETWORK MODEL

In this paper, we consider a network modeled by a graph,
G D .N ;L/, where N is the set of nodes and L is the set of
links. A link .i ; j / denoted by li ;j exists if it is in L. The
set of the neighboring nodes of node i is denoted by Ni .
We assume a slotted system, and the time slot is denoted by
t . In every time slot, let si ;j .t/ represent the instantaneous
channel state of li ;j 2 L, where i and j are the transmit-
ter and receiver of the link. The channel state matrix of the
network can be denoted by S.t/D Œsi ;j .t/�.

Let F be the set of flows consisted in the network
where each of them is indexed by f D 1; 2; :::; jF j and
j � j is the cardinality of a set. The destination node of
flow f is denoted by d.f /. In the network, let �l rep-
resent the transmission rate on link l , and then a schedule

� D
�
��1 ; �

�
2 ; : : : ; �

�
jLj

�
is the link rates that can be sup-

ported simultaneously by the network. We use the strong
stability in [16] to define the network stability.

2.1. The per-link queueing model

The PL queueing model is illustrated in Figures 1 and 2.
Solid lines are links between two nodes, and dashed lines
indicate the route between two queues to exchange data.
In these two figures, qi ;j , defined on link li ;j , holds the
data in node i with node j as the next hop node. There-
fore, the number of the queues in node i is at most the
number of its neighbors. If li ;j is active, packets in qi ;j
are transmitted.

Let �
i ;j
.t/ denote the allocated input data rate of qi ;j

and �
m;i;j

.t/ denote the allocated data rate from qm;i to

qi ;j at time t . For a packet in qi ;j , when it is transmit-
ted to node j , the destination of it will be checked against
j . If the packet is destined to node j , it goes out of the
queueing system. Otherwise, it shall enter another queue,
say qj ;k on the basis of the routing. Then the packets not
destined to node j yield a data rate from qi ;j to qj ;k . Let
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Figure 1. Input model for PL queue.

Figure 2. Output model for PL queue.

�i ;j .t/ represent the allocated output data rate of qi ;j and
�i ;j ;k.t/ represent the allocated data rate from qi ;j to qj ;k
at time t . We have

�
i ;j
.t/D

X
m

�
m;i;j

.t/

�i ;j .t/D
X
k

�i ;j ;k.t/C ˛i ;j .t/

where ˛i ;j .t/ is the data rate delivered from node i to node
j at slot t .

In addition, because each queue contains the traffic for
different flows, we can write �i ;j ;k.t/ and �

m;i;j
.t/ in

terms of the flow rates. Then we have

�i ;j ;k.t/D
X

f Wd.f /¤j

�
f
i;j ;k

.t/

�
m;i;j

.t/D
X

f Wd.f /¤i

�
f
m;i;j .t/

where �f
i;j ;k

.t/ is the allocated rate for flow f on li ;j
from qi ;j to qj ;k at time t .
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2.2. The network model

We consider a wireless network in consecutive K time
slots. The PL queueing model is characterized by the
following properties.

(1) Convergent wireless channels
Let TS .t ; K/ be the set of time slots at which the channel

state matrix S.t/ D S during the interval 0 � t � K � 1.
The wireless channel process S.t/ is assumed to be conver-
gent with a finite number of channel states fSg and state
probabilities �S . The convergence interval [1] K is the
number of time slots, such that for a given value ı1 > 0,
we have

X
fSg

ˇ̌̌
ˇE fjTS .t ;K/jgK

� �S

ˇ̌̌
ˇ� ı1 (1)

where Ef�g is the expectation.
(2) Bounded and convergent arrival rates

For a given ı2 > 0, an arrival process afi;j .t/ conver-

gent with the exogenous arrival rate �fi;j within interval K
satisfies

ˇ̌̌
ˇ̌̌�fi;j � 1

K

K�1X
tD0

E
n
a
f
i;j .t/

oˇ̌̌ˇ̌̌� ı2 (2)

Besides, the second moment of exogenous arrivals at each
node is bounded every time slot by some finite maxi-

mum value afmax regardless of past history, so that for any
i 2N ; j 2Ni ,

E

�h
a
f
i;j .t/

i2�
�
�
a
f
max

�2

E

8̂<
:̂
2
4X
f

a
f
i;j .t/

3
5
2
9>=
>;� .amax/

2

where afmax and amax are constants.
(3) Upper semicontinuous power-rate function.
Let �i ;j .P .t/; S.t// denote the power-rate func-

tion under some power allocation matrix P .t/ D

Œpi ;j .t/�; P .t/ 2 P and channel state matrix S.t/, where
P is the set of feasible power allocation. Each element
pi ;j .t/ is the allocated power on li ;j at time t . The trans-
mission rates are bounded for every time slot t by �max,
so that

�max D max
j2Ni ;S;P2P

�i ;j .P ; S/

which can also be deduced by the fact that the power-rate
function is bounded with finite transmission power.

(4) Queue update dynamics

Let Ui ;j .t/ denote the backlog of qi ;j at time t . Then
the queueing dynamics in the network satisfy

Ui ;j .t C 1/�
�
Ui ;j .t/��i ;j .t/

�C
C�

i ;j
.t/C

X
f

a
f
i;j .t/ (3)

where Œx�C D max.x; 0/ and it is an inequality instead of
an equality because the arrivals may be less than the allo-
cated output data if the neighboring nodes have little or no
data to transmit [1].

3. STABILIZING CONTROL POLICY

In this section, we design a dynamic control policy, namely,
DRPC-PL, to stabilize the PL queueing networks. To pro-
vide some intuitions on how to design the stabilizing algo-
rithms, we first give a brief introduction to the Lyapunov
drift method.

3.1. Lyapunov drift method

A sufficient condition for network stability using the
Lyapunov theory is given in Lemma 2 in [17]. Assume the
set of queues in a system is denoted by X and U.t/ D
ŒUx.t/� is the queue backlog vector for multiple queues
and L.U.t// D

P
x U

2
x .t/ is the Lyapunov function for

the queue states. Note that this model is applicable to any
system that contains multiple queues. If there exists a pos-
itive integer K such that for every time slot, the Lyapunov
function-evaluated K steps into the future satisfies

EfL.U.KCt //�L.U.t//jU.t/g � B1�
X
x

�xUx.t/ (4)

for some positive constants B1, Œ�x �, and if EfU.t/g � 1
for t 2 f0; 1; � � � ; K � 1g, then the network is stable, and

lim sup
K!1

1

K

K�1X
tD0

"X
x

�xEfUx.t/g

#
� B1

Similar to (3), the queue backlog for K slots into the
future can be bounded in terms of the current unfinished
work

Ux.t CK/�

2
4Ux.t/�K�1X

tD0

�x.t/

3
5
C

C

K�1X
tD0

ax.t/

where �x.t/ is the output rate of queue x and ax.t/ is the
queue input rate including both the exogenous arrivals and
the traffic from other queues. Squaring both sides of the
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inequality above and taking conditional expectations with
respect to U.t/, we have

E
n
U 2x .t CK/�U

2
x .t/jU.t/

o
�K2

�
�2maxC a

2
max

�
� 2K

X
x

. N�x � �x/Ux.t/ (5)

where �max D maxx �x.t/ and amax D maxx ax.t/, and
the service rate�.t/ and the arrival rate a.t/ are convergent
to the rate N�D Œ N�x � and �D Œ�x � similar to (2).

Comparing (4) and (5), we can see that if there exists
� > 0, such that �x � �x � �, then the constant �x can
be found to stabilize all the queues. Therefore, a stabi-
lizing algorithm should be designed to keep the average
service rate larger than the arrival rate for each queue in
the network during K slots.

3.2. Per-Destination Per-Link
(PDPL) network

We first define a PDPL queueing network where each node
keeps a queue for each source–destination-link combina-
tion. Thus, a node in a PDPL network with jF j flows, and
jLj links will have jF j�jLj PDPL queues. This PDPL net-
work contains more queues than that with the PD queues
and will be used as a reference network in our following
analysis.

Let qfi;j denote the queue for flow f on li ;j , and let

�
f
i;j .t/ and �

f
i;j .t/ denote the instantaneous input and

output rates of qfi;j at time t to obtain

�f
i;j
.t/D

X
m

�
f
m;i;j .t/ (6a)

�
f
i;j .t/D

X
k

�
f
i;j ;k

.t/ (6b)

Define �pdpl as the set of all input rate matrices
h
�
f
i;j

i
of the PDPL network such that there exist flow rate vari-

ables
h
d
f
i;j ;k

i
satisfying

d
f
i;j ;k

� 0, 8i ; j ; k 2N (7a)

d
f
iDd.f /;j ;k

D 0 (7b)X
k

d
f
i;j ;k

�
X
m

d
f
m;i;j � �

f
i;j , 8d.f /¤ j (7c)

ŒGi ;j ��

2
4X
k

d
f
i;j ;k

3
5 (7d)

where the inequality of (7d) is considered entrywise andh
d
f
i;j ;k

i
is derived in (27) later. Note that the input rate

matrix
h
�
f
i;j

i
is different from the link rate matrix G D

ŒGi ;j � and is in a time-average sense.

The following theorem gives the necessary and sufficient
condition of the capacity region of a network under PDPL
queueing structure.

Theorem 1. Capacity region for the PDPL queueing
network

(a) A necessary condition for network stability ish
�
f
i;j

i
2�pdpl.

(b) A sufficient condition for network stability is thath
�
f
i;j

i
is strictly interior to �pdpl.

The proof is in Appendix A.
Note that the capacity region of a wireless network does

not depend on a certain routing or scheduling algorithm.

3.3. The dynamic routing and power
control policy algorithm

Following the clues provided by the Lyapunov drift
method, we develop a control policy that stabilizes the PL

queueing network whenever the input rate matrix
h
�
f
i;j

i
is

inside the network capacity region �pl.
First, we define the PDPL shadow queues. The PDPL

shadow queues are counters that keep track of the PD traf-

fic for each flow in the PL queues. Let V fi;j .t/ denote the
queue backlog for flow f in qi ;j at time t . Then the PDPL
shadow queue length can be updated according to

V
f
i;j .t C 1/D

h
V
f
i;j .t/��

f
i;j .t/

iC
C a

f
i;j .t/C�

f
i;j
.t/

(8)

where �fi;j .t/, �
f
i;j .t/ and afi;j .t/ are defined in (6).

3.3.1. Dynamic routing and power control

policy algorithm.

For every time slot t , the DRPC-PL schedules the
network as follows:

(1) For each link li ;j , the weight Wi ;j .t/ is calculated
by

Wi ;j .t/D �i ;j .t/max
f

�
V
f
i;j .t/�min

k
V
f
j ;k
.t/

	

where�i ;j .t/ is the transmission rate on li ;j at time
t under power control.

(2) Power allocation to li ;j follows:

P .t/D arg max
P2P

X
i ;j

Wi ;j .P .t/; S.t// (9)

(3) Transmit the packets in qi ;j according to the allo-
cated rate yielded by the power allocation in (9)
and route packets going through li ;j for flow f to
qj ;k� , where
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k� D arg min
k

�
V
f
j ;k
.t/
�

(10)

Then calculate
h
V
f
i;j .t C 1/

i
according to (8),

where�fi;j .t/ and�fi;j .t/ can be calculated accord-

ing to (6) by monitoring the flow-based data trans-
mitted on each link li ;j .

Different from the DRPC algorithm proposed in [1],
DRPC-PL transmits the packets for different flows from
the PL queues if the link is active. DRPC-PL essentially
chooses a set of links without interference, which gives
the maximum weight of the network on the basis of the
PDPL shadow queue difference. The traffic for a flow is
dynamically routed to choose the next hop. Therefore,
the DRPC algorithm schedules li ;j and performs routing
according to the maximum PD queue difference between
two nodes, whereas the DRPC-PL algorithm schedules li ;j
and performs routing according to the maximum PDPL
shadow queue difference between two links. From (9), we
can see that the power allocation can also be regarded as
a MaxWeight problem similar in DRPC. Much progress
has been made in easing the computational complexity
and deriving decentralized solutions for the centralized
MaxWeight algorithm [14,15,18–26]. The DRPC-PL algo-
rithm is also different from the PD shadow queue scheme
introduced in [6]. The PDPL shadow queues keep real-
time backlog for flows in the PL queues, whereas the PD
shadow queues in [6] do not reflect the real-time backlog
of different flows.

The performance of the DRPC-PL algorithm is stated as
follows.

Theorem 2. The proposed DRPC-PL algorithm is
throughput optimal, that is, for an arbitrary network

admission rate vector
h
�
f
i;j

i
inside of the network capacity

region denoted by ƒpl, the DRPC-PL algorithm stabilizes
the network.

The proof is presented in the next section.

4. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of DRPC-
PL by comparing it with the dynamic control policy for
PDPL queueing networks, that is, DRPC–PDPL algorithm.
In Section 4.1, we present the DRPC–PDPL algorithm that
can stabilize the PDPL queueing network within the capac-
ity region ƒpdpl. Then, we prove that the DRPC-PL algo-
rithm stabilizes the PL queues whenever the input rate is
within the capacity region of the PDPL network ƒpdpl in
4.2. In Section 4.3, we prove that the capacity region of
a network under PDPL queueing and PL queueing is the
same to complete the proof of Theorem 2.

4.1. Performance of the DRPC–PDPL
algorithm

Under the PDPL network model, the DRPC–PDPL algo-
rithm schedules the network as follows:

(1) For each link li ;j , choose flow f � to calculate the
link weight Wi ;j .t/, where

f � D arg max
f

�
V
f
i;j .t/�min

k
V
f
j ;k
.t/

	

and

Wi ;j .t/D �i ;j .t/

�
V
f �

i ;j .t/�min
k
V
f �

j ;k
.t/

	

(2) The power allocation to li ;j follows

P .t/D arg max
P2P

X
i ;j

Wi ;j .P .t/; S.t//

(3) Route the packets of flow f � in qfi;j to qf
�

j ;k�
if

d.f �/¤ j , where

k� D arg min
k
V
f �

j ;k
.t/

Here, we reuse V fi;j .t/ to denote the queue length of

the physical PDPL queue qfi;j .

Note that DRPC–PDPL is different from the DRPC algo-
rithm [1] because of the queueing model. In DRPC, the
packets for a flow are transmitted and routed between
two nodes, whereas the packets of a flow are transmitted
and routed between two links in DRPC–PDPL. The per-
formance of the DRPC–PDPL is stated in the following
theorem.

Theorem 3. The proposed DRPC–PDPL algorithm is
throughput optimal, that is, for an arbitrary network

admission rate vector
h
�
f
i;j

i
, which is inside of the net-

work capacity region ƒpdpl, DRPC–PDPL stabilizes the
network.

The proof is in Appendix B.

4.2. Performance of the dynamic routing
and power control policy

To prove Theorem 2, we first prove that for 8
h
�
f
i;j

i
2

ƒpdpl, the DRPC-PL algorithm can stabilize the network.
Then, we prove that the capacity region of a network under
PDPL queueing is the same as that under PL queueing in
Section 4.3.
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By comparing the PDPL shadow queue lengths and the
PL queue lengths in the DRPC-PL, we can easily get

Ui ;j .t/D
X
f

V
f
i;j .t/

Thus, we want to evaluate the stability of the PL queues
by evaluating the stability of the PDPL shadow queues.

The one-step Lyaponuv drift of the PDPL shadow
queues can be written as�
V
f

i;j
.t C 1/

�2
�
�
V
f

i;j
.t/
�2
�
�
.�max/

2C .�maxC amax/
2
�

� 2V
f

i;j
.t/

�
�
f

i;j
.t/��f

i;j
.t/� a

f

i;j
.t/
�

(11)

Next, we sum (11) over the whole network on all shadow
queues and obtain

X
f Ii ;j

�
V
f
i;j .t C 1/

�2
�
X
f Ii ;j

�
V
f
i;j .t/

�2

� B � 2
X
f Ii ;j

V
f
i;j .t/

�
�
f
i;j .t/��

f
j ;k
.t/� a

f
i;j .t/

�
(12)

where

B D jLjjF j
�
.�max/

2C .�maxC amax/
2
�

(13)

is a constant.
Taking the conditional expectation of (12) with respect

to V.t/D
h
V
f
i;j .t/

i
, we have

z‘E

0
@ X
f Ii ;j

�
V
f
i;j .t C 1/

�2 ˇ̌̌ˇ̌̌V.t/

1
A

�E

0
@ X
f Ii ;j

�
V
f
i;j .t/

�2 ˇ̌̌ˇ̌̌V.t/

1
A� B � 2 X

f Ii ;j

V
f
i;j .t/E

�
�
f
i;j .t/��

f
i;j
.t/� a

f
i;j .t/jV.t/

�
(14)

Define the routing scheme at time t associated with

each flow on li ;j by
h
ˇ
f
i;j ;k

.t/
i
.d.f / ¤ j /, where

ˇ
f
i;j ;k

.t/ 2 Œ0; 1� and

X
k

ˇ
f
i;j ;k

.t/D 1; .d.f /¤ j /

Then, we can rewrite the output rate of each flow in
terms of the routing parameters as

�f
m;i;j

.t/D ˇ
f
m;i;j .t/�

f
m;i .t/ (15)

Substituting (15) into (14), we have

E

0
@ X
f Ii ;j

�
V
f
i;j .t C 1/

�2 ˇ̌̌ˇ̌̌V.t/

1
A

�E

0
@ X
f Ii ;j

�
V
f
i;j .t/

�2 ˇ̌̌ˇ̌̌V.t/

1
A

� B � 2
X
f Ii ;j

V
f
i;j .t/E

0
@�fi;j .t/

�
X
m

ˇm;i;j .t/�
f
m;i .t/jV.t/

!

�E
�
a
f
i;j .t/jV.t/

�
D B �E

�
a
f
i;j .t/jV.t/

�

� 2
X
f Ii ;j

E

0
@�fi;j .t/

0
@V fi;j .t/

�
X
k

ˇ
f
i;j ;k

.t/V
f
j ;k
.t/

1
A jV.t/

1
A (16)

Now, define the maximum queue difference for each
flow f and li ;j as

	V
f
i;j ;k

.t/D V
f
i;j .t/� V

f
j ;k
.t/

	V max
i ;j .t/Dmax

f Ik
	V

f
i;j ;k

.t/

Dmax
f

�
V
f
i;j .t/�min

k
V
f
j ;k
.t/

	

Define

JPLV .t/D 2E

0
@X
f Ii ;j

�
f
i;j .t/

�
	V max

i ;j .t/C	V
f
i;j ;k

.t/
�
jV.t/

1
A

and

JPL.t/D E
�
JPLV .t/

�

Next, we add both sides by JPL
V

.t/ to (14) and have

E

0
@ X
f Ii ;j

�
V
f
i;j .t C 1/

�2 ˇ̌̌ˇ̌̌V.t/

1
A

�E

0
@ X
f Ii ;j

�
V
f
i;j .t/

�2 ˇ̌̌ˇ̌̌V.t/

1
A

C JPLV .t/� B C JPLV .t/

� 2
X
f Ii ;j

V
f
i;j .t/E

�
�
f
i;j .t/��

f
i;j
.t/� a

f
i;j .t/jV.t/

�
(17)
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Denote the right-hand side of (17) as ‚, which can be
rewritten as

B �E
�
a
f
i;j .t/jV.t/

�

� 2
X
f Ii ;j

E

0
@�fi;j .t/

0
@V fi;j .t/�X

k

ˇ
f
i;j ;k

.t/V
f
j ;k
.t/

1
AjV.t/

1
A

C 2
X
f Ii ;j

E
�
�
f
i;j .t/

�
	V max

i ;j .t/C	V
f
i;j ;k

.t/
�
jV.t/

�
(18)

The last two terms of (18) can be simplified as

2
X
i ;j

E

0
@
0
@X
f

�
f
i;j .t/

1
A	V max

i ;j .t/

1
A

� 2
X
f Ii ;j

E

0
@�fi;j .t/

0
@V fi;j .t/�X

k

ˇ
f
i;j ;k

.t/V
f
j ;k
.t/

� 	V
f
i;j ;k

.t/

1
A jV.t/

1
A

It is of great importance to observe that the DRPC-PL
algorithm essentially minimizes the right-hand side of (17)
over all possible scheduling algorithms.

Because
h
�
f
i;j

i
lies in the interior of the PDPL network

capacity region ƒpdpl, it immediately follows that there
exists a small positive constant � > 0 such thath

�
f
i;j

i
C � 2ƒpdpl

We can get similar results to the Corollary 3.9 in
[11] under PDPL queueing that there exists a randomized
scheduling policy, denoted by RA, that stabilizes the PDPL
network while providing a data rate of

�
f
i;j .t/��

f
j ;k
.t/D �

f
i;j C �

and �fi;j .t/ and �f
j ;k
.t/ are the link data rates induced by

the RA algorithm. Thus, we have

�RA D B � 2�
X
f Ii ;j

V
f
i;j .t/

C
X
f Ii ;j

E
�
�
f
i;j .t/

�
	V max

i ;j .t/C	V
f
i;j ;k

.t/jV.t/
��
(19)

where the last term in (19) is the queue difference under
the RA algorithm during slot t . Therefore, the PDPL
queues are bounded, so do the PDPL queue differences

	V max
i ;j .t/ and 	V f

i;j ;k
.t/. Thus, the last term of (19) is

also bounded, and we denote the bound by Jmax. Then,
we have

�RA D B � 2�
X
f Ii ;j

V
f
i;j .t/C Jmax

In light of (17), it is obtained that

E

0
@ X
f Ii ;j

�
V
f
i;j .t C 1/

�2 ˇ̌̌ˇ̌̌V.t/

1
A

�E

0
@ X
f Ii ;j

�
V
f
i;j .t/

�2 ˇ̌̌ˇ̌̌V.t/

1
A

C JPLV .t/�‚DRPC�PL �‚RA

� B � 2�
X
f Ii ;j

V
f
i;j .t/C Jmax (20)

Taking expectation with respect to V.t/ to (20), we have

E

0
@X
f Ii ;j

�
V
f
i;j .t C 1/

�21A�E

0
@X
f Ii ;j

�
V
f
i;j .t/

�21A
C JPL.t/� B � 2�

X
f Ii ;j

E
�
V
f
i;j .t/

�
C Jmax (21)

Summing (21) over time slots 0 to K � 1 yields

E

0
@X
f Ii ;j

�
V
f
i;j .t C 1/

�21A�E

0
@X
f Ii ;j

�
V
f
i;j .t/

�21A

C

K�1X
tD0

JPL.t/�KB � 2�

K�1X
tD0

X
f Ii ;j

E
�
V
f
i;j .t/

�

CKJmax (22)

Then, we divide (22) byK and manipulate the result and
have

2�
1

K

K�1X
tD0

X
f Ii ;j

E
�
V
f
i;j .t/

�
�BC

1

K
E

0
@X
f Ii ;j

�
V
f
i;j .0/

�21A

C Jmax �
1

K
E

0
@X
f Ii ;j

�
V
f
i;j .K/

�21A� 1

K

K�1X
tD0

JPL.t/

(23)

Note that the last two terms of (23) are both nonpositive.
By taking lim supK!1 to both sides of (23), we obtain

lim sup
K!1

1

K

K�1X
tD0

X
f Ii ;j

E
�
V
f
i;j .t/

�
�
B C Jmax

2�
<1

(24)

Remember that the PL queue lengths are the sum of a
finite number of the PDPL shadow queue lengths. Then,
we have

lim sup
K!1

1

K

K�1X
tD0

X
i ;j

E


Ui ;j .t/

�
�1

which implies the stability of the PL queues.
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Therefore, we prove that the DRPC-PL algorithm sta-
bilizes both the PDPL shadow queues and the PL queues
within the PDPL capacity region ƒpdpl.

4.3. The capacity region of per-link
queueing network

Next, we study the relationship between the capacity
region of a network under PDPL queueing and that under
PL queueing as follows.

Theorem 4. Let ƒpdpl denote the capacity region of a
wireless network under the PDPL queueing andƒpl denote
the capacity region of the network under PL queueing, then
ƒpdpl Dƒpl.

Proof . First, we prove that ƒpl 2ƒdpdl . For any Œ�fi;j � 2
ƒpl, there exists a scheduling algorithm R that can sta-
bilize the network. At slot t , R yields a power allocation
matrix P0.t/ for the links and a transmission rate matrixh
�0
f
i;j ;k

.t/
i

for the flows under PL queueing. Suppose ini-

tial queue state of the network under PDPL is the same
as the PDPL shadow queue state of the network under
PDPL queueing. Then, by allocating the power according
to P0.t/ to the links under PDPL queueing and scheduling
the PDPL queues the same as the PDPL shadow queues

under PL queueing, the transmission rate
h
�0
f
i;j ;k

.t/
i

can be achieved under PDPL queueing. This implies that

�
f
i;j 2 ƒpdpl. Second, any

h
�
f
i;j

i
2 ƒpdpl can be sup-

ported by DRPC-PL algorithm in Section 3.3 under PL
queueing. Therefore, ƒpdpl 2 ƒpl. In summary, we have
ƒpdpl Dƒpl. �

5. CONCLUSIONS AND
FUTURE WORK

In this paper, we study the capacity region of wireless
networks with PL queueing structure, which significantly
reduces the queueing complexity of each node compared
with the well-studied PD queueing structure. We first char-
acterize the capacity region of the PL network and propose
a dynamic control policy denoted by DRPC-PL to schedule
the links and route the packets to stabilize the network. We
show that DRPC-PL can stabilize the network whenever
the input rate matrix is inside the capacity region of the PL
queueing networks. In our future work, we will compare
the capacity regions of wireless networks under both PL
and PD queueing structure.

APPENDIX A: PROOF OF
THEOREM 1

In this section, we provide the sketch of the proof of

Theorem 1. First, we prove that
h
�
f
i;j

i
2 ƒdpdl is the

necessary condition for network stability, and then we

prove that whenever the input rate is inside the capacity
region, there exists a power control and routing algorithm
that can stabilize the network.

Necessity

Consider a PDPL queueing network with convergent input

rates Œ�fi;j � defined in (2), and let Afi;j .t/ represent the
amount of packets that enter the network exogenously at
node i with node j as the next hop node during the interval
Œ0; t �. Suppose the system is stabilizable by some routing

and power control policy. Let Qfi;j .t/ represent the result-

ing unfinished work for qfi;j . Let Dm;i;j .t/ represent the

total number of packets that enter qfi;j from nodem during

the interval Œ0; t � and Df
i;j ;k

.t/ represent the total number

of packets that depart from q
f
i;j and go into qf

j ;k
. We can

obtain

Di ;j ;k.t/� 0 (25a)

X
k

D
f
i;j ;k

.t/�
X
m

D
f
m;i;j .t/D A

f
i;j .t/�Q

f
i;j .t/

(25b)

Z t

0
�
f
i;j .P .t/; S.t//dt �

X
k

D
f
i;j ;k

.t/ (25c)

where (25b) follows that the unfinished work in any node is
equal to the difference between the total number of pack-
ets that have arrived and departed. Inequality (25c) holds
because the number of packets transferred over any link is
less than or equal to the offered transmission rate integrated
over the time interval Œ0; t � and (25b) holds for the scenario

that Df
i;j ;k

.t/ contains padded null packets if there is not
enough traffic for transmission. Note that although some
control policy can stabilize the network, the power allo-
cation process P .t/ is not necessarily ergodic nor are the
internal bit streams produced by routing decisions.

Because the channel process is convergent to a finite
state space as defined in (1), when measured over any
sufficiently large interval Œ0; t �, the time fraction of a chan-
nel state S satisfies jjTS .t/jj=t ! �S with probability 1.

Besides, the input process is rate convergent to Œ�fi;j � as
defined in (2). From Lemma 1 in [17], we known that if the
network is stable, for any ı � 0, there exists a finite value
M , for which arbitrarily large times Qt can be found so that

P r
hP

i ;j U
f
i;j .
Qt/
i
� 1 � ı. Therefore, there must exist

some finite value M such that at arbitrarily large times Qt ,
the unfinished work in all queues is simultaneously less
than M with probability at least 12 . Hence, there exists
a time Qt such that with probability at least 12 , all of the
following inequalities are satisfied:
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Q
f
i;j .
Qt/�M (26a)

M

Qt
� � (26b)

A
f
i;j

Qt
�ƒ

f
i;j � � (26c)

jjTS .Qt/jj

Qt
� �S C �, 8S (26d)

Now, define:

d
f
i;j ;k

,
D
f
i;j ;k

.Qt /

Qt
(27)

By substituting (26) to (25b), it follows that for all li ;j ,

.�
f
i;j C �/�

X
m

d
f
m;i;j �

X
k

d
f
i;j ;k

Thus, the necessity is proved.

Sufficiency

The proof in Section B directly proves that DRPC–PDPL
can stabilize the network when the input rate is within the
capacity region of the PDPL network.

APPENDIX B: PROOF OF
THEOREM 3

In this section, we prove that the DRPC–PDPL algorithm
can stabilize the network whenever the input rate is within
the capacity region defined in Section 3.2.

Performance of the Static PDPL
(STAT-PDPL) algorithm

The STAT-PDPL is a stationary randomized algorithm

assuming that the values of ŒGi ;j �,
h
d
f
i;j ;k

i
are known

to the scheduler. Suppose the input rate matrix satisfying

�
f
i;jC� 2ƒpdpl and the channel probability �S are known

in advance, then a set of flow variables
h
d
f
i;j ;k

i
and a link

rate matrix ŒGi ;j � must exist following Theorem 1.
Because the physical channel and interference model are

the same as those in [1], Lemma 8 (graph family achiev-
ability) also holds for the PL queueing networks. There-
fore, a stationary randomized power allocation policy P 1

can be implemented, yielding a transmission rate matrix
�1.t/, which is entrywise convergent with rate matrix
ŒGi ;j �, and we can haveˇ̌̌

ˇ̌̌ 1
K

K�1X
tD0

Ef�1i ;j .t/g �Gi ;j

ˇ̌̌
ˇ̌̌ � ı (28)

The STAT-PDPL algorithm is described as follows.

(1) Power allocation—For every time slot, observe the
channel state S.t/, and allocate the power according
to P 1 [17];

(2) Scheduling and routing—For every li ;j , transmit
a single flow f randomly chosen with probabilityP

k d
f

i;j ;kP
f

P
k d

f

i;j ;k

, and route the packet for flow f ran-

domly to qf
j ;k

with probability
d
f

i;j ;kP
k d

f

i;j ;k

, then we

have

�1
f
i;j .t/D

8<
:

�1i;j .t/
P
k d

f

i;j ;k

Gi;j
; if flow f is chosen

0; otherwise
(29)

If a node does not have enough (or any) packets of a certain
flow to send over its output links, null packets are deliv-
ered, so that links have idle times that are not used by other
flows. In the light of (29), we have

Ef�1fi;j .t/j�1i ;j .t/g D
�1i ;j .t/

P
k d

f
i;j ;k

Gi ;j
(30)

and

Ef�1f
i;j ;k

.t/j�1i ;j .t/g D
�1i ;j .t/d

f
i;j ;k

Gi ;j
(31)

The performance of the STAT-PDPL algorithm is given
as follows.

Lemma 1. Consider a wireless network with capacity

regionƒpdpl and input rates
h
�
f
i;j

i
such that

h
�
f
i;j C �

i
2

ƒpdpl for some � � 0. Then the algorithm STAT-PDPL
stabilizes the network.

Proof . Here, we prove that if the input rate
h
�
f
i;j

i
2 ƒ,

the joint power control and routing algorithm STAT-PDPL
can stabilize the network.

Take conditional expectations with respect to �1i ;j .t/
on both sides of (30) and (31), and substitute them into
(28). We haveˇ̌̌

ˇ̌̌ 1
K

K�1X
tD0

h
E
n
�1
f
i;j ;k

.t/
o
� d

f
i;j ;k

iˇ̌̌ˇ̌̌� �1
6

(32)

ˇ̌̌
ˇ̌̌ 1
K

K�1X
tD0

h
E
n
�1
f
m;i;j .t/

o
� d

f
m;i;j

iˇ̌̌ˇ̌̌� �2
6

(33)

where �1 > 0 and �2 > 0 are carefully selected constants.
Summing (32) over k produces
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ˇ̌̌
ˇ̌̌ 1
K

K�1X
tD0

2
4X
k

E
n
�1
f
i;j ;k

.t/
o
�
X
k

d
f
i;j ;k

3
5
ˇ̌̌
ˇ̌̌

�
X
k

ˇ̌̌
ˇ̌̌ 1
K

K�1X
tD0

h
E
n
�1
f
i;j ;k

.t/
o
� d

f
i;j ;k

iˇ̌̌ˇ̌̌
�
jjNj jj�1

6

�
�

6
(34)

Summing (33) over m and following the similar manipula-
tions, we have

ˇ̌̌
ˇ̌̌ 1
K

K�1X
tD0

"X
m

E
n
�1
f
m;i;j .t/

o
�
X
m

d
f
m;i;j

#ˇ̌̌ˇ̌̌� �
6

(35)

Note that the input process is entrywise rate convergent to

the input rate
h
ƒ
f
i;j

i
, so we can have

ˇ̌̌
ˇ̌̌�fi;j � 1

K

K�1X
tD0

E
n
a
f
i;j .t/

oˇ̌̌ˇ̌̌� �
6

(36)

Because the input rate is within the capacity region, we
have for any li ;j that

�
�
f
i;j C �

�
�
X
k

d
f
i;j ;k

�
X
m

d
f
m;i;j (37)

Substituting (34), (35), and (36) into (37), we have

1

K

K�1X
tD0

E

8<
:
X
k

�1
f
i;j ;k

.t/�
X
m

�1
f
m;i;j .t/� a

f
i;j .t/

9=
;

�
�

2
(38)

Now, define the Lyapunov function as L.Q.t// DP
i ;j If Wd.f /¤i

�
Q
f
i;j .t/

�2
. The K-step dynamics of

unfinished work satisfies the queue update law, and we
rewrite it with respect to �1i ;j ;k.t/ and �1m;i;j .t/.

Q
f
i;j .t CK/�

2
4Qfi;j .t/�

K�1X
tD0

X
k

�1
f
i;j ;k

.t/

3
5
C

C

K�1X
tD0

X
m

�1
f
m;i;j .t/C

K�1X
tD0

a
f
i;j .t/

(39)

Following the same manipulations as in Section 3.1, we
have the K-slot Lyapunov drift

�
Q
f
i;j .t CK/

�2
�
�
Q
f
i;j .t/

�2

�K2

2
64
 
Qa
f
i;j C

X
m

Q�1
f
m;i;j

!2
C

0
@X
k

Q�1
f
i;j ;k

1
A
2
3
75

� 2KQ
f
i;j .t/

0
@X
k

Q�1
f
i;j ;k

�
X
m

Q�1
f
m;i;j � Qa

f
i;j

1
A

�K2B � 2K�Q
f
i;j .t/ (40)

where B is defined in (13) and

Q�1
f
i;j ;k
, 1

K

K�1X
tD0

�1
f
i;j ;k

.t/

Q�1
f
m;i;j ,

1

K

K�1X
tD0

�1
f
m;i;j .t/

Qa
f
i;j ,

1

K

K�1X
tD0

a
f
i;j .t/

By summing (40) over all li ;j ’s and taking conditional
expectations yields

E fL.Q.t CK//�L.Q.t//jQ.t/g

�K2B � 2K�
X
i ;j

Q
f
i;j .t/ (41)

then the network is stable according to Lemma 2 in
[11]. �

Note that the STAT-PDPL algorithm is developed with
the network statistics known to serve as a benchmark for
the performance of the DRPC-PL in Section 3.

We next evaluate the performance of DRPC–PDPL
through two lemmas. The first lemma compares the
Lyapunov drift of the STAT-PDPL algorithm to the drift
of a modified frame-based DRPC–PDPL algorithm, that is,
FRAME-PDPL. The second lemma compares the drift of
FRAME-PDPL to that of DRPC–PDPL.

Performance of the FRAME-PDPL algorithm

We rewrite the K-step drift bound (41) to have

EfL.Q.t CK//�L.Q.t//jQ.t/g

�K2B � 2KŒˆ.Q.t//� ˇ.Q.t//� (42)
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where

ˆ.Q.t//, 1

K

K�1X
tD0

X
i ;j If

Q
f
i;j .t/E

8<
:
2
4X
k

�
f
i;j ;k

.t/

�
X
m

�
f
m;i;j .t/

#ˇ̌̌
ˇ̌Q.t/

)

ˇ.Q.t//, 1

K

K�1X
tD0

X
i ;j If

Q
f
i;j .t/E

n
a
f
i;j .t/jQ.t/

o

We then consider a K-slot-based modification of the
DRPC–PDPL policy FRAME-PDPL, which maximizes
theˆ.Q.t// function over all possible control policies. The
FRAME-PDPL algorithm is defined as follows: schedul-
ing, power allocation, and routing are performed every
time slot exactly as in the DRPC–PDPL algorithm, with
the exception that backlog Q.t/ updates every K slots.
Specifically, for any time slot t within a K-slot frame
f0; 1; � � � ; K � 1g, the power is allocated to maximizeP
i ;j Wi ;j .t/ defined in (9) evaluated at Q.t/ subject to

P 2 P . Thus, current channel state information is used
every slot, and �f

i;j ;k
.t/ is calculated according to the real

queue status.

Lemma 2. The control algorithm FRAME-PDPL
maximizes ˆ.Q.t// over all possible power allocation,
routing, and scheduling strategies. That is,

ˆF�PDPL.Q.t//�ˆX .Q.t// (43)

for any other strategy X , including the STAT-PDPL
algorithm.

Proof . The FRAME-PDPL algorithm acts the same as
the DRPC–PDPL algorithm with the exception that queue
backlog is updated only on frame boundaries t D

f0;K; 2K; � � � g. Thus, for every t 2 f0; 1; � � � ; K � 1g, the
algorithm FRAME-PDPL allocates a power matrix P .t/ to
maximize

X
i ;j If

Q
f
i;j .t/

0
@X
k

�
f
i;j ;k

.t/�
X
m

�
f
m;i;j .t/

1
A

D
X
i ;j If

�i ;j .t/
�
Q
f
i;j .t/�Q

f
j ;k
.t/
�

(44)

Taking conditional expectations with respect to Q.t/
shown earlier and summing over t yield an alternative way
to express ˆ.Q.t//:

ˆ.Q.t//

D
1

K

K�1X
tD0

E

8<
:
X
i ;j If

�i ;j .t/
�
Q
f
i;j .t/�Q

f
j ;k
.t
�9=
;
(45)

The value of ˆX .Q.t// is obtained from (45) by
using the �i ;j .t/ corresponding to some policy X . Thus,
the FRAME-PDPL essentially maximizes (45) to yield
ˆF�PDPL.Q.t// by choosing the weight for a link
as (9). Taking conditional expectations and comparing
ˆF�PDPL.Q.t// with ˆX .Q.t//, we have

ˆF�PDPL.Q.t//�ˆX .Q.t//

�

Next, we compare FRAME-PDPL with DRPC-PDPL.

Lemma 3. The control policy DRPC–PDPL produces a
ˆD�PDPL.Q.t// satisfying

ˆD�PDPL.Q.t//�ˆF�PDPL.Q.t//

�
.K � 1/jF jjLj QB

2
(46)

where

QB D 2�max.amaxC 2�max/

Proof . For every time slot, DRPC–PDPL maximizes (44)
over all possible control decisions. Hence,

X
i ;j If

�D�DPDLi;j .t/
�
Q
f
i;j .t/�Q

f
j ;k
.t/
�

�
X
i ;j If

�F�DPDLi;j .t/
�
Q
f
i;j .t/�Q

f
j ;k
.t/
�

(47)

Rewriting the left-hand side of (47), we have

X
i ;j If

�D�DPDLi;j .t/
�
Q
f
i;j .t/�Q

f
j ;k
.t/
�

C
X
i ;j If

ˇ̌̌
	
f
i;j .t/

ˇ̌̌
2�max

�
X
i ;j If

�F�DPDLi;j .t/
�
Q
f
i;j .t/�Q

f
j ;k
.t/
�

(48)

�
X
i ;j If

�F�DPDLi;j .t/
�
Q
f
i;j .t/�Q

f
j ;k
.t/
�

�
X
i ;j If

ˇ̌̌
	
f
i;j .t/

ˇ̌̌
2�max (49)

where 	fi;j .t/ , Q
f
i;j .t/ �Q

f
i;j .t/ and (48) follows the

fact that

X
i ;j If

	
f
i;j .t/

�
Q
f
i;j .t/�Q

f
j ;k
.t/
�

�
X
i ;j If

ˇ̌̌
	
f
i;j .t/

ˇ̌̌
2�max
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Summing (49) over t 2 f0; 1; � � � ; K � 1g and taking
conditional expectations with respect to Q.t/ yield

ˆD�PDPL.Q.t//�ˆF�PDPL.Q.t//

�
2

K

K�1X
tD0

E

8<
:
X
i ;j If

ˇ̌̌
	
f
i;j .t/

ˇ̌̌9=
;�max (50)

Substituting (50) into (42) yields (46). �
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