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STABILITY ANALYSIS OF LINEAR CONTROL
SYSTEMS WITH UNCERTAIN PARAMETERS

ABSTRACT
by
YUGUANG FANG

In this dissertation, we study stochastic stability of linear systems whose
parameters are randomly varying in a certain sense. In particular, we present a
new approach to stochastic stability analysis of systems whose system structure
is randomly changing among a finite set of possibilities which capture the
abrupt changes in systems parameters or sudden failures of system components.
These types of systems are referred to as jump linear systems with a finite state

Markov chain form process.

We first investigate the properties of various types of moment stability for
stochastic jump linear systems, and use large deviation theory to study the
relationship between “lower moment” stability and almost sure stability. In
particular, we have proved that the region for d—moment stability is mono-
tonically increasing as 0 is decreasing to zero and asymptotically converges to
the region for almost sure stability. Roughly speaking, this is equivalent to
saying that almost sure stability is equivalent to ) —moment stability for suffi-
ciently small 6 > 0. Furthermore, we prove that although the top d—moment
Lyapunov exponent is, in general, not differentiable at zero, it is differentiable
at zero from the right and its right derivative at zero is equal to the top Lya-

punov exponent. This answers a long standing question in this area. Based on
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this analysis, a new Lyapunov function is constructed to obtain a very general
sufficient condition for almost sure stability, and this condition is also conjec-
tured to be a necessary condition for almost sure stability. Moreover, a few
new approaches for the study of almost sure stability are proposed and some
easily-testable conditions for both moment stability and almost sure stability
are obtained. Based on the results on almost sure stability and moment sta-
bility, the stochastic stabilization problem is also considered and a few future

research topics are identified.

This dissertation is the first research work in the current literature to use
large deviation theory to study stochastic stability and further represents a
systematic study of almost sure stability of jump linear systems with a finite
state Markov chain form process. It is our high hope that this work will
pave the way for further studies on the almost sure (sample path) stability for

stochastic systems.
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CHAPTER ONE

1. INTRODUCTION

Stochastic systems have been extensively used as realistic models of phys-
ical phenoemna in physics, economics, the biological sciences and various engi-
neering disciplines. For large-scale systems, advances in computer technology
have presented new challenges in the modeling and analysis of complex dis-
tributed communication and control systems. For such systems, the reliability
of system components is a major issue. Certain components may fail or delays
and interruptions to communications between subsystems may occur. These
events can be modeled as random changes in the system structure that can lead
to instability of the closed-loop system, resulting in a potentially disastrous sit-
uation. In some instances of practical interest, the analysis of complex systems
can be reduced to the study of stochastic differential or difference equations
where the changes in system structure are modeled by a random process. These
systems are inherently nonlinear and random. The study of the stochastic sta-
bility properties of these randomly varying systems is an important research

topic in support of the design of distributed digital control systems.

1.1. Modeling Issues and Motivation

In recent years, with the trend being toward distributed architectures for
real-time control, there is a need to decrease cost while to increase the reliability
of a system. An important design approach is the development of fault tolerant
control systems. One approach is to design a robust control system which can

accommodate component failures, random changes in the system structure



and other external disturbances. For example, in an electrical power system,
some generating units may be temporarily out of service thereby reducing
the reserve margin, or some regions may be temporarily disconnected from
the network due to outages in the transmission network. After some time
(which is usually random), the units are available for service or the faults are
cleared. An approximate model for this complex (fault-prone) system is to use a
jump linear system representation with parameters changing randomly among
a finite set of possibilities or modes. In this approach, the reliability principle
(e.g., redundancy, standby subsystems, etc) is used to help design better
controllers ([1]-[5]). Beard ([6]) examined “self-reorganizing” linear systems
which reconfigure themselves to compensate for actuator and sensor failures by
identifying the structural changes from a finite set of known possibilites and
adapting the system feedback law to achieve the desired closed-loop stability
properties. This modeling technique is also used in manufaturing systems to

capture the effect of machine failures on the overall performance of a system

([7)-

To convert light energy into electrical energy, large solar electrical power
generating systems have been constructed in the Californian desert at Daggett
and at Font-Romeu in the French Pyrenees ([7]-[9]). In California, a 10-MW
solar-powered generating plant uses a central receiver which consists of several
boiling panels in which feedwater is transformed into superheated steam using
solar energy. The solar energy is reflected toward the panels by a large field of
heliostats. The steam temperature regulator controls the flow of water through
the boiler in such a way as to maintain the desired steam conditions at the
output. A difficult problem is posed by the motion of the clouds over the

heliostats. On a partly cloudy day, the clouds tend to cover the heliostats for



time intervals that are quite short when compared with the dominant system
time constants, and they move away just as fast. These sudden changes may
be frequent and essentially unpredictable, and thus can be modeled using
a discrete random process. It is shown that this complex system can be
approximately modeled as a jump linear system with a finite state Markov

form process ([7]-]9]).

Distributed systems incorporating integrated communication and control
systems have been used in complex dynamical systems like aircraft, spacecraft,
automobiles, electrical power systems and manufacturing processes. Usually
time-division-multiplexed computer communication networks are used for the
exchange of information between spatially distributed plant components as
well as for coordination of the diverse control and decision-making functions
([10]-[24]). Due to the time-sharing characteristic of the network, randomly
varying, distributed delays can occur in the decision and control feedback loops
in addition to the digital sampling and data processing delays that are also
introduced. The network induced delays can degrade the dynamic performance
of the system, and are a source of potential instability. Ray and his coworkers
([10]-[20]) proposed a modeling framework and provided some preliminary
analysis and results. Krtolica et al ([21]) used Kalman and Bertram’s ([25])
unified modeling approach to reduce the distributed system to a jump linear
system with a finite state Markov chain form process, although the model which
results is not directly verifiable. The Ford Motor Company has developed a
confidential communication protocol, the Standard Corporate Protocol (SCP),
to coordinate the communications between the electrical /electronic modules in
a vehicle ([26],[27]). Based on this protocol,in some of our previous work, see

Fang et al ([22]-[24]), we developed a queueing model for the SCP network and
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studied the stability of the closed-loop control system. A jump linear system
model was developed and used to analyze the stochastic stability of the system

with random communication delays induced by traffic on the network.

Jump linear systems have also been used to analyze the transient behavior
of electrical power networks ([28],[29]) , economic policy planning ([30], [31])

and stochastic hybrid system analysis in C2 systems ([92],[93]).
1.2. Literature Survey

Many practical problems such as those we discussed in the previous section

can be reduced to the study of the following system:

#(t) = f(a(t), onult), b), (1.2.1)

or

o(k + 1) = f(z(k), o, u(k), k), (1.2.2)

where {0} or {or} is a random process characterizing the changes in the
system structure, which can be modeled as a finite state Markov or semi-
Markov chain, for example. This random process will be referred to as the
form process. The functions {u(t)} or {u(k)} represent the control inputs to
the system. The control systems (1.2.1) or (1.2.2) will be referred to as jump
control systems. If the function f(-,-,-) is linear both in the state z and the

control u, (1.2.1) or (1.2.2) have the familar representation

i(t) = Ai(ov)z(t) + Be(or)u(t), (1.2.3)

or

.I'(k + 1) = Ak(O'k).I'(k) + Bk(ak)u(k‘), (1.2.4)
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and these systems are referred to as jump linear control systems. For the
stability analysis of closed-loop systems, for example, where feedback controls
u(t) = —p(x(t), o, t) or u(k) = p(x(k),ok, k) are used, the following jump
systems will be studied:

i(t) = f(z(t), o4, 1), (1.2.5)
or

ok +1) = F(z(k), o k), (1.2.6)

The jump linear systems that are of interest are of the form:
z(t) = Ai(op)x(t), (1.2.7)

or

ok + 1) = A (o) z(k), (1.2.8)

The study of these systems can be traced back to the work of Rosen-
bloom ([133]). Bellman ([134]) studied the second moment stability of jump
linear systems using the Kronecker matrix product where the form process
is an independent identically distributed random process. Using a stochastic
version of Lyapunov’s second method, Bertram and Sarachik ([37]) and Kats
and Krasovskii ([36]) obtained some sufficient conditions for second moment
stability for jump systems with a finite state Markov chain form process. In
a series of papers, Krasovskii and Lidskii ([34]) considered jump control sys-
tems which are undergoing random variations during the control process and
are perturbed by random interference. Bergen ([135]) generalized Bellman’s
([134]) idea and studied the second moment stability of continuous-time jump
linear systems of type (1.2.7). Then Bharucha ([136]) further generalized this
Kronecker product technique to the study p—th moment stability (p is a posi-

tive integer) and obtained a necessary and sufficient condition. Bharucha also



showed that asymptotic moment stability is equivalent to exponential moment
stability. Morozan ([51]) studied the case where {o;} has piecewise constant
sample paths but may not be Markovian. Darhovskii and Leibovich ([66]) in-
vestigated systems where the time intervals between jumps are independent
identically distributed random variables and the systems’ modes are governed
by a finite state Markov chain, a necessary and sufficient condition for the
system to be second moment stable was derived. Other research works related

to the stability of jump linear systems are summarized in Kozin ([38]).

Jump control systems have also been intensively studied from the per-
spective of controller design. For example, the linear quadratic optimal con-
trol designs of (1.2.3) or (1.2.4) attracted considerable attention in the 60’s
and 70’s. Krasovskii and Lidskii ([34]) were the first to consider this problem.
Then Florentin ([63]) studied the optimal control design for continuous-time
Markov stochastic systems. Sworder ([39]-[50]) generalized the optimal design
methods for linear systems to jump linear control systems and obtained the
so-called stochastic maximum principle, which was also investigated deeply by
Wonham ([35]). Sworder and Rogers ([9]) applied this controller design method
to a solar thermal central receiver, Blair and Sworder ([31]) used this approach
for the regulation of a class of econometric models, Blair and Sworder ([32]),
Birdwell et al ([55]) and Chizeck ([64]) used the quadratic regualtor design
methodology to analyze the reliability of fault-tolerant control systems. Mo-
rozan ([52],[53]) considered the infinite-time linear quadratic control problem
and introduced the notion of second moment stochastic stability and stabiliz-
ability, some very important results were obtained. Chizeck et al ([56]) used
the linear quadratic optimization approach to study the stabilization problem

and presented some interesting examples. Hopkins ([54]) used a similar idea to
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study the simultaneous stabilization problem for continuous-time jump linear
systems by introducing a sequence of finite horizon parameter optimization
problem. In order to rigorously solve the infinite-time linear quadratic opti-
mal control problem for jump linear systems and understand the asymptotic
behavior of the optimal closed-loop systems, Ji and Chizeck ([67]-[72]) stud-
ied the stochastic controllability and stochastic observability properties of the
system. This solved the linear quadratic optimal design problem when the
form process {0} or {0} is observable. In some recent works second moment
stabilization problems have been investigated, refer to Ji et al ([73]), Feng et
al ([74]) and Feng ([75]), where they have proved the equivalence between ba-
sic second moment stability concepts. When {0} or {o}} is not observable,
the linear quadratic optimal control problem becomes a dual control prob-
lem, which was investigated by Griffiths and Loparo ([80]) and Casiello and
Loparo ([81]). Campo and Bar-Shalom ([179]) considered a sub-optimal lin-
ear quadratic design for this case. Mariton ([82]-[89]) also studied stochastic
controllability, observability, stabilizability and linear quadratic optimal con-
trol problems for continuous-time jump linear control systems, this work is
discussed in the book ([7]). Hijab ([65]) considered the stabilization and dual
control problem for a continuous-time jump linear system with a finite state
form process and a sufficent condition for the dual problem to be solvable is
obtained: the well-known analytic solvability condition for a partial differential
equation. Caines and Chen ([62]) used Hijab’s ([65]) PDE technique to obtain
an optimal adaptive LQG control policy for jump linear systems with a finite
state form process. Siljak ([90]) and Ladde and Siljak ([91]) combined jump
linear system theory and decentralized control methodology to study the relia-
bility of complex control systems. This work suggests the importance of jump

linear systems in the modeling and anlysis of large-scale stochastic systems.



Jump system modeling is also relevant to the study of structral stability
in civil engineering. For structural engineers, beams and plates are subject
to random forces at the boundaries and this can be modeled as a dynamic
system with parametric random excitation. Kozin ([38], [178]) reviewed some
of stability results for jump systems (1.2.7) whose form process {o;} is a white

noise process.

We observe that in order to obtain a reasonable control design, jump con-
trol systems should be stochastically stabilizable, i.e., the closed-loop jump
systems should be stochastically stable, therefore, the study of stochastic sta-
bility of (1.2.5)-(1.2.8) becomes vitally important. A natural approach to the
study of stochastic stability is to generalize Lyapunov’s second method ([99])
to stochastic systems. A stochastic version of Lyapuonv’s second method was
developed almost simultaneously by Bertran and Sarachik ([37]) in the U.S.A.
and Kats and Krasovskii ([36]) in the former U.S.S.R. Kushner ([94]) and
Has minskii ([95]) systematially investigated the stability properties of general
stochastic systems. In his comprehensive survey, Kozin ([38]) clarified many
confusing stability concepts (which still mislead many researchers today ) and
gave a nice explanation of the relationship among various stochastic stability
concepts. Belle Isle and Kozin ([175]) and Belle Isle ([176]) generalized Lya-
punov’s second method to derive some sufficient conditions for almost sure
sample stability of continuous-time linear differential equations with random
time-varying communication delays. Krtolica et al ([21]), Morozan ([52],[53]),
Ji et al ([73]), Feng et al ([74]) and Mariton ([7]) used this approach to study
the stochastic stability of jump linear systems (1.2.7) or (1.2.8). Hijab ([65])

used this approach to study the stabilizability of jump linear systems.
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It is noted by Kozin ([38], [129]) that almost sure stability does not imply
moment stability for stochastic systems, and usually second moment stability
criteria for almost sure stability are too conservative to be useful in practi-
cal applications. This has been illustrated by Mitchell and Kozin ([130]) and
Kozin and Sugimoto ([131]), where it is shown that the regions for second mo-
ment stability are considerably smaller than the ones for almost sure stability.
Practically we are interested in the stability of individual sample paths of the
system rather than the stability of the “average system” or the “ensemble of
all possible systems” ([176]). Therefore, almost sure stability is a more useful
concept than moment stability. The Lyapunov exponent method is, in some
sense, the only approach to obtain the tightest criteria for almost sure stability
([96], [144]). Generally, the system is almost surely stable if and only if the
top Lyapunov exponent is negative. After the introduction of the concept of
Lyapunov exponents by Lyapunov ([99]) in 1892, this concept has been exten-
sively and intensively studied by mathematicians and scientists to investigate
the stability properties of dynamic systems. This concept has been general-
ized to the study of stochastic dynamical systems. The fundamental papers
of Lyapunov exponents are due to Furstenberg ([101], [102]), Oseledec ([100])
and Has'minskii ([111]). The intensive research in this area is evidenced by
the works reported in the two research monographs by Arnold and his school
([96], [144]), the monographs by Bougerol and Lacroix ([95]) and by Kifer ([98])
and the comprehensive review paper by Gol’dsheid and Margulis ([106]). This
approach can be effectively used to study almost sure stability of jump linear
systems. Li and Blankenship ([126]) investigated the Lyapunov exponents for
a jump linear system whose form process is a Poisson point process, Arnold et

al ([123]), Arnold and Kloeden ([124]), Pinsky ([107,[122]), Feng and Loparo
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([78]), Loparo and Feng ([79]) studied the Lyapunov exponents and instabil-
ity properties of the random harmonic oscillator, i.e., the jump linear system
(1.2.7) with a telegraphic form process. This can be considered as an approx-
imate model for a single electrical machine connected to an infinite bus, see
Loparo and Blankenship ([121]) and Loparo ([182] or [183]). When the form
process {o:} or {0} of the jump linear system (1.2.7) or (1.2.8) is a finite
state Markov chain, Feng and Loparo ([76],[77]) obtained a nonrandom spec-
trum theorem which is an improvement to Oseledec’s multiplicative theorem
([100]) for this class of jump linear systems. Leizarowitz ([125], [153]) also con-
sidered the Lyapunov exponents of jump linear systems driven by a finite state
Markov chain. It seems from this approach that we can completely solve the
almost sure stability problem for jump linear systems by determining the sign
of the top exponent. However, the computation of the top Lyapunov exponent,
even the determination of the sign of the top Lyapunov exponent, is a very
complicated and computationally difficult task as demonstrated by Feng ([75])
and Loparo and Feng ([78]). Thus, the estimation of the top Lyapunov ex-
ponent becomes a very important research area. Leizarowitz ([153]) obtained
some preliminary results on this issue for continuous-time jump linear system

(1.2.7) driven by a finite state Markov chain.

Arnold ([115]) discovered a formula connecting the sample path and
moment stability properties of jump linear systems (1.2.7) where the form
process{o;} is a Poisson random point process. Arnold et al ([116], [117]) gen-
eralized this formula. Du and Nhung ([161]) attempted to generalize Arnold’s
results to a jump linear system (1.2.8) where the form process is independent
identically distributed, however the main results are incorrect. Leizarowitz

([153]) heuristically showed that Arnold’s ([115]) approach can not be used for
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the jump linear system (1.2.7) driven by a finite state Markov chain. However,
he did not give a definite answer to whether Arnold’s is valid or not for jump
linear systems. We can easily see from Arnold’s formula that the ) —moment
top Lyapunov exponent is differentiable and its derivative at zero is just the
top Laypunov exponent. For one dimensional jump linear system (1.2.7) with
a finite state Markov chain, Feng et al ([74]) and Feng ([75]) proved that
the region for §—moment stability monotonically increases and asymptotically
converges to the region for almost sure stability as 6 approaches to zero from
above. This result is very important because it characterizes the close rela-
tionship between almost sure stability and moment stability. We believe that
this relationship continues to hold for higher dimensional jump linear systems
of the types (1.2.7) or (1.2.8) with a finite Markov chain form process, this will

be investigated in this dissertation.
1.3. Research Topics

Stochastic stability is a qualitative property basic to all systems natural
as well as man-made, and it is usually the first characteristic to be considered
in practical applications. This dissertation will be devoted to the study of the
stochastic stability of jump linear systems (1.2.7) or (1.2.8) with a finite state

Markov chain form process.

In Chapter two, we study the stochastic stability of discrete-time jump
linear systems (1.2.8) with a finite state Markov chain. The second moment
stability has been studied by many researchers, especially for the system (1.2.8)
where {0y} is a finite state independent identically distributed chain. We

study the §—moment stability properties where § > 0 (not necessarily interger)



12

among various moment stochastic stability concepts and the relationship be-
tween d—moment stability and almost sure stability. In this way, we obtain
a new approach to the study of almost sure (sample path) stability of jump
linear systems. Moreover, a new class of Lyapunov functions are proposed to
obtain a new sufficient condition for almost sure stability. Some simpler suf-
ficient conditions for both d—moment and almost sure stability will be given,
and stabilization approaches are suggested. Finally, the analytic properties of

d—moment Lyapunov exponents will be studied in this chapter.

Chapter three will be devoted to the study of the stochastic stability of
continuous-time jump linear system (1.2.7) with a finite state Markov chain.
Since the sampled discrete version of the continuous-time jump linear system is
not a type of (1.2.8), the stochastic stability analysis method for discrete-time
jump linear system (1.2.8) developed in chapter two can not be applied to the
continuous case, some modification is made to obtain some new results. Some
incorrect results in the recent literature are corrected and modified and some

unresolved problems are solved.

It is very important to note that the moment stability results is closely
related to the large deviations in random sequence. By realizing this point,
we can use the large deviation theory developed in probability theory and
statistics to study the moment stability of jump linear systems. To the author’s
knowledge, this is the first work that has been done in the current literature
to use the large deviation theorem to study the stability of stochastic systems.
It seems that this approach is potential for the study of stability of general

stochastic systems and should be generalized in the future.



CHAPTER TWO

STABILITY OF DISCRETE-TIME

JUMP LINEAR SYSTEMS

This chapter is devoted to the study of the stability of discrete-time jump
linear systems with a finite state Markov chain form process. A brief review of
stochastic stability results in this direction is given in the first section, then in
the second section we discuss the second moment stability, which is the sim-
plest case in stochastic stability analysis. Two approaches has been used here,
one is the Lyapunov coupling equations method, and the other is the Kronecker
matrix product approach. It can be seen that necessary and sufficient condi-
tions can be obtained for second moment stability. In order to study almost
sure stability, d—moment stability concept is introduced in the third section
and equivalence relationship among various concepts of stochastic stability is
obtained and the relationship between the region of moment stability and the
one of almost sure stability is illustrated. Also the differentiability property of
top d—moment Lyapunov exponent are discussed. Following this study, some
testable criteria for d —moment stability are presented in fourth section. In fifth
section, we present new results for almost sure stability and some interesting
algebraic testable conditions are obtained. Although the Lyapunov exponents
can provide the best possible stability criteria, it is witnessed that the com-
putation of the Lyapunov exponents is extremely difficult and sometimes is
impossible, therefore we attempt to give some estimations for the Lyapunov
exponents in the sixth section. In seventh section, we briefly discuss the al-
most sure stabilization problem followed by the eighth section which briefly

deals with robust stability of jump linear systems. Finally, we will present

13
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some illustrative examples to show how our results can be applied to solve

almost sure stability and moment stability.

2.1. INTRODUCTION

Consider the discrete-time jump linear system in the form

T4+1 = H(O’k) Tl (2.1.1)

where {0y} is a finite state independent identically distributed (iid) random
process or a discrete time Markov chain. Stability analysis of systems of this
type can be traced back to the work of Rosenbloom ([133]), who was interested
in the moment stability properties. Bellman ([134]) was the first to study
the moment stability of (2.1.1) with an iid form process using the Kronecker
matrix product. Later, Bhuracha ([136]) used Bellman’s idea developed in
[134] to generalize some old results and studied both asymptotic stability of

the mean and exponential stability of the mean.

There is an alternative approach to the study of stochastic stability. Kats
and Krasovskii ([36]) and Bertram and Sarachik ([37]) used a stochastic ver-
sion of Lyapunov’s second method to study almost sure stability and moment
stability. Unfortunately, constructing an appropriate Lyapunov function is dif-
ficult in general, this is a common disadvantage of Lyapunov’s second method.
Also, in many cases, the criteria obtained from this method are similar to mo-
ment stability criteria, which are often too conservative. For certain classes
of systems, such as (2.1.1), it is possible to obtain testable stability condi-
tions. For second moment stability, Kats and Krasovskii ([36]) and Morozan
([52]) discovered the necessary and sufficent condition and further proved some

equivalence relationship among several concepts of stochastic stability. Ji and
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Chizeck ([72]) and Ji et al ([73]) rediscovered such necessary and sufficient
conditions and studied the stabilization problem using such conditions. When
the form process {0y} is an inhomogenous Markov chain, Krtolica et al ([21])
obtained a necessary and sufficient condition in terms of infinite number of
coupling Lyapunov equations, although it is theoretically interesting, it can

not be checked in practice.

As Kozin ([38], [120], [129]) pointed out, moment stability implies almost
sure stability under fairly general conditions, but the converse is not true. In
practical applications, almost sure stability is more than often the desirable
property because we can only observe the sample path behavior of the sys-
tem and the moment stability criteria are sometimes too conservative to be

practically useful.

Although Lyapunov exponent techniques may provide necessary and suf-
ficient conditions for almost sure stability ([74],[75],[95],[96],[114],[115],[154]),
it is very difficult to compute the top Lyapunov exponent or to obtain good
estimates of the top Lyapunov exponent for almost sure stability. As a result,

testable conditions are difficult to obtain from this theory.

Arnold et al ([115],[116]) studied the relationship between the top Lyapnov
exponent and the d—moment top Lyapunov exponent for a diffusion process.
Using a similar idea, Leizarowitz ([153]) obtained similar results for continuous-
time jump linear systems. A general conclusion was that d —moment stability
implies almost sure stability. Thus sufficient conditions for almost sure stability
can be obtained through d—moment stability, which is one of the motivations
for study of d—moment stability. There are many definitions for moment

stability: d—moment stability, exponential 6 —moment stability and stochastic
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d— moment stability. Ji et al ([73]) proved that all second moment (6 = 2)
stability concepts are equivalent for the system (2.1.1). Feng et al ([74]) showed
that all second moment stability concepts are equivalent for the continuous-
time jump linear systems, and also proved that for a one dimensional system,
the region for )—moment stability is monotonically converging to the region
for almost sure stability as 6 | 07. This is tantamount to concluding that
almost sure stability is equivalent to 6 —moment stability for sufficiently small
0. This is a significant result because the study of almost sure stability can be

reduced to the study of d—moment stability.

Suppose that {0} is a finite state Markov chain with state space IV, transi-
tion probability matrix P = (p;j) nxn and initial distribution p = (p1,...,pnN)
(Certainly, the iid process is a particular Markov chain where each row of P is
the same as the initial distribution p). For simplicity, assume that the initial
state xp € R™ is a (nonrandom) constant vector. Let (€2, F, P) denote the
underlying probability space and let = be the collection of all probabiltiy dis-
tribution on N. Let e; € E be the initial distribution concentrated at the 3"
state, i.e., given by P{og = i} = 1. Sometimes, we need to signify that some
properties are dependent on the choice of the initial distribution of the Marko-
vian form process {or}. If so, for each £ € =, let P: denote the probability
measure for the Markov chain {0y} induced by the initial distribution £ and E;
the expectation with respect to P¢. Let 7 = (m1,...,7n) be the unique invari-
ant probability distribution for the Markov chain {0y}, if the chain possesses a
single ergodic (indecomposible) class. Details of Markov chain can be referred
to Doob ([137]), Taylor and Karlin ([138]), Loeve ([141]) and Shiryayev ([150]).
For a matrix C' = (¢;j), let |C| = (|cij|). Some definitions of different stability

concepts for jump linear systems are presented next.
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DEFINITION 2.1.1:

Let @ be a subset of Z. The jump linear system (2.1.1) with a Markovian

form process {0} as specified above is said to be

(D).

(10).

(I11).

(asymptotically) d—moment stable with respect to (w.r.t.) ®, if for any

xo € R™ and any initial probability distribution @ € ® of oy,
lim F 0N =
Tim 5 {J|a (0, )]’} =0,

where x(zo,w) is a sample solution of (2.1.1) initial from z, € R™. If
d = 2, we say that the system (2.1.1) is asymptotically mean square stable
w.r.t. ®. If § = 1, we say that the system (2.1.1) is asymptotically
mean stable w.r.t. ®. If & = =, we simply say the system (2.1.1) is
asymptotically 6-moment stable. Similar statements apply to the following

definitions.

exponentially )—moment stable w.r.t. @, if for any £y € R™ and any initial
distribution ¢ € ® of oy, there exist constants a, 8 > 0 independent of

o and 1 such that
E{||zk(z0,w)||°} < aflmol|®e™P*, VE > 0.

stochastically 6—moment stable w.r.t. ®, if for any o € R™ and any

initial distribution @ € ® of oy,

> E {||z(wo, w)|I°} < +oc.

. almost surely (asymptotically) stable w.r.t. ®, if for any zo € R™ and any

initial distribution 9 € = of oy,

P{ lim ||z (2o, w)|| = 0} = 1.
k—o0
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(V). mean value stable w.r.t. ®, if for any xp € R™ and any initial distribution
Y € @ of oy,
lim E{.Tk(xo,W)} =0.
k—o0
In the case when {0} is actually an iid process with distribution p =

(p1,.-.,pN), all the above definitions hold with ® being the singlton set E =
® = {p}.

[

The above definitions are consistent with those given in [73] and [74], and
we want to remind the reader of the dependence on the initial probability
distribution of the form process {0y} for the Markovian case. The “state” for
the jump linear system is the joint process (xg, o), even though the initial
distribution of the form process may not be known. Thus, it is reasonable that
the stability properties as given are independent of the initial distributions.
Of course, for a Markov chain with a single ergodic class, the almost sure
(sample) stability only depends on the probability measure P, with the initial
distributuion 7. Then, if the system is Pr-almost surely stable, then it is also
almost surely stable (or Pe-almost surely stable for any & € Z). However,
this may not be the case for the d-moment stability. The following simple
example illustrates this point and justifies the practical importance of having

the stability definitions independent of the initial distribution.
Example 2.1.2:

Consider the scalar system (2.1.1) with H(1) = hy > 0 and H(2) = hy

with 0 < hg < 1. The form process {0} has a transition matrix

P = <p11 p12> _ (05 05)
D21 D22 0 1
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and initial distribution & = (£1,&2). Clearly, the unique invariant distribution

is given by m = ea = (0,1) and the system is P¢-almost surely stable, regardless

of £&. However, for any 6 > 0 and xy # 0, we have

E¢|zn(w,20)|° = E¢|H(0p1) - .. H(0p)wo|°

2
- Z giEei |H(Un—1) v H(UO)$0|6'
=1

Also, we have
E61 |H(O'n_1) - .H(O'())CU()|6

= D PrPivia e Pin i [Hin1)|° - [H (i) P [H (1)

7/17"'77;n—1

1 nin 1 n
> (5)" Wk l? = (5h)"mol?

and
Eo|H(0p_1)...H(c0)zol°

= Z D2y Pivis - -+ Pin_sin_1 [H (In-1)

T1y--+5ln

O H (i) P | H(2)%) w0

= 13’ |wol” = (h)"[ol” —> 0, 1 — +o0

From (2.1.2), (2.1.3) and (2.1.4), we see that

. ) : 6
n Al Erln(w, 2o)l" = L Beglon(w, 20)[" = 0.

However, for any & = (£1, &) with & > 0, as long as h{ > 2, we have

Jm Belan(w,20)|” >l 6 Ee, |ra(w, 20)|° = +o0

(2.1.2)

(2.1.3)

(2.1.4)

In this case, the system is “d-moment stable”, if £ = =, i.e., if the chain {o}}

is stationary, and the system is not “d-moment stable” for any other initial

distribution £. Therefore, d-moment stability with respect to ® = {7} is not

a good criteria to be used in practice because a small perturbation of £ from
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7w will make the system unstable. The d-moment stability definition should
therefore be “independent” of the initial distribution as given in Definition

2.1.

In the above example, the form process has a single ergodic class {2} as well
as a transient state, namely 1. If the form process is irreducible, i.e., satisfies
the property that each pair of state communicates, or that the unique invariant
distribution 7 is strictly positive, then, the definitions in definition 2.1.1 are
equivalent to the usual stability definitions for a system with a stationary form

process. This result is formalized next.
Lemma 2.1.3:

For system (2.1.1) with a finite state and time homogeneous form process,
if the chain is irreducible (or indecomposible) with a unique invariant distri-
bution 7, then the system is stable in any of above senses if and only if the

system is stable in the same sense with respect to ® = {r}. [

Proof: The proof of necessity is trivial. For sufficiency, notice that since = > 0,
it is easy to see that Py << P, (P is absolutely continuous with respect to
Py) for any £ € E. Thus, Pr-almost sure stability implies P¢-almost sure

stability. For moment properties, say, -moment stability, notice that for any

é-: (517"'751\’)7

N
E§||$k(w7$0)”6 = Zé_’iEei xk(w7$0)||6
i=1
Since m = (m1,...,78) > 0, limp_ oo Exl|l7r(w,70)]]° = 0 implies that

71 (w, 20)[|° = 0 for all i € N. This implies that

hmk—)—i—oo Eei

lim E 0 — =
L ellzr(w, z0)||° =0, V€€
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We conclude that if we are dealing with an irreducible Markov chain form

process, then it is only necessary to study stability with respect to ® = {r}.
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2.2. SECOND MOMENT STABILITY

In this section, we study the second moment stability (or mean square
stability) of discrete-time jump linear system (2.1.1). As we mentioned earlier,
we can use a stochastic version of Lyapunov’s second method to study stochas-
tic stability. A natural candidate for a Lyapunov function is an appropriately
chosen quadratic form. Morozan ([53]) and Ji et al ([73]) obtained the following

necessary and sufficient condition.
Theorem 2.2.1.

Suppose that {0} is a finite state time homogenous Markov chain with
probability transition matrix P, then the system (2.1.1) is second moment
stochastically stable if and only if for any given positive matrices Q(1), Q(2),

.., Q(N), there exists positive definite matrices P(1), P(2),..., P(N) such
that

N
> piH P(j)H; — P(i) = —Q(i), i=1,2,...,N. (2.2.1)
j=1

Proof. The Lyapunov function can be chosen as V(zg,0r) = =i P(og)zs,

then the rest of the proof follows from traditional approach (see Ji et al ([73])
for detail) . 0

Remark: From Ji et al ([73]), Theorem 2.2.1 is also a necessary and sufficient
condition for second moment and exponential second moment stability, see

Theorem 2.2.5 given later.

An interesting observation is that the above Lyapunov function has the

following feature: xj is measurable with respect to the o—algebra generated
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by 0k—1,0k—2, -, and the matrix P(oy) depends only on o. If we use the

Lyapunov function V (2, 0%) = 21 R(0k_1) s, this leads to the following result.
Theorem 2.2.2.

Suppose that {0} is a finite state time homogenous Markov chain with
probability transition matrix P, then the system (2.1.1) is second moment
stochastically stable if and only if for any given positive matrices S(1), S(2),...,
S(N), there exists positive definite matrices R(1), R(2),..., R(N) such that

> piHT(NRG)H() = R) = =8(0), i=12,....N. (2.2.2)

Proof. This can be proved using a similar procedure as in the proof of Theorem

2.2.1 and the Lyapunov function V (z, o) = x%R(ak_l)xk. L]

Surprisingly, the necessary and sufficient conditions given in Theorem 2.2.1

and 2.2.2 are equivalent. We have
Theorem 2.2.3.

Equation (2.2.1) has a positive definite solution P(1), P(2),..., P(N) for
some positive definite matrices Q(1),Q(2),...,Q(N) if and only if (2.2.2)
has a positive definite solution R(1), R(2),..., R(IN) for some positive definite
matrices S(1),5(2),...,S(N).

Proof. Suppose that for some positive definite matrices Q(1), Q(2),...,Q(N),
(2.2.1) has a positive definite solution P(1), P(2),..., P(N), let

R(i) =ZpijP(j>, S(4) =ZpijQ(j), i=1,2,...,N
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then we have

gp”HT(j)R(J)H(J) — R(3)

= g:lpmHT(j) (épjklj(k)) H(j) — R(3)
_ ip (épijTmP(k)Hu)) ~ R()
. §ij (P() - QU)) - RG)

= —g:lpijQ(j) = —5(i),

thus, R(1),R(2),...,R(N) is a solution to (2.2.2) with the above defined
positive matrices S(1),S(2),...,S(N).

Conversely, suppose that for some positive definite matrices S(1),S(2),
.., S(N), (2.2.2) has a positive definite solution R(1), R(2),..., R(N). Be-
cause of the positive definiteness of S(1), 5(2),...,S(IV), there exists a positive

number « > 0 such that S(i) — al is positive definite for any i € {1,2,..., N}.
Define

P(i)=ol + HY'())R()H (i), Q(i) = ol + HT (i)(S(i) — al)H (i),

then we have

ZpinT(i)P(j)H(i) — P(i)

= H" (i) meP(j)) H{(i) — P(i)
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HT(i)H (i) + H" (i) (R(i) — S(3)) H (i) - P(3)
HY(i)H (i) + H (i) R(i)H (i) — P(i) — H" ())S(i) H (i)
HT(i)H (i) — al — HT()S(i)H (i) = -Q(3),
and P(i) and Q(i) (i = 1,2,...,N) are positive definite, P(i) is a solution to
(2.2.1). This completes the proof. [

Remark: From (2.2.2) and the theory of Lyapunov equations, we can easily
obtain that the Schur stability of \/p;; H(7) (i € N) is a necessary condition for

second moment stability.

We call (2.2.1) or (2.2.2) the Coupled Lyapunov equations. It is not
obvious as to see which of the above two necessary and sufficient conditions
is better for practical applications. For the general finite state Markovian
case, solving (2.2.1) and (2.2.2) requires solving N coupled matrix equations.
However, for some special cases, Theorem 2.2.2 does provide an easier test for

stochastic stability. We have
Corollary 2.2.4.

Suppose that {0} is a finite state independent identically distributed
(iild) random sequence with probability distribution {pi,p2,...,pn}, then the
system (2.1.1) is second moment stochastically stable if and only if for some
positive definite matrix S there exists a positive definite solution R to the

following matrix equation

S pHT(i)RH(i) — R = 5.

=1

Proof. This is direct consequence of Theorem 2.2.2. []
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Remark: For the iid case, if we apply Ji et al’s result Theorem 2.2.1, then we
need to solve N coupled Lyapunov equations, which is more complicated than

Corollary 2.2.4.

In the above, we only considered second moment stochastic stability. This
is not a problem because the following result shows that the above conditions
are also necessary and sufficient for the second moment stability and second

moment exponential stability.
Theorem 2.2.5 (Morozan [53], Ji et al [73])

Second moment stability, second moment stochastic stability and expo-
nential second moment stability of (2.1.1) with a time-homogenous finite state
Markov chain {0} are equivalent, and all imply almost sure (sample path)

stability. []
As an illustration, we apply Theorem 2.2.2 to the one dimensional case.
Example 2.2.1.

Suppose that H(i) = a; (i € V) are scalars and define

2 2 2
p1i1a1 pi2as -+ PINAN
2 2 2
b21a7  p22a5 - Pa2NQN
A=
2 2 2
bni1ay] pPnNn2Gy; ° PNNOGN

We want to find a necessary and sufficient condition for (2.1.1) to be second
moment stable. Before we proceed, we quote the following result which will
be needed in this example: (In this example only, we use the notation A > B
to denote elementwise inequalities and p(A) denotes the spectral radius of a

matrix A.)
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Lemma A ([149], p. 493) Given a matrix A > 0, and a vector > 0 satisfying
ar < Ax < Pz for positive number « and 3, then « < p(A) < 8. If ax < Az,

then o < p(A). If Az < Bz, then p(A) < S. [J

We start with a necessary condition. Suppose that (2.1.1) is second
moment stable, then from Theorem 2.2.2, for S(1) = S(2) =--- = S(N) =1,
there exists positive numbers R(1), R(2),..., R(N) such that

N
> pijaiR(j) — R(i)=-1 (i=1,2,...,N)
7=1

ie.,

Ay —y=—c (%)
where y = (R(1), R(2),...,R(N))T and ¢ = (1,1,...,1)T. Thus, from (x), we
obtain Ay = y — ¢ < y. Using Lemma A, we have p(A) < 1, i.e., A is Schur

stable.

Next, we want to prove that this is also sufficient. In fact, suppose that
A is Schur stable, i.e., p(A) < 1. Let U = (u;j) nxn, where u;; = 1. It is easy
to prove that for sufficiently small positive number €, we have p(A + eU) < 1,
and A + €U is a positive matrix. By Frobenius-Peeron Theorem ([40]), there
exists a positive vector y > 0 such that (A4 eU)y = p(A + eU)y, i.e.,

Ay—y=p(A+el)y—ely —y<y—eUy—y = —eUy.
Let R(i) =y; (i=1,2,...,N), which are positive numbers that satisfy
N
> pijaiR(j) — R()) <0, (i=1,2,...,N).
j=1

Then (2.2.2) is satisfied for this choice of R(1),..., R(N) where the positive

numbers S(1),...,S(N) we suitably choose. From Theorem 2.2.2, we conclude
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that (2.1.1) is second moment stable. In this way, we have proved that (2.1.1)

is second moment stable if and only if A is Schur stable. [

Krtolica et al ([21]) studied the second moment exponential stability of
(2.1.1) with a time-inhomogenous finite state Markov chain form process {0},
and obtained the following necessary and sufficient condition. In what follows,
we use A < B (or A < B) to denote that B — A is positive semi-definite
(or positive definite matrix for any symmetric matrices A and B, and m =

{1,2,...,m} for any integer m.
Theorem 2.2.6 (Krtolica et al [21])

Suppose that {0} is a time-inhomogenous finite state Markov chain with
probability transition matrix P = (p;;(k))nxn~, then the system (2.1.1) is
exponentially second moment stable if and only if for some positive definite

(pd) matrix sequence Q(1),Qk(2),...,Qx(N) (k=0,1,2,---) satisfying
0<61]§Qk(.]) < cal (j:1a27"'7N)7 VE >0

for some positive constants c¢; and ¢y, there exist positive definite matrices

Pk(l), Pk(2), ey Pk(N) such that
>_pig(k+ DHT () Puyi () H(D) = Pu(i) = —Qu(d), i €N, Yk >0

where

0<631§Pk(7:)§641, 'LEN,V]CZO
for some positive constants c3 and c4. L]
From theoretical point of view, this is an interesting result. However, to

use this theorem, we need to solve an infinite number of coupled matrix equa-

tions, which is not testable in practical applications. Hopefully, the positive
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definite solutions Pg(1),. .., Px(/N) may converge as k goes to infinity so that a
finite set of algebraic conditions can be obtained. If the probability transition

matrix is periodic in k£, we can obtain the following testable condition.
Theorem 2.2.7.

Suppose that {0} is a finite state Markov chain with probability tran-
sition matrix P = Il = (p;;(k)) satisfying I, = IIj, then (2.1.1) is expo-
nentially second moment stable if and only if for some positive definite ma-
trices Q1(j), Q2(4), ..., RQp(j) (7 € N), there exists positive definite matrices
Pi(j), P2(j),...,Py(j) (j € N) such that the following hold:

> pi(VHT ()Pt (DH(0) — Pi(i) = ~Qu(i), 1 €p—1
j:rl (2.2.3)
>~ pi ()T (VPLG)H () = Py(i) = ~ Q). i € N.

In order to prove this, we need the following result.
Lemma 2.2.8.

(1). If A and B are positive definite matrices, then there exists a nonsingular
matrix 7 such that TTAT = I and TT BT is a diagonal matrix (T7

denotes the matrix transpose of T');

(2). If A, B and A — B are positive definite matrices, then there exists a
nonsingular matrix 7" such that T7(A— B)T = I —A(BA™1), where A(X)
denotes the diagonal matrix whose diagonal elements are the eigenvalues

of the matrix X;
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(3). If A, B and A — B are positive definite matrices, then
0 < Amin(BA™Y) < A(BA™Y) < Apax(BA™H) < 1,

)\min(BA_l)a:TAa: <zT'Bx < )\maX(BA_l)ZETA.T, Ve e R".

Proof of Lemma 2.2.8. (1). Since A > 0, there exists a nonsingular 77 such
that A = T{'T;. Because T; T BT, * > 0, there exists an orthogonal matrix Ty
satisfying T Ty = I and Ty (T7 T BT7 1T is diagonal. Let T = T; ' T, which

is nonsingular, then we have T7 AT = I and T7 BT is diagonal.

(2). Let T be the matrix chosen in (1), then we have
TT(A-B)T =1-TL(T7 BT T,

Since T4 = T, ', it suffices to show that o(TT BT~!) = o(BA~"), where
o(X) denotes the spectrum of the matrix X. In fact, using the property of a
similarity transformation, we have

oIy " BT = o(T{ (T BITHITT)

= o(BT'T7T) = o(B(TTTy) ™) = 0(BA™Y).

(3). From (2), there exists a nonsingular T such that TT (A — B)T =
I—A(BA™'). Since A— B > 0, hence 1 —o(BA™!) > 0, i.e., Apax(BA™!) < 1.

It is also easy to prove that Apin(BA™1) > 0 because of B > 0;

For any x # 0, we have

tTBx  (Tyx)T(T7T BT (The)

ol Az (T12)T (Tyx) ’

we have

8

T
B
Y < Aman (I7T BT,

Ain (T TBTT) <
( 1 1 ) — .’ETA.T —




31

Because o (T, T BTL) = o(BA™'), we have

which implies the desired inequalities. This complets the proof of Lemma 2.2.8.
[

Now we can prove Theorem 2.2.7.

Proof of Theorem 2.2.7. Sufficiency: Define
Pip(j) = Ri(j), jEN, k>0
Qrpr1(1) =Qu(j), lep—1

and define the following Lyapunov function
V(:Uk, O'k) = :U%ﬁk (O'k)a?k

Since Pi(j) (j € N, | € p) are positive definite, V'(-,-) is always a positive

definite function.

Since ot
AV (zg,08) = V(Tra1,0611) — V (21, 0%)

=z}, (H" (0k)Prs1(oks1)H(ok) — Prlox)) zx,
we can obtaln

E(AV (xy, o) |z = 2, op = 1))

= .I'TE (HT(O'k)ﬁk_i_l(O'k_i_l)H(O'k) - Pk(O'k)‘O'k = 2) xI.
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For any £ > 0 and [ € p — 1, we obtain
b (Av(xkp-i-h O-kp—{—l)‘xkp—‘,—l =X, Ogptl = @)

= o [E (H (0kp1) Prpti11(Thpit1) H (Okp 1) |okptt) — Prpta ()]

N
=aTHT (i) | Y P(Okpsis1 = §lowpsr = i) Prpyi1(4) | H(i)z — 27 Prpyr (i)
=1
[T
=a"HT (i) | Y Plo1 = jloy = i) Py | H(i)x — 2" P(i)x
=1
- 1
= =T H (i) Zpij(l)Pm(j)J H(i)x — = Py(i)x
_‘7:1

= —2TQ(i)z.
(2.2.4)

and for [ = p, we have

E (Av(xkpﬂn Ukp+p)‘$kp+p =, Okpt+p = 2)

N
=T Z HT(i)P(Ukp+p+1) = §10kptp = ) Prptpt1(1) H (i) — Prpip(i) | @
=

(2.2.5)

Let
pr = min {QAmin (Qi(H)P(j)™1) : 1 <1 <p, 1 <j< N}
p2 = max {Amax(Qi(H)P(j)™") 11 <1 <p, 1<j< N},
From (2.2.3), we have Fi(j) > Qi(j) (I € p and j € N), hence from Lemma
2.2.8, we obtain 0 < p1 < ps < 1. From (2.2.4) and (2.2.5), we have
E(AV (Zkpt1s Okp+ D) | Thpt1 = T, Okpit = 4)

< _NII'TB(i)'I' = _va(xvi)v le p— 1, i€ N.
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and
E(AV(Tkpap, Okptp) [Thptp = T, Okpyp = 1)

< _/jlll'TPp(i)x = va(xv 2)7 (NS M
Combining the above two inequalities, we claim that for any ¢ € N and k > 0,

we have
E(AV (zg,01) |z = ¢, o = 1) < —p1V(x,1).
i.e.,
E(V(zks1,0641) |2 =2, 0k = 1) < (1 — py)V(x,1).
This implies
E(V(2k41,0k41)) < (1= p1) E(V (28, 01))- (2.2.6)

Let ) ) .
A= mln{)\min(Pl(j)) :lep, je ﬂ} ,

A2 = max {Amax(Pi(j)) : L € p, j € N}
It is easy to show that A2 > Ay > 0 and from (2.2.6),

E{V(l’k,O'k)} < )\2

Bl |2 < SRR < 2

Ellao|* (1 — )"
This implies that (2.1.1) is exponentially second moment stable.

Necessity: For any given positive definite matrices Q;(j) ( € N and [ € p),
define @ (j) as before. Define

®(m, k)= H(om-1)H(om—2) - -H(ok), m >k

K
PE =" 0"(m,k)Q,,(0m)®(m, k), k>0

m=k

v1 = min {Amin(Qi(4)) : 1 € p, j € N}
Vy = max{)\maX(Ql(j)) e b, ,7 € ﬂ} -

We want to prove first that for all &

ﬁlgo = Z q)T(mv k)@m(o'm)q)(n% k)
m=k
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are elements of the Hilbert space £2(Q, F, P). Suppose that (2.1.1) is expo-
nentially second moment stable, i.e., there exists a positive @« < 1 and a B > 0

such that
Elzm|? = E|®(m, k)z||” < Bllzg|?a™ %, m >k,

then we have

2
E||PEK|? = sup EzT(PE)TPEs ( sup El’TﬁkKJJ)

K 2
2 D2
B
< viB® (“5””2 E am_k> <= ] < +o00.

l—«
m=k

This implies that 13130 € L2(Q, F, P). Define
P, =P = f: 3T (m, k)Q(opm)®(m, k), k>0
m=k
then we have
By, = H" (04) Pyy1H(og) + Qi (o) (k> 0).
Define Py (i) = E(Py|oy = i) for k > 0, then

Py(i) = HT (i) E(Pysr|ow = i) H (i) + Q4 (i), i € N, (2.2.7)
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and

N
E(Pyyilog =) = ZE(Pk+1|0'k+1 =J, ox = i)P(oky1 = jlox = 1)
i=1

pz‘j(k)E(f’k+1|0k+1 =) (2.2.8)

I
.MZ

<
I
—

pij (k) Prr1(j)-

<
I
—

I
.MZ

Next, we only need to prove that P (1) is periodic in k with period p. In fact,

we have

Pk+p( ) = E(Pk+p|0k+p = 1)

oo

=B Y Sk + p)Q,(om)(m, Pk = )
m=k+p

=E()_ " (m+pk+D)Quuip(Omsp)@(m + p,k + p)ogsp = i)

m=k
= Z E(H Uk—i—p HT(0m+p)@m+p(0m+p)

e H o) Hosy) sy — )

oo

=X > HTOHTG) B ) Qg i) H (i) -+ H i)

m=k ila alm k

X H(i)P(O’k+p+1 = il, vy Omgp = im—k|0-k+p = Z)

=Y > HTOH (ir) - H" (im—r)Quy (0m) H (bm—r) - - - H(i1)

m=Kk t1,...,tm—k

X H(i)P(O‘k_H = il,...,Um = im—k|0-k = 2)

=Y EH"(ok) - H (01)Qp (000 H(om) - - H(ow)|di) = Pi(i).

In the above, we have used the periodicity of Q (i) in k and the fact that
P(O-k-i-P-i-l = ilv - Om+4p = Z.’m—k|0-k—i—p = 7/)

= P(O‘k+1 = il,...,Um = im—k|0'k = Z)
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This can be proved in the following:
P(Oktpt1 = i1, Omtp = Im—k|Okp = 1)
= P(Ok4pt1 = 11|0ktp = 1) P(Ohpprz = i2|Ohipr1 = i1, Ohyp = 1) X -+
X P(Om+p = tm—k|Om+p—1 = fm—k—1s - - Oktpt1 = 41, Ohpp = 1)
= P(0ktpt1 = 11|0ktp = ) P(Okptz = i2|0kypt1 = i1) X -
X P(Om+p = tm—k|Omip—1 = Om—k—1)
= P(ogy1 =i1|ox = 1) P(0ksa2 = i2|0kr1 =41) X - -+
X P(om = tm—k|0m—1= Om—k—1)
= P(Ok+1 =101,y 0m = bm—k|ok = 1)
in which we have used the periodicity of 1Ix. Summarizing the above, we

conclude that P(j) = Pi(j) (j € N and [ € p) is positive definite solution to

the matrix equation (2.2.3). This completes the proof of Theorem 2.2.7. [

Remark. Theorem 2.2.7 gives a practically testable conditions for exponential
second moment stability. When the form process {o}} is time-homogenous,
that is, p = 1, our condition (2.2.3) is equivalent to Ji et al’s ([73]) necessary
and sufficient condition (Theorem 2.2.1). Moreover, when p becomes infinitely
large, (2.2.3) is equivalent to Krtolica et al’s results ([21]) and Theorem 2.2.7

may be used as an approximation to a more general case.

One approach to obtaining a solution to a Lyapuonv matrix equation is to
introduce the Kronecker product. It is still true for coupled Lyapunov equa-
tions. One natural question is whether we can transform the above necessary
and sufficient conditions for (exponential) second moment stability to condi-
tions in terms of the Kronecker product, which may be more direct than solving
a set of coupled Lyapunov equations. The answer to this question is affirma-

tive. This approach was first explored for second moment stability of (2.1.1)
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with an iid form process {0} by Bellman ([134]) and generalized by many
others ([38]). For the basics of Kronecker products, the reader is referred to
the excellent book by Horn and Johnson ([149]). Let A = (ai;)mxn be a real

or complex matrix, and define the linear operator vec(-) by

T
VeC(A) - [a117a217' ceyGm1,012y - -0y G2y -« -, Alpy -« '7amn] .

To develop our main results, we need the following lemma.
Lemma 2.2.9. (Horn and Johnson [149)])
(a). vec(AX) = (I ® A)vec(X), vec(AXB) = (BT ® A)vec(X);

(b). If A;XBy + -+ + A, X By, = C, then

(BT @ Ay 4+ - - + BT ® Ag]vec(X) = vec(C);

(c). vec(AX +YB) = (I ® A)vec(X) + (BT ® I)vec(Y). [

The following result is a general sufficient condition for exponential second
moment stability for the system (2.1.1) with a finite state Markov chain form

process.
Theorem 2.2.10.

Suppose that {o}} is a finite state Markov chain with probability transition
matrix [T = (pi;(k)), then the system (2.1.1) is exponentially second moment
stable if the deterministic matrix product sequence {Hle A;} is exponentially

convergent to the zero matrix, where

H(1)® H(1)
H(2)® H(2) i
Ap = . (I_y @ 1).

H(N)® H(N)
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Proof. Let G(i) = H(i) ® H(i), from 127, | = H(og)zpei HY (o), using

Lemma 2.2.9, we obtain
vec(a:k“a:f“) = (H (o) ® H(oy))vec(zpzr)
= G(op)vec(zpzl) = - = G(ok)G(ok_1) - - - G(op)vec(zoxl).

Let yi, = vec(zgxT ), and (p1,p2, ..., pN) is any initial probability distribution.

From the above equality, we have

Eyy1 = E(G(0or)G (k1) -+ - G(00)y0)

( > PigPigin (0) iy i (k = 1)G (i) G (ix—1) - - 'G(iO)) Yo

B0,i1,.. k=1

= ( Y Wiin (B = DG ()] - [Pioiy (O)G(il)][pioG(io)]> Yo

’io,...,ik
p1G(L)yo
p2G(2)y
(L. DAgAg 1A | Zwo |
pNG(N)yo
(2.2.9)
where [ is the identity matrix with appropriate dimension and
p11(k —1)G(1) par(k—1)G(1) - pinv(k—-1)G(1)
) pi2(k—1)G(2)  paa(k—1)G(2) --- pn2(k—1)G(2)
k= . . ) .
pin(k—1)G(N) pon(k—1)G(N) --- pnn(k—1)G(N)

= diag{G(1),G(2),...,G(N)YIIL_, ® I).

Thus, if the matrix product {Hf:1 A;} is exponentially convergent to the zero
matrix, then from (2.2.9), we conclude that Fyj is exponentially convergent

to zero. Hence, from the relation

E||aak||2 = Exzxk = tr(Exkxz) = tr(yg),
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we can conclude that E||z]|? is exponentially convergent to zero for any initial
probability distribution. This implies that (2.1.1) is exponentially second

moment stable. L]

This theorem provides a test procedure for exponential second moment
stability, from which we can obtain some testable condition. From a close look
at the stability criterion, we can observe that second moment stability of a
stochastic system can be reduced to the stability of a deterministic system in
the form: yry1 = Aryk, where the system matrix Ay is given as above, thus
the complexity of the stability problem is greatly reduced. Moreover, we can
clearly see how the system matrices H(1), H(2),..., H(N) and the probability
transition matrix Il affect the second moment stability of (2.1.1). If Il is
periodic in k&, then Ay is also periodic with the same period. If {o}} is time-
homogenous, Ay is a constant matrix. If II; can be approximated by II, which
is also a probability transition matrix, then Aj can be approximated by A. For
all these three cases, we can expect simpler second moment stability criteria.

These ideas are formalized in the next corollary.
Corollary 2.2.11.

(a). Suppose that {o}} is a time-homogenous finite state Markov chain with
probability transition matrix P = (p;;), then the system (2.1.1) is

(stochastically, exponentially) second moment stable if the matrix
A=diag{H1)®@ H1),H2)®@ H(2),...,H(N)® H(N)}(PT & I)

is Schur stable, i.e., its eigenvalues are strictly inside the unit circle in

complex plane.
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(b). Suppose that the probability transition matrix Iy is periodic with pe-
riod p, then the system (2.1.1) is exponentially second moment stable if

ApAp_1--- Ay is Schur stable.

(c). Suppose that the probability transition matrix I can be approximated
by II, which is also a probability transition matrix, then the system (2.1.1)

is exponentially second moment stable if the matrix
A(TD) = diag{H (1) ® H(1), H(2) ® H(2),..., H(N) @ H(N)}(TI* @ I
is Schur stable.

Proof. (a). If {o}} is time-homogenous, then II, = P, thus A, = A, so
Hle A; = AF_ If A is Schur stable, then AF is exponentailly convergent to
zero and therefore the condition of Theorem 2.2.10 is satisfied and the result

(a) of Corollary 2.2.11 follows.

(b). If Il is periodic with period p, then Agp,y, = A, for any £ > 0 and

0 <r <p. Thus, let kK =mp + r, we have

k m
H Ai = Ampir - Ampt1 H (AipAip—l e 'A(i—l)p)

=1 i=1

Hence, if A, - -+ A; is Schur stable, then the product {Hle A;} is exponentially
convergent, from Theorem 2.2.10, we conclude that (2.1.1) is exponentially

second moment stable.

(c). We first notice the following fact ([149]): Given a matrix A, for any
e > 0, there exists a matrix norm || - || such that ||A|| < p(A) +e€. Since A(II) is

stable, we have p(A(II)) < 1. Using the above fact, there exists a matrix norm
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|| - || such that [|A(IT)|| < 1. Moreover, there is a positive number p < 1 such
that ||A(IT)|| < p < 1. From this hypothesis, we have limg_,, I = II, hence
limg_, 00 Ax, = A(II). From continuity of matrix norm, we have

i [Agl] = [} lim Ay = AL < p,

—00 k—o0
thus, there exists K > 0 such that for any £ > K, we have ||Ag|| < p,

consequently, we have

k k K
ITT Al < [ 1Akl < (H HAiH) pt
i=1 i=1 i=1

Therefore, the sequence {Hf:1 A;} is exponentially convergent, and from The-
orem 2.2.10, (2.1.1) is exponentially second moment stable. This completes

the proof of Corollary 2.2.11. L]
Remark:

(1). (c) of Corollary 2.2.11 is extremely important, because in many practical
applications, the probability transition matrix converges to a stationary
matrix. In this case, (c) states that we do not need to test the stability
of the deterministic time-varying system, which is very difficult, or test
the definiteness of solutions of an infinite number of coupled Lyapunov
equations as in Krtolica et al’s results (Theorem 2.2.6), we only need to
test the time-homogenous case where the probability transition matrix
is replaced by its stationary limit. In this way, we have transformed an

impractical test criterion into one that can be computed.

(2). Compared with Theorem 2.2.1 or Theorem 2.2.2, one advantage of (a)
of Corollary 2.2.11 is a potential reduction in computations. In prin-

ciple, solving coupled Lyapunov equations using the Kronecker product



42

approach requires representing matrices as expanded vectors and trans-
forming the coupled Lyapunov equations into a linear equation with coef-
ficient matrix B. From the solution of the linear matrix equation we can
obtain the matrix P(1), P(2),..., P(IN), then we check the definiteness of
P(1),...,P(N). However, it is easy to show that B is stable if and only
if A is stable (details can be found later in this section), so we only need
to check the eigenvalues of B to determine if (2.1.1) is second moment,

exponentially stable. In this way, the computations may be reduced.

. We conjecture that the sufficient condition in (a) is also necessary. How-

ever, we have not been able to give a rigorous proof for this. From Example
2.2.1, we know that for one dimensional jump linear system, this conjec-
ture is true. It will be seen that this conjecture is also true for the iid

case. []

For the case that {o}} is an iid form process, we obtain the following much

simpler testable criterion.

Corollary 2.2.12.

Suppose that {o}} is a finite state iid form process with probability dis-

tribution {p1,ps2,...,pN}, then a necessary and sufficient condition for (2.1.1)

to be exponentially second moment stable if and only if the matrix

Ap=prH(1) @ H(1) + po H(2) @ H(2) + - - + py H(N) @ H(N)

is Schur stable.
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Proof. Sufficiency: Let

I I I
0 I 0
T=1|. . .
0 0 I

Then T is nonsingular and it is easy to verify that

A 0 --- 0
p— pG(2) 0 -+ 0
pNG(N) 0 - 0

so A is Schur stable if and only if Ag is Schur stable. From Corollary 2.2.11,

the system (2.1.1) is exponentially second moment stable.

Necessity: As we noticed earlier, we have
vec(Tp17141) = (H(oy) ® H(o))vec(zgay,).

Because o and xj are independent, from the above equality, we obtain
Yr1 = E{H(0}) ® H(ok)}yk
=PH1)@H(1)+ - +pnvH(N)® H(N))yx = Aoy
From the relation F|zx||> = trE{zizl}, it is easy to prove that (2.1.1)

is exponentially second moment stable if and only if y; converges to zero

exponentially. Thus Ag is Schur stable. L]
Remark:

(1). The proof of necessity is in fact a direct simple proof of Corollary 2.2.12.
The purpose to give the above proof of the sufficiency is to illustrate that

the iid case is really a special case of Markov chain case. Corollary 2.2.12
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states that the sufficient condition in (a) of Corollary 2.2.11 is also a

necessary condition for the iid case.

. For a finite state ergodic Markov chain, there exists a unique invariant

measure ™ = (7y,...,7y), and when the initial distribution is this invari-
ant measure, then the stationary chain behaves like the iid chain. One
may conjecture that for a finite state Markov chain case, when the initial
distribution is {my, w3, ..., 7N}, Corollary 2.2.12 is still valid, i.e., (2.1.1) is
exponentially second moment stable if and only if m H(1) @ H(1) +--- +
nnH(N) ® H(N) is Schur stable. Unfortunately, this is not true. For
example, let H(1) = v/1.9 and H(2) = /0.5, the probability transition
8513 83) Using this data in (a) of Corollary

0.19 1.52
0.45 0.1

0.683, so A is stable, and (2.1.1) is second moment stable. The unique

matrix is given by P = (

2.2.11, we have A = < ), whose eigenvalues are 0.973 and -
(ergodic) invariant measure is (8/17,9/17), and

8 9 19.7
mH1) @ H1) + mH(©2) @ H(2) = — x 1.9+ — x 0.5 = —

= 1.
17 17 17 ”

This implies that the conjecture do not provide a necessary condition.
Whether the conjecture provides a sufficient condition is still an open

question. [

There is close relationship between the criteria derived from the coupled

Lyapunov equations and the Kronecker product formulation. In fact, the

Kronecker product approach gives a method for solving the coupled Lyapunov

equations. To illustrate this, we only consider the time-homogenous Markovian

case. Applying Lemma 2.2.9 to (2.2.1), we obtain

Zpij(HT(i) ® H" (i))vec(P(j)) — vec(P(i)) = —vec(Q(3)), i€ N
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which is equivalent to the following matrix equation:

p1iGT(1)  pGT(1) - pinGT(1) vec(P(1))
pzlGT(Z) pQQGT(2) R pQNGT(2) B I VGC(P(2))
piGT(N) pnsGT(N) - pynGT(N) vec(P(N)
vee(Q(1))
[ @)
vec(Q(N)

Let A denote the the first matrix in the coefficient matrix of the above matrix
equation, X = (vec(P(1)),...,vec(P(N)))T and Y = (vec(Q(1)),

...,vec(Q(N)))T, then the above matrix equation becomes
(A-1)X =-Y. (2.2.10)
It can be verified that
A= ((PT @ Idiag{G(1),G(2),...,G(N)})HT.

Using the fact that UV and VU have the same nonzero eigenvalues for any
matrices U and V, and that U and UT have the same eigenvalues, we can show
that A and A have the same eigenvalues. Thus, if A is Schur stable, then A — T

is nonsingular, and the equation (2.2.10), i.e., (2.2.1) has a unique solution.

Suppose that (2.2.1) has a solution, we can prove that
XTAX < XTX. (2.2.11)

In fact, XT(A - I)X = —XTY and

N

XTY =) (vec(P(j)) vec(Q(5)) = Y _ tr(P()Q(4)) > 0,
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where we have used the fact that tr(UV') > 0 for any positive definite matrices
U and V. Thus, (2.2.11) follows. From (2.2.11), it may be possible to prove
that the eigenvalues of A are strictly inside the unit circle. This issue will be

investigated in the future.

Although Corollary 2.2.12 provides a necessary and sufficient condition
for exponential second moment stability for the iid case, the matrix Ay is an
n? x n? matrix, when n becomes large, determining the Schur stability of A
becomes difficult. The following result gives a much easier sufficient condition

for second moment stability.
Theorem 2.2.13.

The system (2.1.1) with an iid form process {0y} with common probability
distribution is {p1,pa,...,pn} is exponentially second moment stable, if one

of the following conditions holds:

(1). HE E{HT(00)H(00)} = YN, p;H" (j)H(j) is a stable matrix, ie.,

p(H) < 1.

(2). prAr+pedo+- - +pnAn < 1with \j = Amax (H(0)TH (i) = p(H ()" H (7))

as defined before.
(3). H(i)TH(i) is stable matrix, i.e., p(HT (3)H(i)) < 1.
(4). If there exists a matrix norm || - || such that

Pl HQ)|? + pal [H(N)I* + -+ pn[[H(N)|* < 1.
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Proof. Let 0 = p(H). For any x € R™, we have 27 Hx < oxTz. Tt follows

that
Exzxk =F {xz_lHT(ak_l)H(ak_l)xk_l}
— E{E{a;g_lHT(Uk_l)H(Uk_l)a:k_l‘a:k_l}}
=F {x%_lek_l} <coF {x%_lxk_l} <...< akE{xgxo}.
Thus, p(H) < 1 implies that (2.1.1) is (exponentially) second moment stable.
This proves that (1) is sufficient for second moment stability. Since H (i)T H (7)

and H are positive semi-definite, let ||-||2 denote the spectral norm or 2—norm,

then p(H) = ||H||» and A; = ||H(i)TH(i)||. Then

p(H) = [|H]]2 = | ZpiH(i)TH(i)llz < ZpiIIH(i)TH(i)Ilz = sz')\i-

It is clear that the condition (2) implies (1). This shows the sufficiency of (2).
Similarly, the condition (3) clearly implies (2) and thus, (3) is also sufficient.
From the inequality: ||zx11|| < ||H(ok)||||zk|| and using the one-dimensional

result of Corollary 2.2.12, the proof is completed. L]

For the finite state Markov chain case, the similar results can be obtained.
The idea is to use a matrix norm to reduce a high-dimensional jump linear
system to a one-dimensional jump linear system, then the result in Example
2.2.1 can be used to obtain a simple sufficient condition. This is formalized in

the next result.

Theorem 2.2.14. If there exists a matrix norm || - || such that the matrix
pulHOP  palHOP - | HOI?
pHI®  pall HR)® - p2l[H(2)]]
PN H(N)|P pon[H(N)I? -+ pw|[H(N)|?

is Schur stable, then the system (2.1.1) is exponentially second moment stable.
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Proof. From the matrix norm property, we have ||zgx+1|| < [[H (ok)||||zkl-
Let a(or) = ||H(ok)|| and yx = ||x||, then if the system yryr1 = a(ok)yx is
exponentially second moment stable, then the system (2.1.1) is aslo exponen-
tially second moment stable. Applying (a) of Corollary 2.2.11 to the system

Yr+1 = a(ok)yk, we can complete the proof. [

Remark: Theorem 2.2.14 depend on the choice of the matrix norm. From
[149], we know that different norms give different approximations to the spec-
tral radius, and it can be seen that the matrix A is Schur stable if and only if
there exists a matrix norm || - || such that ||A|| < 1. From this point of view,

Theorem 2.2.14 is not too conservative.

To illustrate the applications of criteria developed in this section, we

present, the following examples.
Example 2.2.2 ([56])

Consider the one-dimensional jump linear system
Tipy1 = a(og)Tk, Xpis given.

Here the form process is a 7 state Markov chain with the following probability

transition matrix ([56])

0 1 0O 0 O 0 0
par 0 pa3 0 0 pyg O
0 0 0O 1 O 0 0
P = 0 0 1 0 O 0 0
0 0 ps3 0 pss O 0
0 0 0O 0 O 1 0
0O prz2 0 0 0 0 pr
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It is easy to see that {6} is an absorbing state, {3,4} is a communicating
class and {1,2,5,7} are transient states. The problem is to find conditions for

second moment stability.

Here, we give a simpler procedure to solve this problem. We want to use
Corollary 2.2.11 and Example 2.2.1 to give a necessary and sufficient condition

for second moment stability. From Corollary 2.2.11, the test matrix A is given

by

0  poa®(l) 0 0 0 0 0
a?(2) 0 0 0 0 0  prea®(2)
0  pe3a?(3) 0 a%(3) ps3a®(3) 0 0
A= o0 0 a24) 0 0 0 0
0 0 0 0 pssa(5) 0 0
0  poga®(6) 0 0 0 a?(6) 0
0 0 0 0 0 0 a2(7)

It is easy to compute
det(A] — A)
= (A = p21a®(1)a*(2))(N* — a*(3)a®(4)) (X — ps5a®(5))
x (A= a*(6))(A — prra®(7)).
A is Schur stable if and only if pa1a®(1)a?(2) < 1, a®(3)a?(4) < 1, pssa®(5) < 1,
a?(6) < 1 and pr7a®(7) < 1, which is also a necessary and sufficient condition

for (2.1.1) to be second moment stable. This is the exact result obtained in

[56] using a different approach.

Example 2.2.3: Stability in each mode does not guarantee second

moment stability

Let
mo= (5 05)- we= (5 o)
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which are Schur stable matrices.

0 1 )
1 0). In this

case, choose (1) = Q(2) = I. Using this data in Theorem 2.2.1, we obtain

Assume that the probability transition matrix is P = (

the solution

0.9981  —0.0503 —0.0075 —0.0503
P(1) = <—0.0503 —0.0075) » P2)= <—0.0503 0.9981 >

which are not positive definite. From Theroem 2.2.1, we obtain that (2.1.1) is
not second moment stable although its mode matrices H(1), H(2) are stable.
Notice also that it is easy to compute that the eigenvalues of the test matrix
A in (a) of Corollary 2.2.11 are 0.25, 0.25, —0.25, —0.25, 0.0006, —0.0006,
100.4994 and —100.4994, hence A is not Schur stable.

Assume that the form process is a two state iid chain with the probability
0.5 0.5
0.5 0.5

Q(1) = Q(2) = I, we need to compute the solution of the coupled Lyapunov

transition matrix P = ( ) If we want to use Theorem 2.2.1 with

equations. This yields,

0.9970 —0.0807 —1.0212 —0.0807
P(1) = <—0.0807 —1.0212) PR = <—0.0807 0.9970 )

which are not positive definite, hence (2.1.1) is not second moment stable.
Moreover, the test matrix A in Corollary 2.2.11 has 50.7451 and —49.75 as its
eigenvalues, and it is not Schur stable. Since the form process is iid, we can use
the simpler test criterion given in Corollary 2.2.4. Choosing S = I, we obtain

the solution of the coupled Lyapunov equation in Corollary 2.2.4 as

R (00121 —0.0807
— \ —0.0807 —0.0121

which is not positive definite. From Corollary 2.2.4, we conclude that (2.1.1)

is not second moment stable. We can also use Corollary 2.2.12 to solve this
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problem. It is easy to show by direct computation that Ay in Corollary 2.2.12
has the following eigenvalues: 0.25, —0.2451, —49.75 and 50.7451, thus Ay is
not Schur stable. From Corollary 2.2.12, we know that (2.1.1) is not second

moment stable.

Assume that the form process has the probability transition matrix P =
0.2 0.8
0.1 0.9

obtain

>. Solving the coupled Lyapunov equations in Theorem 2.2.1, we

0.9787  —0.4575 —0.3512 —0.0436
P(1) = <—0.4573 —9.0346) » P2)= <—0.0436 0.9989 >

which are not positive definite, hence (2.1.1) is not second moment stable.
Moreover, the test matrix A has eigenvalue 28.9686, hence A is not stable.
This case is very interesting: From the probability transition matrix P, we
notice that with greater probability the system (2.1.1) stays in the mode 2,
which is a stable mode. Intuitively, the system should be second moment
stable. However, this is not the case as indicated by the computations. An
explanation of this phenomenon is that second moment stability is an average
property, and very rare events ( switching to mode 1) can accumulate and lead
to instability). In fact, this can happen when {0} is iid. Choose p; = 0.1 and
p2 = 0.9, then the test matrix Ay in Corollary 2.2.12 has an eigenvalue equal
to 30.6422, thus Ay is not stable, hence (2.1.1) is not second moment stable. In
fact, we have used computational tests to obtain the following: For the system
(2.1.1) with a two state iid chain having probability distribution (p1,p2), we
have that (2.1.1) is second moment stable if 0 < p; < 0.00003, and (2.1.1) is
not second moment stable if 0.00004 < p; < 0.99996.

Example 2.2.}: Instability of individual modes does not imply second

moment instability
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(3 31)- (% ).

Assume that {0y} is a two state Markov chain with probability transition
0.3 0.7
0.8 0.2
eigenvalue of the test matrix A in Corollary 2.2.11 are 0.5695, —0.2195, 0.5168,

Let

matrix P = < ) After a simple computation, we obtain that the
—0.2418, —0.25, 0.5, 0.5 and —0.25, thus A is Schur stable, from Corollary
2.2.11, we conclude that (2.1.1) is second moment stable. Of course, we can also
solve the coupled Lyapunov equations in Theorem 2.2.1 with Q(1) = Q(2) =1

and obtain:

3.1429  —2.2837 1.7143 0.5714
P(1) = <—2.2857 4.6964 > » P(2) = (0.5714 5.2321) ’

which are positive definite. From Theorem 2.2.1, (2.1.1) is second moment

stable.

Assume that the form process {0y} is time-inhomogenous two state
Markov chain with the probability transition matrix

0.3+ ekt (.7 — g~ (k+1)
I, = ( ) |

sin’ k sin’ k
0.8 — g 02+ 42k

To use Krtolica et al’s ([21]) result (Theorem 2.2.6), we need to an solve infinite
number of matrix equations, which is practically impossible. However, using
Corollary 2.2.11 we do not need to do this, we only need to use the steady-state
probability transition matrix, which is

P = lim Hk:<

k—o0

0.3 0.7
0.8 0.2

From the previous discussion, we know that (2.1.1) with the probability tran-

sition matrix P is second moment stable. From Corollary 2.2.11, we conclude
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that the system (2.1.1) with the time-inhomogenous Markov chain having the

probability transition matrix Il is exponentially second moment stable.
Example 2.2.5: Reliable Control System Design ([55))

This example is from Birdwell et al ([55]), which deals with reliable control

system design. The control system is described by
Tyl = Axy, + B(O‘k)uk, (2.2.12)

where

2.71828 0 171828 1.72828
A‘( 0 0.36788)’ B{1) = (—0.63212 0.63212>’

= (3 37 o= (L, 0). m0= (5 8)
This model captures the failure/repair events for a reliable system with two
actuators, in which actuators may fail and need to be repaired. State 1 of {0y}
represents the case that both actuators work well, states 2 and 3 represent the
case where one of actuators fails and has to be repaired, and state 4 represents
the case where both actuators fail. Let p; and p, denotes the failure rate and

repair rate, where the actuator repair and failure events are independent, then

the probability transition matrix P is given by

(1—py)? (1 —ps)py (1 —pf)pr p?
pr(L—ps) (1 —=pg)(1—pr) prDf pr(1—py)
pr(l —py) PrDf (1—pp)(L=pr) pr(L—py)

p?f (1 _pr)pf (1 _pr)pf (1 _pr)z

The problem is to find a feedback control law u; = G (0o )xk so that the closed-
loop control system is reliable, i.e., the expected quadratic cost is finite, which
is equivalent generically to the exponentially second moment stability of the

closed-loop system.
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Assume that p, = 0.1 and py = 0.9, and choose a feedback control
ur = G(og)xy, where

L[ —0.8890 0.04222 .
G = <—0.7752 —0.9914) (i=1.2,3,4).

Then the closed-loop individual mode system matrices are given by H(oy) =
A + B(oy,)G(0y), which are

—0.1490 —1.6409 1.3785 —1.7134
H(1) = ( 0.0719 —0.2855> , H(2) = (—0.49 —0.2588> ’

1.1907 0.0725 2.71828 0
H(3) = (0.5620 0.3412>  H{4) = < 0 0.36788> '

Solving the coupled equations in Theorem 2.2.1 with Qi) = I (i = 1,2, 3,4),

we obtain

1.2809 1.3087 3.1538  —1.5980
P(1) = (1.3087 23.0683)  P2)= (—1.5980 3.6128 ) ’

3.0268 0.5840 1.6751 0.0030
P3) = <0.5840 1.3098) » P(4) = <0.0030 1.0393) ’

which are all positive definite, thus from Theorem 2.2.1 the closed-loop system
(2.2.12) with the given control law is exponentially second moment stable,
hence the system is reliable with this control law. This is also very easily tested
by Corollary 2.2.11, in fact the eigenvalues of the test matrix A in Corollary
2.2.11 are 0.6359, —0.1943, 0.0654, —0.0653 and the rest are zero, hence A is
stable. From Corollary 2.2.11, we also conclude that the closed-loop control
system of (2.2.12) is exponentially second moment stable. Birdwell et al used a
different initial distribution for {o%} to test the reliability of the system. Since
the results developed in this paper are valid for any initial distribution, we do
not need to test the reliability for any initial distribution, we can conclude that
the system with the above control law is reliable for any initial distribution. It
is easy to show numerically that if we change p, = 0.7 and py = 0.3, then the

above control law is no longer a reliable one.
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2.3. )—-MOMENT STABILITY PROPERTIES

As it is noted by Mitchell and Kozin ([130]) that the second moment
stability regions for second moment stability for a class of stochastic differential
systems are comparatively smaller than the region for almost sure stability.
This is also the same case for the jump linear systems. In this section, we
will study various types of d—moment stability for the jump linear system
(2.1.1). For § = 2, Ji et al ([73]) proved that for the system (2.1.1) with
a finite state Markov form process, second moment stability, second moment
exponential stability and second moment stochastic stability are equivalent,
and all of these stability definitions imply almost sure stability. Feng et al ([74])
obtained the same result for continuous-time jump linear systems and further
proved that for one dimensional systems, almost sure stability is equivalent to
d—moment stability for sufficiently small §. Next, we will prove that for any
positive §, )—moment stability, exponential ) —moment stability and stochastic
d—moment stability are also equivalent, and all of these stability definitions
imply almost sure stability. Consequently, a much simpler proof of the results
for 6 = 2in Jiet al’s work ([73]) is provided. We will also prove that almost sure
stability of (2.1.1) is equivalent to J—moment stability for sufficiently small §,
thus the conjecture given in Feng et al ([74] ,[75]) is proved for discrete-time
systems. For diffusion processes, Arnold et al ([116]) obtained a relationship
between the Lyapunov exponents and the d—moment Lyapunov exponents.

We obtain a similar result for systems of the type (2.1.1).

We shall work on the system (2.1.1) with a Markov form process exclu-
sively. The iid case is a special case, except for the following consideration:
Recall that in the Markovian case, we require the stability properties are in-

dependent of the initial distributions ¢ € =. Thus, we have to justify that
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when {0} is indeed an iid sequence with a common probability distribution
p = (p1,...,pn) and is interpretated as a Markov chain with transition matrix
P = (p,p...,p'), the seemingly strong stability concepts (with respect to
arbitrary initial distributions) for the Markovian case are coincident with that
for iid case. This, however, directly follows from the observation that stability
is an asymptotic property, and if {nk},ji‘(’) is a Markov chain with the transition

" and any initial distribution, then {n41};2% is an

matrix P = (p/,p,...,p)
iid sequence with the common distribution p. We begin with the equivalence

of various -moment stability properties:
Theorem 2.3.1:

For system (2.1.1) with a Markov form process (which is finite state and
time-homogenoeus), § —moment stability, exponential §— moment stability and

stochastic d—moment stability are all equivalent.

Proof. It is easy to show that exponential d —moment stability implies stochas-
tic 6—moment stability which then implies § —moment stability. Thus, to prove
the equivalence, it is sufficient to show that § —moment stability implies expo-

nential d —moment stability.

According to the definition in section 2.1, if (2.1.1) is §—moment stable,

then for any initial distribution £ € =,
Tim Be[|H(ow) - H(oo)||* = 0

where F¢ denotes the expectation with respect to P, the probability measure

induced by ¢ for {o}.
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Let & = (pi1,.-.,pin) be the i—th row of the matrix P. This defines a
probability distribution for the process {o}. Let & be any initial distribution
in = with §o = {p1,p2,...,pn}. From the —moment stability, we have

] .« e 6:
Jim max Be||H(on) -+ H{oo)||” =0

Then for any 0 < r < 1 given, there exists an integer m so that

0
Orgniaé%vE&HH(Um—l) H(oo)[|° <r (2.3.1)

Also,there exists an M > 0 such that for any 0 < ¢ < m and any k, we have

. 5
022X B [[H(0h1q) - H{ow) | < M (2.3.2)

In arriving at (2.3.2), we have used the time homogeneous property of {oy}.

Let £k = pm + q, where 0 < ¢ < m, then we obtain, using the time

homogeneous property again,
s
Eg, || H (o) --- H(oo)||

< B, [H(0pmq) -+ H(0pm) I°I1H (0pm—1) -+ H (0 (pmrym)[|° % -+

% ||H(om—1) -~ H(oo)||’

= Z piopioil o -pipm+q—1ipm+q ||H(me+q) e H(me)H(s

20,--stpm-+tq

< ||H (ipm-1) -+ H(igp-1ym) I” -+ | H (im—1) - -~ H (i0)||°

= > DigPigis Py —sigm— |1 H (ipm—1) -+ H (i g1y ) || % - -

7:0;~~~77:pm71

% || H (im-1) - H(io) || %

X Z pipm—lipm v .pipm+q—lipm+q ||H(me+Q) e H(me)H(s

tpmy--stpm-+q
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= > PigPiir " Pigm—nipm H (ipm—1) -+ H (ip—1ym) I’ X -+

205--5tpm—1

X ||H (im-1) -+ H(io)|° % Eg,_ [[H(0q) -+ H(oo)|

< E. ||H - H 0
s max e || H(og) (o0)]|

X Z PioPiogir =" " Pipm—2ipm—1 ||H(ipm—1) T 'H(i(p—l)m)H(; X

20,--tpm—1

|| H (im—1) - H (i) [|°

. s . . s . 6
<o < max Be|[H(o) - H(oo)

LAV 5
X s Be|H (o) H(oo)|° -+ x max Be,|[H(ow-1):Hioo)|

p
= max B |[H(og) - H(oo)||* x - x | max E,||H(om-1): - H(oo)||’

1<i<N 1<i<N
< MrP = M(rt/™P™ < Myr¥
where My = Mr=9/™ and r; = r*/™. We conclude from this that (2.1.1) is

exponentially 6 —moment stable. This completes the proof. [

The above theorem establishes the equivalence of various d-moment sta-
bility properties. This is a generalization of the result of Ji et al [73] for second
moment stability (6 = 2). Next, we study the relationship between moment
and almost sure stability. First of all, we prove some basic results for the

general nonlinear stochastic system
Tpy1 = f(w,xg), xo € R™. (2.3.3)

All stability concepts for (2.3.3) are similarly defined as for the jump linear

system, in a obvious way. Furthermore, we make the following definition:
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Definition 2.3.2:

The stocahstic system (2.3.3) is said to be weakly exponentially stable in
probability, if for any € > 0, there exist M(e) > 0 and 0 < v < 1 (independent
of €) such that for all £ > 0,

P{||zx(w,zo)|| > €} < M(e)fyk, Voo € R™.

Proposition 2.3.3:
The following statements hold for the stochastic system (2.3.3).

(i) If (2.3.3) is exponentially d-moment stable, then it is stochastically o-

moment stable, which in turn implies that (2.3.3) is almost surely stable.

(ii) If (2.3.3) is exponentially -moment stable, then, it is weakly exponentially
stable in probability. Furthermore, suppose that there exists G > 0 such
that ||zx(w, 20)|| < ||z0||G* almost surely for all 2y and k. Then, (2.3.3) is
weakly exponentially stable in probability implies that (2.3.3) is ¢’-moment

stability for some &’ > 0. []

Proof. 1f the system is exponentially 6—moment stable, then there exists

M >0 and 0 < v < 1, such that E|z3]|° < M~*. Thus,

M

—+o0 400
1) k _

i.e., the system is stochastically d-moment stable. Now, assume (2.3.3) is

stochastically 6-moment stable. Let ¢ = limg_, o ||7%||, then from Markov’s
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inequality, we have that for any ¢ > 0, the following holds:

P2 c) = P (ML Uz ([2ml]] =€) < P (Ug=,([l2mll = ¢))

oo

> 1 nesoo
<Y P(llzmll > o) < i > Elzm[’ =30

=N

Thus with any ¢ > 0, P({ > ¢) = 0, from which we obtain

p(§>o)zp<©(§>%)) giP(§>%):0. (2.3.4)

It follows that P({ = 0) = 1. This proves that limg_, oo 25 = 0 almost surely

and the proof of (i) is complete.

For (ii), suppose (2.3.3) is exponentially §—moment stable, i.e., there exists
M > 0and 0 < v < 1, such that E||zy||° < M~y*. From Markov’s inequality,

we obtain for any € > 0,
1 M
Pl > €) < S Bllail’ < 2ot
which implies that (2.3.3) is exponentially stable in probability.

Assume ||z < ||lzo||GF. If (2.3.3) is exponentially stable in probability,

then for all € > 0, there exists 0 < y; < 1 and M (e) > 0 such that
P([loxll > ) < M(e)yr-

It follows that

Bl = [ PP+ [ el )
(lzkl2e) (lzkl<e)

< lzoll° G P(|law]| > €) +€° < M{(e)||zol|°(GOy)" +€°
Since lims_o G%v1 = 71 < 1, there is 8’ > 0 and v < 1 such that G%'~v; < 7.
Hence,

Bl < M(e)llwol|” 7" +°
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Therefore, limy_, o E|jzx||® < €. However, as € > 0 is arbitrary but fixed,

this implies that limg_, o0 E||lz/|% = 0, and the system is ¢’-moment stable.
[J

Theorem 2.3.1 established that for the jump linear system (2.1.1), expo-
nential -moment, stochastic J-moment and d-moment stability are all equiva-

lent. A direct consequence of the above proposition is the following corollary:
Corollary 2.3.4.

For the jump linear system (2.1.1) with a Markov form process, weak
exponential stability in probability is equivalent to -moment stability for some

0 > 0 and they both imply almost sure stability.
[

To continue the analysis, we briefly discuss the top Lyapunov exponent
for jump linear systems: without any specification, for the remainder of this
section, the Markovian form process {0} } is assumed to possess a single ergodic
(indecomposible) class. We let log(-) denote the extended real-valued function
from [0, +-00] to [—o0, +00], defined by

log(z), if z € (0,400),
log(z) = ¢ —o0, ifz=0,
+00, if x = 4-o00.
For system (2.1.1), we define the top Lyapunov exponent for each £ € = as the
extended real value

— 1
ag = lim —FE¢log||H(oy)...H(oo)ll (2.3.5)

n—+oco n
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and

1
a=a;= lim —FE;log|H(cy,)...H(op)| (2.3.5")

n——+oo n
if the indicated limit exists.

Lemma 2.3.5.

For the system (2.1.1) with a Markov form process with a single ergodic

class,
(i) For any £ € E, ag € [—00,+00) and ag = —o0 if P¢(A) > 0 with

A Y {weQ: T finite n such that ||H(ay) . .. H(oo)|| = 0}.

The limit o = a, in (2.3.5’) exists (possiblly infinite).
(i)
— 1
lim —log||H(0y)---H(oo)| =« P, —as.. (2.3.6)
n—soco N
(iii) For any ¢ € E satisfying £ << 7, we have a¢ < .
Furthermore, if H(j) is nonsingular for all j € N and £ << =, then

(ili) g = limy—y 400 = Fe log||H (o) ... H(og)|| is finite and o = o = ov.

(iv) limy 400 = log||H(op) ... H(og)|| = @,  Pr-a.s.. There is a proper sub-

space L of R™ such that for any £ << m and = € R™\L, we have

— 1
lim z log ||H(ok) -+ H(oo)z| =, P¢—as.

k— 400
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P’I’OOf. (1) Let G = maxlSkSN ||H(k)|| with H(k‘) = (h”(k‘)) for all £ € M
Let Xn — log ||H(0'n) e H(O’o)“ Then,

Xn < logl||H(op)| - ||H(o0)|| < log Gt = (n+1)logG (2.3.7)

It follows that ¢ < logG < 4o0. If P:(A) > 0, clearly, e = —o0. Actually,
P:(A) > 0 implies that there is a j < 400 such that P¢(A;) > 0 with
A ¥ weQ: H(op) - H(oo) =0, Yk > j}. It follows that

i =

1 1 1 1
—Eexi, :Eg(EXk) :/EXkPg(dW)ﬂL/EXkPg(dw)

k
A, As
kE+1 1 )
< (log G) P¢ (A3) + / Ekag(dw) =—00, Vk>j.
Aj
Thus, a¢ = limg_, 4 k_lngk = —00.

To show the limit « exists, let a,, = E log||H(0y,—1) -+ - H(0p)||. We show
that a, is a subadditive sequence, i.e., aytn < an + a,, for all m and n.
Actually, by stationarity,

Upim = Erlog ||H(0pim—1) ... H(oo)||

< Erlog{||H(on+m-1) ... H(on)||[|H(on-1) ... H(o0) |}

= FE;log||H(0ptm—1) ... H(op)|| + Exlog||H(op-1) ... H(0oo)||

= Qp + Q-
If there exists mg such that a,,, = —oo, then from (2.3.7), we have a,, = —oc0
for n > mg, thus a = —oo. Otherwise, for any n, a, is finite. For any m > 0,

and n =pm + q, 0 < g < m, we have

In _ Gpmtq P ., Y
n  pm+4q _ pm+q " pm-+q
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. . . a a . a . a
From this we obtain that lim, . < < 22 hence limy, o <> < lim,, . ==,
therefore, lim,,_,, %> exists. In fact, we have

1
—o00o < a= lim —E;log||H(o,)---H(oo)||
n—oo 1

1
= 11;f1 —FE;log||H (o) --H(o1)|| <logG < +o0.
n>1lmn
This proves (i).

(ii). we need to show (2.3.6) holds. Suppose that {0} is stationary, i.e.,
with initial distribution 7. For any m > 0 arbitrarily given, let n = pm + g,

where 0 < ¢ < m, we obtain

1 1
—log|[H(owm) - H(oo)|| < —log [H(on) - - H(opm)]|

p—1 (2.3.8)

pl
5 2 0B 1H (O ym—) - H (o)l
=0

With the initial distribution 7, the process {o}} is a stationary and irre-

ducible Markov chain. Therefore, for any m > 0 given, the process {7; def
(T(+1)ym=1s-- -+ Tim) ;;08 is also a finite state, time homogeneous, irreducible

and stationary Markov chain with a unique invariant distribution 7. If there
exists mg such that E;log || H(omq—1)---H(0p)|| = —o0, then H(opmy—1) - --
H(op) = 0 with positive (P, or P;) probability and o = —oco. Also, there exists
J0s J1s -« + s Jmo—1 Such that H(jm,—1) - - - H(jo) = 0 and the state (jig—1,---,J0)
is positive recurrent for the chain {&;}. It follows that for P,-almost all w € €,
|H(cy) - - H(op)|| = 0 for sufficiently large n, hence

1
lim —log||H(op)--H(op)|| = —00 =, Pr—as.

n—oo N,
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and henceforth (2.3.6) is valid. Suppose the above does not happen, i.e., for any
m > 0, E;log||H (o) -+ H(op)|| is finite. From the Law of Large Numbers,
we have
15
plggop Zlog “H 7(i+1)m— 1) H(Uim)|| (2.3.9)
= Efr log || H(om—1) - H(oo)|| = Exlog||H(om-1) - - H(oo)]|.

Moreover, log ||H (0y,) - - - H(0pm)|| < (¢+1) log G is bounded from above. From
(2.3.8) and (2.3.9), we obtain

— 1 1
lim —log||H (o) H(oo)| < EE” log||H(0m—1)---H(oo)|] Pr—as..

n—oo N

Hence,
1
nlggoglogllff(an)"'H(Uo)ll
(2.3.10)
< Jbréfl EEW log||H(0pm-1) - H(op)|]| =  Pr—as..
Next, let

1 < 1
= 2 log||H (o) | = S log [ H(ew) - H(oo)]|

i=0
Clearly, v, > 0. From the Law of Large Numbers, we have

lim v, = E;log||H(oo)|| — l1m — log |H (o) -+ H(oo)]|

n— 00

and

1 — 1
Eryn = Y Exlog |H(o3)l| = — Exlog||H (o) - H(o)|
1=0

"B, log ||H (00)|| — .

From Fatou’s lemma, we obtain

— 1
0 < E; lim v, = E;log||H(0¢)|| — Ex lim —log||H(oy,) - H(oo)]|
n—oo N

n— 00

< lim FErvy, = E;log||H(0p)| — .

n—>00
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Therefore,

— 1
E; lim —log||H (o) - H(op)|| > a. (2.3.11)
n—oo M,

From (2.3.10) and (2.3.11), we obtain the desired equality

— 1
lim —log||H(oy) - -H(op)|]| =a.  Pr—as..

n—,oo N

This completes the proof of (ii).

(iii). Since H(j) is nonsingular, the condition of Oseledec’s Theorem

([100]) is satisfied and the limit in (2.3.6) exists, i.e.,

1
lim —log||H(oy) - -H(op)|| =a=a;, P;—as.

n—+oo n

which is finite. We need to show that the limit in (2.3.5) exists and a¢ = .

However, by the nonsingularity of H(j) and (2.3.7), we obtain
1
—oo < —2|logg| < - log ||H (0y,) -+ - H(0g)|| < 2]log G| < +o0.

where ¢ = minj<<n [|[H'(k)||™" > 0. From this, the fact that Pr << Py

(since £ << m), and the Dominated Convergence Theorem, we have

) 1
ag = lim —FE¢log||H(oy) - H(oo)|

n—+oo n
1
= Ee{ lim —log||H(o,) - H = a.
el lim —log||H(n) - H(oo)|]} = o

(v). The first statement follows from Oseledec’s Theorem as in (iv). The

second statement follows from the nonrandom spectrum theorem proved in

([76]). L]
Remarks:

(1). In (i), we conjecture that the condition P¢(A) > 0 is also necessary for

ag = —oo. If {o}} is not irreducible, ¢ may not be a good quantity for
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almost sure stability. For example, let H(1) = 0 and H(2) = 10, and

0 1
system (2.1.1) with the above structure is not almost surely stable. We

P = (0'5 0'5>. It is easy to check that a¢ = —oo < 0. However, the

also conjecture that for any { << m, a¢ = a, without the invertibility
assumption of H(i). Unfortunately, we have not been able to find a

rigorous proof for this conjecture.

. The top Lyapunov exponent « is closely related to the almost sure stability

property of (2.1.1). Clearly, when o < 0, (2.1.1) is Pr-almost surely stable,
and by the fact that there exists a single ergodic class, this implies that
the system is almost surely stable (for any initial distribution ). When
a > 0, it is easy to show that (2.1.1) is not almost surely stable. A question
arises at the “bifurcation” point when o = 0. We conjecture that when
« = 0, the system (2.1.1) is not almost surely stable. A rigorous proof of
this is currently under research. However, the following simple example
illustrates our intuition that o = 0 implies that (2.1.1) is not almost surely

stable.

Example 2.3.6:

Consider a scalar (n = 1) jump linear system with an iid form process.

Assume H (i) # 0 for all i € N. Let (p1,...,pn) be the common distribution

of 0. In this case, by the Law of Large Numbers, we have

1
a= lim —log|H(oy)...H(oo)|

n—4oo n

n N
> log|H(oy)| = Elog|H(c:)| = _pilog [H(i)| a.s..
=0

=1

. 1
= lim -
n——+oo N,
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Suppose that a = 0. Define 7

= log |H (0k)|. Then, {n:} is an iid process
with E{ng} = a = 0 and E{n?} = 0? < 4o00. Thus, by the Law of Iterative
Logrithm, we obtain
n—1
L YL
P{ Tim k=0

=1} =1
n—+oo  /252nloglogn
It follows that
L n—1
lim

n_H_OO,;)nk = nkrfoo log|H(0p—1)...H(og)| = 400  a.s

Therefore, we end up with

T [ (w,20)

m |H(O'n_1)...H(O'0).’170| = 400 a.s.
n—+oo

for all zg # 0. The system is not almost surely stable. []

Next, we begin to study the relationship between d-moment and almost

sure stability. The d-moment stability region ¥ and the almost sure stability
region X% in the parameter space of jump linear system are defined by

¥ = {(H(1),...,H(N)): (2.1.1) is  — moment stable.}

and

Y*={(H(1),...,H(N)):(2.1.1) is almost surely stable.}

respectively. From the above, we see that we can decompose > into the
disjoint union of the form

Y =X UX§
with

ne Cyon(H(1),...,HN)): a <0}
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and

ne € se N ((H(1),...,H(N)): a =0}

If the conjecture given before Definition 2.3.6 is true, then we expect X§ = ¢,
i.e., X% = 3. The following theorem illustrates the relationship between the

region of almost sure stability and the region of ) —moment stability:
Theorem 2.3.7.
For the system (2.1.1) with a finite state Markov form process, we have

(i) For any 0 < 6; < 8y, %2 C 2%, ¥ C ¢ for all § > 0 and X? is an open

set.

(ii) If {0k} is irreducible, i.e., each pair of states communicates, then

22 = lim 20 X Usaox? € 22

[

Before we prove this theorem, we want to make some comments. The
above result simply states that the d-moment stability region ¥° is mono-
tonically increasing to, roughly speaking, the almost sure stability region ¢
from the interior as J goes to 0 from above. This is a significant result which

generalizes the results reported in Feng et al ([74]).
To prove the theorem, we first establish some fundamental results .
Lemma 2.3.8.

(a). For any random variable &, the function F'(z) defined by

F(z) = (B||¢)1")*



70

is nondecreasing on (0, +00) whenever it is well defined.

(b). Suppose {0y} is a finite state and irreducible Markov chain with proba-
bility transition matrix P, let Ps; denote the submatrix of P obtained by
deleting the [—th row and the [—th column for some [ € N, then the spec-
tral radius p(P;s) of Py is strictly less than one, i.e., there exists a B > 0

and 0 < r; < 1 such that
IPY|| < Bri (Vk > 0).
[

Proof. (a). For any = and y satisfying 0 < 2 < y, let « = y/x, then a > 1,

and ¢(x) = z® is a convex function of z. Using Jensen’s inequality, we have

S(E[IE]1) < Ea(l1€N7)

From which, we obtain

< =

(EIEII7) < (BlIEIM)Y,
thus F'(z) < F(y), which means that F(z) is nondecreasing.

(b). Let P = (pij)nxn- Without loss of generality, we assume that P; is
the submatrix of P obtained by deleting the first row and first column of P,
define

1 0 0 0
0 P11 P12 PiN
P=| P21 0 po PeN | = (X Y>
Z P
pvi 0 Pn2 ... Pnn

where X,Y and Z are block matrices with appropriate dimensions. It is obvious

that P is also a stochastic matrix, thus we can form a new N + 1 state Markov
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chain {o}} with probability transition matrix P. Since {03} is an irreducible
chain, there exists ¢ € N\{1} such that p;;1 > 0, thus {6} is a Markov chain
with the absorbing state 1 and the transient states 2, ..., N+1, therefore there
is no cyclically transferring subclass of states in the ergodic class {1} for the

Markov chain {7} }. From [137], we have

Since 2,..., N 4 1 are transient states of {7y}, it follows that

10 ...0
10 ...0
Q=1|. . . .
10 0

Moreover, it is easy to prove that

ok * *

Pr= < x 4 PF >
where * denotes a nonnegative matrix because of the nonnegativity of P. From
the structure of () and the above discussion, we obtain that lim_, o Pf = 0,
hence p(P;) < 1. The rest of (b) can be easily obtained (see [148]). This

completes the proof. [
Lemma 2.3.9. (Large Deviation Theorem)

Let {0, } be a finite state time homogeneous and irreducible Markov chain
with a unique invariant distribution 7. For any fixed integer m > 1, let
((j + L)m, jm) = H(o(j4+1ym—1) - - H(ojm),

Am = Ex{log|[@(m —1,0)|]}.
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Suppose that for any k, H(ox)H (0g—1)---H(o1) # 0, then, for any ¢ > 0,
there exist M, > 0 such that

Zlog”@ [+ 1)m, jm)|| > Ap, + ¢ | < M exp(—op).

Proof. The large deviation result of this Lemma is a consequence of Theorem
IV.1 of [155] and we will verify the hypothesis of [155] with the aid of a similar

procedure as in [152]. Let ®((j+1)m, jm) be defined as in the Lemma. Define

p—1

Y, =) log|®((j + 1)m, jm)],
§=0

cp(0) = %long{exp((SYp)}.

Then we have

cp(0) = log Ey H||q> (j + )ym, jm)|°.

We first show that ¢(d) = limy,_, oo cp(0) exists for all 6 € R (where the limit

is possibly be +00).

Let S denote the state space of the Markov chain {oy}. For any sequence

[ = (ig,41,y.-,0m—1) € S™ and § € R, write
A(l36) = Alio, i1, - - -y im—1;0) = |[H (im—1)H (im—2) - - H(i0)||°

Then, we have A(l; ) > 0 due to the fact that H(oy)--- H(og) # 0 for any k >
0. Since {0} is irreducible, it follows that the chain 7; = (0(j41)ym—1s-- - Tjm)

for y =0,1,...is also an irreducible Markov chain with state space

S = {(io,...,im_l) & Sm : PW(O'k+m_1 = im_l,...,Uk = Zo) > 0, dk Z 0}
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Suppose that |§ | = N and that we have ordered the states in a certain way So

that for k € {1,2,...,N} , with A(k;0) defined accordingly. Now, consider

that
p—1
EA] ] I1®((G + Dm, jm)||1°}
§=0
p—1
= Z TioPioir « + + Pipm—2ipm—1 ¥ H ||(I)((.7 + l)majm)||6
205+ bpm—1 Jj=0
= D TiDigis - Pipmsipms A0y i1y -y im—130)
iOy'."aipm—l . (A_]_)
X Ay fmats - t2m—1;0) - - Al (p—1)m>» b(p—1)m+1, - - - ipm—159)
p—1 p—1
=E{[[ A0 = D Fobiony - Prp oty | ] AU S)
5=0 1oyl 1 1=0
= Y (7pA0:0) Pjoj Ai1s ) - - (Bjy iy Alip-130))
jOa"'ajpfl
=27 (B(6)"?y.
Where in (A.1) P = (pj1) g 5 is the transition matrix of 7y, 7 = (71, ..., 75)

is its initial distribution induced by 7, and

0 #2T € (7A(1;6), ..., 7 g A(N;6)) > 0

yT' =(1,1,...,1) >0

B(6) = (0A(;0) gur = 0.

Since the transition matrix P is irreducible and A(I;6) > 0, we see that
B(9) is an irreducible nonnegative matrix. Next, we show that with ¢, () =
log zT B(0)P~2y, ¢(8) = limy_, 0 %cp(é) exists and is differentiable at any point
where it is defined. Since B(J) is an irreducible nonnegative matrix, from ma-
trix theory [148], there exists a positive vector v such that B(d)v = p(B(0))v.

Since v and y are positive vectors, there exists positive numbers L > 0 and
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U > 0 such that Lv < y < Uv and z7v > 0, where the last inequality follows

from the nonnegativity of  # 0. Thus, we have
cp(8) < logzT BP~2(Uv) = log{UzT p(B(5))P~*v}
=logU + (p — 2) log p(B(9)) + log & v,

from which we obtain that

Tim ~c,(6) < log o(B(5)). (4.2)

p—00 p
In a similar way, we have

¢p(8) > log L + (p — 2) log p(B(6)) + log z" v,

from which we have

T~ (6) > log p(B(6)). (4.3)
(A.2) and (A.3) yield
(9) < lim ~c,(5) = log (B(5)).

Due to the continuity of B(d), D(c) o {6 € R:¢(0) < 400} is a nonempty

open interval containing 0, and c¢ is a closed convex function. Furthermore,
because B(0) is irreducible, p(B(d)) is simple [148]. Due to the differentiability
of B(d), it follows that ¢(d) is differentiable [160]. Therefore, From Theorem
IV.1 of [155], we obtain that there exists 7 such that for any ¢ > 0 there is

n = n(e) > 0 such that

Pr (I%Yp -7l > 6) < exp(—np) (A.4)

for p large. However, by the Law of Large Numbers, we should have 7 = A,,.

Thus, Lemma 4.9 follows from (A.4) directly. [
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Lemma 2.3.10.

If there exists an € < 0 such that

n—0o0

1
lim P (— log [|H(0y,) -+ - H(00p)|| > 6> =0,
n
where the convergence is exponential, then there exists a § such that
lim F =0
Jm  Eellwg(w, o) =0,

for any xp.

Proof. Let A, A° € F be defined as

A° = (w e Q\% log | H (o) - - H (00) | < g>
With G = maxi<j<n ||H(j)|| + 1, we have
|H(ow) -+ H(oo)ll < 1 (@a)]|- - | H(oo)| < G™1.
Notice that for any w € A€,
Llogl|H (o) H{o)| < & = [H(o) - H(on)]| < e
and by the hypothesis, there are My > 0 and 0 < v < 1 such that
Pe(A) < Myy"

Therefore,
E¢||H (o) H(o0)|°

= [ 1) H ) Pt + [ (o) B Pl
< G&(n+1)P£(A) _+_e66n < MzG(Gé,Y)n _+_666n
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Since limg_,q G‘s’y = v < 1, there exists a 6 > 0 such that 0 < G‘W < 1.

Moreover, as ¢ < 0, it follows that

lim Eg||H(o) - H(oo)||” = 0.

Now, we are ready to prove Theorem 2.3.7.

Proof of Theorem 2.3.7: (i). Forany 02 > 61 > 0,if (H(1), H(2),..., H(N))
€ $%2 then the system (2.1.1) is do—moment stable, i.e., limy_, 0o F¢||lzx]|°2 =0

for all ¢ € =. From Lemma 2.3.8, we have

1
5o

(Bellorl™)™ < (Bellorl*)

Then, limy_, o Fell2i]|% = 0 for all € € E and (H(1),H(2),...,H(N)) € ¥%.

Hence, ¥2 C ©.01,

For any § > 0, if (H(1), H(2),...,H(N)) € ¥, then (2.1.1) is 6 —moment
stable. From Corollary 2.3.4, the system (2.1.1) is almost surely stable, i.e.,
(H(1),H(2),...,H(N)) € % Thus X% C %

Now, we want to prove that X% is open. For any (H(1),..., H(N)) € ¥°,
then (2.1.1) is d—moment stable, i.e., lim, o FE||H(c,)---H(00)||® = 0 for
any initial distribution. Using the same notations as in the proof of Theorem
2.3.1, for 0 < p < 1, there exists an m > 0 such that

4
. < .
o2axX B [|H(om—1) - H(oo)[|” < p

Here, &; is the i-th row of P. For any r > 0, p < r < 1, and since the

left side of the above inequality is a continuous function in (H(1),..., H(N)),
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there exists an open neightborhood U of (H(1),..., H(N)) such that for any

(H(1),...,H(N)) € U,

H(O’m_l) .- 'EI(O’O)“(s <r<l.

max K,
0<i<N

Following the same procedure as in the proof of Theorem 2.3.1, we can prove

that the system (2.1.1) with the system mode matrices H(1),..., H(N) is

exponentially —moment stable, hence (H(1),..., H(N)) € ¥, hence U C X°.

This implies that X% is an open set.
(ii).Recall that the top Lyapunov exponent « satisfies

1
lim — log ||H (o%) -+ - H(op)]|
k—oo k
1
=a= lim —E;(log||H(ok)---H(oo)||) Pr—as.
k—oo k
Thus, if (H(1),...,H(N)) € ¥* = X*N{(H(1),...,H(N)) : « < 0}, then

a < 0. In this case, it is sufficient to show that there exists a 6 > 0 such that

(2.1.1) is 6—moment stable.

Suppose that & < 0 (o may be —00), and with a slight abuse of notation,

there exists a finite o and ¢y > 0 satisfying a + €y < 0 such that

Apm B (log||H(om_1) - H(co)||) < m(e + eo) (2.3.12)

Case (a). If there exists an m > 0 such that A,, = —oo, with
Am= Y TiPisig Din rin 108 | H(im) -~ H(i1)|,
i17i27"'77:m

there exists j1,J2,...,Jm such that Pr{om_1 = Jm,...,00 = j1} > 0,
|H (jm)---H(1)|| = 0, i.e.;, H(jm) - -H(j1) = 0. In this case, we want to
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show that there exists a 6 > 0 such that (2.1.1) is §—moment stable. Let

G = maxlSkSN ||H(k)||, we have
Ex||H(0pm-1) - H(o0) ||’

= D TP Pigmoripn | H (i) - H (i)

i17i2a"'aipm
<Y TaPiis Pipmripm 1 H (ipm) - H i g yman)[|° X -+
i1,0, e mipm (*)
X | H (im) - - H(ir)]|°
<G > Ty Piviz """ Dipom—1ipm -
(irm7"'7i(r71)m+1)7é(jm7"-7j1)

1<r<p

We first prove a special case: m = 1. Without loss of generality, we can assume
that j; = 1, in this case, the summation on the right hand side of (x) is
Z Wilpilh T 'p’ipmflipm

(irm7"'7i(r71)m+1)7é(jm7"-7j1)
1<r<p

N
— E .. . . — DM
- TioPigir ** 'pzpm_lzpm — (7T27 ey 71—N)Ps (&

80,yi1.. ik =2

where ¢ = (1,...,1)". From (b) of Lemma 2.3.8 and (%), there exists By > 0

and 0 < r; < 1 such that
Er||H(0pm—1) -+ H(00)||’ < BiGP"™r}™ = By (G’ry)P™.

Note that lims_,0 G®™r; = r < 1, there exists a § > 0 such that G%r; < 1.

Thus, for such > 0, we have

lim Eg||H(opm) - H(co)||° =0

p—00

for m = 1. Following a similar procedure as given in the proof of Theorem 2.3.1,

we can conclude that (2.1) is J—moment stable, thus (H(1),---, H(N)) € ¥°.
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For m > 1, define x,, = (0pm,---,T(p—1)m+1)- Because {0} is an irre-
ducible finite state Markov chain, z,, is also a finite state irreducible Markov
chain and (jy,...,J1) is one state of {z,}. Following a similar procedure as
given for the m = 1 case, there exists 0 > 0 such that (2.1.1) is d—moment

stable, i.e., (H(1),...,H(N)) € x°.

Case (b). If for any m, A,, > —oo, we want to show next that this implies

that for some € < 0,

n—0o0

1
lim Py (— log||H (o) - H(op)|| > s) =0 (2.3.13),
n
where the convergence is exponential.
For the m > 0 satisfying (2.3.12), let n = pm + ¢, where p > 0 and

0 < g < m, we then have

" log |[H(o) - H(oo)|

1 1
< log||H(ow) - H(opm )|l + — log [|H(opm-1) -+ H(oo)|

1 n 1 p—1
<= > logllH (o) + ~ > log|H (0(1ym-1) - H(ojm)|
=pm 7=0

We again use the notation G = maxi<;j<n ||H(j)||, then from the above, we

obtain

-1
1 q pl %
 log I1H (on) = Hioo) | < S log G303 10g [H (0G4 1ym1) - Hlogm)

5=0
(2.3.14)
For € < 0 to be determined later, we have
1
Pr(—log||H(ow) -+ - H(0v)|| 2 €)
p—1
<P 210gG+3121og||H(a. o H(ojm)|| > €
— " \n np = (F+1)ma gt = (2.3.15)
1524 n q

= Pr | o 3 10g|H(0G aym, - H(sm)l| > (e = 1 108 G)

J=0
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Notice that for fixed m, limy_o0 2 = m, and lim,_,oo 2(e — Llog G) =
Define 6; = (0(j+1)ym—1,-++,0jm) for j =0,1,2,.... Since {o}} is a finite
state, time homogeneous and irreducible Markov chain, {aj 5 is also a finite
state, time homogeneous and irreducible Markov chain. Let 7 denote the

unique invariant distribution of {&;}. Let N™ def Nx..xNand f: N — R
be defined as

f(6)=1log||H(6pm-1) - H(60)||, 6= (6m-1,.-.,00) € N.
Then, we have

Bz f(00) = Bz log [|H(0m-1) - -- H(00)|| = Ex log ||H(om-1) - - H(00)[| = Am.

Since a + gg < 0, there exists an £; > 0 such that a4+ g + 2e1 < 0. Choose
€ = a + €9 + 2e1. Then, there exists a K > 0 such that for any n > K, we

have 2(c — LlogG) > m(e —e1).
Then, from (2.3.12), (2.3.15) and (2.3.16), we obtain for n > K,

P, (% log | H(a) -+ H(oo)]| > )

1
f(a;) > m(e —eq)
J=0

(2.3. 15) 12=

(2.3.17)

p—1
= P; Zf(&j) > m(a +€g) + mey
7=0

1
p .:

p—1

Zf(@') > Ay, +mey

J=0

(2.3.13),(2.3.16)
< P;

1
p
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Due to the fact that A,, > —oo for any m, it is easy to verify that
H(op)H(0g—1)---H(og) # 0 for any k. From the large deviation theorem
(Lemma 2.3.9), there exists My > 0 and 0 < y; < 1, such that for p large,

151
Pr | =) f(65) > Ap +mer | < Mo (2.3.18)
p“
Jj=0

Thus, for n large, from (2.3.17) and (2.3.18), we obtain

P (S 1os (o) (o] 2 ¢

—q/m 1/m\pm n
< MiA? = (M ™) (yy/™)PHE < Moy

where v = fyll/m and My = Myy7". This establishes (2.3.13) for the case when

a # —00
Now, from Lemma 2.3.10 and (2.3.13), there exists a 6 > 0 such that

lim Erl|zg(w,z0)||° = 0, Vg € R". (2.3.19)
k— 400
Since {0y} is irreducible and 7 > 0, from Lemma 2.3.3, the system (2.1.1)

is 0—moment stable for any initial distribution £ € Z.

Summarizing the above, we have proved that if (H(1),...,H(N)) € ¥,
then there exists a §o > 0 such that (H(1),..., H(N)) € X%. Notice that %°
(as a set) is monotonically increasing as § decreases. Therefore we conclude
that

22 C lim 0 = UssoX? C X%

Next, we will show that the first set containment C can be replaced
by a set equality =. In fact, if (H(1),...,H(N)) € X% for § > 0, then
(2.1.1) is 0—moment stable. From Theorem 2.3.1, we know that (2.1.1) is
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also exponentially 6 —moment stable, i.e., there existsan M > 0and 0 < p <1
such that E||H(oy,)---H(o1)||® < Mp™, thus we have

of . 1
9(8) & lim —log E||H (o) - H(ov) ||’ < log p < 0.

n—oo N

From Jensen’s inequality, we obtain that

.1 5
da= lim —Elogl|H(on) - H(oo)

1
< lim —log E||H(c,)---H(op)||° < logp < 0.

n—oo N,

Thus, a < 0, i.e., (H(1),...,H(N)) € 2. This completes the proof of (ii). [J

Up to now, we have seen that there exists a close relationship between the
stability regions of almost sure stability and d—moment stability. A critical
look at the proof of Theorem 2.3.7 reveals that we have used the properties of
top Lyapunov exponent and top d—moment Lyapunov exponent, which are in
fact the best characterization for almost sure stability and é —moment stability.
Therefore, in what follows, we will investigate the relationship between the top
Lyapunov exponent and the ) —moment Lyapunov exponent. Similar results to
those obtained by Arnold et al ([115],[116]) for stochastic differential equations

of Tto type are obtained.

Recall that the top Lyapunov exponent as defined in (2.3.5) is given by

— 1
ag = lim —FE¢log||H(oy)---H(0oo)l,

n—oo N

which has the properties given in Lemma 2.3.5. The d—moment Lyapunov
exponent can be defined as the extended real-valued function 5(-,-) : RxE —

R = [—00, +00] given by

B(6,¢) = lim %logEgﬂH(an) -~ H(op)||° (2.3.20)

n—+oo



83

if the indicated limit exists. We may also define

B0,6) = T log FellH (o) -+ H(ov)|”
| . (2.3.20")
B6.€) = lim ~log Il (w) -+ (o)

Define $(0,£) = 4(0,£) = B(0,£) = 0. For simplicity, we assume that the
matrices H(j) are nonsingular for all j € N. We have the following properties

of the d-moment Lyapunov exponent(s):
Proposition 2.3.11.

Assume that the H(j) are invertible matrices for all j € N. For any £ € Z,

we have

(i) —oo < B(6,€) < B(6,€) < +oo.
(i) dae < B(6,€). If € <<, then, doe = dar < B(6,€). L]
Proof: (i). Since H(1),..., H(N) are nonsingular, let
G = s ) g = min [0 with [0 < 1708
for any k, we have for § > 0,
o0 < 28| log g| <+ log Bel|H () - H(oo)||* < 2] og G| < +oc,
and for § < 0,

1
—o00 < 20| log G| < " log E¢||H (0,,) - -+ H(00)||° < —25|log g| < +o00.

These inequalities imply that —oo < 3(4,£) < B(9,€) < +oc.
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(ii). logx is a concave function on (0, 4+00), and using Jensen’s inequality,
we obtain

1 1
—E¢log|[H(owm) - -H{(o0)||* < - log Ee|[H(owm) - - H{()||°

Taking the limit superum on both sides, we have da; < B(8,€). If ¢ << ,

taking the limit infimum and applying Lemma 2.3.5, we have dag = dor <

B(5,¢). O

Lemma 2.3.12:

(i) Suppose that f(x) is continuous, and for any z1, z2,

f(xl ;372) < f(z1) 42‘ f(z2)
holds, then f(z) is convex.
(ii) If f(z) is convex, then it is also continuous. [
Proof: This is a well-known result from calculus. []

Theorem 2.3.13:
If H(1),...,H(N) are invertible, then
(i) For any ¢ € E fixed, (-, ) is a convex function defined on R.

(ii). For any ¢ € E fixed, B(d,£)/d is nondecreasing on R\{0}. Let 3(6, €) =
d%é(& €), then E(O_,f) < ag < §(O+,§) and E(O,f) = a¢ whenever it

exsits.

(iii) For any 0 € R fixed, (4, -) is a concave function defined on Z. [J
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Proof: (i). Define f(z) = log E¢||H (0y) - - - H(00)||”. Then for any 1,22 € R,

from the Cauchy-Schwartz inequality, we have

P2y = tog { B [(1H (o) -+ H(oo) )2 (1H () -+ H (o) )] }
< log {(E5|IH(an) < H(oo)|™)"? (Be || H (o) - -H(ao)||m2)1/2}
_ f(z1) + f(72)

2

(2.3.21)
It is easy to show that f(z) is continuous on R from the invertibility of
H(1),...,H(N). From (2.3.21) and Lemma 2.3.12, we know that f(x) is

convex. Thus for any 0 < A < 1, we have

fz1+ (1= X)z2) < Af(w1) + (1= ) f(x2)

Multiplying both sides of the inequality by 1/n and taking the limit supremum,

we obtain

BAzy+ (1= N2, &) < AB(x1,8) + (1 — A)B(22,)
which implies that §(z, &) is convex.

(ii). Since logx is monotonically increasing on (0, +00), from Lemma 2.3.8,
we have that ((6,£)/6 is nondecreasing on (0,4+00). When § takes values in
(—00,0), replacing 6 by —§ and using Lemma 2.3.8, we obtain that 3(5,£)/d is
also nondecreasing on (—o0,0). By (ii) of Proposition 2.3.11, we have for any

8, 6ag < B(8,€). Thus, for § > 0, we have

=)

B(_67 é)
=5

(9, €)
5

Saeg <

Taking the limit § | 07, we have (ii).
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(iii). For A € [0,1] and &, € E, it is easy to verify that Pyei(1_x)y¢ =
AP + (1 — A)P;. Then, since log(+) is concave, we obtain
1 5
- log Exe—xy¢|[H (or) - H(oo)]l
1
= log(AE¢||H(on) -- < H(00)[|° + (1 = N Ec||H(0n) - - H(o0)1°)

A
—Zlog B[ H (o) -+ H(oo)|I’,

A
> ~log Ee|[H(0w) - H(ov)|” +

Taking the limit infimum on both sides, we have

B0, A&+ (1= A)C) = AB(6,€) + (1 = A)B(9,¢),

i.e., B8(d,-) is a concave function. L]

It is evident that Theorem 2.3.13 is also valid for a more general class
of systems as long as the indicated expectations exist. In the theorem we
require that the d—moment top Lyapunov exponent is differentiable at zero.
For diffussion process, Arnold et al ([115],[116]) proved that this assumption is
not only true, they have proved that the )—moment top Lyapuonv exponent is
anylytic at zero and its derivative at zero is the top Lyapunov exponent! From
this observation, one may conjecture that it is true for the jump linear systems.
Leizarowitz ([153]) heuristically argued that this conjecture can not be proved
by Arnold et al’s ([115], [116]) approach, and he did not give a definite answer
to this conjecture. Du and Nhung ([161]) attempted to generalize this to the

random matrix product case, they consider the following discrete-time system
z(n+1)=A,z,, xo=2x(0) (2.3.22)

where (A,),>1 is a sequence of Gi(d, R)—valued i.i.d. random variables with

common distribution . The d—moment Lyapunov exponent is defined to be

1 5
9(0,0) = lim —log El|z(n, zo)|°.
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It has been proved in ([161]) that for the system (2.3.22) the limit in the
definition of moment Lypunov exponent exists and also corresponding to a
finite number of real numbers, the moment Lyapunov exponents, there exists a
sequence of subspaces that defines a filtration. The main result in [161] claimed
that the function g(d,xo) is differentiable with respect to ¢ at 6 = 0 for any
fixed g, 0 # 1o € R?% and if 29 € L;\L;_1, then ¢’(0,20) = A;, where \; and
L; are the Lyapunov exponents and the corresponding filtration, respectively.
Unfortunately, this is not true for the system (2.3.22) as we will show in
the following counterexample, this shows that Arnold’s formula is not valid
for jump linear system, and the analytic properties of §—moment Lyapunov
exponents are clarified. Using standard notations, which is different from the
notation used by Du and Nhung ([161]), let A, < A7 < --- < A; denote
the sample Lyapunov exponents, where Ay is the top sample top Lyapunov

exponent, and {0} = L, C L;—; C --- C Ly denotes the filtration.

Counterexample. Suppose that {0, } is a two-state i.i.d. random process with

the common distribution m = P(o,, = 1) = 0.5, m3 = P(0,, = 2) = 0.5, let

am= ("0 ) = (5 1) 4= 1) = (0 1)

Consider the system (2.3.22) with A,, = A(0y,). It is easy to verify that { A(o,,)}
is an i.i.d. random matrix sequence satisfying the conditions of Theorem
2.2 in [161]. We want to show that the top moment Lyapunov exponent,
g(0) = maxg,209(d,zo) is not differentiable at § = 0. A straightforward

computation of the top moment Lyapunov exponent yields

) 1
g(8) = lim —log E||A(a%) - -- A(o1)|I3,
k—oo k
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where || - ||2 denote the spectral norm induced by Euclidean vector norm and

log is the logarithm with natural base. Let

o1
91(6) = lim —logla(oy) -+ a(oy)l’

k—o0
. 1
92(6) = Jim 7 Togb(ow) -+ b(on) "

We first want to show that g(d) = max{g1(9),g2(0)}. In fact, from

k

[A(or) - - A(o1) |2 = Jmax{ Ha(m’)lza B ECal

k k
= max{H la(o;)], H 1b(oi)|}

we obtain

k

k
E||A(ox) -+ A(01)13 = Emax{] [ la(o0)I’, H [b(ea)I°}-

i=1
Thus, it is easy to prove that g(d) > max{g1(J),g2(d)}. Using the trivial
inequality max{z,y} <z +y (Vz,y > 0), we have

k k
E max {H |CL(U¢)|67 H |b(01)|6}

=1

<FE {H la(o:)]° + H |b(01)|6}

1 Ela(en)® + ] ] Elo(es)°
la

tla(D)]° + m2]a(2)*)" + (m1[b(1)|° + m2[b(2)]°)".

o
Thus, we have
9(9) < Jim +log [(m]a(1)}’ + mla(@)) + (mlb()I’ + malb()])"]
< lim %log (2 X [max{(m|a(1)|5 + mo]a(2)[%), (1 |b(1)]° + 7r2|b(2)|5}]k>
= max {log(m1|a(1)|° + m2]a(2)|’), log(m1 [b(1)|° + m2[b(2)[°) }

= max{g1(9), g2(0)}.
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Therefore, we have proved that g(d) = max{gi(d),g2(4)}. For the current
example, taking a(1l) = a, a(2) = b(1) = b(2) = 1 and 7, = 73 = 0.5 into the

above formula, we finally arrive at

9(6) = max {log(m|a(1)|° + m2|a(2)|’), log(m1|b(1)|° + m|b(2)|°) }

041
:max{log<a2+ ),0}

If a > 1, we have

a6+1
9(5)={log( ), 920
0. 0 <0

from which we obtain ¢'(0+) = limsjoy4 4 (log(a® +1)/2) = iloga and
g'(0—) = 0. Therefore, ¢’(0+) # ¢'(0—), and g(J) is not differentiable even
though A(1) and A(2) are invertible. This shows that Du and Nhung’s result
is incorrect. Notice, however, that the top Lyapunov exponent A\; = %loga
for a > 1 and ¢’(0+) = Ay. It is also easy to check that for 0 < a < 1, the
top Lyapunov exponent is Ay = 0, ¢’(0+) = 0 and ¢'(0—) = %log a, hence
g'(04+) = Aq is still valid. From this observation, we may conjecture that Du
and Nhung’s result may be modified to: ¢’(0+) = Ay. In Theorem 2.3.13, we
proved that g(d) has left and right derivative at 6 = 0, thus ¢’(0+) is meaning-
ful. We will show that under certain conditions, the above modification of Du
and Nhung’s result is true. Although their result is incorrect in general, for a
certain class of random matrix products their result is valid. What is necessary
is that a “regularity condition” is satisfied. In what follows, we assume that
{0} is irreducible with ergodic probability measure 7 and the individual mode

matrices A(1), A(2), ..., A(N) are invertible. This eliminates the so-called “

deadbeat” case.
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Definition. The top Lyapunov exponent and the top d—moment Lyapunov

exponent of system (2.1.1) are defined, respectively, as

o= lim Llog|[A(oy) - A(or)]),

n—,oo N,
o1
g(6) = lim —log F;||A(oy) - - -A(01)||5.
n—oo N
The exponents o and ¢(9) are the top sample Lyapunov exponent and top

d—moment Lyapunov exponent, respectively, i.e.,

1
= lim —1
o = max lim - log [z(k, zo)ll,

1
9(6) — max lim % long“'T(kVTO)H&?

To#0 k—o00

where x(k,xp) is a sample solution of (2.1.1) with initial condition (0, zy) =
xro. It can be easily proved that for any initial probability distribution &, we

have

B(5,6) = B(5,6) = B(6,€) = 9(8), e = an = .

Theorem 2.3.1.

For § > 0, the 6—moment Lyapunov exponent g(¢) is differentiable from

the right at 6 = 0 and ¢'(0+) = a.
Proof. As we have already proven from Lemma 2.3.5:

) 1 . 1
lim —log||A(oy) - A(or)|| = nlgl(f)lo ;EW log||A(oy) -+ A(o)|| = «

n—oo N,

almost surely. Thus for any € > 0 and £; > 0, there exists an m > 0 such that

E:log||A(oy) -+ A(o1)|] < ma + me (2.3.23)
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For sufficiently large p, we have

1 1 =2
— log | A(opm) - - - A(ay)|| < o > log |A(0(j41ym -+ A0 jmr1) -

m
p =

Thus, for any € > 0, we have

1
P (- tog (o) - Alon)] 2 a6+ a1

1
<P o > log[|A((jr1ym) - AlOjmer) || > e+ e+ &1
j=0

122
= > log|A(o(s1ym) * A(Cjma)l| > ma+ €) + mey
7=0

R,
<P ];Zlog |A(eGi+1ym) - AT jmy1)|| > Elog||A(om) - -A(o1)|| + mey

J=0

(2.3.24)
where in the last inequality, we have used (2.3.23). Using the Large Deviation

Theorem (Lemma 2.3.9), there exists ry satisfying 0 <7y < 1 and an M; > 0

such that
1223

P I—)Zlog NA(oGr1ym) =+ A(Tjmy1) || = Exlog||A(oy,) -+ - A(o1)|| + mey
§=0

S Ml’l“f = Ml(T‘i/m)pm.

From this and (2.3.24), we have
1 mypm
P (% log ||A(opm) - -- A(o1)]| > a+¢e + €1> < Ml(r}/ )P (2.3.25)

Since {o,} is a finite state Markov chain, there exists an M > 0 such that

|A(0y)]] < M. Define the sets

1
A= (w: L tog[Aogn) -+ Al za+ e+ )

1
A= (w0 o [Aaym) - Al <t €4
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Then on A€,
1A(Gpm) - Alo)|| < ermlateten),
and on A,
[A(opm) - Alo) || < MP™.

Thus, we have

Er||A(opm) -+ Alo)[I°

= [ 14 A P + [ [A0y) - Al PPd) (2326
< MP™P(A) + ePPmiecteten) < Ny (MOpy/mypm y grmiocteten),

Since limg_,o M°r 1/m = rl/m < 1, we choose 0 > 0 sufficiently small so that

/m

there exists a p satisfying 0 < p < 1, and M5r1 <p<lLl

If « > 0, then from (2.3.26) we have for sufficiently large p,
1 ) 1 m dpm(a+te+ter)
— log Ex|[A(opm) - - - A(01)[|* < — log[Myp"™ + €°” V]
pbm pbm
< 1 log[1 + e5pm(a+€+61)] < 1 10g[265pm(a+6+61)]
m

pm
_ log2

+0(a+¢e+eq).
pm

Letting p — oo, we have @ < a+ e+ ¢e;. Because of the arbitary choice of €
and e; and the fact that lims o+ g(6)/6 = g'(0+), we have that ¢'(0+) < a. It

is already known that ¢’(0+) > «, therefore, we have ¢’'(0+) = « for a > 0.

Suppose that a < 0, then we choose 8 > —a, define B(j) = A(j)e”
(j=1,2,...,N). Then

.1 .1
lim —log||B(cy,) - B(oy)|| = Jim. - log ||[A(oy) - Alo)||+B=a+ >0

n—oo N

and

G6) 2 lim Llog B, |B(ow) - Blow)| = g(5) + 6.

n—oo N
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Using the result for a > 0, we have that G(¢) is differentiable from the right
at 0 = 0 and G'(0+) = a + 8. Since G'(§) = ¢'(d) + B, we have that g(J)
is differentiable from the right at 6 = 0 and ¢’(0+) = a. This completes the

proof. [

In [161], only i.i.d. random matrix products were discussed, the above
result is more general in certain sense. The following result is concerned with

the finite state i.i.d. case.
Corollary 2.3.15.

If A(1),A(2),...,A(N) are invertible matrices and {0y} is a finite state
i.i.d. random sequence with state space S = {1,2,..., N} and with common
probability distribution 7 = {my,m,...,7n}, then the moment Lyapunov
exponent g(d) of system (2.1.1) is differentiable from the right at § = 0 and
g'(0+) = a. [J

Applying Corollary 2.3.15 to the Counterexample illustrates the validity

of this result.

Remark: The proof of Du and Nhung ([161]) can not be used or modified to
prove Corollary 2.3.15. There exists a misprint in equation (2.9) of [161]: 2%
should be replaced by 27%°. Also, the proof of Du and Nhung used Hasminskii’s
idea (see the proof of Lemma 4.1 on page 205 of [95]). However, Hasminskii
used the condition that the corresponding stochastic system is “stable in prob-
ability” to obtain a similar inequality as (2.9) in [161]. According to Hasminskii
([95]), (2.1.1) is stable in probability if, for every ¢ > 0 and p > 0, there exists
an r > 0 such that if £ > 0 and ||zo|| < 7, we have P{||z(k,z0)| > €} < p.

However, in [161], it does not appear that (2.8) is “stable in probability” in
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the sense of Hasminskii. Of course, we have that (2.8) is almost surely stable,
but it is not so easy to prove that (2.8) is “stable in probability” in the sense
of Hasminskii. Therefore, the crucial inequality (2.9) in [161] is questionable!
In our proof, however, we use the fact that the moment Lyapunov exponent
is closely related to a large deviation property, and we use the large deviation
theorem developed in our earlier work on stochastic stability of jump linear

systems.

If A(1), A(2),..., A(N) are invertible, then the definition of the  —moment
Lyapunov exponent g(4) can be extended to the whole real line, i.e., g(0) is well-
defined in R. Theoretically, it is interesting to study the differentiability of g(d)
at 0 = 0. As we have already noticed for system (2.1.1), g(0) is not necessarily
differentiable at 6 = 0. However, under certain conditions, differentiability is

guaranteed. We introduce the following:
Regularity Condition (RC):
1 -1 -1 -1
lim —log||[A™ (01)A (03)--- A" (o%)|| = —«a,
k—oo k
where « is the top Lyapunov exponent of system (2.1.1).

This regularity condition is not surprising. If the system (2.1.1) is regular
in the sense of [96] or [97], then the above regularity condition is satisfied.

Given (RC), we can prove the following theorem.
Theorem 2.3.16

Suppose that A(1),...,A(N) are invertible, and the above Regularity
Condition (RC) holds, then g(d) is differentiable at § = 0 and ¢'(0) = «.
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Proof. From Theorem 2.3.14, we have proved that g(d) is differentiable from
the right at § = 0 and ¢'(0+) = «, so it is sufficient to prove that g(J) is
differentiable from the left and ¢’(0—) = a. Using a similar argument as in

Lemma 2.3.5, together with RC, we have that
.1 _ _
Jim —log [ 47 (1) - A7 (o)

o1 _ -
= lim —Fylog A7 (01)--- A7} (o) = —a

For any €1 > 0, there exists an m > 0 such that
m(a —e1) < Ex{=log[|A™(01) - A" (o) |} < m(a+e1).

For any €5 > 0, let d = @ — €1 — €5. Then using the inequality
L= |I]| = [[A(on) - - A(01) A o) - A7 (o)

< [|A(gn) - Alo)l[[|A o1) - A o),

we have

1 _
— log || A(opm) - -A(o1) ||>—— ZlogllA (Tjm+1) A0 G 1ym) |

pm

From this, we can obtain the following

P (0w (o) - Alow)] < d)

1 — B B
< Z;ZlogHA Yojmgr) - A 1(U(j+1)m)|| <d
j=0
13- 1 _1
=P ) {=log|[A™ (0jm+1) - A7 (0Gr1m)ll} < m(a—e1) — mey
j=0

IN

154 _ _
P(I—) > {-log A (ojme1) - A o Grnym) I}
=0

< Er{=log[|A™ (1) -+ A7 (om) I} = m62>
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From this and the Large Deviation Theorem (Lemma 2.3.9), there exists an

Ms > 0 and p < 1 such that
1
P <1% log [|A(opm) -+ - A(o1)]] < d) < MopP. (2.3.27)

Since A(1),...,A(N) are invertible, there exists M; > 0 such that ||A=(c,,)||
< M7, and for 6 <0

IA(@n) -+ Al < (A7 o) -+ A7 o) 7Y’

< (A7 o)A o)) ™" < M7,

Following the same procedure as in the proof of Theorem 2.3.14, for § < 0, we

obtain

- 1
E||A(0ym) - Alon)||° < M{P™ P <m log || A(0pm) - - A(o)|| < d> 4 edrms

< MZ(Ml_m(Sp)p _+_edpm6.
(2.3.28)

If « < 0, then d < 0 and dd > 0 and we choose |d| sufficiently small
so that My(M7°p)P < 1 for sufficiently large p (this is possible because
lims_,o M7 ™ p = p < 1) . From (2.3.28), we have

E||A(0pm) - -+ A(o1)[|° < 1+ ™0 < 2edPm0,
From this we obtain,

1 1
g9(d) = pli{lélo o log E||A(0pm) - - A(o1)||° < pIHEO o log (2e%™%) = dp.

Since 6 < 0, we have
@ >d—=—a—¢e1 — €.
)
Because of the arbitrary choice of £; and 2 and the fact that g(4)/d is a
nondecreasing function, we conclude that ¢’(0—) > « for @ < 0. From the fact

that g(9)/0 < a for 6 < 0, we have ¢'(0—) = a for a < 0.
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If « > 0, we choose 8 > a and consider the sequence {B(o,)} where

B(o,) = A(o,)e . Then

1
lim —log||B(oy) -+ B(o)|| = a — 8 < 0,

n—oo N

and

G6) 2 lim Llog E|B(oy) - Blow)|® = g(5) — 46,

n—oo M,

and B(1), B(2),...,B(N) are invertible and the system (2.1.1) with system
matrix B(oy) satisfies RC. Using the previous result, G'(0—) = a — 3, from

which we obtain that ¢’(0—) = «. This completes the proof. [J

Remark: From this theorem, we can see that for the finite state i.i.d. random
matrix product, if the corresponding system (2.1.1) satisfies the regularity
condition, Du and Nhung’s result is true. Consider the Counterexample again,
it is easy to compute that for a > 1, almost surely, we have
.1 1
lim —log||A(o%)---A(o1)|| = = loga,
k—oo k 2
1
lim —log||A~ (oy)--- A7 (op)]| = O.
k—oo k

this means that the regularity condition RC does not hold for this example.

For a bounded independent identically distributed (iid) random matrix
sequence {A,}, using the Large Deviation Theorem discussed in [155], we may

obtain the following result.
Proposition 2.3.17.

Suppose that {A,} is an i.i.d. matrix sequence and there exists an M > 0
such that || A,|| < M, if the intergrability condition: Elog™ [|A1|| < 400 holds,

then the d—moment Lyapunov exponent

1
9(8) = lim ~log B[ 4,--- Ay

n—oo N
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is differentiable from the right at 6 = 0 and ¢’(0+) is equal to the top Lyapunov
exponent

1
a= lim —logl||A4,--- A1
n—oo 1

[

Remark: Suppose that {A,} is an i.i.d. random invertible matrix sequence

which satisfies the integrability condition:
[ 1o 144 + log* AT P(d) < +2x,
Q

and the top Lyapunov exponent and the d—moment top Lyapunov exponent
are defined as before, then the above procedure can be extended to prove that
g(0) is differentiable from the right at 6 = 0 and ¢’(0+) = «. Under the
following hypothesis: there exixts an M > 0 and § > 0 such that

lim EDI lOg”Ai”P(dw) =0,
=00 J(LS " log)ai>0)

n

the proof follows from the proof of Theorem 2.3.14 just presented and the
Large Deviation Theorem developed by Ellis ([155]). This can be seen from
the following observation: For any m > 0 chosen in a similar manner as in the

proof of Theorem 2.3.14, define the sets
1
A= (w : —log || Apm - - - A1]] > d)
pm

1
A= lw: —log || Apm - -- A1]] < d)
pm

1 2=
:—ZlogHAiH > M
pm =1

1 2=
Wi — log ||A;|| < M | .
LS o )

=
I
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Then we have

Bl Al = [ Ao A1 PG) + [ g A1)

_Ac

:/ ||Apm---A1||6P(dw)+/ Ay - Ay P(dw)
ANB ANBec
[ e+ A Pla0)
< [ Mg+ A2 PP + [ A 1Pl (2.3.29)
B ANBec
+ [ g Pl)
Ac

- / o I B A ) + / | Apm -+~ Ay|° P(dow)
B ANBe

+ [ g Pl)
Ac

If w € B¢, then ||Apy, - A1]] < eP™M | thus we can use the technique in the
proof of Theorem 2.3.14 to deal with the last two terms of (2.3.29). The first
term of (2.3.29) is dealt with by the hypothesis. Unfortunately, we have not
been able to find a rigorous proof for the hypothesis. The Large Deviation
Theorem has positive confirmation of this hypothesis. We will study this issue

in the future.

Although Theorem 2.3.14, Theorem 2.3.16 only consider the top Lyapunov
sample and J—moment exponents, using the random spectrum theory ([75]
and [77]), we can prove similar relationships between the sample Lyapunov
exponents and the ) —moment Lyapunov exponents. The subspaces L;, which
defines a filtration of the state space, are invariant subspaces of R™ with respect

to the corresponding system (2.1.1). The details will be left to the readers.
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2.4. Testable Criteria for 6—moment Stability

In previous section, we have studied relationship between almost sure sta-
bility and d—moment stability and that we observed that almost sure stability
can be recovered by d—moment stability for sufficiently small positive 6. How-
ever, except 0 = 2, i.e., except second moment stability, it is difficult to obtain
a necessary and sufficient condition for 6 —moment stability. Therefore, in this
section, we present some testable d-moment stability criteria for the jump lin-
ear systems (2.1.1). In the rest of this section, we use the following notations:

i = Amax(HT (i)H (7)), and p(A) denotes the spectral radius of matrix A.
Theorem 2.4.1.

Suppose that {0y} is a finite iid form process with probability distribution,
then the system (2.1.1) is d-moment stable, if one of the following conditions

holds:

(a) P24 pary 2+ +pnAN? < 1. Where A; = Amax(H (i)' H (i) as defined

previously.

(b) If there exists an induced matrix norm || - || such that

P HOI® +p2 |[H)1° + -+ pul HN)|® < 1

Particularly, for a scalar system (n = 1), (a) and/or (b) is necessary for o-

moment stability. [
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Proof: For any postivie semi-definite matrix A, we have (2’ Az)° <

(Amaz(A))°(z'7)° for all x € R™. Then, it follows that

0
E||.’17k||6 =F {.T;C_IHI(O'k_l)H(O'k_l).’Ek_l} /2
< B{ X2, (H (o) H (1)) (wh_ywn )2 |
= B {2, (H (o 1) H(ow1) } Bz |°

max

= B{N[2,(H'(00)H(00)) } Bllwx |

max

<< (BN, 00 H(ov)) Bllaol”

max

where we have used the property that ox_; and xr_; are independent. By

definition

EN/2 (H'(00)H(00)) = p1AY? + paXY? + - 4+ py A2,

maxr

Which yields
Ellzgll® < (X2 + - + py A2 Bz

Therefore, if (a) holds, then the system (2.1) is —moment stable. Similarly,

for the sufficiency of (b), we have
Ellaw]’ = E{||H(0k-1) - .. H(00)o|°}
< B{IH (or-0)[°} - .. E{1H (00) "} E{l|z0]°}
= (B{||H(o0)[I’})* E{|zol1}
= (| HQ)]° + - + pn[[H(N) ) E{lzo]|°}

The result follows directly. Finally, we observe that for a scalar system, the

conditions (a) and (b) are the same. Hence, we need only to show that (a) is
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also a necessary condition for -moment stability in the scalar case. However,

in this case, H(i) for i € N are scalars and we obtain
Ellaxl® = E{[|[H(ox-0)Il° ... | H(o0)[°llzol }
k
= (E|H(o0)[°)" Bz’
= (p1>\i/2 4+ 4 )\%Z)kE”l,O“é

Hence E||lzx||® — 0 if and only if pl)\f/2 +p2)\g/2 + -+ )\%2 < 1. This

completes the proof. [

From the proof, we observe that the assumption that {0y} is independent
identically distributed is cruicial. It is not so easily to generalize the above
result to Markovian case. In stead, we have the following result for the

Markovian case.
Theorem 2.4.2:

Suppose that the form process {0y} in (2.1.1) is a finite state Markov chain
with the probability transition matrix P. Let D = diag{||H (1)]]°, ||[H(2)||°,
<, |H(N)||°}, where || - || is any given matrix norm. Then, a sufficient
condition for (2.1.1) to be d—moment stable is that DP is a stable matrix,
i.e., p(DP) < 1. Furthermore, for a scalar system (n = 1), if the strong mixing
condition P = (pij)nxn > 0 is satisfied, i.e. p;; > 0 for all 7,5 € N, then,

p(DP) < 1 is also a necessary condition for §-moment stability. []

Proof: Let a; = ||H(4)]|°. Then,
E|[H(oy) - H(oo)|l* < E|[H(ow)|° - | H(00)[°

= D PigPigin P i [H(@w)l|° - [[H (i0)[|°
7

’io,il,...,l
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= E PioPigis " Pig_1i iy~ "~ Ciy Qi

10,81 5.,k
= Z (pioaio)(piohah) T (pik—ﬂkaik)
10,81 5.,k

= (moD)(PD)...(PD)(Pb) = mo(DP)*b
where b = (a1, as2,...,an)" and 79 = (p1,p2,...,pN) is the initial probability
distribution. If DP is stable, we have limy_o(DP)* = 0. It follows that
limg_y00 E||H (o) -+~ H(0p)||° = 0. This implies that (2.1.1) is —moment
stable. This proves the first statement. For the scalar case, without loss of
generality, we assume that a; = ||H(i)||° # 0. According to the strong mixing
assumption, P is a positive matrix, so is DP. Since PD and DP have the
same eigenvalues, DP is stable if and only if PD is stable. Let Aphax be the
largest eigenvalue of PD, which is in fact the spectral radius of PD, then from
Perron’s theorem ([148]), there exists a positive (row) eigenvector x for Apmax,
i.e., 2’ PD = Apgzx’. As (2.1.1) is 0—moment stable for any initial distribution,

choose initial distributions which are the rows of P, we then obtain

lim P(DP)*b= lim (PD)*™'D7'b = lim (PD)** e =0
k—oco k—+o0 k—o0

where e = (1,1,...,1)". Therefore, for x = (z1,x2,...,2N),

limg_, 00 ' (PD)F*1e = 0. It follows that

Jim o (PD)* e = lim Meflo'e = lim Mtl(z, +.. 4+ 2y) =0.
—4o00 k— 400 k—4o00

Because 1 + - -- 4+ xx > 0, this implies that limy_, oo A¥TL = 0 and Apax < 1.

max

That is, DP is a stable matrix. This completes the proof. [

In fact, we can use the results for second moment stability to give a simpler
proof for Theorem 2.4.2. For any matrix norm || - ||, any positive number ¢ and

any initial distribution, we have

Ellwill® < BIIH (@)l l]° 2.41)
S .« . S O-k; e 0’0 ;L'O .
< < B{H(ow)|° - [1H (00) [l °}
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If we define
B(ow) = | H(ow)[|°"?, (2.4.2)

and let y; denotes the solution of yx+1 = B(0ok)yk. From (2.4.1), we can obtain
that

Bl < Elyxl?,

from which we obtain that if (2.4.2) is second moment stable, then (2.1.1) is

d—moment stable. From Corollary 2.2.11, we obtain that if
A = diag{B(1) ® B(1),...,B(N)® B(N)}(PT @ I) = DPT

is schur stable, then (2.4.2) is second moment stable. However, as we know
that
p(DPT) = p((DP")T) = p(PDT) = p(PD) = p(DP).

Hence, if DP is schur stable, i.e., p(DP) < 1, then (2.1.1) is —moment stable.

We know that an iid sequence is a special type of Markov chain. To
be more specific, if {ak},j:a is an iid sequence with common distribution
p = (p1,-..,pn) and {§; j:ocl’ is a Markov chain with a transition matrix
P = (pij)Nxn~ and initial distribution 7o, then {o}}{29 and {51};':“1) have the
same set of finite dimensional distributions as long as p;; = p; for all 4,5 € N,
regardless of my. Therefore, one can identify the two sequences {ak};ﬁi and
{329 with each other. From this, it is expected that we can recover the

d-moment stability criteria for the iid case from the above result. We justifiy

this claim next.
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Lemma 2.4.3.

Let A be a nonnegative matrix, i.e., a matrix with nonnegative entries.

Then for any positive vector x where x = (z1,...,2,)’, we have
1 — 1 —
min — a;;x; < p(A) < max — 0T 2.4.3
19’3%121 % < Pl )—@sw.zl”’ (2.43)
j= j=

Furthermore, if there exists a positive vector x so that Ax = Ax for a positive

A, then p(A) = A

Proof: (2.4.3) can be found in ([148]). Assume that Ax = Az for some = and
A positive. Then, E?Zl a;jxj = Az;. By applying (2.4.3), we obtain p(A4) = A.
[

Proposition 2.4.4:

Let P = (pij)nxn be a transition matrix satisfying p;; = p; > 0 for all

1,7 € N. Then, DP is stable if and only if

pllHD[® + -+ py|HN)|® < 1, (2.4.4)
i.e., for an i.i.d. form process with common distribution (pq,...,pn), a suffi-
cient condition for d-moment stability is (2.4.4). [J

Proof: Let A = (DP)’. Then, A is nonnegative and the following equation

holds:
P aipr a2p1 ... OAND1 p1
A D2 aip2 a2p2 ... ANDP2 D2
PN a1pN Q2PN ... OANDN PN
(pra1 + -+ -+ pvan)p1 P1
(pra1 + -+ pNnan)p2 P2

= : = (p1a1 + -+ pNan)

(pra1 + -+ pnan)pN PN
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From Lemma 3.3, piai + --- + pnyayn is the spectral radius of A = DP. Thus
DP is stable if and only if

pray+ - +pyay = piHO| + p |H)® + - +pn [ HN)|° < 1.
O

We know that for an ergodic Markovian form process, the almost sure
stability property is independent of the initial distribution. From the above
results, it is very tempting to conjecture that this may also be true for J-
moment stability. In particular, for a scalar system with an ergodic Markovian
form process, one may conjecture that the J-moment stability condition is
ma1 + ...+ yay < 1 with # = (m,...,7n) being the unique invariant
distribution (a; is defined as above). Equivalently, the stability of DP may
be equivalent to mia; + -+ 4+ 7yany < 1. Unfortunately, this is not true as

illustrated by the following example.

Example 2.4.5:

0.1 0.9
0.8 0.2
moment (§ = 1), it is easy to see that the eigenvalues of DP are 0.973 and

Let H(1) = 1.9 and H(2) = 0.5, and P = < ) For the first

—0.683. Hence DP is stable and (2.1.1) is first moment stable from Theorem
2.4.3. However, the unique invariant measure is (8/17,9/17) and for 6 = 1,

w101 + o0 = (8/17) x 1.9+ (9/17) x 0.5 = 197/17 > 1. L]
Remarks:

(1). For iid case, Corollary 2.2.12 states that the system is second moment
stable if and only if the matrix Zf\;sz(Z) ® H (i) is schur stable. For

Markov case, it is tempting to conjecture that (2.1.1) is second moment,
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stable if and only if the matrix Zi\il m;H (i) ® H(7) is schur stable, where
{m1,...,mn} is the unique invariant measure of the form process {oy}.
Unfortunately, this is not true. In example 2.4.5, we take H(1) = /1.9
and H(2) = 1/0.5, following the same procedure, we can prove that DP

is schur stable, hence (2.1.1) is second moment stable. However, we have

2 8 9 19.5
> mH@E)@H() =mH(1)?+mH(2)? = — x1L9+-—x0.5=— > 1.
P 17 17 17

This shows that the schur stability of the matrix Zfil mH (i) ® H(i) is

not necessary;

. Although the schur stability of DP does not imply ma1+---+7yay < 1,

we conjecture the converse is true, i.e., if
mi|[H (o))’ + ma[ H)° + -+ 7n[[HN)|® < 1,

then DP is schur stable, hence the system (2.1.1) is §—moment stable for
a ergodic form process {o}. Up to now, we have not been able to find a

rigorous proof yet.

The above criteria for d-moment stability are easily testable. In the re-

mainder of this section, as an illustrative example, we study the relationship

between d-moment stability and almost sure stability for a scalar jump linear

system with an iid finite state chain which has common probability measure

{p1,p2,...,pn}. As we proved in section 2.3, the stability regions X7 in the

space of system parameters associated with d-moment stability are monotoni-

cally increasing as ¢ decreases to 0 and X° tends to the almost sure stability

region X% monotonically from the interior of X*. To verify our results in section

2.3, we use a direct elementary approach.
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Lemma 2.4.6:

For A\; > 0, ¢ € N fixed, define a function f: R — R by

f(z)= (pl)\f+p2)\§+...+pN)\%V)1/m, ifa:;é()'
NPENG? RN ol
Then, f(x) is continuous and nondecreasing on [0, 00). -

Proof: It is easy to see that f(x) is continuous on R\{0}. Hence, it suffices to

show that it is continuous at z = 0. In fact, using ’Hospital’s rule, we have

log(pi AT + -+ + pN)\”]”V)>

: T L z /@ _ i
lim (p1AT + -+ pyAY) exp (ilﬂ% .

( . p1ATlog Ay + -+ pN AR 10g>\N>
=exp | lim — -
z—0 PIAT + - -+ DNAR

— )\11)1)\32 . )\%N

Thus f(z) is continuous at 0. Next,we show that f is nondecreasing on [0, +00).
For any x1, z2 € [0,400) with 1 < x5, let = z1/x3 < 1 and g(x) def 28 As

B <1, g(x) is concave. From Jensen’s inequality, we obtain

N N
> pigA\*) <g (sz')\?)
=1 =1

From this, we have f(z1) < f(z2). Thus f(x) is nondecreasing on [0, +00).
This completes the proof. [
Now, let \; = ||H(i)|| where H(7) is a scalar matrix for ¢ € N, define

¥4 = {()\1, Aoy .., )\N)‘)\g)l)\ém . )\I])VN <1, )\j > 0}
26 = {(}\1,)\2, .. .,)\N)‘pl)\‘; +p2)\g + - +pNX]sV < 1, )\j Z 0}

By the result Theorem 2.4.1 and a result developed later (Theorem 2.5.1), we

see that ¥ is the almost sure stability region and X9 is the J-moment stability
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region in the space of parameters of (H(1),..., H(N))" € RY. We have the

following important theorem for scalar jump linear system (2.1.1):
Theorem 2.4.7:
For the scalar jump linear system (2.1.1) with form process,
(a) For any 01,05 > 0 with §; < d3, we have X% C ¥% C X2,
(b) lims_,0 X% = Usso X0 = 27 ]
Proof: The proof is a direct application of Lemma 2.4.6. L]

Remark: This theorem verify our analysis in section 2.3 from a special case

using a more direct approach. It is also easy to obtain that the top ) —moment

Lyapunov exponent is given by
g(0) = log(p1[H(L)|° + p2| H2)|" + - - + pn|H(N)]°).

Thus, if the individual modes (scalar) H(1), H(2),..., H(NN) are not all zero,
then ¢(d) is differentiable (in fact analytic). This verify the right differentia-

bility results in section 2.3.
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2.5. Almost Sure Stability

It is common knowledge that in practical applications, what we observe
is sample path behavior rather than moment behavior, therefore almost sure
(sample path) stability is much more desirable than any moment stability.
However, the analysis of almost sure stability is much more difficult than
moment stability, this is why in current literature there are much more results
for moment stability (especially second moment stability). Although moment
stability implies almost sure stability, the stability criteria for high moments
(say, second moment) as almost sure stability criteria are too conservative to be
useful in practical applications. From our discussions in sections 2.3 and 2.4, we
observed that “lower” moment stability also implies almost sure stability and
almost sure stability can be recovered from sufficient lower moments, therfore
it is reasonable to use lower moment stability to study almost sure stability.
In this section, we will devote our effort to the study of almost sure stability.
The following notation will be used throughout the remainder of this section.
Let N & {1,2,...,N} and A; = det(H (7)) for i € N. Let A(A) denote
the collection of all eigenvalues of the matrix A, i.e., the spectrum of A, and
p(A) denote the spectral radius of A, i.e., p(A) = max{|\| : A € A\(A)}. Let
i = p(H(i)) be the spectral radius of H(i) for i € N. If A is a positive
semi-definite matrix, let Apax(A) = max{A : A € A(A)} denote the largest
eigenvalue of A, and let A\; = Anax(H'(i)H(7)) for i € N, where ' denotes
matrix transpose. Let I;(x) be the indicator function which is defined as

1, ifx=1;
li(z) = {0, otherwise.

Finally, for (n1,...,nn) given with 7; > 0, define the set of matrices

K, ...onn) = {(A1, As. .., AN) + Ai € R™ ™, Amax(AjA;) <mi,Vie N} .
(2.5.1)
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If (2.1.1) is almost surely stable for any (H(1),...,H(N)) € K(n1,...,nn), we

say (2.1.1) is almost surely K(n1,...,nn) stable.
We first give some results for iid cases.
Theorem 2.5.1 (almost sure stability properties):

For the jump linear system (2.1.1) with a finite state iid form process with

probability distribution {p1,p2,...,pn}, we have

(1) A sufficient condition for almost sure stability is
APIAB2 RN <, (2.5.2)

In particular, for a scalar system (the dimension of the state space n = 1),

the above condition is also necessary.

(2) It ATPAY .. ARY > 1, then for almost all (with respect to Lebesgue
measure) xg € R"™, limy o ||7¢]] # 0 and thus, the system is not almost

surely stable.

(3) A necessary and sufficient condition for the system to be almost surely for

any (H(1),H(2),...,H(N)) € K(n1,...,nn) stable is
niny ooy < 1. (2.5.3)
[J

Before we prove Theorem 2.5.1, we make some comments about the re-
sults. Note that v/A; is the largest singular value of H (i) and (1) (equation
(2.5.2)) is only a sufficient condition for a.s. (almost sure) stability, which be-

comes a necessary condition only for scalar systems. Condition (2) implies that
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ATPAR LU ARY < 1is a necessary condition for a.s. stability, Condition (3)
is a necessary and sufficient condition for robust a.s. stability. Another inter-
pretation of (3) is that the condition (2.5.2) becomes necessary and sufficient
for a.s. K(A1,...,An) stability. All these conditions are easily testable and
examples are presented after the proof of the theorem to illustrate the range
of applicability of these results. To prove the theorem, we need the following
lemma which is a fundamental result of stochastic processes and its proof can

be found in, say, (Shiryayev [150]).
Lemma 2.5.2 (Law of the Iterative Logrithm):

Let {&x} be a sequence of independent identically distributed random
variables with ¢, = 0 and B¢ = o2 < 400, then

Plim =& _q)
n—oo  /202nloglogn

Plim ==& )y
n—oo y/202nloglogn

Proof of Thereom 2.5.1: For any k and z, it is easy to show that
o' H' (o) H (o) < AP \Dew) .)\f\lfv(a’“)xlx. (2.5.4)

Thus, we have
zixy = xoH (00)H' (01) ... H' (0k—1)H (0§—1) - .. H(00) o

< Aok NN @D B (00) L H (04—0) H (04—2) . . . H(00) o

k= 1110'1 k Igo'i klI o;
S...S)\lz: ( ))\221:0 ( )”.)\§l: ~(o4) o

1 k—1 (o o k
(}\{c Zi:o I ( z) )\k Z IN( i > ZL'()CU(]- (255)
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Since {0} is an ii.d. sequence, for each j € N, {I;(o})} is also an i.i.d.

sequence. Therefore from the Law of Large Numbers ([150], p.366), we have

1l E )
Jim le(ai) = E{I;(0;)} =p; as. VjeN.

It follows that

o Rl LNkl o
lim A S PO Do B0 X ) g

a.S..

From (2.5.2), the right hand side of the above inequality is less than 1, almost

surely, and there exsit a ko = ko(w) and A < 1, so that
whxy < \xhze, Vk>ky as. (2.5.6)

From this we conclude that the system (2.1) is almost surely (exponentially)

stable. This establishes the first statement of (1).

Next, we apply Lemma 2.5.2 to show that (2.5.2) is also necessary when
n = 1. In this case, all the inequalities in (2.5.4)-(2.5.6) are actually equalities.
It is easy to see that if AJ*AE? .. XY > 1, we have lim,, o 27 = +00 as.
for any xy # 0, which contradicts the almost sure stability. Suppose that
APPAS? L UARY = 1. Then, we have Zfilpi log A\; = 0 and also

k—1 k—1
z? = )\12 e ,\1%:@:0 (@) 2

k-1 N

= exp ZZ[j(O’i)IOg)\j .’17(2]

i=0 j=1

Let & = Z;\rzl I;(0;)log A\j, with {o;} an iid. sequence, {¢;} is also an
i.i.d.sequence. Thus, we obtain

N

N
B¢ =Y (log \j)EI;(0) z;log)\
iz

j=1



and )
N N
B¢t = Z log A\j)I = ij(log Aj)7 < 400
From Lemma 2.5.2, we obtain that
k—1
lim Zi:o i =1 a.s.

k—oo /202 loglogn

Thus, Zf:_ol ¢; is unbounded from above almost surely and so is ;. This

contradicts the almost sure stability assumption and completes the proof of

(1).

For (3), the sufficiency directly follows from (1). The necessity is proved
next. Take H(j) = ,/n;I for j € N, where I denotes the identity matrix. Then
(H(1),...,H(N)) € K(m,...,nn) and

Zf;ol Ii(o4) Zfz_ol In(oi) ,

/
LTy = 7’]1 ce 7’]N ZoZo

Using the same arguements as in the proof of the necessity of (2.5.2) for the

scalar case, we see that a.s. stability of (2.1.1) with H(j) = ,/n;I implies

My .oy < L

This completes the proof of (3).

Finally, we show (2) by contradiction. Suppose that limg_, 1o zx = 0 a.s.
for all zg € S C R™ where S is a subset of R™ which has positive Lebesgue

measure. Then, there is a basis {v1,...,v,} of R™ so that for each j,

lim H(op)H(0k—1)...H(og)v; =0, a.s..

k— 400

It follows that

lim H(og)H(ok_1)...H(00)[v1,...,0,] =0€ R™™ a.s

k— +o00
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and therefore,

lim det(H (o%)H (0—1) ... H(oo))

k—+o0
k
<A1% Eiohln .Aﬁzlo Izv(cn-))

= lim =0 a.s..

k— 400
Using a similar argument as in the proof of the necessity of (2.5.2) for the

scalar case (using Lemma 2.5.2 and the law of large number), we conclude that
AT UARY < 1.
This is the desired contradiction. ]

From Lemma 2.5.2, we can conclude that the sequence Zf:_ol &; is not
bounded from below, hence there exists a subsequence {ny} so that xik —
0 (k — oo) almost surely. So a scalar system (2.1.1) is neither almost surely
stable nor almost surely unstable when A" X5 ... Ak = 1. Second, note that
the Aq,...,An are closely related to the matrix norm induced by the vector
2—norm in R™. This suggest the following more general sufficient condition

for a.s. stability:
Theorem 2.5.3:

Suppose that {0y} is a finite state ergodic Markov chain with the unique
ergodic measure 1 = {my,mo,...,wn}. If there exists an matrix norm || - ||,
such that

IEO™E@)|™ - [ HN)™ <1,

then the system (2.1.1) is almost surely stable. In particular, for one dimen-
sional system (2.1.1), a necessary and sufficient condition for (2.1.1) to be

almost sure stable is

ai'ay’---ajyy <1, where a; = ||H(3)||.
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Proof: Since
|1H (ok) - - H(ov)|| < [[H(ow)]]...[[H (o),

following arguments similar to those used in the proof of (1) of Thereom 2.5.1,

we can obtain the result. []

Next, we comment on the importance of this proposition. From [145] or
Appendix A, we know that the spectral radius p(A) of a matrix A is given by

() = int | sup (1401/la))

where N is the set of all vector norms on C™. This means that for any ¢ > 0,
there exists an induced matrix norm || - || so that ||A|| < p(A4) + e. It follows
that A is a stable matrix if and only if there exists an induced matrix norm
so that ||A]| < 1. Hence the suitable selection of a vector norm may improve
the efficiency of the result of Theorem 2.5.3. One possible consideration is as
follows: For any nonsingular matrix 7', the vector norm |z| = |Tz|s induces a
matrix norm given by || A|| = || TAT |, where 2 denotes the 2—norm, i.e., the

Euclidean norm. Thus we can try to solve the following optimization problem:
min |[THW)T 3| TH)T 3> - [THN)T 5.

If there is an optimal solution 7™ and the optimal value of the objective function
is less than unity, then (2.1.1) is almost surely stable. On the other hand, for

a given T

Dy ® {(H(1),...,H(N)) : [THO)T |5 - [TH(N)T Y5> < 1}

N times
N

defines a stability region in the parameter space R"™*™ x R™ "™ x ... R"*",

One may try to maximize the volume of Dp by proper choice of T'. This
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is a common procedure in applying Lyapunov’s second method, i.e., try to
select a suitable Lyapunov function from a given family so as to maximize the
associated stability domain. If the form process {o} is iid and we use 2—norm
to induce the matrix norm, we can obtain (1) of Theorem 2.5.1. The following

example demonstrates the application of the above results:

Example 2.5.4: Suppose {0} is a two-state iid chain. Let

H(1) = <0(')9 0%9>, H(2)=1= <(1) 2) . pr=ps = 0.5.

AS A1 = Amax(H(1)H(1)) = 2.3546, Ao = Amax(H(2)'H(2)) = 1 and AP \D? =

1.5345 > 1, we can not use Theorem 2.5.1 directly.

1 0

Let P = (0 100

), then we obtain

_ _ 0.9 0.01 1 0
L T e R T S v LT R I

=0.951 < 1.

Using Theorem 2.5.3, we conclude that the system (2.1.1) is a.s. stable. [

From Theorem 2.5.3 and Appendix A, we can see that the above sufficient
conditions really depends on the structure of H(1),..., H(N). In order to get
a feeling of how the structures of H(1), H(2),..., H(N) to affect the stochastic

stability, we study some special classes of jump linear systems.
Theorem 2.5.5:

For the system (2.1.1) with {0} a finite state independent identically dis-
tributed random process with common probability distribution {p1, p2,...,

pNn}, assume that each of the n x n matrices H(1), H(2),...,H(N) can be
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simutaneously transformed by a similarity transformation to upper triangu-
lar form with the diagonal elements Ay j, Asj,..., Ay ; for j € N. Then, a

necessary and sufficient condition for almost sure stability is
|)\f,11)\f,22---)\f,’}(,| <1l Vi=1,2,...,n. (2.5.7)

In particular, if H(1), H(2),..., H(NN) pairwise commute, then there exists a

unitary matrix 7' such that

)\1,]' * *
o Aaj .. N
T H(j)T = ) Vj=1,2,...,N,
o
An,j

and (2.5.7) is a necessary and sufficient condition for almost sure stability. If
{ok} is a finite state ergodic Markov chain with the unique ergodic measure
7w = {my, T2, ..., TN}, then the above claims are still valid with the substitution

of p; by m; (i € N). L]

To prove this theorem, we need the following lemma, which infers stability

of (2.1.1) from the stability of a dominating system.
Lemma 2.5.6:

For (2.1.1) with an iid form process, let (pi,...,pn) be the common

probability distribution of {oy}.

(i) Let H(r) = (hij(r)) and H(T) = (ibij(T)) with |h;(r)] < ﬁij(r) for all
r € N. If the dominant system defined by

Tpy1 = H(og) xg, x(0) =xp (2.5.8)

is almost surely stable, then the system (2.1.1) is almost surely stable.
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(ii) Let |[H(r)| = (Jhij(r)|) for r=1,2,...,N. If
E|H(o0)| = p1|H(1)| + p2|H(2)| + -+ pn |[H(N))]

is a stable matrix, then the system (2.1.1) is almost surely stable. In
particular, if H(1),H(2),...,H(N) are nonnegative matrices, then the

system (2.1.1) is almost surely stable if
EH(oo) = p1H(1) +p2H(2) + -+ + pnH(N)
is a stable matrix. [

Proof: To show (i), it is sufficient to prove that if H(oy)H (og_1) - H(0o)
converges to zero almost surely, then H (o) H (0k—1) - - - H(o1) also converges to
zero almost surely. However, |H (oy)H (0p_1) ... H(0o)| < H(og)H (0p—1) - -

H(op) and the result follows directly.

For (ii), let G, = |H(og)| - - - |H(00)|. If E|H (09)| is stable, then by the iid
property, EGy = (E|H(0o)|)*! exponentially converges to zero. Thus, with
G = (gi;j(k)), there exists an M > 0 and 0 < r < 1 so that Eg;;(k) < Mr*.
Let g;j = limg o0 gij(k), since G}, is nonnegative matrix, g;;(k) > 0. Hence,

gi; > 0. For any positive ¢ > 0, by Chebyshev’s inequality,
P{gij > ¢} = P{Ny=1 Uply {915 (n) > c}} < P{URL,, {gij(n) > c}}

<3 Plogn) > b < = S Fyln) = - Y Mo

and letting m go to infinity, we obtain that P{g;; > ¢} = 0 for any ¢ > 0. From
this, we can obtain that P{g;; = 0} = 1. Hence, limy_, ¢i;(k) = 0 almost
surely. This means that zx,11 = |H(ok)|xg is almost surely stable. From (i),
we conclude that (2.1.1) is almost surely stable. In the case when H(j) is

nonnegative for all j € N, we have H(j) = H(j) and the result follows. L]
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Remark: This Lemma gives very simple criteria for almost sure stability of
the system (2.1.1) with an iid form process. Notice that EH (o) is stable
if and only if (2.1.1) is mean value stable. Thus, from (ii) we see that for
(2.1.1) with nonnegative form matrices, mean value stability implies (but is
not necessarily equivalent to) almost sure stability, which is not true in general

(see the examples which are given later).
]

Proof of Theorem 2.5.5: Without loss of generality, we can assume that
H(1),H(2),...,H(N) are all upper triangular matrices. Let b be the upper
bound of the absolute values of the off-diagonal elements of H(1),..., H(N),
and with a slight abuse of notation, let Ay j, A2 j, ..., A, ; be the absolute values
of the diagonal elements of H(j) for j € N. To prove the sufficiency, from

Lemma 2.5.6, it suffices to show that if
)\f,ll)\fé---)\f,’jv <1l Vi=12,...,n

then the dominating system defined by

T4+1 = H(O‘k) Tk (259)
with
Ay b b
_ A2, j b
H(]): . 9 j:1727 7N7
An.j
is almost surely stable. Let
k k k
AR
. _ 985 ... by
Gk:H(O'k)"' (0'0): ) "
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The almost sure stability of (2.5.9) is equivalent to the almost sure convergence
of G}, to the zero matrix. Let ,\g"k), )\g”"), .., 2 he the diagonal elements
of H(oy). From Gy = H(oy) G_1 and the triangular form of matrices H(oy,),

we obtain the recursive equations for the last column of G:
o) = A bl ok i)
g5 = A gl +blgh + o+ gl
(2.5.10)

961y = MG o

8] = Mo glED)

To proceed, we use induction on the dimension n. If n = 1, it is easy to show
that Gy — 0 almost surely and the result is valid. Suppose that it is true for
n — 1. Because of the triangular structure of G; and the induction hypothesis,
it is sufficient to show that when dim Gy = n, the elements of the last column
of the matrix G, are converging to zero almost surely. From the last equation

of (2.5.10), we have
gt — (k) \(or1) .\ (1) 4(0)

nn

k
_ <)\5 DTN vt IN(UZ-)> O (2.5.11)

1
where I,.(j) = 0r; is the Kronecker delta (indicator) function. By hypothesis

AniAns == Aty < 1 and the Law of Large Numbers, there exists a 0 < p, < 1

and M,,(w) > 0, such that for all k,
|g7(1,:1| < Mn(W)Pﬁ

Now, we use an induction argument on the index j of the elements gj(.lfl) to
show that for each 1 < i < n, there exists M;(w) and 0 < p; < 1 with M;(w) a

polynomial of finite degree in the variable k£ so that

k

98| < M;(w)pk. (2.5.12)
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(k) goes to zero alomst surely for each

From this, we can conclude that g,
1 <4 < n. We proceed as follows: Suppose that for some 1 < j < n, there

exists M;(w),..., My, (w) > 0 and pj,..., py < 1, such that

g < My(w)pk Vi=jj+1,...m,

7

We show that (2.5.12) holds for i = j — 1. From the (5 — 1)®® equation of
(2.5.10), we have

(k) (o) y (Ok—1) (ff ) (0)
9ij-1)n = )\J kl )\] kl )\ ' 9ii-1)n
" Z b)\(O'k) . (Ut+1)(g(l 1) +. gT(Lln—l)) (2.5.13)

k—1 —
+b(g§n Ve gD
We see that the last term in (2.5.13) almost surely converges to zero at an

exponential rate because of the induction hypothesis. Actually, let Hj_l(w) =

max;<i<n M;(w), and p;_; = max;j<i<, pi- We have
b(g™ - gl < b (w)PE (2.5.14)

By the Law of Large Numbers, similar to (2.5.11), we also have for the first
term in (2.5.13) that there exist ]\A/.fj_l(w) and 0 < pj_1 < 1 such that

AN Ly ) )

9jyml < Mj—1(w)py_y. (2.5.15)

For the second term in (2.5.13), consider that

g g Zz 1 Ii(o4) % Zf;l 1 In(ai)
Ao = (A E

Again, by the Law of Large Numbers and the hypothesis of the theorem, there

exist ]\ij_l(w) >0 and 0 < pj_1 <1 such that

MO < M@ s
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Let pj—1 = max{p;_q,pj—1,pj—1} and M!_(w) = max{M;_1(w), M;_1(w)}.

Then, it follows that the second term in (2.5.13) satisfies the inequality

k—1
DDA AT (g -+ gl ))
=1

k-1
< S MA@ @)+ 4 M) (2510
=1
k—1
2 2
<nbM';_;(w) pf_l < nbM'; (w)kp?_l a.s
=1

Combining (2.5.14), (2.5.15) and (2.5.16), we conclude that there exists

M;_1(w) (which is a finite degree polynomial in k) such that

k k k—
|9((j)_1)n| < Mj(w)pj_1 — 0 as.
Induction on the dimension n guarantees that the system (2.5.7) and hence the
system (2.1.1) is almost surely stable for arbitrary dimension, if the conditions

of the theorem are satisfied. This completes the proof of sufficiency.

Necessity can be proved by observing that if the diagonal elements of the
product of matrices G, converges to zero as k goes to infinity, then using the

Law of Large Numbers again, the conditions of the theorem are satisfied.

If H(1), H(2),...,H(N) pairwise commute, then from Horn and Johnson
([148]) that there exists a unitary matrix 7" such that they can be transformed
by this similarity transformation to the upper triangular forms, then applying

(2.5.7), we obtain the proof.

A close look at the proof enables us to prove the Markovian case in a

similar fashion. This is left to the reader. []



124

Remarks:

(1).

We may prove Theorem 2.5.5 directly from the system (2.1.1) with an iid
or Markovian form process using Theorem 2.5.1 for the one dimensional
case, the procedure will be the same as the above. Notice that from the
above proof, under the condition of Theorem 2.5.5, the system is actually

almost surely exponentially stable.

. Suppose that {0} is a finite state ergodic Markov or iid form process

with ergodic measure = and H(1),..., H(IN) pairwise commute, let p; =
p(H(i)) (i € N), then a simple sufficient condition for (2.1.1) to be almost
surely stable is

T T2

pl p2 ..p‘,;\-IN<1

Furthermore, we can easily see that if the individual modes are stable,
then the jump linear system is almost surely stable. This is true only for

the commuting structure, in general this does not hold.

Lyaponov’s second method is a very important technique for the study

of stability of dynamical systems. Hasminskii [95] used a stochastic version

of this theory to study the stability of stochastic systems. In what follows,

we use || - || to denote any vector norm on R”, ||z|| for z € R™ and also any

induced matrix norm on R"*™ ||A]| for A € R"*™. We use || - ||2 to denote

the 2—norm, i.e., the Euclidean norm.

Lemma 2.5.7: (Hasminskii [95],pp.214-215)

Let {A,} be an iid matrix sequence, a sufficient condition for

E||ApAp_1---A1]]° =370
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is that there exists a positive definite function f(x), homogenous of degree ¢,
such that the function Ef(Aixz) — f(z) is negative definite of degree 0, i.e.,
there exists K > 0 such that Ef(A1x) — f(z) < —K]||z||°. [J

From this we obtain:
Theorem 2.5.8:

Let {0} be a finite state iid sequence with a common probability distri-

bution {p1,pa,...,pn}. Define

Hrmaz = inax {pllHW)2 ]’ + p2l H2)z |’ + - + p | H(N)]’}

i = gmin {p[H| + o |H@a|” 4+ pul HN)|}

Then, the system (2.1.1) is d—moment stable if ., < 1, and the system
(2.1.1) is 6—moment unstable if pd . > 1. [

Proof: Let f(z) = ||z||°, then
Ef(H(oy)z) - f(z)
= pillHW)z||° + pol [ H2)z | + - - + pn [ H(N)z | — ||z])°
— ol® (llEE ) 2P+ o) 2 = 1)
< )’ (Hrnaz — 1)
Then from Lemma 2.5.7, if ul,,. < 1, the system (2.1.1) is 6—moment stable.

In a similar fashion, we can prove that if u2 . > 1, the system is §—moment

unstable. []

From the relationship between almost sure and d-moment stability it is
shown that d-moment stability implies almost sure stability. From this fact,
together with the above theorem, we obtain the following criterion for the

almost sure stability of (2.1.1).
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Theorem 2.5.9:

Let {01} be a finite state iid sequence with common distribution {p1, ps,
...pN}, then the system (2.1.1) is almost surely stable if op,4, < 1, where
Omaz = maXHmH:l{“H(l)x“pl e ||H(N);U||pN}

[

Proof: If 0,40 < 1, we claim that there exsits a § > 0 such that p . < 1.

Otherwise, for any k, 0 = %, there exsits xy satisfying ||zx|| = 1, such that
pullHD)zp|Y* 4 - + pn || H(N )| VE > 1. (2.5.17)

Without loss of generality (because the unit sphere is compact and {zy} is
sequence in the sphere), we can assume that there exists an xg satisfying ||xo|| =
1, such that limg_, o 2 = xo. Hence for any j, limg_o ||H (j)zk|| = || H (j)z0o||-

It follows that for any € > 0, and sufficiently large k, we have
1 H (j)zxll < [|H(j)wol| + € (2.5.18)
(2.5.17)and (2.5.18) gives

1< (pal Bl % 4+ ||H(N)xk||1/k)k
< (@0l + )% + -+ o (L (N)ao + )4

Letting k£ — oo, we obtain
L< (IH (Mol + €)™ -- - (|H(N)xol| + )P,
and letting € — 0, we obtain

[H (V)o|PH | H (2)2o|[P* - - - [|H (N)zo|P¥ > 1.
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This means that o,,,, > 1, which contradicts the assumption. Therefore there
exists § > 0 such that p .. < 1 and from Thereom 2.5.8, the system is
0—moment stable. Since for any § > 0 d-moment stability implies almost sure

stability, (2.1.1) is almost surely stable. This completes the proof. [

The following example illustrates that this criterion is better than Theo-

rem 2.5.1.

Example 2.5.10:

H(1) = <g é) H(2) = <(1’ 8) . p1=ps = 0.5.

Since ||H(1)||2 = ||H(2)||2 = 1, we can not guarantee the almost sure stability

of the system from Theorem 2.5.1. However,

Thraa = max [H (o H(2allo = max |sinfcos] <

DO | =

and from Theorem 2.5.9, we obtain that the system is almost surely stable. []

In the derivation of Theorem 2.5.9, we have used the Lyapunov function
V(z) = ||z||°. This leads us to consider some more general Lyapunov function.
As we know that quadratic form is very useful in the study of linear systems,
one may wonder if we can use small moment of Lyapunov function so that we
deal with the 6 —moment stability problem, then like obtaining Theorem 2.5.9,
one derives some more general almost sure stability criteria. Fortunately, the

answer is positive and we will explore this next.
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Theorem 2.5.11.
Suppose that {0y} is a finite state Markov chain with transition matrix

P = (pij). If there exist positve definite (pd) matrices P(1), P(2),..., P(N)

such that

N T T/ - . . Dij
sup " H (Z)P(J)H(Z)CU <1, VieN (2.5.19)
lelle=t o5 T P(i)x

then the system (2.1.1) is almost sure stable.

Proof. Define the Lyapunov function
V (xx, 0n) = (af, Pox)ar)/?.

Then, we have

AV (z,i) = E {(m£+lp(ak+1)$k+1)6/2\xk =z, o), = 2} — (&TP(i)x)?

—E {(a:THT(ak)P(ak“)H(a)x)‘s/z‘ak - z} — («T P(i)z)*/?

= pij(a"HT () P())H(i)z)""* — (2" P(i)z)"/?

[~ THT (A P(VE (e 2
— ($Tp(i)$)6/2 Zpij (CE H I.(T)PP((ZLQUH( ) ) 1
7 i
ro e ) | [ (THT PG HG )
= (x7 P(i)x)%* < Zpij ( T P(i)e ) -1
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Suppose that (2.5.19) holds, there exists p, 0 < p < 1, such that

ap ] <xTHT(i)P(j)H(i)x>pij cpet (2.5.22)

Then, we can obtain that there exists a 4 > 0 such that for any x € R"

satisfying ||z|| = 1 and for any i € N, the following holds

5/21 2/5
< p. (2.5.23)

N .
S, (FHTOPGH G
L_ K T P(i)x
1=1
In fact, suppose that this is not true, then for any § > 0, there exists i € N

and z satisfying ||z|| = 1 such that

2/6
N /

S < THT( )P(j)H (i)x )‘”2 -

2 TP(i)s

As N is a finite set and S 2 {z|||z]| = 1} is compact, without loss of generality,

we can choose 7 € N and a convergent sequence 0y satisfying d, | 0+ and a

convergent sequence xy, satisfying limy_,o zr = 2o and ||zo|| = 1 such that
2/,
N T . 0k /2
§ (shmoromany 1"
= 6 P(i)xo

For notational simplicity, let

THT( )P (5)H (i)
TP(i)z

Since M;;(x) is continuous on S™, for any ¢ > 0, there exists K > 0 such that

M;j(r) =

whenever k > K, we have M;;(z) < M;;(xo) + €. From (2.5.24), we obtain

2/6k

sz] ij CU(] +8)6k/2 > p.
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From this and (2.5.21), we have

N
[T + e > p.
j=1

Letting € go to zero, we obtain

H Mp”
This contradicts to (2.5.22), thus the claim in (2.5.23) is proved.
Taking (2.5.23) into (2.5.20), we obtain
AV (z,i) < (&7 P(0)2)"? (02 = 1) = =(1 = p*/?) (T P(i)a)*?

for any x € R"™. From stochastic version of Lyapunov’s second method, we

conclude that (2.1.1) is almost surely stable. This completes the proof. [
From this theorem, we can obtain the following easy-to-test criterion.
Corollary 2.5.12:

Suppose that {o} is a finite state Markov chain with probability transition
matrix P = (p;;). If there exists pd matrices P(1), P(2),..., P(NN) such that

H max (HY () PGYH (@ P™Y(0)™ <1, (i=1,2,...,N),

then (2.1.1) is almost surely stable.

Proof. Using the following fact: max,g ﬁ“—gi = Amax(QP~1) and maximiz-

ing each term in the product of (2.1.1), we can obtain the proof. L]

Next, we want to show that Theorem 2.5.11 provides a very general

sufficient condition for almost sure stability of the system (2.1.1). For one
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dimensional system, the sufficient condition in Theorem 2.5.11 is also necessary.

And if (2.1.1) is second moment stable, then (2.5.19) is also necessary.
Corollary 2.5.13:

Suppose that (2.1.1) is one dimensional system with |H (i) 2 g # 0
(1=1,2,...,N) and that {0} is a finite state irreducible Markov chain with
ergodic measure 7, then a necessry and sufficient condition for (2.1.1) to almost
surely stable is that there exists IV positive numbers P(1), P(2),..., P(N) such
that (2.5.19) holds.

Proof: We only need to prove the necessity. We first prove that Im(P — I) =
{z € RN : 7z = 0}, where Im(A) denotes the image of linear mapping A. In
fact, Vu € Im(P — I), there exists a v € RN such that u = (P — I)v, which
implies, together with the identity 7P = 7, that 7u = 7(P—1I)v = (nP—7)v =
0, hence u € {z : mz = 0}, this implies that Im(P—1I) C {z : 7z = 0}. However,

7 is the unique solution to the equation

we obtain that rank(P —I) = N — 1, so dim(Im(P — I)) = N — 1. Moreover,
dim({z: 7z =0}) = N — 1, we conclude that Im(P — I) = {z : 7z = 0}. Now
let us choose

z:—a+%WTERN,

where a = (logay,logas,...,logay)T.

Since 7z = —7wa + wa = 0, i.e.,
z € {z : mz = 0} = Im(P — I), thus there exists a y € RY such that
z= (P -1y, ie.,

(P—Dy+a=—27". (2.5.25)
i
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Suppose that (2.1.1) is almost surely stable, then from Theorem 2.5.3, we have

T To TN :
ajtay®---an <1, lLe.,

milogay + malogas + -+ -+ iy logany <0, or ma < 0. (2.5.26)

Now choose P(i) = e?¥ > 0 (i € N), from above inequality, from (2.5.25) and
(2.5.26) we have

log \/P(l) logal
log \/P(2) log as

(P—1) . + : <0,

log \/P(N) logan

which is equivalent to

ZPzglOg“ 'Z+melogaz<0 Vie N.

Thus, we finally arrive at

jlljl <£((‘Z))a?>pij <1, VieN.

This completes the proof of the necessity. [
Corollary 2.5.14.

If (2.1.1) is second moment stable, then there exists pd matrices P(1),
P(2),...,P(N) such that (2.5.19) holds.

Proof. Suppose that (2.1.1) is second moment stable, then from Theorem

2.2.1, there exists pd matrices P(1), P(2),..., P(IN) such that

ZpinT(i)P(j)H(i) —P(i)=-I, i=1,2,...,N.
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For any x # 0, we have

ZpijazTHT(i)P(j)H(i)a; — 2T P(i)e — 2T,

or

TP(i)x =1- 2T P(i)x’

i " HY( DPGHD _ ki
Using the inequality

N
52 B SaBit et +anBy, (>0, o =1),

i=1
we obtain
e HT (i) P(j)H (i) \ " vl
<l———— <1—dpn(P7'(3)) < L.
F:[ (e ) <t S <
From this, we can conclude that (2.5.19) holds. ]

Remark. 1In the deriavtion of the proof of Theorem 2.5.11, we have used
the Lyapunov function: V(zg,o1) = (o1 P(ox)7)%/2. Tt is easy to see that
xp is measurable with respect to the o—algebra F(ok_1,...,00) generated
by o0g,01,...,0k_1. It is reasonable to construct the Lyapunov function:
V(wk,0x-1) = (v P(or—_1)71)%/?, as we observed before. Then we can obtain

the following:
AV (z,i) = E{V(xgy1,0%)|zr =, 0—1 =1} — V(x,1)

E{[szT(Uk)P(Uk)H(Uk)xk]6/2 — (.I'TP(i)x)6/2

= > pigle"H (PGHG)al’? ~ (o P(i)) "

From this consideration, the following results can be achieved.
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Theorem 2.5.15:

If there exist pd matrices P(1), P(2),..., P(IN) such that

T ( #THY (j)P(j) H (j)x > C1 VieN.

lolla=1 - a7 P(1)x
then (2.1.1) is almost surely stable. [
Remark: If we choose P(1) = P(2) =:--= P(N) = I, and assume that {0y}

is a finite state iid chain, then Theorem 2.5.11 gives Theorem 2.5.9.
A easier testable condition is given by
Corollary 2.5.16:

If there exist pd matrices P(1), P(2),..., P(IN) such that

Amax (HT(G)P(YH(j)P~'()))™ <1, Vi€ N,

||::]2

then (2.1.1) is almost surely stable. [

We conjecture that the sufficient condition in either Theorem 2.5.11 or
Theorem 2.5.15 is also necessary condition for a finite state irreducible Markov
chain {o}}. Up to date, we are able to find a rigorous proof for this. Obviously,
to use the sufficient condition, we need to solve a minimax problem (2.5.19),

the feasibility study in solving this problem constitues our future research.



135

2.6. Estimation of Top /—moment Lyapunov Exponent

It is known that top d—moment Lyapunov exponent may give a sufficient
condition for § —moment stability and at the same time for almost sure stability.
However, the exact expression and the computation of top Lyapunov exponent,
becomes horribly difficult and hardly possible ([75],[79],[124]). Thus, a good
approach to obtain estimates of top Lyapunov exponent becomes attractive.
In this section, we only present some basic new results for jump linear systems.
For the convenience, we only discuss the case that {0y} is a finite state Markov

chain with probability transition matrix P and with unique invariant measure

7. For this case, it can be easily seen that
— 1 5
9(0) = lim —log Ex||H (o) - -- H(oo)l|’,
k—oo k
where g(0) = (6, ) is the top d—moment Lyapunov exponent.
Theorem 2.6.1:

Suppose that {o}} is a finite state Markov chain with probability transition

matrix P = (p;;). Then for any matrix norm || - || we have
9(5) < log p(DP),

where D = diag{||H(1)[1°, [[H(2)II’ ..., [[H(N)|°}.

Proof: From the proof of Theorem 2.4.2, we have

1
g(6) < Tim - log m(DP)*b = log p(DP),

" k—oo

where we have used a fact in the proof of large deviation theorem (see Lemma

2.3.9). This completes the proof. [
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Remark:

(1). It can be easy to observe that for one dimensional case, g(§) = log p(DP)
for nonzero H(1),H(2),...,H(N).

(2). Since D depends on the choice of matrix norm, from the study of matrix
norms in Appendix A, we can see that appropriate choice of matrix norms,
we can obtain many easily testable criteria. The reader is also refered to

[174] for the discussions how to make such choices.

From the discussion about the second moment stability in section 2.2, we

can modify the procedure to prove the following result.
Theorem 2.6.2:

Suppose that {o}} is a finite state irreducible Markov chain with proba-

bility transition matrix P, then we have

9(2) = p (diag{ H(1) ® H(1),H(2) ® H(2),..., H(N)® H(N)}(PT ®I)) .

Proof: This can be proved from the Coupled Lyapunov Equation (2.2.1) or
(2.2.2). O

For § > 2, we can extend the above two results to obtain a more general

estimates for g(d).
Theorem 2.6.3:

Suppose that {0y} is a finite state irreducible Markov chain, then for § > 2
and any matrix norm || - ||, we have
9(0) <

p(diag {| HO)P2H1) © HQ), ... [HNV)|*HN) © H(N)} (PT © 1))
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Proof: For matrix norm || - ||, we have

x|l < [[H (ox—1)l - - [[H (0) [[|zol|

Let 2z = [|H (1) [|727/2 - | H(00) |2/l | *=2/2, then 2411 =

|H (01,)||®=2)/22,. Since any norms in finite dimensional space are equivalent,

so there exists an M > 0 such that || - || < M|| - ||2, thus we have

Bl = Bl zel°~?

= M2E ||z |*[| H(ok—1)] - - |1 H (o)l [[z0]]°~* (2.6.1)
= M*E| zewif3.
Let yx = 2z, and B(oy) = H(oy)||H (01)]|®=2)/2, then we have
Y1 = 2ep1Zra1 = ||[H(ow)||C~2 22 H(o1) 2k = B(ow)ys-
Then using (2.6.1) and Theorem 2.6.2, we obtain
(6) = T 1 log Bljan
0(0) = . g Pl
— 1
< lim — 2
< lim - log Bllys ]l
= p (diag {B(1) ® B(1),..., B(N)® B(N)} (PT @ I))
— p(diag {|HIP2H() @ HQ) ... [H)|*2H(N) © H(N))
« (PT @ I))
This proves the theorem. [
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2.7. Almost Sure Stabilization
Second moment stabilization problem has been studied by Ji et al ([73])
and it has been shown that controllability in each mode can not guarantee the

second moment stabilizability. What happens to almost sure stabilizability?

In this section, we briefly discuss the almost sure stabilizability problem.

To proceed, we first formulate the stabilizability problem. Consider

Tht1 = A(O’k).’lfk + B(ak)uk (2.7.1)

where {0} is a finite state Markov chain with probability transition matrix P.
If there exist matrices K (1), K(2),..., K(N) such that the closed-loop system

(resulting from the control u(k) = —K (o} )z)

g1 = (A(og) — B(og)K (o)) xk (2.7.2)

is almost surely stable, then we say that the system (2.7.1) is almost surely
stabilizable. If (2.7.2) is second moment stable, then (2.7.1) is said to be second

moment stabilizable.

Surprisingly, different from second moment stabilizability, almost sure

stabilizability is much weaker than second moment stabilizability. We have
Theroem 2.7.1:

Suppose that {0} is a finite state time-homogenous irreducible and ape-
riodic Markov chain. If (A(é), B(i)) (¢ € N) are controllable, then the system

(2.7.1) is almost surely stabilizable.
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Proof: Since (A(i), B(i)) is controllable, there exists a feedback matrix K (7)

such that
0 0
A - BOK@O=TO || ] T, (N
00 - 0

where T'(i) is a nonsingular matrix. It is easy to verify that (A(i) — B(i)K (i))*

= 0 for k£ > n, i.e., the closed-loop system matrix for each mode is dead beat
system. From the Case (a) in the proof of Theorem 2.3.7, we can prove that

(2.7.2) is almost surely stable. This completes the proof. [
Remarks:

(1). It can be seen that this theorem is valid for more general Markovian case,

for example, as long as the following condition: P(A) = 1, where

A={w:Ji=i(w) e N, Tk =k(w) >0, S.t. Oq1 ="+ = Okgn = i},

then Theorem 2.7.1 is valid.

(2). ergodicity (or irreducibility) without aperiodicity is not enough to guaran-

tee the almost sure stabilizability. This can be illustrated by almost sure

stability property. Let H(1) = <8 (1)> and H(2) = HT(1) = <(1) 8),
and P = <(1) é) It is evident that H(1)?2 = H(2)?> = 0 and the given

Markov chain is ergodic and irreducible, and has a single cyclically ergodic
class. However, the system (2.1.1) with the given structure is not almost

surely stable.

(3). From the proof, the controllability of all (A(4), B(i)) (i € N) can be

relaxed that there exists an i € N such that (A(i), B(7)) is controllable. To
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avoid repeation, the reader is referred to the techniques developed in the
study of almost sure stabilization of continiuous-time jump linear systems

presented in chapter three.

As we know that any almost sure stability criteria can be used to study
the almost sure stabilization problem. This will involve a set of inequalities for
feedback matricies K (1), K(2),..., K(N). As an illustration, we use Theorem

2.5.1 or Theorem 2.5.3 as example.
Theorem 2.7.2:

Suppose that {0} is a finite state irreducible Markov chain with the
unique invariant measure . If there exists a matrix K(1), K(2),...,K(N)

and a matrix norm || - || such that

A1) = B)K(D)[]3'|A(2) = B(2)K (2)]]2* - -- [AN) = BIN)K(N)||2¥ <1,
(2.7.3)

then (2.7.1) is almost surely stabilizable.
Proof: This is obvious from Theorem 2.5.3. L]

It is clear from this theorem that if we want to solve the almost sure
stabilization problem, we need to solve the inequality (2.7.3). When we choose
spectral norm, a new problem arise: how to assign the singular values for
linear system. From the above theorem, we can see that if we can assign
singular values less than unity for each individual mode, then the system (2.7.1)
is almost surely stabilizable. Thus singular value assignment becomes very
important. It is well-known that if (A, B) is controllable, then we can assign
eigenvalues anywhere in the complex plane. Unfortunately, this is not true for

singular value assignment.
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Example 2.7.4:

Consider the controllable pair (A, B), where

(8 2)n )

This is the cannonical controllability form. We will show that no matter what
linear feedback we use, the singuar values of the closed-loop system can not be

strictly less than unity.

Let K = (k1,k2) be any linear feedback matrix, the closed-loop system

matrix is given by

k(O 1 e (0 1)
al—kl az—kz r1 T2

It is easily compute that the largest singular value is given by

1
laren) = 4= BHlE = (140t + o+ 1+ 0t a2 —ast).
Simple computation leads to

Inin f(zy,29) = 1.

From this, we can conclude that for any feedback, the largest singular value of

the closed-loop system is not less than unity.

The reason for this phenomena is that the eigenvalues are invariant under
similarity transformation, however, singular values are really depends on the
representation of the state space model. The assignment of singular values and
the solutions of the related inequalities for stabilization problem forms another

future research direction.
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For the second moment stabilizability problem, Ji et al ([73]) have already
obtained some necessary and sufficient conditions. They proved that the sys-
tem (2.7.1) is stochastically stabilizable if and only if a set of matrix sequences
converges to a set of positive semidefinite matrices. Although they claimed
that this condition is testable, it is in fact not so easy! It needs a lot of compu-
tations. Interestingly, from Theorem 2.3.1, we can obtain the following easily

testable condition.
Theorem 2.7.5:

The system (2.7.1) is second moment stochastically stabilizable if and only

if the following JLQ optimal problem of (2.7.1) with the objective function

J(xg,00) = E {Zarzark‘a:o,ag}
k=0

has a finite minimal cost.

Proof: Suppose that (2.7.1) is stochastically stabilizable, then there exists
control law u(k) = —K(og)xy such that the closed-loop system is stochasti-
cally (or second moment exponentially) stable, i.e., for the given control law,
J(x9,00) < 400, thus minimal cost of JLQ problem will be defeinitely finite.
Conversely, suppose that the JLQ problem has a finite optimal cost, when we
use the optimal control law, J(zg,00) < 0o, the closed-loop system of (2.7.1)
will be stochastically stable, therefore, (2.7.1) is second moment stochastically

stabilizable. []

From the first look, we may say that we complicate the problem. However,
when we notice that there may be simple solution for JL.QQ problem in current

literature, the tedious stabilization problem will be reduced to some algebraic
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condition, then Theorem 2.7.5 becomes important. To illustrate this point, we

study a simple example. But first, we quote a theorem for JLQ problem.
Theroem 2.7.6:(Chizeck et al [56])

Consider the system
Tht1 = A(ak)xk + B(ak)uk,

where {01} is a finite state Markov chain with probability transition matrix
P = (p;;) and the initial condition is (ko) = z¢ and o (ko) = 0¢. The cost to

be minimized is

JL(.’IZO,O'O Z{uk O'k Uk+$k+1Q(Jk+1)$k+1}—|-:L'LKT(O'L).TL ,
k=ko

where R(7),Q(7) and Kp(j) are positive semidefinite for each j and k satisfying
i) + BT (i) ZpUQ B(i) >0, i€ N.

Then the optimal control law is given by
up = —Lg(og)zg, ke L—1
where
Ly (i) = [R(') + BT () Qi1 () B(0)] 7 BT (1) Q41 () A()
Qr41(2) szj ) + Ki41(7)]

Ky (i) = AT(1)Qrr ()[AG) — B()Lx(i)], Kr(i)=Kr(i), i€ N

and the optimal cost is given by 2l Ky, (00)o. [J
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Now we use Theorem 2.7.5 and Theorem 2.7.6 to show that although
individual modes are controllable, the jump linear system may not be second

moment stabilizable.

Example 2.7.7:

Let A(1) = <8 g) A@2) = (g g) B(1) = <(1’> and B(2) =

<(1) . The form process {0y} is a two-state iid chain with probability measure
(m,m2) = (0.5,0.5). It is easy to check that (A(7), B(i)) is controllable. In
Theorem 2.7.6, let Kr(i) = 0, Q(i) = I and R(i) = 0 which does satisfy the
required condition. We can see that p;; = 0.5, thus Q7 (i) = Q(i) = I and
L;_1(0) = Lr_1(2) = 0. It is easy to show by induction from Theorem 2.7.6
that Q5 (i) = (N —k + 1)I and Lg(é) = 0. Thus the minimal cost of JLQ

problem is given by

.Tngo(O'o)l'o = L.TgwAT(O'o)A(O'o)JJOLi;oOO.

Thus for any control uy = —K(oy)xy, we have
L
E { Z a:ga:k} > Jr(x0,00) = Lot AT (00) A(oo)z0
k=ko

for any L > kg, hence

oo

k=0
From Theorem 2.7.5, we conclude that the system is not second moment

stabilizable.
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2.8. Robust Stability Consideration

It may be also interesting to consider the robust stability of jump linear
systems against any randomness, sometimes this is also refer to as absolute
stability problem. This observation is very important, because if the system
is absolute stable, then we do not need to worry about the statistics of the
form process. The following results are motivated from the robust stability
analysis of interval dynamical systems (see Fang et al [174]). In this section, we
only consider the robust almost sure stability problem. In fact, the conditions
we have obtained also guarantee the robust moment stability, and the robust

stability problem is reduced to a deterministic stability problem.
Definition 2.8.1:

The system (2.1.1) is robustly almost surely stable if it is almost surely

stable for any finite state form process {oj}.

The following result is immediate from matrix norm property (Appendix

A).

Theorem 2.8.2.

If there exists a matrix norm || - || such that ||[H(i)|| < 1 for any i € N o

{1,2,..., N}, then the system (2.1.1) is robustly almost surely stable. [

Proof: Let r = maxi<i<n ||[H(?)]|, then r < 1 from the assumption. Thus, we
have

[ekll = 1 H (ok-1) - - - H(o0)ol| < [[H (k1) - [|[H (o0)][[| o]

< |0 |20
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Therefore, (2.1.1) is almost surely stable for any finite state form process. This

completes the proof. [

Although this is a very simple result with a simple proof, this is in fact
a very general sufficient condition for robust almost sure stability. This is
because that by specifying a matrix norm in Theorem 2.8.2 appropriately,
many nice results can be obtained. To illustrate the generality of Theorem
2.8.2, we derive some simple testable sufficient conditions for robust almost

sure stability as corollaries.
Corollary 2.8.3:

If H(1),H(2),...,H(N) are normal matrices, then (2.1.1) is robustly
almost sure stable if and only if H(1), H(2),..., H(N) are Schur stable.  [J

Proof. Necessity: Let we choose {0} is N state iid process with probability
distribution {p1,p2,...,pn} = {1,0,...,0}. Since (2.1.1) is robustly almost
sure stable, it is almost surely stable for this form process, from which we
obtain that H(1) is Schur stable. Similar arguments leads to the stability of

other matrices.

Sufficiency: Before we do this, we need the following: suppose that A is a
normal matrix, i.e., A*A = AA*, from [148], there exists a unitary matrix U

such that A = U*diag{u1, 2, ..., un }U, thus
ATA = U*diag{mul7muzv s 7mﬂn}U
From this, we have

2
* _ .1 — . _ 2
Amax(A"A) = max {7} (@.agxn |uz|> p(A)”.
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So, ||A|l2 = p(A). Suppose that H(1),H(2),...,H(N) are stable, then
p(H(i)) < 1 for i € N. Hence, for 2—norm, we have ||H(7)||2 = p(H(i)) < 1
for i € N. From Theorem 2.8.2, (2.1.1) is robustly almost surely stable. This

concludes the proof. [

Since symmetric matrix or skew-symmetric matrix is normal matrix, if
H(1),H(2),...,H(N) are either symmetric or skew-symmetric matrices, then
(2.1.1) is robustly almost surely stable if and only if H(1), H(2),..., H(N) are
Schur stable.

Corollary 2.8.4:

The system (2.1.1) is robustly almost surely stable if one of the following

conditions holds:
(a). max; {ZL |h¢j(z)|} <1forleN;
(b). max; {377, [hi; ()|} < 1 for l € N;
(). 22:22; hi;(l) < 1forl e N.
]

Proof: Using 1—norm, co—norm and Frobenius norm, the proof can be ob-

tained directly from Theorem 2.8.2. [
Using generalized Gershgorin typed norm, we can obtain
Corollary 2.8.5:

If there exists positive numbers ry, 7o, ..., r, such that one of the following

conditions holds:
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a). max; {Z" :—’|h”(l)|} <1foranyl e N;

Jj=1

b). max; {2?21 "
c). Yi;=hi;(l) <1 forany I € N,

] T

then (2.1.1) is robustly almost surely stable.

h,-j(l)|} <1 for any l € N;

[

This is a result similar to the one obtained from the Gershgorin’s Cir-

cle Theorem. The problem here is how to choose the positive numbers

ri,T2,...,7,. In what follows, we derive an equivalent result which is indepen-

dent of the choice of r1,7r9,...,r,. To accomplish this, we need the following

results from matrix theory.

Lemma 2.8.6: ([149],[173])

If A = (a;;) satisfies: a;; < 0 (¢ # j) for i,j = 1,2,...,n, then the

following statements are equivalent:

(1). A is positive Hurwitz stable (all eigenvalues of A have positive real parts),

i.e., A is an M —matrix;

(2). All principal minors of A are positive;

(3). All leading principal minors of A are positive;

(4). There exists a positive vector z such that Az > 0;

(5). There exists a positive diagonal matrix D such that DA+ AT D is positive

definite;
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(6). There exists positive numbers r1,rs,. .., 7, such that

airi > »_rilal, i=1,2,...,n.
J#

(7). —A is Hurwitz stable. [J
Corollary 2.8.7:

Define Q = (qij) and H(l) = (h”(l)), where qij = maxlSlSN{|h¢j(l)|},
then (2.1.1) is robustly almost surely stable if @ — I is Hurwitz stable or all

leading principal minors of I — () are positive. [

Proof: Let U = I — Q = (uy;), then u;; < 0 (i # j). Since —U is Hurwitz
stable, from Lemma 2.8.6, there exist positive numbers 71, rs,...,r, such that

WiiTi > — Zj;éi TjUij, 1.€.,
° r
J .
E —q¢j<1, 1=1,2,...,n.
N T
Jj=1

This is equivalent to

n
max E Ui max \hij (D)] p < 1.
i — 1; 1<ISN
‘7_

From this, we obtain that

n

max Z%hlj(m <1

7
j=1""

From a) of Corollary 2.8.5, we conclude that (2.1.1) is robustly almost surely
stable. 0

From this corollary, we can observe that the robust almost sure stability of

(2.1.1) can be tested by the Hurwitz stability of one special matrix. From (3)
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of Lemma 2.8.6, the following easy test result can be obtained: If the leading
principal minors of matrix I — @) are positive, then (2.1.1) is robustly almost

surely stable.
The following example illustrates the usefulness of Corollary 2.8.7.
Example 2.8.8:
Let
H(1) = <:09§55 8) H@) = (0().%55 066>'
Since

max ¢ Y [hi;(2)]} p =1.1> 1,
7 =1

max hii(2 =1.25>1,
o { Solhso
> hi(2) =1.1725 > 1,
,J
we can not use Corollary 2.8.4. However, we have
0.5 0.6 0.5 —0.6
Q=i @) = (g5 %) v=1-a=( 55 1),

and the leading principal minors of U is 0.5 and 0.05, which are all positive,

from Corollary 2.8.7, we conclude that (2.1.1) is robustly almost surely stable.
[

Corollary 2.8.9:

Let H(1),H(2),...,H(N) be upper triangular matrices, then (2.1.1) is
robustly almost surely stable if and only if H(1), H(2),...,H(N) are Schur
stable. [
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Proof: The necessity is trivial. We only need to prove the sufficiency. Let
H(l) = (hi;(1)) with h;;(I) = 0 for i > j. Let ¢;; = maxi<;<n{|hi;({)|}. It is
easy to show that ¢;; = 0 for 4 > j. Suppose that H(1), H(2),..., H(N) are
Schur stable. Because they are triangular, we obtain that ¢;; < 1. Hence Q
is Schur stable and @ — I is Hurwitz stable. From Corollary 2.8.7, (2.1.1) is

robustly almost surely stable. L]
Corollary 2.8.10:

If there exists a positive definite matrix S such that H([)*SH(l) — S is

negative definite for 1 <[ < N, then (2.1.1) is robustly almost surely stable.
[

Proof: Since S is positive definite, there exists a nonsingular matrix 7' such
that S = T*T, we use the norm [|A||7 = ||[TAT!||2, which is induced by
the vector norm ||z||p = ||Tz||2. Let H(I)*SH(l) — S = —Q; for l € N =

{1,2,...,N}. Where @ is positive definite. From this equation, we obtain
(THOTY (THOT) = 1 - (1Y) QT

and

HOlIr = vV Amax(THOT~1)*(TH1)T 1))

= V1= Amin(T-1)*QT-1) <1, 1€ N.
From Theorem 2.8.2, we obtain that (2.1.1) is robustly almost surely stable.

[

In this section, we have seen that we can use the matrix norm to study
the robust almost sure stability as we observed in the almost sure stability
study. However, there exists a difficulty in using this approach, that is, how to

choose an appropriate matrix norm such that we can obtain the most powerful
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result. One solution for this problem is to solve the following multi-objective

optimization problem:

I T,
) - | 1F@I | _{ e
[/ NN

where [ = 1,2, 400. Let Ty be one solution with optimal objective J(T), then
we can conclude that (2.1.1) is robustly almost surely stable if J(T}) < ¢, where
c=(1,1,...,1)". From the matrix norm properties we presented in Appendix
A, we may conclude that the system (2.1.1) is robustly almost surely stable
if and only if there exists an optimal solution 7, for the above optimization

problem such that J(7%) < c¢. This issue will be explored in the future.

Notice that as we show in [174] that when the parameters of the individual
mode system matrix varies in the convex hull of H(1), H(2),..., H(N), (2.1.1)
is still robustly almost surely stable. To be precise, we formulate it into the

following theorem:
Theorem 2.8.11:

If there exists a matrix norm such that ||4;|| < 1 (I € N) then (2.1.1) is

robustly almost surely stable for any H(1), H(2),..., H(N) satisfying

N N
H(j)E{A‘A:ZOQAl, a; > 0, Zal:1},Vj€ﬂ.
=1 =1

This theorem implies that the robust stability results we presented in
this section is very strong results. The robustness is not only against the
randomness, but also against parameter uncertainty in individual modes. This

may be good tool for the practical designs.
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Example 2.8.12:

Let
0.4 1 7.5 20
H(1)= (—0.2 1.3)’ H(2) = (—3.2 8.5)'
We first try to use Corollary 2.8.7, we have
7.5 20 —6.5 —20
©= <3.2 8.5)’ I=Q= <—3.2 —7.5)’
the leading principal minors of I — ) are not all positive, we can not use

Corollary 2.8.7, this means that Gershgorin-like criteria can not be used in

this example.

We choose T' = 140 ?) and use the vector norm [|Tx||~, the induced

matrix norm is given by [|Al|7 = || TAT ||, then we have

_ 0.8 0
e = e = | (5 5)] oo

el = rae) T = | (5 03)] —0o<t,

From Theorem 2.8.2, we conclude that (2.1.1) is robustly almost surely stable.
]
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2.9. Illustrative Examples

In this section, some exmples will be given to illustrate previous results up
to this moment. Some relationship between almost sure stability and moment

stability is concretely demonstarted by examples.
Example 2.9.1:

Suppose that {0} is a finite state iid chain. Take H(1) = 2.5, H(2) = 0.1,
and p; = po = 0.5, then Ay = 6.25 and Ay = 0.01. Thus

APLAR2 = /625 % 0.01 = 0.25 < 1

6.25 + 0.01
P1AL + P2A2 = 742_ =3.13>1,

and from Theorem 2.4.1 and Theorem 2.5.1, we conclude that the system

(2.1.1) is almost surely stable, but not second moment stable. [
Example 2.9.2:

Let {0} be a two-state i.i.d. sequence, and let H(1) = «, and H(2) = f3,
and p; = pa = 0.5. Then according to Theorem 2.4.1, the system (2.1.1) is
d—moment stable if and only if

ol + 18 _
2

1.

and it is almost surely stable if and only if

e8] < 1.

The following graph illustrates the stability regions:
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Fig.1. Almost sure and d-moment stability regions

In Fig.1, Ry denotes the almost sure stability region, which is the open
connnected region enclosed by the four (disconnected) hyperbolic curves. Rs
is the d—moment stability region with a § < 1, which is the open connected
bounded region enclosed by the next four (connected) hyperbolic curves. The
diamond-shaped region denoted by R; is the first moment stability region.
The open connected region Rs enclosed by the ellipse is the second moment
stability region. Finally, the open connected square R, ., is the d—moment
stability region for 6 = +o0o. Indeed, we have R, C Ry C Ry C Rs C Ry, and
as 0 decreases to 07, Rs tends to Ry monotonically. This is consistent with

our previous analysis.
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Example 2.9.3: (Almost sure stability does not imply that the individual

modes are stable)

Let H(1) = <g 8) , H(2) = (8 g) for systems of type (2.1.1) with

an iid form process o, with p; = py = 0.5.

For any m,n > 1, H(1)™H(2)" = 0, and the system is almost surely
stable. But H(1) and H(2) are not stable. [

Example 2.9.4: (A general illustrative example)

Let H(1) = & ((1) 1), H(2) = a <1 (1)> for systems of type (2.1.1)

with an iid form process o with p; = ps = 0.5.

In this example, we study the stability properties of the system (2.1.1) as

& varies in the interval (0, 1].

Q). |H)|2 = |H©)2 = <¥%$l>(i,uﬁng'Theoren12.5J,mmzobtahlthat

if a < ‘/52_1, the system (2.1.1) is almost surely stable.

(ii). Next we use Theorem 2.5.9 to study the almost sure stability:
Let x = (cosd,sin )T, and let f(0) = ||H(1)z||3||H(2)x||3. Then

1 1 cos B 1 0 cos b
0 1 sin 0 N 1 1 sin 0 N

= a* ((cos @ + sin @) + sin® ) (cos®  + (cos @ + sin)?) »

2 2

5
:&%2+3mn9+1gﬁ2m

and max f(6) = 22a*, 50 omas = \/géz. From Theorem 2.5.9, (2.1.1) is almost
surely stable if a < \/g . This is an improved estimate of the almost sure

stability region.
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(iii). Since {0y} is iid, from xyy; = H(og)zr we have
Bty = EH(op)Exy = --- = (EH(00))*z0
= (p1H(1) +p2H(2) + - -+ pnH(N))" .

From this, we obtain that (2.1.1) is mean value stable if and only if vazl piH (7)
is schur stable. From this, we know that (2.1.1) is mean value stable if and only
if p1H(1) 4+ p2H(2) is a schur stable matrix. Thus we obtain that if & < 2/3,
(2.1.1) is mean value stable. By the remark given after Lemma 2.5.6, we obtain

that (2.1.1) is almost surely stable if & < 2/3.

(iv). Although the proof in (iii) is simple, the following approach seems

to be applicable to more general cases.

Define
6= (gh 6h) = He ey =a(, L %)
k k — Ok
where 0, = 1if o, =1 and 6, = 0 if 03, = 2.
Let ¥ is the sum of all the entries of Gi. Then it is easy to show that
Y =a (ko1 4 0k(Groy + Gay) + (1= 6)(Ghy + Gr_y)) (2.9.1)

Since {0} is an iid sequence, 0 and 1—dj, are independent of Gi_l (1<j<4)
and Ed, = E(1 — 0;) = 0.5. Thus from (2.9.1), let my = EXj, we have

mi = & (ESk_1 + ES,E(Gi_y + G_ ) E(1 = 04)E(Gy_y + Gh_y))

B 1
8% (mk—l + §(E(G%—1 +Ghy) + E(Gh_y + Gl%—l)))

k
1 3 3
= &(mk_l + §E2k_1) = §&mk_1 = <§d/> mo
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Let Fj be the smallest 0 —algebra generated by o, ...,09. Then it is easy

to show that
3.
E(Ek+1|fk) = <§Oé> Ek

Thus, if & < 2/3, then E(Xg41|Fi) < Xk, which implies that {3, Fi} is a
supermartingale. From the Martingale Convergence Theorem ([141]), there

exists a random variable ¥ such that limg_, o, X% = %, almost surely.

Next, we want to prove that ¥ = 0. In fact, for ¢ > 0, we have
(2.9.2)

If @ < 2/3, then Y ;7 (2a)" is a convergent series. In (2.9.2), let m go to

infinity, we obtain P(¥ > ¢) = 0. Thus

P(E>0)§iP(E>—):0

From which we obtain that if & < 2/3, then (2.1.1) is almost surely stable.

(v). From Theorem 2.2.13, we have proved that if EH(oy)TH(oy) is

stable, then (2.1.1) is second moment stable. Since

BH(o)TH(o) = J(HOTHO) + H)THE) = % (3 3)

and its eigenvalues are 5&%/2 and &?/2, if 42/2 < 1, i.e. & < V0.4, (2.1.1) is

second moment stable, so it is almost sure stable (same as (ii)).



159

(vi). The Kronecker product is good tool for studying the second moment
stability. From Corollary 2.2.12, we obtain that (2.1.1) with an iid form process
is second moment stable if and only if py H(1) @ H(1) +---+pnH(N)®@ H(N)

is stable. A variation of this is the following:

Let P, = Exgzl, (2.1.1) is second moment stable if and only if Py is a
matrix sequence which converges to zero. For the present example we have

been studying, we have

H1)P.H)T + H(2)PH(2)T)
(( ) 8) = 9) e 1)

Leth—( 9 Pk )andyk— it ok, o)t then

Py =

M|Q1 N | —

pk
a2 (2 21 A
yk—i—l:? 1 2 1 yk:Ryk-
1 2 2

(2.1.1) is second moment stable if and only if R is a stable matrix, i.e., all
eigenvalues of R have modulous less than unity. The eigenvalues of R are

—&?2/2 and &T\/ﬁ&z. Thus if 5+\/_ a? <1, ie,a < /2= V17 , (2.1.1) is second

moment stable.

Remark: Notice that %ﬁ < §, and we know that a < % is suffi-
cient for almost sure stability. Hence, criteria for almost sure stability and
second moment stability can differ greatly, and almost sure stability does not

necessarily imply second moment stability.

(vii). Let M(G) be the largest entry of a matrix G. Notice that H(1)™ =

~m 1 m m _ 3m 1 0 m n ~m-+n
a (0 1>andH(2) =a <m 1>,thenM(H(1) H(2)™) > a™t™mn
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and M(H(2)™H(2)") > a™ " mn. Let

H(an)---H(m):@"<(1) le) <lm1_1 (1)><(1) 111>

or the variations with [,,, or /; at the opposite positions in the corresponding
matrices, where [; > 0 and >_.", l; = n, and m = m(n) is a random sequence
and m — oo if n — oco. Since {0, } are an iid sequence with the probability
distribution (0.5,0.5), {l;} is also an iid sewith the distribution P{l; = k} =

0.5% (k > 0). It is also easy to show that

Thus

1 1 1 « i
ElogM(H(an)---H(al)) > EZlogli%— (E Zl,) log &

=1

From the Law of Large Numbers, we have

. U B B > log k
n}gn@Zlogli—Elogll_Z o

=1 k=1
m — i — 1= _k
moreom =1 k=1 2

then, noting that m = m(n), we obtain

o1 log k >k 3
nli)ngoglogM(H(an)---H(al)) > ok T (Z 2—k> log &
So if it is positive, i.e.,

oo logk
& > exp (—ﬁ) = 0.7758
k=1 2k

then (2.1.1) is almost surely unstable.
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This example shows that although the individual modes are stable, i.e.,
H(1) and H(2) are stable matricies (with & < 1), for @ > 0.7758, the jump
linear system (2.1.1) is not almost surely stable, let alone second moment
stable. In the current literature, it is known that it is very easy to give an
example of a finite state Markov chain jump linear system whose individual
modes are stable, but the system is not almost surely stable. But it is very
difficult to give an example for the case with an iid form process, the above

example provides such an example.

(viii). Let II(A) denote the product of all the entries of matrix A and
let Gy, = H(oy) -+ H(0p), where the notation for entries of Gy, is the same as

before, let I1; = I1(Gy). As before, we can obtain
Mit1 = &Gy + GR)(GE + G (1 = 0k) Gy + 0GR (1 — k)G, + 0,G)

Let F be the smallest c—algebra generated by {ox_1,...,00},then from the
inequality a + b > 2v/ab for a,b > 0, we obtain

- 1
Blleaal) = 6*(GE+ G(GE + G | 3(GRGE + GE6D)

> 4(2,/6163)(2,/G2G1) | [GLGIGIGY

= 46*GLGEGE G = 4oy,
From a similar argument, we also have
BI,, > (4a*)°(E1I})¥
Thus, if 46* > 1, i.e., @ > V0.5 = 0.7071, limp_, 00 EHi = +o00 for any ¢ > 0.

If we use the 2—norm, then [|A|| = \/Amaz(ATA). Thus for any z € R",

we have z7AT Az < ||A||?2T2. Choose z = ¢; = (0,...,0,1,0,...,0)T,
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we have > p_ a3 < ||A]|?, from which we obtain that max; ; |a;;| < ||A]l.
For nonegative matrix A, II(4) < ||A|"°. Thus, for our problem, we have
[y < ||H(ok)---H(oy)||*. Therefore, we obtain
N 1/5
(E||H(ak) . .H(g1)||45> > (EHi)W > ... > O(4at)F

from which we have

1
- log E||H (o) - “H(o)||* > —dlog C + log(4a*)

T =

Taking the limit supremum, we obtain
B(46,m) > dlog(4at)

where 3(0, 7) is the top d—moment Lyapunov exponent. From Theorem 2.3.14,
we know that B(0,7) = 7, where « is the top Lyapunov exponent. Thus, if
4a* > 1, i.e.,, @ > 0.7071, v > 0, which means that (2.1.1) is exponentially

unstable almost surely.

This result is better than (vii). This is due to the fact that we have
used the relationship between almost sure stability and d—moment stability

presented in this chapter.

Summarizing the above for this example, we have

(a). (2.1.1) is second moment stable if and only if 0 < & < 5_;/ﬁ;
. . . ~ 2 .

(b). (2.1.1) is mean value stable if and only if 0 < & < ;
. . ~ 2.

(c). (2.1.1) is almost surely stable if 0 < & < 3;

(d). (2.1.1) is almost surely unstable if & > 0.7071.

For z < a< @, we have not found a rigorous method to determine the

Wl

stability property of the system, which will be studied in the future.



CHAPTER THREE

STABILITY OF CONTINUOUS-TIME
JUMP LINEAR SYSTEMS

Continuous-time jump linear systems can not be directly studied by the
discretized version, this is because that when the continuous-time jump linear
system is discretized, the resulting discrete-time system is no longer jump
linear system with a finite state Markov from process, rather a jump linear
system with a infinite dimensional Markov form process. This will complicate
the study considerably, and we can not use the result we have developed in
Chapter Two. This chapter will study the stability of continuous-time jump
linear system with a finite state Markov form process. Section 1 gives a brief
introduction to this research area, followed by a detailed study of ) —moment
stability properties in section 2. Tetable conditions for almost sure stability
will be presented in third section, where matrix measure techniques have been
used to obtain some simple but useful criteria. In section 4, we deal with
estimation and analytic properties of (moment) Lyapunov exponents, robust
stability issue will be briefly examined in section 5. Finally, we will study

almost sure and moment stabilization in some details in section 6.
3.1. A Brief Introduction
Consider the continuous-time jump linear system in the form
i(t) = A(oy)z(t) (3.1.1)

where o; is a finite state random process (step process), usually a finite state,

time homogeneous, Markov process. Stability analysis of systems of this type

163
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can be traced back to the work Bergen ([135]) who generalized Bellman’s
([134]) idea for discrete-time jump linear systems to study the moment stability
properties of the continuous time systems (3.1.1) with piecewise constant form
process {o;}. Later, Bhuracha ([136]) used Bellman’s idea developed in [134]
to generalize Bergen’s results and studied both asymptotic stability of the
mean and exponential stability of the mean. Darkhovskii and Leibovich ([166])
investigated second moment stability of system (3.1.1) where oy is a step
process and the time intervals between jumps are iid and the modes of the
system are governed by a finite state time homogeneous Markov chain. They
obtained a necessary and sufficient conditions for second moment stability in
terms of the Kronnecker matrix product for the second moment stability, which

is an extension of Bhuracha’s result.

There is an alternative approach to the study of stochastic stability. Kats
and Krasovskii ([36]) and Bertram and Sarachik ([37]) used a stochastic version
of Lyapunov’s second method to study almost sure stability and moment stabil-
ity. Unfortunately, constructing an appropriate Lyapunov functions is difficult
in general, this is a common disadvantage of Lyapunov’s second method. Also,
in many cases, the criteria obtained from this method are similar to moment
stability criteria, are often too conservative. For certain classes of systems,
such as (3.1.1), it is possible to obtain testable stability conditions. Kats and
Krasovsii ([36]) and Feng et al ([74],[75]) used Lyapunov’s second method to
study the stability of (3.1.1) where {0} is a finite state Markov chain. Nec-
essary and sufficient conditions are obtained for second moment stability of

continuous time (3.1.1) jump linear systems.

As Kozin ([38]) pointed out, moment stability implies almost sure stabil-

ity under fairly general conditions, but the converse is not true. In practical
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applications, almost sure stability is more than often the more desirable prop-
erties because we can only observe sample path of the system and the moment

stability criteria can sometimes be too conservative to be useful.

Although Lyapunov exponent techniques may provides necessary and suf-
ficient conditions for almost sure stability, it is very difficult to compute the top
Lyapunov exponent, or to obtain good estimates of the top Lyapunov exponent,
for almost sure stability. Testable conditions are difficult to obtain from this

theory.

Arnold et al ([116],[117]) studied the relationship between the top Lyapnov
exponent and the d—moment top Lyapunov exponent for a diffusion process.
Using a similar idea, Leizarowitz ([153]) obtained similar results for (3.1.1). A
general conclusions was that d —moment stability implies the almost sure stabil-
ity. Thus sufficient conditions for almost sure stability can be obtained through
d—moment stability, which is one of the motivations for study of j—moment
stability. There are many definitions for moment stability: d—moment stabil-
ity, exponential 6 —moment stability and stochastic )— moment stability. Feng
et al ([74],[75]) showed that all the second moment stability concepts are equiv-
alent for the system (3.1.1), and also proved that for one dimensional system,
the region for §—moment stability is monotonically converging to the region for
almost sure stability as 6 | 07. This is tantamount to concluding that almost
sure stability is equivalent to d—moment stability for sufficient small §. This
is a significant result because the study of almost sure stability can be reduced

to the study of d—moment stability.
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3.2. )—moment Stability

Consider the continuous-time jump linear system (3.1.1) where {0} : ¢ > 0}
is a finite state time homogeneous Markov process (which is referred to as
form process) with a state space S = {1,2,...,N}. Let Q@ = (qgij)nxn be
the infinitesimal matrix of {o;}. For simplicity, we assume that xq be a fixed
constant vector in R™. In order to make clarity of stochastic stability we will
study in this chapter, we use the following definition similar to the discrete

case.
Definition 3.2.1:

For the system (3.1.1), let = denote the collection of probability measures

on S and ¥ C = be a nonempty subset of =. The system is said to be

(I). asymptotically §—moment stable with respect to (w.r.t.) ¥, if for any

xo € R™ and any initial probability distribution ¢ € ¥ of oy,
. 51

where z(t, o) is a sample solution of (3.1.1) initial from zy € R™. If 6 = 2,
we say that the system (3.1.1) is asymptotically mean square stable w.r.t.
U; if § = 1, we say that the system (3.1.1) is asymptotically mean stable
w.r.t. WU, If ¥ = Z, we say simply that (3.1.1) is asymptotically mean

square stable. Similar statements apply to the following definitions.

(IT). exponentially §—moment stable with respect to U, if for any zo € R"
and any initial distribution ¢ € = of gy, there exist constants «, g > 0

independent of zg and v such that

E{||z(t,20)[|°} < allzol|®ePt, V> 0.
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(ITI). stochastically —moment stable with respect to U, if for any zo € R™ and

any initial distribution ¢ € ¥ of oy,

/t:E{||x(t,x0)||5} < oo,

(IV). almost surely (asymptotically) stable with respect to W, if for any xp € R™

and any initial distribution ¢ € ¥ of oy,

P{tllgqo (¢, zo)|| = o} ~1.

(V). Almost surely exponentially stable with respect to ¥, if for any zg € R™

and any initial distribution ¢ € ¥ of oy,
i [t 0) | =0

at an exponential rate almost surely, i.e., there exist M(w) > 0 and

A(w) > 0 such that
l(t, zo) || < M(w)|lzolle™ @, as..
]

In the above definition, the initial probability distribution of {o;} plays a
very important role. The stochastic stability definitions as given above means
the robust stability against (¥-structured) uncertainty of the initial distribu-
tions of the form process. Since (x(t),o0y) is the state of the system and in
practice, the initial probability distribution of the form process {o;} is usually
not exactly known, this is a reasonable requirment. Also, as illustrated in [75],

stability with respect to a single initial distribution, say, the ergodic invariant
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distribution 7, may not be a good stability criterion and an arbitriarily small

pertubation to m can actually destroy the stability.

Because of the above consideration on the initial distribution of o;, we
actually deal with a family of Markovian form processess parameterized by the
initial distribution ¢ € W. To signify the dependence of a quantity ) on v,
sometimes we use a subscript @),,. For example, Py will denote the probability
measure induced by 1 for oy and Ey will be the expectation with respect to

Pw, etc..

Before we go further, we first establish some preliminaries for the finite

state Markov process {o;}. For all 4,j € S, define

pii = 0
4 = —qi = ZQil
I#i
_ Gy .,
pij =— (i #])
4i

Let {ri;k =1,2,---} be the (discrete-time) Markov chain defined on the state
space S with the one-step transition matrix (p;;)nxn and initial distribution
. This chain is refered to as the embedded Markov chain of {o;}. We have

the following sojourn time description of the process {0} ([138, p.254]).

Let 7, k = 0,1,... be the successive sojourn times between jumps.
Let tx = Z;:Ol 7 for K = 1,2,... be the waiting time for £k—th jump and
to = 0. Starting in state oo = 4, the process sojourns there for a duration
of time that is exponentially distributed with parameter ¢;. The process
then jumps to the state j # ¢ with probability p;;; the sojourn time in
the state j is exponentially distributed with parameter g;; and so on. The

sequence of the states visited by the process {o:}, denoted by iy,ig,--- is
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the embedded Markov chain {ri;k = 1,2,---}. Conditioning on iy,iz,- -,
the successive sojourn times denoted by {7(*)} are independent exponentially
distributed random variables with parameters ¢;, . Clearly, the joint process
{(rg,m%) : k = 0,1,...} is a time homogeneous Markov process and it fully
describes the form process {o:}. From this description, we can see that if we
use discretization to get the discrete systems from (3.1.1) will be determined
by the joint process {ry, 7} which is not a type of jump linear system (2.1.1),
hence we need to modify the analysis method in chapter two to handle the
continuous-time jump linear system (3.1.1). The following notations will be
used throughout this chapter. Let A; = A(7) and k; = ||A;]| for all i € S. Let
Kk = max;cs ki. Let F" = o{(rg, k) : 0 < k < n} be the o-algebra generated
by {(rg, ) : 0 < k < n}. Let ®(t,s) denote the transition matrix of (2.1). For
each 7 € S, let e; denote the initial distribution of ¢; concentrated at ¢-th state.
If 0, has a single ergodic class, let m denote the unique invariant distribution
of o¢. For a matrix B, let A;(B) denote one of the eigenvalues of B, and let
Amax(B) = max;(Re)\;(B)) and Apin(B) = min;(Re\;(B)) denote the largest

and smallest real parts of eigenvalues of B, respectively.

In [74], Feng et al proved that for the system (3.1.1), the second moment
stability, the second moment exponential stability and the second moment
stochastic stability are equivalent, and all of them imply the almost sure
stability. A natural question is if this relationship can be generalized to the

0—moment stability. The answer to this question is positive, we have
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Theorem 3.2.2:

For any § > 0, the 6— moment stability, the exponential ) —moment sta-
bility and the stochastic —moment stability are equivalent for system (3.1.1),

and they all imply the almost sure stability. []
Before we prove the theorem, we need the following lemma:
Lemma 3.2.3:

(i) Let r; = ||A;]| for alli € S, and let K = max; ;. Then, for any t, > ¢} > 0,

(25, 11)[| < exp(r(ty —1)).
(ii) For any 6 > 0, if (3.1.1) is 0-moment stable, then for any ¢) € = and k > 0
integer,

E{||®(t, ty)||°|F*} <n, Py —as. Vt € [ty thr1], (3.2.1)

where in (2.2), n = max;cs 7; and

+o00
|®(t1,0)]]°} = / il exp(At)]|°e~%tdt < 400 (3.2.2)
0

ni = Eei{

for all 4+ € S. It follows that for any v € = and k > ¢ > 0 integers, if

t e [tk, tk+1), then
E{|®(t, t;)|°|F} < p*+H1=D P, —as. (3.2.3)
O

Proof of lemma: For any matrix A, it is easy to verify that || exp(At)|| <
exp(||A||t) for all ¢ > 0. Since using the sojourn time description of the form

process oy, the transition matrix ®(t},t]) can be written as a product of the
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exponential matrices (transition matrices) of the systems @(t) = A;z(t) for

i € S, the result (i) follows directly.

For (ii), note that the J-moment stability of (3.1.1) implies that for each
i €5, (3.2.2) holds. To show (3.2.1), by the Markovian and time homogeneous

properties of the system, it is enough to show that for any ) = (¢1,...,9nN) €

(1]

Y

E {|®(,0)]°} <n, Vte€[t1,0], ¢ €E.

However,

|(t,0)]1°}

Ey {124, 0)[1°} =Y viFe {

t

N

=Y [ ailexp (i) | expl- i)
=1 0

400

I?

wi q1|| exp(Aiozi) exp(—qiai)dai

o

s
I
N

S —

pin; < n < +oo.

[
] =

7

I
—

This shows (3.2.1). To show (3.2.3), we apply (3.2.1) in the following way:
E{[|o(t,t:)[1°|F} < B{|®(t, tx)]° . . 1@ (tisa, 1) |17}
= B{E{... E{B{||®(t,tx) |’ |F*}®(tr, te—1)lI°| 77T}
- AFE IR g, ) 17177

1)

3.2.
( < nk+1—i

, Py —a.s.
[

Proof of Theorem 3.2.2. It is very easy to show that the exponential
d—moment stability implies the stochastic d—moment stability. So it is suffi-

cient to prove that the stochastic 6 —moment stability implies the ) —moment
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stability, the 6 —moment stability implies the exponential )—moment stability,

and the exponential )-moment stability implies almost sure stability.

Stochastic 6—moment stability implies the 0— moment stability: If (3.1.1) is

stochastically §—moment stable, then [ E||z(t)||°dt < 4oc. It follows that

400

k+1

E||z()||dt = Z/ Bl|z(t)|[dt = Z/Enx (k+ 1) dt < 400
(3.2.4)

Let Bx(t) = Ellz(k +t)||° > 0, and let B(t) = 3725 Be(t). From (3.2.4), we

obtain that A(S(f) = 4+o00) = 0 with A the Lebesgue measure on [0,1] and

henceforth 3(t) < oo almost everywhere on [0, 1] with respect to A. Therefore,

there exists a t* € [0,1] such that B(t*) < +oo, i.e., o7 Be(t*) < +00, so

we have limg_, o O (t*) = 0. Now, consider that for any ¢ large enough,

we have ([t] denotes the integral part of ¢) from (i) of Lemma 3.2.3 that
(¢, [t] — 1+ ¢*)||° < exp(k(t — [t] + 1 — t¥)) < exp(2x) = M. Then

E|z(t)|° = Bll@(t,0)z0l’ = E[|@(t, [t] — 1+ ¢*)@([t] — 1 +1*,0)zo[|°
< B{l|o( [t] - 1+ t)[1°|2([t] = 1 +1*, 0)zol}
< ME||®([t] — 1 +t*,0)x0]°
— MEa(ff] = 1+ 9)° = My (t) — 0, (t - o)
This means that (3.1.1) is d—moment stable.
d—moment stability implies exponential d—moment stability: Suppose that

(3.1.1) is 6-moment stable. Then, for any ¢ € Z lim;_, 1o Ey{[|®(¢,0)[|°} = 0.

This implies that there exist sufficiently large m > 0 so that

I¥l€a§<Eei{||‘1’(tma0)|l5} <p<l
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and it follows that

IgggEc{H‘I)(tm,O)ll‘s} <p<L (3.2.5)

From (3.2.5), we have for any £ € Z and [ > 0,
el (t4mt) Y17} < . P — 5. (3.2.6)

For large k, let k = pm + q with 0 < ¢ <m — 1. For ¢ € [tg,tx11), we have

Ep{ll@(t,0)[1°} < By {l|®(t, tpm |5H||¢> tim, ti—1ym) ||}

= Ey{Ey ... Ey{Ey{]|2(t, pm)ll prm}H‘I’( pms Ep—1ym) || FED™Y

AT (tm, 1)1}

(323 51—ty
< I Ey{Ey . Ey{[|®tpms tp—1ym)[I°|F }

AT (tm, 1)1}

(3.2.6)

2 q+1 q+1 _—m/q; 1/m\k def 1k
< TP =TT T (pt M) = M py

(3.2.7)
where 0 < M’ < 400 and 0 < p; < 1. Since there exist constants 0 < a < 8 <

+00 such that

tr
a< lim — = Ilim ZTI < B, a.s.

k—)—i—oo k—)—i—oo

we have from (3.2.7) that
1 1 k 1 k
n log Ey {[|®(£,0)[°} < n log M' + n log p1 < n log M' + 7 log p1.
Taking the limit ¢ — +o00, we arrive at
- <a !
i~ log B, {[[(2,0) ) < 0~ log py < 0.

This implies that the system (3.1.1) is exponentially j —moment stable. Sum-

marizing the above, we have established the equivalence of the j—moment
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stability, the exponentially d—moment stability and the stochastic ) —moment

stability.

Exponential §-moment stability implies the almost sure stability. Suppose that
(3.1.1) is exponentially J-moment stable, i.e., for any ¢ € =, there exist M" > 0

and 0 < po such that
Ey{[|®(£,0)|°} < M" exp(—pot), Vt > 0. (3.2.8)

To show almost sure stability, by (i) of Lemma 3.2.3, it is enough to show that
for n € Z integer,
lim [|®(n,0)]|=0, Py,—as. (3.2.9)

n—+4oo

Let g ef lim,, s o0 ||®(n, 0)|]. For any € > 0, by Markov inequality we have

Pylg> et =Py U {ll®(n,0)]l > }}

>0n>m .
<Py { J {lI2(n,0)] > c}} < Y Pyu{l|®(n,0)]| > ¢}

+o0
1
<Y SEllem, 0%

Therefore, Py{g =0} =1 and (3.2.9) holds. [

This theorem is very important because the moment stability of jump
linear system with a finite state Markov form process has special features, from
this theorem we can obtain the following characterization for the —moment

stability, define the top d—moment Lyapunov exponent:

— 1
9(6) = T~ log B|(t,10)]
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then the system (3.1.1) is 6—moment stable if and only if g(d) < 0. This result
is not true in general. For certain systems, even though the system is J-moment

stable, g(d) = 0 is possible, Theorem 3.2.2 excludes this case.

In [74], Feng et al studied the relationship between almost sure and o-
moment stability and showed that for one-dimensional jump linear system
(3.1.1) with a Markov form process which has a single ergodic class, the
d—moment stability regions is monotonically increasing and tend to the almost
sure stability region as 6 | 0T. They further conjectured that this is also
true for the high dimensional cases. In the following, we will verify this
conjecture. In the rest of this section, we assume that o; has a single ergodic
class F C S without specification. Let m € = denote the unique invariant
(ergodic) distribution of o supported on E. Define the top (sample) Lyapunov
exponent as

ay(w) = t_lé—grnoo log ||®(t,0)]|], (3.2.10)

where in (3.2.10), ¢ signifies the dependence on the initial distribution ¢ € =.
Let o € R be the top Oseledec’s exponent [100], i.e.,

a= t_l}grnoo log ||®(t,0)]], P — a.s. (3.2.11)
which is a nonrandom constant. We have the following basic result:
Proposition 3.2.}:

Suppose that o; has a single ergodic class. Then, For any ¢ € =,

(i) ay(w) =0a, Py-as..
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(i) &= a™tlimg— 100 3 10g ||®(tk, 0)|| = ™ limp—y 4 o0 7 Ex{log || (tx, 0) ||},
Py-a.s. with
def . 1
a = lim Etk >0, Pr—as. (3.2.12)

k— +o00

Proof of Proposition: (i). It is enough to show that a.,(w) = a, P, -a.s..
for all + € S. In the case when ¢ € F, the result follows from the nonrandom
spectrum theorem [76]. Suppose now i € S\E. Since |S| is finite and F is the
only ergodic class, the first entrance time 7 of o, to E is finite P, -a.s.. Since
®(t,7) is invertiable, we have
0o, @) = T +log[0(L,0)| = Tm ~log||@(t, r)e(r,0)]

et oot (3.2.13)

= 1t_l)i_lrpoo A log ||®(t,7)|, P., —a.s..

However, by the time homogeneous property and the preceding argument

lim log||®(t,7)]| =, P, —as., Yi€S (3.2.14)

t——+o00

(3.2.13) and (3.2.14) yield the result for the case i € S\E.

(ii). Since oy has single ergodic class, (3.2.12) holds. The first equality
holds trivially, because the sojourn time 74 = t541—1 is almost surely bounded

and then for ¢t € [tg, tgy1),

— 1 — 1
a= lim -log||®(0)[|= lim - log||®(t, tx)(ts,0)]

t— 400

— tg _]_tk1
=1 —) " ——log||® Py, —as..
i (5B g jog o)), Py s

We show the second equality next, i.e.,

1
— 4,1 7 - _
a=a kgrfoo kEﬂ{log |®(tg, 0)]|}, Py — a.s.. (3.2.15)

First of all, the existence of the limit in (3.2.15) follows from the fact that

ap E {log||®(tg,0)||} is a subadditive sequence by the stationarity. Let
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k =pm + q with 0 < ¢ < m, then using the sojourn time description of o, we
have

1 1
7 L0g |22k, 0)[| = 7 log | exp(Ar, k) - - exp(Ary 7o) |

1
< z log || exp( Ay, ) - - - exp(Ar,,,, Tpm) ||

p
> logllexp(Ar,,, , Tjm—1) - exp(Ar; ), T-nm)ll  (3.2.16)

pm+q i

Since || exp(A;t)|| < exp(kt) for t > 0, we have

1
% log || exp (A, 7)) -- -exp(Arpm,lT(rpmfl))H
1
<  logl| exp(Ap, 7)) -+ || exp(Ay,,, )| (3.2.17)
(rpm+q) . (rpm—1)
SMT T "2 Py — as.

k

Moreover, since o; has a single ergodic class implies that the Markov chain
{Ck = (rg, ) : K > 0} has also a single ergodic class, and so does the Markov
chain {({¢j+1)ym—1,--->Cjm) : J = 0}. From the Law of Large Numbers, we
have

Ll
m ; log | exp(Ay,, \ Tjm—1) -+ exp(Are, 1. (- 1ym)| (32.18)

= FE;log| exp(A,, Tm) - exp(Ar,70)]-

From (3.2.16)-(3.2.18), we obtain

1
1. - 1 A’r P A’I”
Jm - log ] exp(Ar, 7i) - - exp (A 7o) | (3.2.19)

< E7r log || eXp(ATm_ﬂ—m—l) te 'eXp(AT'oTU)H

Let 1
y=lim —FElog|lexp(Ar, iTm-1) - exp(Ar, 7o)
1
Br = 1 og || exp(Ar, k1) -+ exp(Aromo))|

k—1

1
We =7 glog || exp( Ay, 7)|| — Br
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then wy > 0. From the Law of Large Numbers, we obtain

. w1
lim wy, = Er log | exp(Ary7o) || — Lim 7P

k— 00

(3.2.20)
g log || exp(Ar,mo)|| — aa Py — as.

On the other hand, by statioarity, we have

1
Erwy, = Ex log|| exp(Arg7o)|| — 7 Ex{log || exp(Ay,_,7h-1) -+ exp(Ary o) |

k— oo

— Erlog |l exp(A,,70)| —
(3.2.21)

From Fatou’s Lemma, (3.2.20) and (3.2.21), we arrive at ac > . This together

with (3.2.19) implies that ac = y. The proof of the proposition is completed.
[]

Note that a < 0 is equivalent to the almost sure exponential stability.
Now, we begin to study the relationship between J-moment stability and almost
sure stability. The d-moment stability region ¥ and the almost sure stability

region X% in the parameter space are defined by
¥ = {(A(1),...,A(N)) : (3.1.1) is 6-moment stable.}

and

Y ={(A(1),..., A(N)) : (3.1.1) is almost surely stable.}
respectively. We can decompose ¥ into disjoint union in the form
Y =X UX§

with
5o Ly {(A(1),..., AN)): a < 0}

and

ne €50 N {(A(1),..., A(N)) : a = 0}
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Then, ? is the almost sure exponential stability region. It is very intuitive
that for the “linear” system (3.1.1), the (asymptotic) almost sure stability is
equivalent to exponential almost sure stability, i.e., 3§ should be an empty set.
However, a rigorous justification seems to be hard to find at the moment. The

following is one of our main results:
Theorem 3.2.5:
For the system (3.1.1) with a (general) Markov form process o,
(i). For any 0 < §; < 62, X% C X% C %% and 2% is open.
(ii). If oy is irreducible, i.e., E = S, then

¥ = lim X0 = | | 20 c ne. 3.2.22
* = lim 6L>J0 ( )

[

Before we prove this theorem, we would like to comment on the result.
This result states that the d—moment stability region in parameter space
becomes larger and larger as d becomes smaller and smaller and when 0 is
sufficiently small, the ) —moment stability region is coincident with the almost
sure exponential stability region, so the almost sure stability can be studied by
investigating the d —moment stability for sufficiently small 6. To the author’s
knowledge, traditionally, the almost sure stability of the system is inferred from
the second moment stability. However, as observed in many researches, for
example ([74]), the second moment stability is usually conservative for stability,
compared with the almost sure stability. It seems to be much more difficult
to deal with almost sure (sample) stability properties directly, for example, to

compute or estimate the (top) Lyapunov exponent «. This theorem provides
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an alternative approach to study the almost sure stability. Indeed, as we will
see later, 6 —moment stability can be used to give better testable criteria than

second moment stability for almost sure (sample) stability.

To prove Theorem 3.2.5, we need a few basic results. The key result used

is the following Large Deviation Theorem:
Lemma 3.2.6: (Large Deviation Theorem)

Suppose that o; is irreducible with a unique invariant distribution 7. For
any fixed m > 1, let A = E {log ||®(tsm,t0)||}. Then, for any € > 0, there exist
M, 6 > 0 such that

p—1

1
PW(]5 > 108 @t (j+1yms tim) | = A+ ) < M exp(—dp). (3.2.23)
=0
L]
Proof of Lemma. Define
p—1
Yy =3 108 [ ®(tis1yms tim) I,

j=0 (3.2.24)

¢, (8) = %log B {exp(6Y,)}.

Then we have .
p—

cp(6) =log Ex H ||(I)(t(j+1)m7tjm)||6'
j=0

We first show that ¢(d) = lim,_, 4~ ¢, () exists for all 6 € R (possibly be +00).
For any sequence | = (ig,%1,...,im_1) € S™ and § € R, write
A(l7 6) = A(i07 Z.17 ) im—l; 6)

= Ex{|®(tm, to)|1°|70 = 0,71 = 1, oy "1 = im_1}



181
Then, using the sojourn time description of o;, we have
A(l;0) = Ao, 1y -+ im—1;0)
/||e im—1Pm-1glin_oPm-2  pAiohod (3.2.25)
Wiy 1 (ABm—1) iy, 5 (ABm—2) - - - prig (dBo) > 0

where in (3.2.25), u; denotes the measure induced by the exponential distri-
bution function with a parameter ¢;. Clearly, as a function of 0, A(l;0) is
differentiable function on its domain of definition, which is a nonempty open
interval contains & = 0. Since o; is irreducible, the embedded chain r; is
therefore irreducible. It follows that the chain 7; = (7(j41)m—1,---,7jm) for

J=0,1,...1is also irreducible with a state space

S:{(io,...,im_l) ESmZPW(T'k+m_1 :im_l,...,rk:io) >0,E|k20}

Suppose that |S| = N and that we have ordered the states in a certain way so

that for k € {1,2,..., N} A(k;0) is defined obviously. Now, consider that

p—1
E AT 1®CGanm: tim) I} = D Tigbiois -+ Pipmsipms
Jj=0 20,--lpm—1
p—1
X Ex [T 112G 1yms tim) 12 IFpm—1 = ipm—1, .-, 70 = io}
5=0

= E T3 Pigis ---Pipm_Qipm_lA(loaha coeytm—1; 5)

7:0;~~~77:pm71

X A(va im~|—1a ey l2m—1; 6) s A(i(p—l)mv i(p—l)m—i—lv K] ipm—l; 5)
p—1 p—1

- Efr{H A(fj; 6)} = Z ﬁloﬁloh . 'ﬁlp72lp71 H A(la 6)
]:0 lo,...,lp_l =0

= Y (F5oA0; 0) (Bioju A1, 6)) - - (B, 1 Ap—139))
loyeoslp—1
= z" (B(9))" %y,
(3.2.26)
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where in (3.2.26) P = (Pji) i« s the transition matrix of 7 and 7 =

(71,...,T5) is its initial distribution induced by m, and
0 £ (7 A(1;6), ..., 75 AN;6)) > 0
yT =(1,1,...,1) >0 (3.2.27)
B(0) = (piA(l;:0)) gy = 0.

Since the transition matrix P is irreducible and A(I;6) > 0, we see that
B(9) is an irreducible nonnegative matrix. Next, we show that with ¢, () =
log zT B(0)P~2y, ¢(8) = limy_, 0 %cp(é) exists and is differentiable at any point
where it is defined. Since B(0) is irreducible nonegative matrix, from matrix
theory [148], there exists a positive vector v such that B(d)v = p(B(J))v. Since
v and y are positive vectors, there exists positive numbers L > 0 and U > 0
such that Lv < y < Uv and zTv > 0 because of the nonnegativity of = # 0.

Thus, we have
cp(8) < logzT BP~2(Uv) = log{UzT p(B(5))P~*v}
=logU + (p — 2) log p(B(9)) + log & v,

from which we obtain that

lim 1cp(é) < log p(B(6)). (3.2.28)

p—00 p

In a similar way, we have
cp(0) > log L + (p — 2) log p(B(6)) + log z" v,

from which we have
lim e, (8) > log p(B(5)). (3.2.29)
p—oo P
(3.2.28) and (3.2.29) yields
def ;. 1
c(0) = lim —cp(d) = log p(B(9)).

pP—00 p
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Due to the continuity of B(d), D(c) o {6 € R:¢(0) < 400} is a nonempty

open interval containing 0, and c is a closed convex function. Furthermore,
because B(0) is irreducible, p(B(0)) is simple [148]. Due to the differentiability
of B(d), it follows that ¢(d) is differentiable [160]. Therefore, From Theorem
IV.1 of [155], we obtain that there exists v such that for any € > 0 there is
n(e) > 0 such that

1
P (1291 2 2) < explom) (3.2.30)
b

for sufficiently large p. However, by the Law of Large Numbers, we should
have v = A. Thus, (3.2.23) follows from (3.2.30) directly. [

Lemma 2.7:

Suppose that oy is irreducible. If the top Lyapunov (Oseledec) exponent
« is negative, then there exists a § > 0, such that limy—, 1o Ey||®(¢,0)]° = 0

for any ¢ € 2 []

Proof of lemma: Since oy is irreducible, we have 7 = (my,...,7x) > 0. Since

By} = SN iBe, (-}, it is enough to show limy o0 Ex{|®(t, ) |7} = 0.
From Proposition 3.2.4, there eixsts €; > 0 and large m > 1 such that
E{log ||®(tg, to)||} < m(aa +e1) <0. (3.2.31)

For d < 0 to be determined, let & = pm + ¢ for sufficiently large k£ with

0 < g < m, consider that

1
P, (ElogH@(tk,tl)H > d)

1
= Pr <E log ||(I)(tkatpm)q)(tpmv t(p—l)m—i-l) e (b(tmatl)H > d)
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P'/r( log [|® (£ tpm) [[[| D (Epm Ep—1ymra)[] - - [| D (Ems 1) [| 2 d)

p 1
= Pr klogll@(tk, pm)ll + Zlogll@ tjt1ym, tim)|| = d
] 0
124 1 k
— P, EZlogHQJ ti1yms tjm)|| > ——log||q)(tk, tom)|| + — d
7=0

(3.2.32)

Since || (¢, tpm)|| < exp(k(ty — tpm)) < exp(k D7, Tk—j), we have

q
Er{||®(tk, tpm )1 < Ex{exp(016 > 7ij)}
7=1
400

< (/ exp(d1kt)qexp(—qt)dt)? < My < +00
0

for sufficiently small §; > 0, where ¢ = min;csq; > 0. It follows from

Chebyshev’s inequality that for €5 > 0 small,

1
P, (5 10 |t tym)| > ) = Py (19 (tr tym) | = )

= Bal|®(tk, tpm)[|
- ep5251

(3.2.33)

< M1 (6_6162)p .
From (3.2.32), we obtain

1
P, <Elog||¢>(tk,t1)|| > d>

p 1

k
S D Zlog ||CI) t(]—{—l)ma ]m)” > - lOg ||(I)(tk? pm)” + d
7=0
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122 1 k
= Pr| =) 10g ||t 1yms tim) | > == 10g | @ (tr, tpm)|| + —d
P P D

1 1
[~ Tog [ (te. tyn)| > —ez) x P, (—Elog||<1><tk,tpm>|| > —62)

121 1 2
+ P (1—) > " 10g @ (¢ (j41yms tim)[| > - 10g (| (tr, tpm) || + ];d
j=0

1 1
= 2 log [B(tx, )] < —ez) P (= g 10018, )| < 2 )

1
<P, (]5 1o 19t tym)| > )

15 k
+ P | =) log |0t (j41yms tjm) | > —€2 + —d
et p
(3.2.33) 1 Pt k
< M (6_6251)p + Pﬂ_ I—)Zlog||(b(t(_7+1)m,t]m)|| 2 —€9 + Z_)d
=0

(3.2.34)

Note that kd/p = md + qd/p and (ac + €1) < 0. Select €3 above small and

ez > 0 small and sufficiently large pg > 0 such that

€2+63 <0

d% (ac +€1) +

(3.2.35)
€4 ‘1:ef83+%d>0 Vp > po.

Then, from (3.2.31) and (3.2.34), we have

1
e ( tox oeu, )] > )

(3.2.34) 5 oD 1 bt q
< M (e7%2)" + Py 5210g||q’(t(j+1)m,tjm)|| > —e5 + 1—)d

=0

—1
1% ¢
= Pr | = D108 l1®(Ugayms )| 2 m(aa+ 1) e+ d
=0

+ M(6_6261)p
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N

10g||‘1> bg+1yms tim) || = Ex{10g |®(tm, to)[|} + €4

(3.2.36)
Applying Lemma 3.2.6, we have that there exist M’, ¢’ > 0 such that
1 )
P, (E log ||®(tx, to)]| > d) < M'e—ck, Vk >0 (3.2.37)
Next, we want to prove that there exists o > 0 small such that
lim %% P (dw) = 0. (3.2.38)

In fact, for do > 0 sufficiently small,

= E TioPigir * " Pig_ o261

20,3tk —1

02K (To+---+Tp —Qi T —qi;, Tk—
/ 62 (0 k 1)%'06 Qig 1...qik—le i 1Lk ldl'o"'dl'k_]_
(ml—{—---—{—mek,ijO)
400
—(qin —02K)x
< E TioPigiy * " Pig_si_1 /%’06 (a0 =021)0 lpp
B0 yee eyt —1 %

Al

(QZ —d2 K')‘Tj .
dx;

o\+

k-1

§ : —d2k)k
= Triopio’il : plk QZk 1 (qlo 2’/‘;) H

20,3tk —1

This shows (3.2.38).

_— > 0, k — —+00.
QzJ - 52’€

Now we are in the position to prove that limy_, o Er||®(t,to)]|* = 0 for

small ¢’ > 0. We first show that for small 6 > 0,

lim  Er||®(ts, to)||° = 0. (3.2.29)
k— 400
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Let
1 e_ (1
A= (ElogH(D(tk,to)H > d) , A= <E10g||<1’(tkat0)|| < d)

where d < 0 is chosen previously. For § > 0 to be determined, consider that

B |@(ta.to) | = [ 10(tn,t0)|"Prld) + [ |0(t1t0) | Pr(a)
A Ae
S/ eéntkPﬂ.(dw)—l—ekéd
A

= / eFt P (dw) + / e%Fte P (dw) + eFod
AN(ty<k) AN(ty>k)

S/ e&ntkPﬂ_(dw)_'_/ e&ntkPﬂ_(dw)_'_ekcsd
AN(tr <k) (tx>k)

< eF P (A) + / "t P (dw) + eFo?
(tx>k)

(3.2.37) )
< M/e—(e —0k)k + / 66Htkp.,r(dw) + ek&d
(tk>k)
(3.2.40)
Select 6 > 0 such that ¢’ — 0k > 0. Then, as k — +oo the first and the last
terms go to zero exponentially and the second term goes to zero as well from

(3.2.38). This establishes (3.2.39). Now, for ¢ € [tg,tx+1),

Eo{]|(t,10) 1} = Ex{[|19(t, 1)@ (tr, t0) |17} < Ex{[19(2, 1) |1” [ @t t0) |}

< Eo {2 | (tr, t0)]|° } = Ba{En{e® ™ |F*}| Bt to)])° }
(3.2.41)

Select 0 < ¢’ < 0 satisfying 8’k — ¢ < 0 such that from the Markov property,
we have

+o00
E {e?" | FF) < / e RtGem it < M" < 400 (a.s.). (3.2.42)

0

Note that by Lyapunov inequality, 0 < ¢’ < § implies that

(Br{1@(ts t0) 1" DY < (B {1 @t t0) I°})°- (3.2.43)
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Then, (3.2.41)-(3.2.43) yields
B[]0t t0)[|” } < M" B {[|B(th, t0)[|” } < M" (Brf || @t t0)[° 1)/

Taking the limit k — 400 (or t = +00), limy_, 400 Er{||®(t,10)]|% } = 0 follows
from (3.2.39). ]

Now, we are ready to prove Thereom 3.2.5.

Proof of Thereom 2.5: For (i), by Lyapunov inequality, for 0 < 0; < do, we

have

(Eyp{lle(t 0)[1 DY < (By{lle(t, 0)[11) 1.

Thus, 2% C £%. By Theorem 3.2.2, we know that £ C 3% We need to
show that ¥ is open for any § > 0. Suppose (A(1),..., A(N)) € X°. Then, for
system (3.1.1) with mode matrices (A(1),..., A(N)), the system is -moment

stable. Then, for any 0 < p < 1 given, there is a sufficiently large m such that

GAQ),..., AN) € B, {|®(tm. to)|I°} < p, VI<i<N.  (3.2.44)

Since

GAQ), ..., AN = D Pity - Pinygim s

il:"'vimfl

/ leAimatmt A (1) pa(dt)

is continuous, for (A(1),..., A(N)) in a neighbourhood of (A(1),..., A(N)),
(3.2.44) still holds (for (3.1.1) with mode matrices (A(1),..., A(N))). Consider
that for t € [ty, txy1) with sufficiently large k and k = pm + q with 0 < g < m,

from Lemma 3.2.3, we have for any ¢ € =,
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p—1
Ep{[l@(t,t0)[1°} < By {12t tpm) [I° T T 12t 41yms i) 17}
7=0
p—1
= By {Ey {9 (t, tpm) 1”177} TT 19t 1ymo tm) |17}
7=0
p—2
< By LBy {1© (s to1ym) I FPD™F TT IR Gt 1yms tm) 1%}
7=0
p—2
< pBy ([ T I1@CEG1ymo tim) [} < oo < ml@HDpP
7=0

(3.2.45)
In arriving at (3.2.45), we have used the time homogeneous and Markov prop-
erties and where in (3.2.45) 7 is given in Lemma 3.2.3. It follows from (3.2.45)
that lim;_, 1o Fy{||®(¢,£0)|°} = 0. This shows that (3.1.1) with mode matrices
(A(1),..., A(N)) is also 6-moment stable. Thus, £° is open.

For (ii), note that 3% C Us>0X? by Lemma 3.2.7 and UsoX° C ¢ by
Thereom 3.2.2. Hence, we have

$e = }igi ¥ = UssoX? € DO

[

Theorem 3.2.5 characterizes the relationship between almost sure stability
and J—moment stability for continuous-time jump linear system (3.1.1). This
result is similar to the result presented in last section. The following example

is adopted from [74], which illustrates Theorem 3.2.5 graphically.
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Example 3.2.8:

Consider the two form scalar jump linear system:

jjt = CL(O't).Tt, t 2 0
2.4
{ To €ER (3 6)

where o; € {1,2} has the infinitesimal matrix

Q:<_q q), 0<q<+o0 (3.2.47)
q —q

with unique stationary distribution 7 = (1/2,1/2). Let a; = a(i) for i = 1, 2.
We can directly compute the d-moment of the solution process using the

sojourn time description of o; given before. For any § > 0, we have

400

k
E{|xy, (z0,w)|°} = |zl Z Diy Piyin -+ - Dig_vi H ai, / p9a(ii)t o= ai;t gy
(ilr“vik) Jj=1 0
(3.2.48)
Since
1 o, ifi=y _ ..
pi_§7 plj_{17 1fl7£]7 q; = 4, VZ7JE{172}7
it follows that
q l q I Fy
E N — . 3.2.49
(s (0.0)1") = (—5)' (—55) ool (3.2.49)

Together (3.2.48) and (3.2.49) imply that a necessary condition for §-moment

stability is

5a1 <q

das < q (3250)
q q

(q—éal)(q—&m) <1

It is easy to show that (3.2.50) is also sufficient for J-moment stability.
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It can be easily proved that a necessary and sufficient condition for almost
sure stability is a; + a3 < 0. Figure 2 illustrates the stability regions in the
(a1, a9) parameter space for almost sure and d-moment stability. The stability
region for )-moment stability increases as d decreases and it tends to the region

for almost sure stability as § goes to 07.

Fig. 2. Stability regions for system (3.2.46)
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3.3. Testable Criteria for Almost Sure Stability

In the above section, we have shown that the almost sure stability of (3.1.1)
can be studied by the §—moment stability. It is expected that d—moment sta-
bility criteria may give refined almost sure stability criteria as 6 > 0 becomes
sufficiently small. In this section, we develop some testable conditions for al-
most sure stability via the relationship between d-moment stability and almost
sure stability we established in the previous section. The following theorem is

our main result of this section.
Theorem 3.3.1:

If there exists positive definite matrices P(1),..., P(IN) such that for any

i with 1 < i < N,

sup

x' (P(i)A() + A’ (i) P(i))x o ' P(j)z
Jol=1 w' P(i)a 2l ( P

j#i
then there exists a § > 0 such that (3.1.1) is J-moment stable and thus, (3.1.1)

is almost surely stable.
[

Proof of Theorem. Let x; = x(t,xp) and o, = o(t). The joint process
{(z¢,04) : t > 0} is a strong Markov process with right continuous sample path
and the (weak) infinitesimal generator

L=Q+ diag{x’A’(l)%, ol A (N) =1, (3.3.2)
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Consider a Lyapunov function in the form V(z,i) = (z'P(i)x)%/? for x € R

and ¢ € S. Then, we have
al 5
T,0) = Z gij (' P(i)x)/? + .T/Al(i)§($/Al(i)$)6/2_l(2p(i)$)

' (AT (i N\ 272
= PG | § XA OO POAG +Zq” (o)

© (@' P(i)2)"/?0(z,1) = V(z,1)O(z, i, 6).
(3.3.3)

Next, we want to prove that if (3.3.1) holds, then there exists a § > 0 such

that for any ¢ € S,

||51”1£1@($,i, J)
= su éx’(A’(i)P( i) + P(i) ﬁ 9/2
iz | 2 v’ P(i)x +qu< Pli)e ) <0

(3.3.4)

For notational simplicity, let

M;() = ZAOPO) + POAD)z

o Pj)e
x'P(i)x '

' P(i)x

, Gi(z) =

Suppose that (3.3.4) is not true. Then for some i € S and integer k, with

d = 1/k, there exists xj such that ||zg|| = 1 and

(o +qu (z) 2R > (3.3.5)

. def . .
Since S™ = {z : ||z|| = 1} is compact, there exists a convergence subsequence

of xx. With loss of generality, assume that there exists a sequence {d;} and
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sequnece {zy} satisfying 6y | 0% and zx, — zp € S™ as k — oo (where

||zx|| = 1) such that
() + Zq” (2)%/2 >0 (3.3.6)
By continuity, for any € > 0, there exists a kg such that for & > k),
0 < Mi(z) < M;(xo) +e, 0<Gj(zx) < Gj(xo) +e.
From (3.3.6), we have

)
—q; + — r

92 (M (.”170) + 6 + ZQU -770) + 5)6k/2 >0 (337)

J#i
Since ¢; = Zj# gij, we have E#i ¢ij/qi = 1, and
2/8k

lim Zq” (Gj(mo) + €)%/ —H (0) 4 )1/ %,

k—o00 - q;

J#i J#i

It follows that for any €; > 0, there exists a k; > kg such that for & > kq,

2/65
qﬂ(GJ(."Eo) _|_6)5k/2 < H ~T0 +€ qu/(h + e,
j#i i
i.e.,
O0r/2
0< > % (Gylwo) +0)%" < | T](Gylao) + )"/ 41
iz & i
Taking this into (3.3.7), we obtain
o1/2
) o
Ek(Mi(.’Eo)—Fé‘) —q; +q; H(Gj(ZL'o)—Fé‘)q”/ql +e1 >0

JF
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Rewriting this in the following form:

51 /2
L= (T Giloo) £ )t/ +2)
>
5k/2 -

M;(xo) +€—q;

Letting k¥ — oo and using the fact that lim,_,o(1 —a®)/z = —loga for a > 0,

we have

Mi(l'0)+€+qi 10g H(Gj(l’o)'Fé?)qij/qi + &1 >0
J#i
Since € and e; are arbitrarily chosen, the following can be obtained from the

above:

M,(CE(]) + Zqij log Gj(a:()) Z 0.
J#t

Therefore,

sup | M;(z) + ZQU logGj(x) | >0,
lzl|=1 j#i

this contradicts to (3.3.2). So we have proved (3.3.4).

Now, for the choice of § > 0 in (3.3.4), let —y = sup,=; O(z,4,9) =
SUp,0 ©(7,1,6) < 0. From (3.3.3), we obtain

(LV)(z,0) < —y(z'P(i)x)%/? = =V (z, ). (3.3.8)
Applying Dynkin’s formula and Fubini’s theorem ([94]), we have
t
E{V (x4, 0¢)|x0 =2,00 =i} — V(x,i) = E{/ (LV)(zs,05)ds|xg = x,00 =i}
0

¢
< E{/ vV (zs,05)ds|zg = x,00 =i}
0

t
= —’Y/E{V(ZES,O'S)|ZE0 = z,00 = i}ds.
0

(3.3.9)
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Applying the Gronwall-Bellman Lemma, we have for any x # 0 and ¢ € S,
E{V(zy,0¢)|x0 = 2,00 =i} < V(xp,i)exp(—yt), Vt>0.

Let j\min = minlSiSN )\min(P(i)), we have

B{||z))’|wo = 2,00 = i} = E{(z}21)"/*|z0 = , 00 = i}
1 Vize. i
<=3 E{($2P(Ut)$t)6/2|$o =xz,00 =i} < Me‘“’t.

min )\min

This implies that the system (3.1.1) is exponentially J—moment stable and

thus almost surely stable. This completes the proof of Theorem 3.3.1. L]
Corollary 3.3.2:

If there exists pd matrices P(1),..., P(N) such that for any i € S,

Amax(P(0)A(8) + AT (i) P(i))P() ") + ) dij 10g Amax(P(j) P()) ") < 0.
i

then, (3.1.1) is J-moment stable for some ¢ > 0 and thus almost surely stable.

[

Proof of corollary. Using the fact that

2T Qx
sSup ———

= Amax (QP 71 3.1
||m||£1xTPx Amax(Q@P™7) (3.3.10)

where () is symmetric and P is positive deifnite, the corollary is trivial when

the maximization is done for each terms in (3.3.2). [

In the proof of the theorem, we use the Lyapunov function V(z,i) =
(z' P(i)x)%/? to obtain a sufficient condition for d-moment stability. In [74],
Feng et al established a necessary and sufficient condition for second moment

stability using a quadratic Lyapunov function (V with § = 2). It is very
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tempting to conjecture that V is also “necesary” for J-moment stability, i.e., if
(3.1.1) is J-moment stable, there exist P(i) such that V(z,4) = (2 P(i)z)%/? is
a Lyapunov function in the sense that LV < 0. Put in another words, we want
to claim that (3.3.4) is also necessary for d-moment stabiltiy for any 6 > 0.
However, we have not obtained a rigorous proof for the result so far. The

second moment case and the one-dimensional case illustrate the intuitive idea.
Proposition 3.3.3:

(i) (3.1.1) is second moment stable if and only if with 6 = 2, (3.3.4) holds,
Le., for i € S, sup ;=1 O(z,i,0) < 0 for some positive definite P(i)’s.

Furthermore, (3.3.1) is satisfied.

(ii) If n = 1, (3.1.1) is d-moment stable for some § > 0 if and only if (3.3.4)
holds if and only if (3.3.1) holds. It follows that if oy is irreducible,
(A(1),...,A(N)) € £ if and only if (3.3.1) holds. [

Proof of Proposition. All the “if” parts are established via Thereom 3.3.1
and Theorem 3.2.5. We show the “only if ” part(s) using a similar procedure
as given in [74]. For 6 = 2 or n = 1, suppose that (3.1.1) is J-moment stable.
Define the function V(T — t,z,i) for 0 <t < T < 400,

T
V(T i) = B [ o, | drls, = 5,00 = )
t

T—t
= E{ [l |Pdrlas = 2.0 = )
/ (3.3.11)

= (2" (E{ | (®'(7,0)®(r, 0))6/2d7'|00 = i})2/6$)6/2

O\’i

C @ M(T - t,i)z)/2.
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Note that since (3.1.1) is 6-moment stable, then P () et limyp oo M(T —t,1)

and thus V(z,i) = limp_, 100 V(T — t,z,i) are well-defined. consider that for

any 0<t<s<T,

d
EE{V(T —t,xg,0¢)|1e = T 00 = 1}

= li\{? . t[E{V(T —t,x5,05)|xy = w00 =i} = V(T —t,x,4)] (3.3.12)
= %V(T —t,x,1) + (LV)(T — t,z,0).

Note that limy_, 400 2 V(T — t,2,1) = 0 and also

1
—t[E{V(T — 8, Ts,05)|xy =z, 00 =i} — V(T —t,x,1)]
8 j—
1
= t[E{V(T — $,x5,05) — V(T —t,z,i)|xy = x,00 = i}]
S j—
. T
= tE{E{/(x'TxT)5/2dT|xs,as}
S j—

T
- B{ [ (e el 00} o = .00 = 1)
t

T T
1
= tE{/(;U'T:ET)6/2dT - /($'Tm7)6/2d7'|xt =z,00 =1}
S JE—
E t
1 s—t
= — tE{/ (;U'T;UT)6/2dT|$0 =x,00=1}
S J—
0
1 s—t
=Wl [ @ E00m0) drin = 702

0

Note also that with P(i) defined as above,

lim (LV)(T —t,x,i) =V (x,1)O(z,1i,0).
T—+o00

)

(3.3.13)

(3.3.14)
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From (3.3.12)-(3.3.14), we have
—x'z =V (x,4)0(z,1,0)

and

) : r'w def
Sup @ .T;, 27 5 S - ].nf T < a8 —
lz]|=1 (5:0) lzll=1 (2 P(i)x)/2

This shows that d-moment stability implies that (3.3.4) holds. It remains to

—v < 0.

show that (3.3.4) holds implies that (3.3.1) holds. Actually, (3.3.4) holds for

some & > 0 gives that

+qu )% <0

for all z with [|z[| =1 and ¢,j € S. Using the fact that —g;; = >_,,; ¢;; and

G;(z) = 1, and the inequality y — 1 > logy for all y > 0, we have

N
)
0> M ) + Zq” /2> §Mz’(5ﬂ) + ZQij(log(Gj ())*/* - 1)
5
= 5 [Mi(z) + > qijlog Gj()).
J#i
Taking the supremum, we have (3.3.1). [

From this proposition, we see that the testable condition (3.3.1) for §-
moment and almost sure stability is a stronger result than second moment
stability criteria, i.e., if (3.1.1) is second moment stable, then (3.3.1) holds.
For scalar system, the condition is necessary and sufficient for almost sure
exponential stability. It seems to us that that (3.3.1) is also necessary for
almost sure stability for higher dimensional systems. However, so far we have
not obtained a rigorous proof. The proof given above for scalar case illustrates

the idea as well as the difficulty. For scalar systems, the necessity of (3.3.2) for
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almost sure exponential stability can be justified algebraically. We know from
[74] that for one-dimensional system, if o; has a single ergodic class, then the

top exponent is given by

a=mAQ)+...+ 7NvA(N) =7a (3.3.15)
where a = (A(1),..., A(N))".
Theorem 3.3.4:

For one dimensional system (3.1.1), suppose that oy is irreducible. The
system is almost surely exponentially stable if and only if 7a < 0 if and only
if (3.3.1) holds for some P(i)’s if and only if there exists a y € RY such that
a+ Qy <0. [

Proof: We only need to establish the equivalence of those three algebraic

conditions.

Consider that for any P(i) > 0, we have for any i and =

M;(z) + Z qij log Gj(x)

JFi
= 2A(i) + Zqzj log i(('z)) = 2a; + Z%’j log P(j) — (Z qij) log P(i)
J#i g G
N
=20, + Y _¢ijlog P(j) = 2(a + Q(log P(1),...,log P(N))").
j=1

Thus, (3.3.1) holds for some P(i)’s if and only if a + Qy < 0 for some y € RY.
Next, we show that a + Qy < 0 for some y € RYN if and only if 7a < 0. If
a+ Qy < 0, then w(a + Qy) = ma < 0, since m > 0 due to the irreducibility.
On the other hand, assume ma < 0. We first show that Im(Q) = {y € RY :

7y = 0}. In fact, if y € Im(Q), there exists z € RY such that y = Qz. Since
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7@ = 0, we have 7y = (7Q)z = 0 and thus Im(Q) C {y : 7y = 0}. However,
dim Im(Q) = rank(Q) = N — 1 due to the irreducibility (or uniqueness of ).
Thus, Im(Q) = {y : 7y = 0} because dim Im(Q) = dim{y : 7y =0} = N — 1.

Now, let

Ta
/7r' e RV,

y=—a+t_
T

since 7y = —mwa + 2%’ = 0, we have y € {y : 7y = 0} = Im(Q), thus there

!

exists a z € R, such that Qz = v, i.e.,
Ta
Qz+a=—n <0,
T
since ma < 0 and «’ > 0. This completes the proof. [

From the above proof, we can observe that Im(Q) is just the boundary of
the almost sure stability region in the system parameter space. Since Theorem
3.3.1 is very general result for almost sure stability, by specifying the positive
definite matrices P(1),..., P(N), we can obtain some simple test criteria for

almost sure stability.
Corollary 3.3.5:
Define pp(A) = Amax(PAP™Y + A’)/2. Then

(i) If there exists a positive definite matrix P and y € R¥ such that u+Qy < 0
with u = (up(A(1)),...,up(A(N)))’, then (3.1.1) is almost surely stable.

(ii) If there exists a positive definite matrix P such that
mipp(A(L) + mopp(AQ2) + ... + v pp(A(N)) <0,

then (3.1.1) is almost surely stable. [
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Proof of Corollary: (i). In Theorem 3.3.1, let P(i) = a; P for some «; > 0.
Then

p | SEOAO L HOPhe | 5 (7))

i#i
' (PA(@) + A'(i
= sup ( ()/P +Z(J1,]10g_
lz|=1 xr j#£i
' (PA(i ) + A'(i
= iil
o A S,
N
= Max(PAG) P~ + A'(4)) + qu logaj = 2pp (A7) + Zq,-j log o
j=1 j=1

From proof of Theorem 3.3.4, we know that

N
pp(A(i)) +Zqij log/a; <0, i=1,2,...,N
j=1

if and only if there exists an y € RY such that v + Qy < 0. From this and
Theorem 3.3.1, we obtain proof of (i). Note also that in the proof of Theorem

3.4, we have shown that u + Qy < 0 for some y if and only if
mipp(A(1)) + mopp(A(2) + -+ mvpp(A(N)) < 0.

Thus, (ii) foloows. This completes the proof. [J

Though Theorem 3.3.1 is theorectically attractive, so far we have not found
a rigorous procedure to select the positive definite matrices P(1),..., P(N) so
that (3.3.1) holds. Now, we give some necessary conditions for (3.3.1) to hold.
Define

i) = x'(P(i)A(7) +A£;(2)P(z))x N Z%’j log <z’/];((z))z> 7

J#i
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which are continuous functions on the sphere S™ for all i € S. (3.3.1) is

therefore equivalent to

' (P(i)A() + A'(4)P(i))x *'P(j)x .
ij 1 0, V S, S.
z'P(i)x * ;qﬂ °8 x'P(i)x < ve LE
(3.3.16)
From this we obtain
o/ (P()A() + A'()P(i))r - o ,
11 P ) n7 .
7 P0)z +jz::1qj og(x'P(i)x) <0, VreS" ieS
o (P)AQ)+A (1)P(L)
o’ P(1)z log(z'P(1)z)
: +Q ; <0 (3.3.17)
w'(P(N)A(m]’VI))}}—‘Ié)’iN)P(N))w log(a:’P(N)a:)

Multiplying both sides of (3.3.17) by = and using 7@} = 0, we obtain the

following necessary condition for (3.3.1) to hold.
Theorem 3.3.6:

A necessary condition for (3.3.1) to hold is

' (P(1)A(1) + A'(1)P(1))z ' (P(N)A(N)+ A'(N)P(N))x

™ z'P(1)z LR z'P(N)z <0
(3.3.18)
for any = € S™. [

Since the second moment stability implies (3.3.1), we see that (3.3.18) is

also a necessary condition for second moment stability. [

It is tempted to conjecture that (3.3.18) is also a sufficient condition for
almost sure stability. Unfortunately, this is not true. The reason for this is
the following: Suppose the conjecture is true. If A(1),..., A(N) are stable

matrices, from Lyapunov’s equations, there exist positive definite matrices
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P(i) for i = 1,2,..., N such that AT (i)P(i) + P(i)A(i) = —I. Taking this
into (3.3.18), we can verify that (3.3.18) is satisfied. But as we will see in the
following examples that the stability of A(1),..., A(N) does not guarantee the

almost sure stability of the system (3.1.1) in general.
Example 3.3.7:

(i). Consider the harmonic oscillator:
uf + k(L +b&)uy =0, t >0

where {&;} is a random telegraph process with state space {—1,+1}, i.e., a
two state time-homogeneous Markov chain with the infinitesmal generator

Q= <_qq _qq> From Feng and Loparo ([78]), we know that for any k& > 0
and b € (—1,+1), the Lyapunov exponent exists almost surely:

1
a= lim = log\/u2(t) + k2u2(t)

t—4oo t

regardless of the initial distribution of & and the initial state (u(0),(0)).

Furthermore, the number « is strictly positive.

Now, let £ =1 and b = 0.5. We have the following state space represen-

tation for the oscillator: &(t) = Ap(&)x(t) with 1 = u, x5 = u and

(2 )= ( 8 1)

Define a new system &(t) = A(&)x(t), where A(—1) = —0.5af + Ap(—1) and
A(+1) = —0.5ad + Ag(+1), it is easy to show that A(1) and A(2) are stable

matrices. However, the top Lyapunov exponent for this system is

1
& = lim —log||z(t)|| = —0.5a + @ = 0.5 > 0. a.s..

t—oo t
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Therefore, the system is almost surely unstable.

(ii). We give another example to show that the individual modes stability

does not guarantee the almost sure stability. The proof is elementary.

Let

aw= (L) = (30 L) e (1),

where @ > 0 and ¢ > 0 are to be determined. Using the same notations as

before, we have

@(tk+1, 0) = eXp(A(Tk;)Tk) T eXp(A(TO)TO)

—en (=) (0 1) (L ) (6 )

Let M(A) denote the largest element of A, then it is easy to verify that

k
M(®(tga1,0)) > Tk - - - To €Xp (—aZn) .
i=0

Thus from this, we obtain

k k
1 1 1
E IOgM(@(tk+1, 0)) Z % i:E - 10g7'i - (1,% E Ti

1=0

From the Law of Large Numbers, we have
1
lim — log M(®(tx4+1,0)) > Ez{logmo} — aEz{m0}
k—oo k
where 7 is the unique invariant measure of the joint process {(7;,r;)}. Compute

+oo 1
Ez{logto} = —logq +/ (logx)e *dx, FEz{r} = &
0

It follows that

1 oo
lim —log M(®(tx+1,0)) > —logg +/ (logz)e™*dx — .
k—oo k 0 q
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Choose ¢ so small that — logq+f0OO (logx)e™"dx—1 > 0, and choose a so small

that 1 —a/q > 0.5, then we finally arrive at

1
lim — log M(®(th41,0) > 1 — = >
k—oo k

e
[N

almost surely, i.e., limg_ oo M (P(tx,0)) = +00 almost surely. Therefore, the
system (3.1.1) is almost surely unstable with the choice of a and ¢q. However,

A(1) and A(2) are obviously stable. [

Remark: Mariton ([86]) remarked that a necessary and sufficient condtion
for higher order moment stability is max{o(A(1)),0(A(2)),...,0(A(N))} <0,
where o(A) the largest real part of eigenvalues of A. The above examples show
that this statement is not true, in fact, it is even not true for almost sure

stability.

Although (3.3.18) is not in general a sufficient condition for (3.1.1) to
be almost surely stable, for certain cases, it is also sufficent. Define ¢(t) =

z(t)/]|z(t)|| € S™, then we have
Theorem 3.3.8:

Suppose that {(¢(t),0¢)} is ergodic with a unique invariant measure

p(¢, 0)dpm(do). If there exists a positive definite matrix P such that

- {imx’(PA(i) + A'(i)P)x} -0

lzll=1 | = z' Px
1=

then the system (3.1.1) is almost surely stable. [J

Proof of theorem: Let
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Then from the assumption, We have

A'())P
Zw, f;x OP)r o vresn (3.3.19)

Define the Lyaponov function V (t) = 12/ (t)Pz(t) and let A(oy) = (A'(0y)P +
PA(ot))/2. We obtain

Thus, we have
Ve [ [ EDA)A)
V=V ew ( o FOPHD dt)

This implies that

1 ¢' (1) )
tlggo i logV'(t) = TETOO T / ¢, dt (3.3.20)

Since the process {(¢(t),04)} is ergodic, then from the Law of Large Numbers
and (3.3.20), we have

lim —logV() E{ ()(f‘i( 9:)p ()}
’A

t—+oo t

Since P is positive definite, we can easily obtain
lim ~ log ||z]| = 11 1 Vi) < tr<o
Jlim -~ log ||z im - log <47

almost surely, this implies that (3.1.1) is almost surely stable. L]
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An interesting application of the above theorem is when we have a diagonal
system. Let A(j) = diag{ai(y),a2(j),...,an(j)} for j = 1,2,...,N. Let

P =1, for any ||z|| = 1, we then have
émm’(AT(i) + A(i))z =2 i:v; mix! Az
=2 [(é mal(i)> i+ + (i:; man(i)> xi]
<2 {max (i maj(z')> } (2§ +--+a2) = 2 max (é maj(z')>

To\i=

Thus, if max; (Zfil Tia; (2)) < 0, then (3.1.1) is almost surely stable. In fact,
it is easy to see that this condition is also necessary for the diagonal system

(3.1.1) to be almost surely exponentially stable.

The above procedure can be extended to some more general cases. As an
illustration, let P = I such that A(i) = (A’(i) + A(4))/2 which is symmetric.

Then there exists a unitary matrix U (i) such that
U@)A@U (i) = diag{A (), .- ., An(D)}.

Define a new process ¢ (t) = U(oy)d(t) = (1(t),...,¥n(t)) € S™ with ¢(t)

defined previously. Then we have
lim —1 Bl = lim t TA d
Jim —log [la(t)|| = lim - i ¢(s)" A(os)¢(s)ds

= lim %/0 T (5)UT (0)diag{r1(0s), ..., An(0s)}U(05)p(5)ds

t—o00

(3.3.21)

1
= lim —
t—oo t

/0 07 (5)diag{ M (), - - An(0s) }06(5)ds
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If {(¢(t),04)} is ergodic with an unique invariant measure f(v,0)dyn(do),

from (3.3.21) and the Law of Large Numbers, we obtain

1 n
Jim —log Jol] = B{Y_ Ai(o)92(0)}

=1

/ S5 w2 (6 )

i=1 j5=1

/Z% s A S

sn J=1

Therefore, if Z;VZI mj(maxi<i<n Ai(J)) < 0, the system (3.1.1) is almost surely
stable. Clearly, by making more general choice of P(1),..., P(N), we may
obtain stronger result. However, it is not trivial to verify the ergodicity of the

angular process of the system (3.1.1).

It is noted that all conditions we developed before, except for the scalar
case, are sufficient conditions for almost sure stability. However, for some
special cases, a necessary and sufficient condition can be obtained, for example,
as we noted before, for the diagonal systems, the necessary and sufficient
condition for almost sure exponential stability is easy to obtained. In chapter
two, we gave some necessary and sufficient conditions for almost sure stability
of discrete-time jump linear systems with special structures, the commuting
structure, for instance. In the following, we will present the parallel results for

continuous-time jump linear system (3.1.1).
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Theorem 3.3.9:

Suppose that A(1),..., A(N) are given by

)\1(0}) 63\12((0})) - alnEO'tg
A(o-t) _ 2\0¢ v 2n‘ t
)\n(o-t)

and suppose that o; has a single ergodic class. Then the system (3.1.1) is

almost surely exponentially stable if and only if

ErXi(o0) = miAi(1) + m2Xi(2) + -+ 7 A(N) <0, i=1,2,...,n

where m = {m,...,mn} is the unique invariant measure of the form process

{ot}.

Proof of Theorem. Necessity. The fundamental matrix of the system (3.1.1)

is given by

D(t,0) = exp(A(rr+1)(t — tg)) exp(A(rg) k) - - - exp(A(r0)70)-

Since A(7) is upper triangular for any i, ®(¢,0) is also upper triangular. Sup-
pose that (3.1.1) is almost surely exponentially stable. Then lim;_,~, ®(¢,0) =0
almost surely exponentially fast. Observing the diagonal elements of ®(¢,0),
we obtain

lim exp(Ai(7k41)(t — tr)) exp(Xi (1)) - - - exp(Ai(r0)T0) = 0

t—o0

almost surely exponentially fast. This is equivalent to the almost sure expo-

nential stability of the one dimensional system #(t) = A;(o¢)z(t). Thus,

Eﬂ-)\i(O'o) = 7'['1)\1(1) + 7'['2)\1,(2) + o4 ﬂ'N)\,(N) <0, +2=1,2,...,n (3322)
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Sufficiency. For upper triangular structured system, (3.1.1) can be ex-

pressed explicitly as

.’Ifl(t) = )\1(0}).7]1@) + alz(O't).Tz(t) + -4 aln(at) (61)
Er—1(t) = An—1(01)Tn-1(t) + an—1n(0t)Tn(t) (e.m—1)
En(t) = An(0p) 0 (t) (e.n)

Since {o:} is a finite state Markov chain, there exists an M > 0 such that
laij(oe)] < M (1 <4,j <n). From (3.3.15) and the equation (e.n), we obtain
that (e.n) is almost surely stable with a nonrandom exponential convergence
rate, i.e., there exists an M, (w) > 0 and a nonrandom constant (3, > 0 such
that

|2 (t)] < My, (w)e™Pnt, Yt >0 (3.3.23)

From (e.n-1), we have
t
ZTp—1(t) = exp </ )\n_l(as)ds> Zp—1(0)
0

n /Ot exp </: )\n_l(as)ds> 1,0 (07T (T)dT

from which we obtain
t
1 (8)] < exp ( / An_1<as>ds) 21 (0)]
0

. f (3.3.24)
+ M M,,(w) /0 exp ( /T )\n_l(as)ds> e PrTdr

Since {0} is ergodic, from ergodic theory, we have

1 st
lim — An_1(0s)ds = Ex )\, _1(00)

t—oo t 0

= 7'['1)\"_1(1) + -+ 7TN>\n—1(N) é Op—1 < 0.
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and

lim
t—T—o t — T

t—r
/ )\n—l (O-S—i-r)ds
0

= Eﬂ)\n_l(O'T) =a,_1 <0.

t
/)\n_l(as)ds: lim

t—T—soo t — T

Thus, there exists T'= T'(w) > 0 such that for any ¢t and 7, ¢t — 7 > T, we have

Oy —1

/Tt M1 (o9)ds < 22=L(t — 7).

From (3.3.24), we obtain that for large ¢

[on—1(8)] < e =2z, (0)]

t—T t
+ MMn(w)/ exp (/ )\n_l(as)ds> e PnTdr
0 T

¢ t
+ MMn(w)/ exp (/ )\n_l(as)ds> e PrTdr
t—T T

< ez, (0)]

t—T ¢
+ MM, (w) (/ eOn—1(t=7)/20=BnT g | / eM(t_T)e_ﬁ”TdT)
0 t—T

1

S ean—lt/2|l’n_1(0)| +MMn(W) m

eMT
« (ean_lt/z _ ean_lT/ze—ﬁn(t—T)> +5 (e—ﬁn(t—T) _ e—w)

S Mn—l(w)e_'gn_lt
where 3,1 is a nonrandom positive numbers and M,,_1(w) > 0, the existence

of such numbers is guaranteed by the fact that 8, > 0 and a,_1 < O.
Therefore, there exists M, (w), M,,_1(w), B, > 0 and S,_1 > 0, such that

2, ()| < My (w)e Pt 1 (8)] < My_y(w)e Pt vt > 0.
Using the similar procedure, we can prove that there exists M;(w) > 0
and 3; > 0 for ¢+ =1,2,...,n, such that

lz;(t)| < Mi(w)e Pt Wt >0,1<i<n.
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This implies that (3.1.1) is almost surely exponentially stable. This completes
the proof. [

Corollary 3.3.10:

Suppose that o; has a single ergodic class. If A(1),...,A(N) can be

simultaneously transformed into the following upper triangular forms

)\1(’1,) a12 ('1,) aln(z)
hll el e N
M)

by the same similarity transformation, then the system (3.1.1) is almost surely

exponentially stable if and only if

ErXi(o0) = miAi(1) + m2Ai(2) + -+ 7N A(N) <0, i=1,2,....n

where 7 = {m,...,mn} is the unique invariant measure of the form process

{ot}.

It is well-known ([148]) that if A(1),..., A(N) are commute, then there
exists a unitary matrix U such that U'A(j)U for j = 1,2,..., N are upper
triangular. Thus, using Theorem 3.3.9, we can completely solve the almost
sure exponential stability problem for the jump linear system (3.1.1) with

commuting structure. We have
Corollary 3.3.11:

If 04 has a single ergodic class, suppose that A(1),..., A(N) commute,

then there exists a unitary matrix U such that U'A(§)U for j = 1,2,..., N are
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of the following form:

)\1 (Z) a192 (Z) aln(z)

, . )\2 (Z azn(l)
UA(Z)U: : ) 22172a aN

M)

It follows that the system (3.1.1) is almost surely exponentially stable if and

only if

E.,r)\i(O'o) = Wl)\i(l) + 7T2)\7;(2) + -+ 7TN)\¢(N) <0 (’L = 1,2, . ..,n)

where 7 = {my,...,mn} is the unique invariant measure of the form process

{ot}. [
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3.4. ESTIMATES OF LYAPUNOV EXPONENTS

It is well-known that the (top) Lyapunov exponent of the jump linear sys-
tem (3.1.1) can be used to study the almost sure stability of the system, and
(top) moment Lyapunov exponent can be used to study d—moment stability
([74],[75], [96],[153]). Unfortunately, the computation of Lyapunov exponents
is very difficult and usually impossible ([78]). Therefore, it is more practical
to obtain some estimates for the Lyapunov exponents. In [153], Leizarowitz
used the backward partial differential equations to obtain some estimates for
the moment Lyapunov exponent. In this section, we will use the matrix mea-
sure to give estimates for the top Lyapunov exponent and moment Lyapunov
exponents and a set of almost sure and d—moment stability criteria is obtained
as well. Moreover, an improvement over Leizarowitz’s result is obtained and
the proof is substantially simplified. For some cases, the differentiability of the
d—moment Lyapunov exponent is also discussed. Throughout this section, we
only consider the system (3.1.1) with a stationary and ergodic form process
ot, and all stability are with respect to ¥ = {7} with 7 the unique invariant

distribution of oy.

Let |- | be a vector norm on C™ and || - || be the induced matrix norm on

C™*™ the (induced) matrix measure is defined as

_IT+04] -1
A) = ljm =T -
1(A) Jim 7

where I is the identity matrix.
The following development crucially depends on the Coppel’s Inequality

for linear systems of differential equations: Let A(t) be a locally integrable

function on [tg, +00), then the solution z(t) of the linear system (t) = A(t)x(t)
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with initial condition x(tg) = x( satisfies the so-called Coppel’s Inequality

([158]):

fafep (— [ -G ) < b < ol ([ wta(os ). )

to to

As before, the top Lyapunov exponent for the system (3.1.1) is defined as
A= lim < log || (t, fo)]
- tinéolo Z 0g » YO/
and the top d—moment Lyapunov exponent is defined as
(5) = Jim ~ log |9 (s, 1) °
9(6) = lim - log ,t0)]|°.

The indicated limits exist for the jump linear system with stationary ergodic
form process and A is a nonrandom constant almost surely. It is easy to show
that the values of A and g(d) does not depend on the choice of the norm and
the value of ¢ty (we take tp = 0) and the above definition is consistent with

[153].

From Coppel’s Inequality, we can obtain the following estimates for the

(top) Lyapunov exponent;:
Theorem 3.4.1:

If {0} is a stationary ergodic finite state Markov chain with the unique

invariant measure m = (my,...,7y), then we have
—[mp(=AM) + -+ avp(—ADN))] <A < mp(A1)) + - + 7y p(ADN)).
Thus, if there exists a matrix measure p such that

mi(A(L)) + map(A(2) + - + v p(A(N)) <0,
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then (3.1.1) is almost surely stable (w.r.t. {7}), where 7 = (71,...,7n) is the

unique invariant distribution of oy. [

Proof of Theorem: Notice that if {o;} is ergodic, using Coppel’s Inequality

and the ergodic theorem, we can easily obtain the proof. []

Remark: In [7], Mariton proved a similar result (Theorem 2.6 on page 44)
stating that the system with an ergodic Markov chain is almost surely stable if
Zfl\;l mio(A(i)) < 0, where o(A) is the real part of the dominant eigenvalue of
A. This is incorrect because from this we can conclude that if A(1),..., A(N)
are Hurwitz stable, then the system will be almost surely stable, however
Example 3.3.7 gives counterexample to this statement. The reason is that

Coppel’s inequality is misinterpreted.

From Theorem 3.4.1, some simple stability criteria can be obtained by the

suitable choice of matrix measure.
Corollary 3.4.2:

(i) If there exists a positive definite matrix P such that

> Tidmax(PA(H) P~ 4+ A'(i)) < 0,

=1

then the system (3.1.1) is almost surely stable.

(ii) If there exists positive numbers pq, pa, ..., p, such that

N

E Tp Max aii(p) + E &|aij (p)] p <0
— 7 — Pi
p=1 J#i

or,
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then (3.1.1) is almost surely stable, where A(p) = (ai;(p))nxn for p =
1,2,....N. []

Proof of Corollary: For (i), choose the norm |z| = vz' Pz, then the induced

matrix measure is given by

1
pp(A) = 5)\max(PAP_1 + A (3.4.2)

applying Theorem 3.4.1, we obtain the proof.

For (ii) Let R = diag{p1,p2,..-,pn}. If the first condition holds, we
choose the norm |z| = |[R™12|., where co denotes co—norm, then the induced

matrix measure is given by

u(A) = max S a; + Y &|aij|
Z i
If the second condition holds, we choose the norm |z| = |Rz|;, where 1 denotes

the 1—norm. The induced matrix measure is given by

o
p(A) = max S aj;+ Y —lai]
g iz P

The result then follows from Theorem 3.4.1. L]

In [159] and Appendix B, we have studied many properties of matrix
measure and discussed how to select appropriate matrix measure to improve
the stability results. For large scale systems, we used matrix measure to obtain
the Gershgorin typed circle theorem which can be applied to obtain sharp
stability condition via the above results. The following example illustrates

how to use the matrix measure to improve the stability result.
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Example 3.4.3:

Let

MD:(? g>,M®=<? &)’Q:<T i)'
The problem is to study the stability of (3.1.1) with such structure. This
example was studied by Feng et al ([74]), it has been proved that (3.1.1) is not
second moment stable and the Lyapunov exponent technique has been used
to study the almost sure stability. Here, we use the results developed above
to study the almost sure stability. Note that {o;} is ergodic with the unique
invariant measure 7 = (0.5,0.5). Choose P = diag{1,2}, from (3.4.2), it is

easy to compute that
pp(AQ1)) = -1, pp(A(2) =5+ —=.

Thus

runp(A(D) + ma(A(2) = & (—1 T i) <0,

From Theorem 3.4.1, we obtain that (3.1.1) is almost surely stable. In fact, for
this example, we can use this method to approach the top Lyapunov exponent.
Choose P = diag{1,b}, where b is a positive number to be determined. Then
it is easy to verify that
(AW) + manr(42) = 3 (-5 + 57 )
T T =—|l—=4+—=.
14P 2P 5 5 2\/1—)
Let b — +o0, then miup(A(1)) + moup(A(2)) — —1/4, this is the top

Lyapunov exponent as noted in [74].

In [153], Leizarowitz obtained the exact expression for the second moment

top Lyapunov exponent and estimates for § —moment top Lyapunov exponent.
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The results in [153] involved a linear operator which is implicitly represented.
Here, we first give a explicit representation for the linear operator and comment
on the estimates obtained in [153], and then present some new estimates for

d—moment Lyapunov exponent g(d).

Let ® denote the Kronecker product and & be the Kronecker sum A® B =
A® B+ B® A, and let vec(A) denote the vector expansion of the matrix A
(Refer to [149]).

Theorem 3.4.4:

For the jump linear system (3.1.1), define
H=diag{I® A'(1),I® A'(2),.... ] A(N)}+Q&I

where [ is the identity matrix with appropriate dimension. Then g¢(2) is the

largest real part of the eigenvalues of H. [

Proof of Theorem: Let S;(t) = E{®'(¢,0)®(¢,0)|og = i}, then it satisfies

the backward (linear partial differential) equations, as presented in [153]:

— A'(1)S;(t) + +Zq” (0)=1, VI<i<N, t>0.

This yields

dvec(S;(t))

o = (I ® A'(i))vec(S;(t)) + (A" @ I)vec( )+ quvec

Let Y (t) = (vec(S1(t)),...,vec'(Sn(t)))’, then the above equations can be

written as the following compact form:
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where H is given by

IT® AT(1) 4 g1 qi2l e qin I
q21_[ I D AT(2) + q22_[ SN quI

which can be written as
H = diag{I ® AT(1),1® AT(2),..., I AT(N)} +Q®I.
Then it is easy to prove that

o1
9(2) = Jim T log |Y ()] = max ReA;(H)

This completes the proof. [

For the general 6 > 0, Leizarowitz ([153]) used the backward equation

with the aid of the comparison principle to obtain the follwing result:
Propositon 3.4.5: (Leizarowitz [153])
Choose a1, as,...,an satisfying

) 1/ . . .
{2%1 < A'(i) + A(i), H0<d <2 (3.4.4)

20,1 > A'(i) + A1), if § > 2.

Let L be a linear operator defined on M = (My,..., My) € (R™*™)N,

(LM); = [AG) + 50 = 2)asT/ My + Mi[AG) + 50 = Dad] + 4 M.

Let ((J) be the largest real part of eigenvalues of L, then g(d) < ((9). [

In his original paper ([153]), Leizarowitz missed the 1/2 before 6 —2. It is
easy to show that if 0 < 0 < 2, then g(d) < g(2), i.e., g(2) is an upper bound

of g(6). One may wonder if the proposition gives a better upper bound than
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this. Unfortunately, for a large class of systems, Proposition 3.4.5 does not

give improved result better than ¢g(2). We give the reason for this:

Assume that § < 2. We say A is positive stable if all real parts of
eigenvalues of A are positive (i.e. —A is stable). If A(1), A(2),...,A(N) are
not positive stable, we can prove that a; < 0 for ¢ = 1,2,..., N. In fact, if
a; > 0, then according to the choice of a; in Proposition 3.4.5, A(i) + A’(i)
is positive definite and thus for any = € C™, we have z*(A(i) + A'(i))x >
Amin (A7) + A" (i))xz*z > 0. For any eigenvalue A of A(i), there exists a nonzero

x such that A(i)z = Az, so we have 2*Ax = A\z*z and 2*A*z = Az*z. Hence
A+ AN)z*z =2 (A@1) + A (i))x > Amin (A7) + A'(i))x*x > 0.

So ReX > 0 and A(7) is positive stable, which contradicts the assumption.
Now, Let H denote the matrix defined previously and H denote the matrix
representation of the operator L. It is easy to show that H has the similar

structure as H. And we have

H = diag{I ® (A1) + %(5 —2)a I), ..., I1® (A(N) + %(6 —2)an)'}
+QeI

=diag{I® A'(1),...,. I A (N)}+Q&I

2
= H +

+

2diag{[€9 (ar1),...,I® (anI)}

5—2 5—2
5 diag{I ® (aD),....]® (an1)} 2 H+ —5—Ho.

Since a; < 0, Hy < 0 elementwise, and 6 < 2, we have (0 — 2)Hy/2 > 0
elementwise. Also notice that the off-diagonal elements of H and H are

nonnegative. Let ¢ > 0 be a large number such that H + oI and H + oI
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are nonnegative. We have H + oI > H + oI and from the nonnegative matrix

theory [148], we also have
Max(H + 1) > Apax (H + o).

It follows that Apax(H)+0 > Amax(H)+0. Theorefore, Apmax(H) < Amax(H) =
€(0), i.e., g(2) < ((6). g(d) < g(2) is thus a better estimate for this case. It
is trivial that if A is stable, then it is not positive stable. Hence the above
argument applies to a very large class of jump linear systems. The lower

bound estimates for ¢g(J) given in [153] suffer a similar problem.

Despite the above dilemma, the proposition is still interesting for § > 2.
In the following, we want to use the matrix measure technique to improve the
above result and at the same time give a more direct proof for the Proposition
3.4.5. More important, the procedure used here is much more revealing and is

of great potentiality in future development.

Theorem 3.4.6:

Let p be an induced matrix measure by a norm || - ||. Define
, L 0—2 v §—2 ,
H(0) =diag{l & (A(4) + ——p(A@)I).... T & (AN) + ——pu(AN)))'}
+Q &I,
for 6 > 2 and
. . 6 - 2 . /
H(5) :dlag{l & (A(i) = 5= p(=AGND),.... T & (A(N)
d—2

- Sou-AMN) Qe

for § < 2. Let ¢(9) is the largest real part of the eigenvalues of H(J). Then
9(6) < ¢(6)-
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Proof of Theorem: Since the vector norm over R™ are equivalent, for the
vector norm || - || which induces the matrix measure p and the 2—norm || - |2,
there exists a constant M > 0 such that for any x € R", ||z|| < M||z||2. From

Coppel’s Inequality, we have

o011 < laallexp [ natoeas) < arfanlaens ([ utatonis) @:45)
For § > 2, we have

B{la(®)1°} = B{llz)2(0)]°}
< M B(le 0 Bl e (6-2) [ wlaois)) g o

<l 2Bl 0o (©5 2 [ utaten) ) asl)

Let y(t) = z(t) exp (5;22 fg M(A(as)ds>. then

i) = (Ao + 2 uAG) DY, yO) =a0  (347)

Thus, from (3.4.6), we have

9(0) = Jim Llog B{a(0)]*} < Jim T log B{Jy(1)[3} = ¢(6).

In arriving the last equality, we have used (3.4.7) and Theorem 3.4.4. For
0 < 2, we use the other half of Coppel’s inequality to obtain the proof. This

completes the proof of the theorem. L]

Since different matrix measure will give different estimate, the above result
is a very general estimation for )—moment top Lyapunov exponent. Indeed,
when we use the matrix measure induced by the 2—norm, we can recover

Leizarowitz’s result, the propostion 3.4.5. This can be seen as follows: As we
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know that for any matrix A, ps(A) = Amax(A+ A")/2. According to the choice

of a;, for § > 2, a; > p2(A(i)), we have
E{|lz@)I1°} < E{lla(@)|?l|lzol1°~? exp((8 — 2)a;t)}

Following the same procedure as in the proof of Theorem 3.4.6, we obtain the
result for the case when § > 2. Using the similar argument, we can obtain the

result for the case wheen § < 2.

In a similar fashion, we can obtain the lower bound estimate for the
d—moment top Lyapunov exponent. The proof of the following result is com-
pletely similar to the upper bound case. Again, when applying the following
result with the matrix measure induced by 2—norm, we recover the lower bound

estimate of g(d) given in Theorem 3.4.5 of [153].

Theorem 3.4.7:

Let p be an induced matrix measure by a norm ||.||, define
L(5) :diag{l ® (A(i) — 5_T2u(—A(i))I)’, . I& (AN)
-2 2uamn)} el
for 6 > 2 and
, L 0=2 s §—2 ,
L(5) =ding {1 © (AG) + * 2 (A ... T & (AN + 2 2 u(av)y)
+Q®I1

for § < 2. Let [(0) be the largest real part of the eigenvalues of L(J). Then
g(8) > 1(6). O
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Remark:

It is well-known ([134]) that when ¢ is an integer, especially an even integer,
the ) —moment Lyapunov can be represented by the real part of a large matrix
obtained by the Kronecker product in terms of A(1), A(2),...,A(N). The
above procedure can be used to estimate the ) —moment Lyapunov exponent
when § is not an integer. For example, if we use [J] to denote the integral part
of 0 and suppose that we have a way to compute the [§]—moment Lyapunov
exponent, then the 6 —moment Lyapunov exponent with A(1), A(2),..., A(N)
has the upper bound which is the [§]— Lyapunov exponent with

0 —[0]
[0]

WA, ..., AN + 2=

4]
P AR) + 5

A1)+

Similar argument applies to the lower bound estimation. In [7] and [86],
Mariton proved (Theorem 2.5 on page 43 in [7]) that (3.1.1) p—th moment
stable iff F}, is Hurwitz stable, where Fj, is a matrix in terms of Kronecker
product, it is easy to see that this is only true for p = 2. From [86], we can
easy to observe that the procedure used by Mariton is only valid for p—th
mean value stability, not for the p—th moment stability. The mistake lies in

the confusion between vector norm and the product of vector components. []

Since d—moment Lyapunov is an upper bound for d A, here § > 0 and A is
the Lyapunov exponent. It follows that

g9(0)

A< 6> 0, (3.4.8)

It is easy to observe that the above estimates for d —moment Lyapunov

exponent is in fact the exact expression for ¢(2) when § = 2. Moreover, for
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one dimensional system (3.1.1), the estimates are also the exact expression for

g(0) as stated in next proposition.
Proposition 3.4.8:

For one dimensional system (3.1.1), let a; = A(7). Define
H(5) = 5d1ag{&1, 512, ey ELN} + Q

Then ¢(d) = Amax(H(9)). Moreover, (3.1.1) is §—moment stable if and only
H () is stable. [J

Proof of Proposition: Since for any matrix measure p, u(+A(7)) = p(xa;)
= +a;, using Theorem 3.4.6 and Theorem 3.4.7, we obtain g(J) = ((0) =
[(0). The sufficiency for the d—moment stability is trivial, and the necessity
follows from the fact that )—moment stability is equivalent to the ) —moment

exponential stability, as proved in section 3.2. This completes the proof.  [J

Remark: Like for the discrete-time case, we can give another proof for this.
For one dimensional system, let a(oy) = A(0y), then we can solve the equation

(3.1.1), we have
¢ 2
(@) = <||5'30||6€f° ”)

Thus, the top d—moment Lyapunov exponent of (3.1.1) is equal to the top

second moment Lyapunov exponent of the following system:

i(0) = Saleu(®). y(0) = lzoll ">

Then from Theorem 3.4.4 we can obtain Proposition 3.4.8.

From Coppel’s Inequality and the above proposition, we can obtain the

following result for higher dimensional system (3.1.1).
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Theorem 3.4.9:

For any given matrix measure p, let
L(0) = ddiag{—p(—A(1)), —u(=A(2)), ..., —u(-AN))} + Q
U(6) = ddiag{u(A(1)), u(A(2)), ..., u(A(N))} +Q
then we have

)\max(L(5)) < 9(5) < )\max(U(5))'

Moreover, (3.1.1) is —moment stable if U(J) is stable. ]

Proof of Theorem: From Coppel’s Inequality, we have

ol exp ( / ' —u(—A(ffs))dS> < (@) < llol| exp ( / tu(A(Us))dS> .

Then we consider the one dimensional system

y(t) = —u(=Alae)y(t), 2(t) = u(Alor))z(t)

and using Proposition 3.4.8, we obtain the proof. [

We mention here that since H(0),L(d) and U(d) are matrices whose off-
diagonal elements are nonnegative, their eigenvalues with the largest real parts

are actually real.

In the rest of this section, we study the analytic properties of the top
d—moment Lyapunov exponent and the top Lyapunov exponent. From Arnold
et al’s results ([96]), one may conjecture that ¢g(J) is an analytic function in a
neighborhood of § = 0. Leizarowitz ([153]) heuristically showed that this can
not be established for jump linear syetems using the approach given by Arnold
et al ([96]). However, Leizarowitz ([153]) did not provide a definite answer as

to whether the conjecture was true or false. In what follows, we show that this
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conjecture is in general not true, and more surprisingly, ¢g(J) is not generally
differentiable in a neighborhood of the origin. Consequently, Arnold’s formula
connecting the sample path and moment Lyapunov exponents is not valid in

general and a modification of Arnold’s formula will be given here.
First, we study the one dimensional system (3.1.1). We have
Theorem 3.4.10:

For the one dimensional system (3.1.1) with an irreducible and stationary
form process oy, let a; = A(i) fori =1,2,..., N. g(0) is differentiable at § = 0
and

g'(O) = =m1a1 + meaz2+ ... +7TNGN.

[

Proof of theorem. Since the off-diagonal elements of H(J) are nonnegative,
the eigenvalue of H(J) with the largest real part is real. From Theorem 3.4.8,
we have ¢g(0) = Anmax(H(9)). Since @ is an irreducible matrix, there is a K > 0
sufficiently large such that KT+ H(J) is a nonnegative irreducible matrix and
9(0) = =K + Amax (KT + H(6)). It follows from ([148]) that Amax(KI + H(J))
is a simple eigenvalue of K1 + H(¢) for all § with |§| sufficiently small. Since
KT+ H(0) is differentiable with respect to § at 6 = 0, from Theorem 3.2.3 or
Theorem 5.4 of ([160]), Amax(K I+ H(0)) is differentiable at 6 = 0. Hence g()
is differentiable at 6 = 0. To show ¢'(0) = «, we prove next that ¢’(07) = .
For § > 0 with da < ¢(d), we have a < ¢’(07). For any ¢ > 0, consider the

following modified system

y(t) = (A(or) — (a+€))y(t) (3.4.9)
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Then it is easy to verify that the top Lyapunov exponent of (3.4.9) is a+(—(a+
e)) = —e < 0. From Theorem 3.2.5, there exists dp > 0 such that (3.4.9) is
exponentially dp—moment stable and therefore exponentially J-moment stable
for all 0 < 0 < §p. Hence the j—moment Lyapunov exponent of (3.4.9) is
negative for 0 < 6 < §y. However, the §—moment Lyapunov exponent of (3.4.9)
is —(a+¢€)d + g(6). Thus, we have —(a +¢)d + g(d) <0, i.e., g(0) < (a+¢€)d
for all 0 < 0 < §p. It follows that g(d)/6 < a+ e for 0 < § < dy. From this we

obtain that ¢’(0%) < « and therefore g’(0") = . This completes the proof. []
Remark:

We expect that for the one dimensional case, g(9) is analytic. We use the

following example to illustrate this point. For N = 2, A(1) = a; and A(2) = a2
and Q = <_p p ) then

q —q
da;—p  p )
H(5) = .

() < q daz — q

It is easy to compute g(d), in fact,

9(5) = )\max(H((S))

_ (ar+az2) —p— g+ /0% (ar — az)? + 26(a1 — az)(¢ — p) + (p + 0)?
2 )

For small 4, g(9) is indeed analytic.

For higher dimensional systems (3.1.1), one question remains: what hap-
pens to the analyticity of the top moment Lypaunov exponent g(6)? The
following example shows that g(d) is not even differeniable, and therefore is

not analytic.
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Example 3.4.11:

Consider the jump linear system (3.1.1) with a two-state Markov chain
—-0.5 0.5

0.5 _0.5>. Assume that

with infinitesmal operator Q) = (

_(alox) 0 _ _ _ _
Aloy) = ( 7 b(ak)>, a(1) = 1, a(2) = b(1) = b(2) = 0.

Let ¢g1(0) and g2(d) denote the top d—moment Lyapunov exponents for the
scalar jump linear systems (t) = a(oy)x(t) and %(t) = b(oy)x(t), respectively.
It can be easily proved that the top §—moment Lyapunov exponent of (3.1.1)
is given by

9(8) = max{g1(9),92(9)}-

It is easy to see that g2(0) = 0, and from the formula for the one-dimensional

case, we have

6 —1++vV1+62
5 .

91(0) = Amax(H(9)) =
Therefore, we obtain

d—14V1+462
g(6) = max{g1(0),g2(0)} = { 5 , 60>0
0. §<0

Thus, it is easy to verify that ¢’(07) = 0.5 and ¢’(0~) = 0, hence g(d) is not
differentiable at 6 = 0.

Notice however that we can compute the top Lyapunov exponent as fol-
lows: because the form process is ergodic with the unique invariant measure
w1 = mo = 0.5, if we let a; and as denote the top Lyapunov exponents of the
system (t) = a(oy)x(t) and 4(t) = b(oy)x(t), respectively, then from Theorem

3.9, the top Lyapunov exponent of (3.1.1) is given by

a = max{ay, as} = max{mia(l) + mea(2), mb(1) + m2b(2)} = %
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We still have g’(0%) = a. From this observation, we may conjecture that this
result holds for the general system (3.1.1). The following result for higher
dimensional continuous-time jump linear systems is a modification of Arnold’s

formula ([96]).
Theorem 3.4.12:

Suppose that {o;} is a finite state irreducible ergodic Markov chain, then

g(8) is differentiable from the right at § = 0 and ¢'(0%") = «.
Proof: From Proposition 3.2.4, we have
L1
lim —FE {log||®(tg,t0)||} = ac.
k—oo k
Thus, for any £ > 0, there exists an m > 0 such that
E {log||®(tm,t0)||} < m(ac+¢). (3.4.10)

From the following inequality:

—1
1 1%
— log ||®(tpm, to)|| < — log ||P(t; t;
o 19 )] < 25 g 100t 270 )]
we obtain, for any €; > 0,

1
Py (— log ®(tpm, to)|| > a4+ ¢ + 81>
pm

1 2=
< Py om > 108 @t (j+1yms tim)|| > ac+ € + €1
j=0
1272
=P, " Zlog |P(t(j+1)m> tjm)|| = m(ac +€) + mey
§=0

p—1

1
< Pr I;Zlog @ (E(j+1yms tim) || = Ex{log || (tm, o)} + me1 |
j=0

(3.4.11)
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where in the last inequality, we have used (3.4.10). From the large deviation

theorem (Lemma 3.2.6), there exists a §; > 0 and an M; > 0 such that

151 B
Pr Z;Zlog 1t 1yms tim)|| > Ex{1l0g[|®(tm, to) |} + mer | < Mye™®'P.
=0

From this and (3.4.11), we have
1 —d6/m pm
Py ([ — 1og|®(tpm, to)|| > ac+e+e1 ) < My (e ) . (3.4.12)
pm
Since {o:} is a finite state Markov chain, there exists a kK > 0 such that
|eA@|| < Mye® (vt > 0). (3.4.13)

Let .
A= <w : —log ||®(tpm, to)|| > ac+ € +e1
pm

1
A¢ = <w : —log || ®(tpm, to)|| < acx + e + 81>
pm

Then, from (3.4.13), for all w € A, we have
12 (tpm, to) || < e,
and for all w € A¢, we have
19 (tpms to)]| < ePm{rateten),

Thus, we obtain

B[4ty t0) |° = /A 1© (t s to)|I° Pr (dw) + /A Bty 1)1 P )

S/emtpm6p7r(dw)_+_epm(aa+e+61)6.
A
(3.4.14)
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Following a similar procedure as in the proof of Lemma 3.2.7 and using (3.4.12),
we can prove that there exists a d > 0, such that for 0 < § < min{dy, d2} we
have

lim [ e®m0P (dw) = 0.

p—00 A

Hence for sufficiently large p, we have
/e”tpm6P7r(dw) < 1. (3.4.15)
A

If « > 0, then from (3.4.14) and (3.4.15), we have

1 1 log 2
—log B ||®(tym, to)||° < — log (1 + epm(aa+5+€1)5> < £+(aa+8+61)5.
pbm pm

pm

Letting p — +00 and using the fact:

. 5 _ g tom 1 5 _
pgfgoﬁlongH‘I’(tpm,to)H —plgglop—m : tp—mlogEﬂ'”(b(tpmatO)H = ag(9),

we obtain ag(d) < (ax + ee1)d, i.e.,

@§a+8+81.
J a

Letting 6 | 0T, we have ¢’(07) < a + (¢ + €1)/a. Because of the arbitrary
choice of € and €1, we obtain ¢’(0%) < a. On the other hand, it is very easy
to show that ¢’(07) > «. This proves that g(0) is differentiable from the right
at d =0 and ¢’(0") = « for a > 0.

If @ < 0, then we choose 8 > —a, and define B(j) = A(j) + 8I (j € N).
Consider the new system

i(t) = B(oy)x(t), (3.4.16)

let g(6) and & denote the top d—moment Lyapunov exponent and the top

Lyapunov exponent,respectively, for the system (3.4.16). It is easy to show
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that & = 4+ « and g(d) = g(d) + 8. Now, since @ > 0, g(d) is differentiable
from the right at § = 0 and ¢’(0") = @, from which we conclude that g(d)
is differentiable from the right at 6 = 0 and ¢’(07) = a. This completes the

proof. [

One may ask under what conditions will g(J) be differentiable at § = 07
A careful study shows that in Example 3.4.11, the system (3.1.1) is not regular
in the sense of Arnold ([96]) or in the sense of the following weak regularity
condition:

1
lim —log||<I> Yt to)| = —a, (a.s.) (WRC)

t—4oo t
If the above weak regularity condition holds, then g(d) is indeed differentiable

at 0 = 0. The follwing result can be proved:
Proposition 3.4.11:

Suppose that {o:} is a finite state irreducible ergodic Markov chain and
the system (3.1.1) satisfies the weak regularity condition (WRC), then g(d) is
differentiable at 6 = 0 and ¢'(0) = a.

Schetch of the Proof: 1t suffices to prove that ¢’(07) = a. First, from the

weak regularity condition (WRC), the following can be obtained:
lim ~F, 1 1@ (t, to)| = (3.4.17)
JHm - Er log )| = —au 4.
From the inequality:
1= 1] = |2t to) - @7 (£, t0) | < [[@(t,20) || - |27 (£, t0) I,

we can obtain the following:

1 1
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From (3.4.17) and (3.4.18), a large deviation result can be obtained, i.e., for

any € > 0, there exists a d; > 0 and an M; > 0 such that
1 -5
P | —log||®(tpm,to)|| < a—e | < Mie P,
pm

then the procedure in the proof of Theorem 5.2 can be modified to prove

g'(07) = a. [J
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3.5. Robust Stability Analysis

As we remarked in Section 2.8 for discrete-time case, we consider the
robust stability against any randomness and possible parameter variations. If
we can design the system so that the resulting closed-loop jump linear system
is robust against any randomness, then the system performance is much more
desirable because in practice the statistics of the form process may not be
exactly determined or hard to collect. In this section, we will use the matrix
measure techniques to study this issue, for illustration, we only discuss the
almost sure stability, in fact, all conditions we obtained also guarantee the
robust moment stability and the robust stability problem is reduced to a
deterministic stability problem. For the details of the matrix measure, the

reader is referred to Appendix B.
Definition 3.5.1:

The system (3.1.1) is robustly almost surely stable if it is almost surely

stable for any finite state form process.

From the Coppel’s inequality (3.4.1), we can easily obtain the following

result.
Theorem 3.5.2:

If there exists a matrix measure u(+) such that pu(A(7)) < 0 for any 7 € N,

then (3.1.1) is robustly almost surely stable.

Proof: Let h = maxi<;<n p(A(2)), then from the assumption, we have h < 0.

From the Coppel’s inequality, we have

t
|z(t)]| < ||$0||6f0 u(or)dr < ||$0||eht t—p 0.
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Therefore, (3.1.1) is robustly almost surely stable. [

As we observed in the discrete-time case, this result, though simple, is

very general, which we can see next.

Let A(k) = (a{¥) (k=1,2,...,N), then, we have

Theorem 3.5.3.

Let mij; = MaX1<k<N |a§f)| (Z 7é j), and Mi; = MaX1<k<p CLEf) and M =
(mij), then (3.1.1) is robustly almost surely stable if M is Hurwitz stable or

all the leading principal minors of —M are positive.

Proof: Since m;; > 0 (i # j) and M is stable, we know that —M is M —matrix,
i.e., —M satisfying (1) of Lemma 3.8.6, from which we obtain from Lemma
3.8.6 that there exists positive numbers r1,7s,...,r, such that Zj# rimg; <

ri(—my;), that is,

(k) Ty (k) :
Jmax ag; + Z . max la;;’| <0 (1 <i<mn). (3.5.1)
J#i
Let R = diag{ry,72,...,7,}, from Appendix B, the matrix measure induced

by the vector norm ||Rx||~ is given by

-
pr (A) = max | a; + g T—Z|az’j|
FES)

From (3.5.1), it is easy to verify that u(A(k)) < 0 (1 < k < N). From
Theorem 2.5.2, we conclude that (3.1.1) is robustly almost surely stable. This

completes the proof. [
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Remarks:

(a). From Lemma 2.8.6, we can see that the sufficiency condition can be
replaced by any one of equivalent conditions in Lemma 2.8.6, in particular,
the most easiest one to check is that (3.1.1) is robustly almost surely stable

if the leading principal minors of —M are positive.

(b). Theorem 3.5.3 implies that we do not need to find the exact positive
numbers 7y,79,...,7r, for the stability test, this is great improvement
over the Gershgorin-type criteria, in which suitable choice of the scaling
numbers ry,72,...,7r, has to be determined, which is not an easy task.
Moreover, to check the robust almost sure stability, we only need to check

the stability of one matrix.

For some special class of jump linear systems, Theorem 3.5.3 may give

necessary and sufficient condition for the robust stability. We have
Corollary 3.5.4:

Suppose that ag.c) >0 (i # j), and there exists a r € {1,2,..., N} such
that A(k) < A(r) elementwise, then (3.1.1) is robustly almost surely stable if
and only if A, is Hurwitz stable. [

Proof: The necessity are trivial. Now, we prove the sufficiency. Because
al) >0 (i # j), and A(k) < A(r), we have

(k) _ (k) _ (r) . .
1<k<N | v | 1<k<N 2] ij ( 7A .])7

k) = 4{") so M = A(r). From Theorem 3.5.3, we obtain that

and maxlSkSN 28 ii

(3.1.1) is robustly almost surely stable. This completes the proof. [J
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The following results can also be easily obtained:

Corollary 3.5.5:

(a).

Suppose that A(1), A(2),..., A(N) are normal matrices, then (3.1.1) is ro-
bustly almost surely stable if and only if A(1), A(2),..., A(N) are Hurwitz

stable;

. Suppose that A(1), A(2),...,A(N) are upper triangular matrices, then

(3.1.1) is robustly almost surely stable if and only if A(1), A(2),..., A(N)

are Hurwitz stable;

. Suppose there exists a positive definite matrix S such that SA(i)+ AT (i)S

is negative definite for any i € N, then (3.1.1) is robustly almost surely
stable. []

As we remarked in last chapter, the robustness results are very strong, the

robustness we obtained is not only against any randomness, but also against

parameter perturbation. In fact, we have

Theorem 3.5.6:

Suppose there exists a matrix measure p(-) such that p(A(i)) < 0 for

any i € N, then the system (3.1.1) is robustly almost sure stable for any
A1), A(2),...,A(N) satisfying

N N
A(g) € {A‘A = Zﬁkz(k)v Br >0, Zﬁk = 1}7 Vj e N.
k=1 =1
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Next, we present some illustrative examples how the criteria developed in

this paper can be used to study the robust stability.
Example 3.5.7

Lot
A(l) = <_02 _13> A2) = (‘f _53>.

Define |z| = |T'z|2, the matrix measure induced by this norm is denoted by
p, then p(A) = po(TAT 1) and p(A(1)) = —1 < 0 and pu(A(2)) = —7.382 < 0,

From Thoerem 3.5.2, we obtain that (3.1.1) is robustly almost surely stable.

Remark: Note that for any R = diag{r1,r2}, pr(A) = peo (R AR), then for
any positive numbers r; and rs, from Appendix B,

pr(As) = jioo (R~ A5R) = 4:—1 +5>0
2

the Gershgorin like criteria can not be used. This can also be verified by
0

Theorem 3.5.3. In fact, M = <4 5

), which is not Hurwitz stable, hence we

can not use Theorem 3.5.3.

Example 3.5.8:
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-3 2

We want to use Theorem 3.5.3. Since we have M = < 5 4

),and —M =

)
Theorem 3.5.3 we obtain that (3.1.1) is robustly almost surely stable.

( ; :Z ) , whose principal minors are 3, 4 and 2 which are all positive, from
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3.6. Almost Sure and Moment Stabiliztion

Second moment (mean square) stabilization problems have been studied
by many researchers in the current literature. Ji et al ([71]) and Morozan
([53]) reduced the second moment stabilization problem to solving a coupled
system of Riccati equations. Mariton ([86]) applied the Homotopy theory to
give a numerical procedure for second moment stabilization. In this section, we
present some preliminary research results for both almost sure and ) —moment

stabilization.
For clarity, we first give the following definition.
Definition 3.6.1:

Consider the jump linear control system

#(t) = A(o(t))z(t) + B(o(t))ult). (3.6.1)

If there exists a feedback control u(t) = —K (o (t))z(t) such that the resulting
closed-loop control system is stochastically stable in the sense of Definition
3.2.1, then the control system (3.6.1) is said to be stochastically stabilizable
in the corresponding sense. If the resulting closed-loop system is absolutely
stable, then the system (3.6.1) is absolutely stabilizable. If the feedback control
K(o(t)) = K is independent of the form process, then the system (3.6.1) is

simultaneously stochastically stabilizable in the corresponding sense.

Similar to Theorem 3.2.2, we obtain the following result.
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Theorem 3.6.2:

For the system (3.6.1) with a finite state Markov form process {o(t)} and
with any 0 > 0, d—moment stabilizability, d—moment exponential stabilizabil-
ity and stochastic d—moment stabilizability are equivalent, and each implies

almost sure stabilizability. L]

Remark: Due to this theorem, from now on, we use ) —moment stabilizability

to denote any one of the above three d—moment stabilizability concepts.

It is easy to see that absolute stabilizability implies stochastic stabilizabil-
ity in any sense, and simultaneous stochastic stabilizability implies stochastic
stabilizability in the corresponding sense. However, absolute stabilizability
is too conservative to be useful in applications. The simultaneous stochastic
stabilizability problem has been studied in the current literature, however, si-
multaneous stabilizability is also often too conservative, the next example is

illustrative.

Example 3.6.3: (d—moment stabilizability does not imply simultaneous
d—moment stabilizability, and almost sure stabilizability does not guarantee

simultaneous almost sure stabilizability)

Let A(1) = a > 0, A(2) = b > 0, B(1) = 1 and B(2) = —1, the form
process {o(t)} has the infinitesimal generator Q = <_11 _11>, with the
unique invariant measure 7 = (0.5,0.5). If we choose K(1) = a + 1 and

K(2) = —b —1, then A(o(t)) — B(o(t))K(o(t)) = —1, hence the closed-loop
system is deterministic and stable. Then the jump linear system (3.6.1) is

absolutely stabilizable, )—moment stabilizable and almost surely stabilizable.
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However, we want to show that the system can not be simultaneously
almost surely stabilized, and from Theorem 3.6.2 this implies that the system
can not be d—moment stabilized. For any K, using the feedback control

u(t) = —Kxz(t), the closed-loop system becomes

and its solution is given by

(1) = 1 exp </0t(A(o—(T)) _ B(U(T))K)df> .

From this and the ergodic theorem, we obtain

tlirgoilogllw(t)ll = tlgfgo% ; (A(o(7)) = B(o (7)) K)dr

=m(A(l) — B(1)K) + m2(A(2) — B(2)K)

1 1

This implies that (3.6.1) can not be simultaneously almost surely stabilized.

From Theorem 3.6.2, we can see that d—moment stabilizability is equiv-
alent to d—moment stochastic stabilizability which involves a cost functional
similar to linear quadratic optimal control system design. Therefore, we may
easily reduce the d—moment stabilization problem to an appropriate optimal

control problem.
Theorem 3.6.4:

Given any positive definite matrices Q(1), Q(2),...,Q(N) and R(1), R(2),
.., R(N), the system (3.6.1) is J—moment stabilizable if and only if the

following minimization problem:

5/2

min J[u] = /000 E(z"®)Q(c®)z(t) +u” (#)R(o(t))ut))” " dt
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subject to (3.6.1) has a finite cost. In particular, the system (3.6.1) is

d—moment stabilizable if and only if the following optimal control problem:

5/2

minJ[u]:/OOOE(xT(t)x(t)+uT(t)u(t)) dt

subject to (3.6.1) has a finite cost.

Proof: Suppose that (3.6.1) is 0—moment stabilizable, then there exist matri-
ces K(1),K(2),..., K(N) such that the system

#(t) = (Ao (t)) = Blo(t)) K (a(t)))z(t), (3.6.2)

we have (from Theorem 3.2.2)

/000 E||z(t)|°dt = /000 E (o7 (t)z(t))? dt < .

Thus for the given control, we have

5/2

Ju] = /OOO E(z"®)Q(o®))x(t) + ul () R(o(t))u(t))” " dt

5/2

= /OOOE(wT(t)(Q(U(t))+KT(U(t))R(U(t))K(U(t))):U(t)) dt

< M5/2/ E (T (t)x(t)" dt < oo,
0

where

M = max A (Q) + K" (R(K ().

Therefore, the optimal control problem has a finite cost.

Conversely, suppose that the given optimal control problem has a finite

cost, then there exist matrices K (1), K(2),..., K(N) such that the solution of
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the closed-loop system (3.6.2) with the feedback control u(t) = —K (o (t))x(t)

satisfies the following:
T[] = / "B (T (0Q60)a(t) + o (R )u) di < o,
therefore, we have
/0 T BT 0n(®) " d < M3 / "B (T 0Qr)a(0) dt < s,

where
1

SRRt = S W T}
From Theorem 3.2.1, (3.6.2) is 0—moment stable, hence (3.6.1) is 6 —moment

stabilizable. This completes the proof. L]

It may seem that we have complicated the matter by reducing the sta-
bilizability problem to an optimal control problem which seems to be much
more difficult to solve. However, since the optimal control problem has been
studied for a long time and many numerical algorithms have been developed
in the current literature, for some cases, this consideration may lead to some
tractable criteria for moment stabilization. This is certainly the case for second

moment stabilizability. We have
Theorem 3.6.5:

Given any positive definite matrices Q(1), Q(2),...,Q(N) and R(1), R(2),
..,R(N), (3.6.1) is mean square (second moment) stabilizable if and only if

the following coupled systems of algebraic Riccati equations: for i € N)

AT (i)P(i) + P(i)A(i) — P(i)B(i)R™' (i) BT (i) P(i) + qup(j) = —Q(i),
= (3.6.3)



248

has a positive definite solution P(1), P(2),..., P(N).

In particular, the system (3.6.1) is mean square stabilizable if and only if

the following coupled system of algebraic Riccati equations:

AT(i)P(i)+P(i)A(i)—P(i)B(i)BT(i)P(i)+Z ¢i;P(j) =1, (i=1,2,...,N)
= (3.6.4)
has a positive definite solution P(1), P(2),..., P(N).

Proof: This result can be obtained by using Theorem 3.6.5 and the result for

linear quadratic optimal control problem (see Ji and Chizeck ([71]) or Wonham

([35])- [
Corollary 3.6.6:

If (3.6.1) is mean square stabilizable, then there exist positive definite

matrices P(1), P(2),..., P(N) such that
A(i) — BG)BT(0)P(i) — =q;I (i=1,2,...,N)
are stable.

Proof: Suppose that (3.6.1) is mean square stabilizable, from Theorem 3.6.5,
there exist positive definite matrices P(1), P(2),..., P(N) such that (3.3)

holds. From (3.3), we can easily obtain

(AG) ~ BGB()PG) ~ SaiD)” + PU)(AG) ~ BOB()PG) — )

i qup(j) = P(i)B(i)B" (i) P(i).
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Since P(i) and [+Z§V:1 qi; P(j)+P(i) B(i) BT (i) P(i) are positive definite, from
Lyapunov equation theory, we conclude that (A(:) — B(i) BT (i)P(i) — 1¢;1) is
stable. 0

It is obvious that the mean square stabilizability problem is equivalent
to the existence of a positive definite solution of the coupled system of Ric-
cati equations, this does not, however, reduce the complexity of the problem
considerably. For a linear time-invariant system, we know that controllability

implies stabilizability. For convenience, we introduce the following definition.
Definition 3.6.7:

For the system (3.6.1) with an N state Markov chain {o(¢)}, (3.6.1) is
individual mode controllable (stabilizable) if (A(:), B(i)) (i = 1,2,...,N) are

controllable (stabilizable) for each i.

One natural question to ask is: does the individual mode controllability
imply d—moment stabilizability? For § = 2, Corollary 3.6.6 can be used to

construct simple example to show that the answer to this question is negative.

Example 3.6.8: (Individual mode controllability does not imply mean square

stabilizability)

(). - (%)

A(2):((}(§) 095>, B(Z):((1)>, Q:<_11 _11>

(Without specification, we always use () to denote the infinitesmal generator

Let

of the finite state Markov chain {o;}). It is obvious that (A(1), B(1)) and
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(A(2), B(2)) are controllable, hence (3.6.1) is individual mode controllable.

However, for any positive matrix P = <p 11 P12 ), we have
P21 P22

1 — _
AQ) = BOBT()P ~ Lorl = ( Pu 10 Op12>7

which is not stable. From Corollary 3.6.6, we can conclude that (3.6.1) is not
mean square stabilizable. Notice also that the form process {o;} with the given

infinitesmal generator () is an ergodic Markov chain!

From Theorem 3.6.5, we can also observe that although (3.6.1) is indi-
vidual mode controllable, the infinite horizon linear quadratic optimal control

problem does not have a solution.

Although the mean square stabilizability problem has been reduced to
the solvability of a coupled system of Riccati equations (3.6.3) or (3.6.4), it
is not very difficult to solve (3.6.3) or (3.6.4) analytically. Wonham ([35])
gave a recursive procedure for solving the coupled system of Riccati equations
under a very restrictive condition. This algorithm involved integration over an
infinite horizon, which made the algorithm impractical. In order to give some
qualitative properties about the solution of the coupled Riccati equation, we
first consider the coupled Lyapunov equation, which plays a key role in the

study of mean square stability.

Consider the coupled system of Lyapunov equations:
N
AT(@)P() + PU)AG) + > 0 P() = ~Q(0). i€ N, (3.6.5)
j=1

where N = {1,2,...,N} (which will be used for the rest of the paper).

Let vec(X) denote the column vector expansion of a matrix X, ® denotes
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the Kronecker product and @& denotes the Kronecker sum, ie., A@® B =
A® B+ B® A. We have

Theorem 3.6.9:

For any matrices Q(1),Q(2),...,Q(N), (3.6.5) has a unique solution if

and only if the following matrix F' is nonsingular:

I'e AT(l) —ql qi2l N qinT
q21I I ) AT(2) — QQI . quI
F = . ) . ‘
gn1l qnol [EBAT(N)—qNI

= diag{I ® AT(1),....I® AT(N)} +Q &I,

where (@ is the infinitesmal generator of the finite state Markov chain {o;}.

Proof: From (3.6.5), applying the vector expansion operator vec on both sides
of (3.6.5) and the property vec(AX B) = (BT ® A)vec(X) (refer to Horn and
Johnson [149]), we obtain

(I ® AT (i))vec(P(i)) + (AT (i) @ I)vec(P(i)) + Zqijvec(P(j)) = —vec(Q(7)),

hence, we obtain

vec(P(1)) vec(Q(1))
vec(P(2)) vec(Q(2))

F . = - .
vec(b(N)) vec(Q(N))

From this, we conclude that (3.6.5) has a unique solution if and only if F' is

nonsingular. L]

From Theorem 3.4.4 and Theorem 3.6.9, we obtain the following:
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Theorem 3.6.10:

The jump linear system 4(t) = A(o(t))z(t) is mean square stable if and
only if for any positive definite matrices Q(1), Q(2), ..., Q(NN), the coupled sys-
tem of Lyapunov equations (3.6.5) has a positive definite solution, equivalently,

if and only if F' is Hurwitz stable. [
Corollary 3.6.11:

Given positive definite matrices Q(1), Q(2),...,Q(N), then the coupled
system of Lyapunov equations (3.6.5) has a positive definite solution P(1),
P(2),...,P(N) if and only if F is Hurwitz stable. [

Corollary 3.6.12:

Given positive semidefinite matrices Q(1), Q(2),...,Q(N), if F' is Hurwitz
stable, then the coupled system of Lyapunov equations (3.6.5) has a positive
semidefinite solution P(1), P(2),..., P(N).

Proof: Since Q(i) > 0, for any 5 > 0, Q(i) + SI > 0. If F is Hurwitz stable,

then from Corollary 3.6.11, the coupled Lyapunov equation:
N
ATG)P() + PA)AG) + Y aP() = Q)+ ), i€ N (3.6)
j=1

has a unique solution, say, P(1,0),..., P(N, /), and

vee(P(1, 8)) vec(Q(1) + A1)
vec(P(2, 8)) [ vee(Q(@) + 81)

) = F : . (3.6.7)
vec(P(N, ) vec(Q(N) + AI)

Because F'~1 is a constant matrix, the right hand side of (3.6.7) is continuous in

B, so is the left hand side of (3.6.7), hence P(i, 3), Amin(P(i, 3) are continuous
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in B. From Apin(P(7,8)) > 0, we obtain Apin(P(4,0)) > 0, i.e., P(,0) is a

positive semidefinite solution of (3.6.5), This completes the proof. []

Next, we study the properties of the solutions of a coupled system of

Riccati equations. We will concentrate on the equation (3.6.4), we have
Theorem 3.6.13:

If the coupled system of Riccati equations (3.6.4) has a positive definite
solution, then it is unique. That is, (3.6.4) has at most one positive definite

solution.
Proof: Let P(i) and P(i) (i € N) be two positive definite solution of (3.6.4),
let K(i) = —BT(i)P(i) and K (i) = —BT(i)P(4), then from (3.6.4), we have

(A(i) = B()K(0))" P(i) + P(i)(A(3) — B(i) K (i)

SRTOKG) + Y asP0) = 1 08
(A4G) - BO)TPG) + PO)AG) - BOK()

+ RT('&)R('L) + qul—)(]) 7 (369)

Let E(i) = P(i)— P(i), substracting (3.6.8) from (3.6.9) and using the following
identity:
(A(i) = B)K ()" P(i) + P(i)(A(i) — BO)K (i) + KT () K (i)
= (A(i) = B@O)K ()" P(i) + P(i)(A(#) — B()K (i) + K() K (i)
— (K (1) — K(i))" (K (i) — K (i),

we can obtaln
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Since I + KT (i)K (i) and P(i) are positive definite matrices, from (3.6.9) and

Corollary 3.6.11, we conclude that the matrix
F = diag{I & (A(1) - B()K(1)),...,]® (A(N) - B(NK(N)}+ Q&I

is Hurwitz stable. From (3.6.10) and Corollary 3.6.12, we have E(i) < 0,
i.e., P(i) < P(i). Switching the roles of P(i) and P(i), we conclude that

P(i) < P(i), hence P(i) = P(4). This concludes the proof. [

Now, we are ready to give a recursive procedure to solve the coupled

system of Riccati equation (3.6.4).
Algorithm:

Step 1: Suppose that there are no positive definite matrices P(1), P(2),..., P(N)

such that the matrices
1
A(i) — B(i))BT (i) P(i) — 5qif, ieN (A1)

are all stable, then (3.6.1) is not mean square stabilizable, and the algo-
rithm terminates. Otherwise, we can find a set of positive definite matri-

ces, denoted by Py(i) (i € N)and let P(i) = Py(i) in (Al);

Step 2: Suppose that at the kth step in the algorithm we have found positive
definite matrices Py (i) (i € N), we solve the following Lyapunov equation

for the positive definite matrix P(i):

(AG) = BB ()Pu(i) — 5)7PG) + PG)AG) - BB (0)PL() — )

= —1 - q;;Pu(j) — Pu(i)B(i) BT (i) Py (i),
JFi

we let Pyy1(i) = P(i) (i € N);
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Step 3: Return to Step 2 with k¥ — k + 1 and solve for Py2(i) (¢ € N).

In order to establish the validity of this algorithm, we first need to show
that in Step 2 a positive definite solution P(i) exists. From Lyapunov equation
theory, we need to prove that if the solution Py (i) at k—th iteration is positive
definite, then A(i) — B(i)BT (i) Py (i) — 0.5¢;I is stable. This then guarantees
the existence of a positive definite solution Py11(4). In fact, suppose that P(i)

is the positive definite solution at the £—th iteration, i.e.,

(AG) — B()BT (i) Poor (i) — ~a:1)T Pu(i)

2
+ P)(AG) — BB () Pe-(i) — SaiT)
= 1= Y 4i3P(j) — Pur()B(G)BT(3) Py (i),

J#i

from which we obtain the following:

(AG) ~ BB ()Py() ~ Sa:D)" (i

+ Pu0)(AG) — BOBTOP) - 5i])

= —(I+>_ i Pe(i) + Pe()) BG) BT () P (i) + AP (i) B()) BT (i) APy (i),
J#i
(3.6.11)
where APy (i) = Py(i) — Px—1(i). Since Py(7) is positive definite, from (3.6.11)
and Lyapunov equation theory, the matrix (A(:) — B(:) BT (i) Py (i) — 3q:1) is

stable, hence the Lyapunov equation

(AG) ~ BB () P() ~ 5aiT)" Py i)

+ Pry1(i)(A(G) — B(@)BT (i) P (i) — %qﬂ) (3.6.12)
=—1- ZQiij—l—l(j) — P B(i) BT (i) Py (i),
Jj#i

has a positive definite solution Py (7).
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It is easy to see that if the algorithm is convergent, then the limit of Py (7)
is the solution of (3.6.4), from which we can conclude that the system (3.6.1)
is mean square stabilizable. The next question is when does the algorithm

converge.

From Corollary 3.6.6, if the system (3.6.1) is mean square stabilizable,
then (A(7) —0.5¢;1, B(7)) is stabilizable, and for any positive definite matrices
Q(1),...,Q(N), the following Riccati equations have unique positive definite
solutions Py(1),..., Py(N): (Vi € N)

(A(i) = 0.5¢:1)" Po(i) + Po(i)(A(i) — 0.5¢:1) — Po(i) B(i) BT (i) Po(i) = —Q(i),
(3.6.13)

Using this to initialize the algorithm, we can obtain the following result.
Theorem 3.6.14:

If there exists positive definite matrices Q(1),...,Q(N) such that the
positive definite solution Py(1), Py(2),..., Po(N) of (3.6.13) satisfy

o0 ; \RT (s : T . .
/ LAO-BOBT MR 0)-0560 ™ | S 0 p () — Qi)
0 i#i
x (A@=B@BT (0)Po(1)=0.5a: D)t gy < ()
for any i € N, then the algorithm initialized with the solution of (3.6.13) is
convergent and the coupled system of Riccati equations (3.6.4) has a unique

positive definite solution, hence the system (3.6.1) is mean square stabilizable.

Proof: We only need to prove that the algorithm converges. Subtracting
(3.6.11) from (3.6.12), we obtain (k > 0)
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(AG) ~ BGBT () Peli) ~ 54iT)" APiy ()

+ APy 1 (i) (A7) — B(3) BT (i) Py (3) — %%’I) (3.6.14)
= - ZQijAPk—H(j) + APy B(i) BT (i) APy (i),
J#i

from which we arrive at

APk+1(i):/ (A =B(i)B” (i) Py, (i)=0.5q:1) "t
0

X 4> i APe(j) — APy (i) B(i) BT (i) APy (i)
j#i
« e(A@=B()B" (i)Py.()=0.5¢: 1)t gy

< /oo o(A(D)=B(i) BT (i) P, (1)~0.5¢; 1) "'t Z 0i; AP (5)
0 i
« (A =B()BT (i) Py (1)=0.5¢;: )t 1y

Thus, if Py(i) satisfies the given condition, then we have AP;(i) <0 (i € N).
Applying induction to (3.6.14), we obtain AP;;1(i) < 0, i.e., 0 < Pry1(i) <

Py (i), which implies that Py (i) converges, and the algorithm is convergent. []
From this theorem, the following simpler criterion can be easily obtained.
Theorem 3.6.15:

If there exist positive definite matrices Q(1), Q(2),. .., Q(NN) such that the
solution of (3.6.13), say, Py(1), Py(2),. .., Py(N), satisfies

> aiiPo(i) <Qi), (i=1,2,...,N)
J#i

then the system (3.6.1) is mean square stabilizable.
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In particular, if there exist positive numbers (1), ..., S(N) such that the
solution of (3.6.13) with Q(i) = S(i)I satisfies

N aiiPoG) < B, (i=1,2,...,N)
J#i
then (3.6.1) is mean square stabilizable. It is simpler to choose a sufficiently

large number 8 > 0 and to set (i) = 3, which may lead to the desired result.
L]

Up to now, we have only discussed the mean square stabilization problem,
which has been a central topic in the current literature. There are essentially
no results for §—moment stabilization for arbitrary o > 0. Even the mean
square stabilization results are complicated and difficult to use. In section
3.4, some d—moment stability criteria are given, and can be used to study the

d—moment stabilization problem. In the following, we study this approach.
We first give a result for mean square stabilization.
Theorem 3.6.16:

The system (3.6.1) is mean sqaure stabilizable if and only if there exist

matrices K(1),..., K(N) such that the matrix
H = diag{I @ (A1) - BO)KQ)T,...,®(A(N) - BIN)K(N)T} + Q& T
is Hurwitz stable, where [ is the identity matrix with appropriate dimension.

Proof: This can be proved by the mean square stability result obtained by
Theorem 3.4.4. []
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Thus, the mean square stabilization problem is reduced to choosing feed-
back matrices to stabilize one “larger” matrix. Mariton ([86]) applied homo-
topy theory to numerically compute the feedback matrices K(1),..., K(N),

although this procedure is also complicated.
For general 6 > 0, we have the following similar result.
Theorem 3.6.17:

Let p(-) be an induced matrix measure. Let

H(5) = diag{I ® A(1),...,. I AT(N)}+Q®1I, §>2;
T\ diag{I® AQ1),.... T AT (N} +QeI, §<2

If there exist matrices K (1),..., K(N) such that H(d) is Hurwitz stable, then

the system (3.6.1) is d—moment stabilizable.

Proof: It has been proved (Theorem 3.4.6) that the §—moment top Lyapunov
exponent of the system (3.6.1) with the feedback control u(t) = —K(o(t))x(t)
is less than and equal to the largest real part of the eigenvalues of the matrix

H(0), the proof of Theorem 3.6.17 is then straightforward. ]

Remark: 1t is easy to see that when 0 = 2, Theorem 3.6.17 reduces to Theorem
3.6.16, hence Theorem 3.6.17 is a general sufficient condition for j—moment
stabilizability. The homotopy procedure developed in Mariton ([86]) can be
used to numerically find K(1),..., K(N).
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We observe that when the dimension of the system and the number of
states of the finite state Markov chain increase, the dimension of the matrix
H(0) or H increases, so the above criteria for 6 —moment stabilization becomes
increasingly more complicated. The following result gives a simpler and possi-

bly more useful result for 6 —moment stabilization.
Theorem 3.6.18:

Let pu(-) denote any induced matrix measure, define
U(6) = ddiag{u(A(1) — B(1)K(1)),..., u(A(N) = BIN)K(N))} + Q.

If there exist matrices K (1),..., K(N) such that the matrix U(J) is Hurwitz
stable, then the system (3.6.1) is d—moment stabilizable. In particular, for a
one-dimensional system, (3.6.1) is —moment stabilizable if and only if there
exists matrices K (1),..., K(N) such that U(0) is Hurwitz stable. In this case,
U(0) = diag{A(1) — B(1)K(1),...,A(N)— B(N)K(N)} + Q.

Proof: This can be proved using the d—moment stability result (Proposition

3.4.8). O

This criterion generally depends on the choice of matrix measure. Different
choices of the induced matrix measure can lead to more or less conservative
testable conditions for J—moment stabilization. This has already been ob-
served for d—moment stability in section 3.4. The following matrix measures
p1(A) (ng(A)), n2(A), too(A) (13 (A)) and pp(A) (P is positive definite ma-
trix) defined in Theorem B.1 in Appendix B can be used to give different
test criteria for —moment stabilization. How to choose an appropriate ma-
trix measure to improve the testable condition is a challenging problem which

requires further investigation.
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Using the matrix measure, we can obtain some criteria for absolute stabi-
lization, keeping in mind that absolute stabilizability itself is a very consertive
concept for stabilization studies. If the system is absolutely stabilizable, then
we do not need to study the properties of the form process. The following is

our preliminary result for absolute stabilizability.
Theorem 3.6.19:

(1). If there exists a matrix measure u(-) and matrices K(1),..., K(IN) such
that pu(A(7) — B(i)K(i)) < 0, then the system (3.6.1) is absolutely stabi-

lizable;

(2). If (3.6.1) is absolutely stabilizable, then (3.6.1) is individual mode stabi-

lizable;

(3). For a one dimensional system (3.6.1), it is absolutely stabilizable if and

only if it is individual mode stabilizable.

Proof: (1). This can be proved by using the well-known Coppel’s inequality;
(2). For any i € N, choosing an N state Markov chain such that the i—th
state is absorbing and the rest of the states are transient, we can obtain the

result directly; (3). This can be proved by using (1) and (2). [

Almost sure stabilizability is a new topic in this area and in general, it is
much more difficult to obtain general criterion for almost sure stabilizability
than for moment stabilizability. Ezzine and Haddad ([182]) briefly discussed

this issue, and pointed out the difficulty of this problem.

In linear system theory, we know that controllability implies stabilizability.

However, as we discuused earlier, individual mode controllability does not
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imply mean square stabilizability. What happens to almost sure stabilizability?
Surprisingly, we will show that individual mode controllability implies almost

sure stabilizability under a very fairly general condition. We have
Theorem 3.6.20:

Suppose that {o ()} is a finite state ergodic Markov chain, then individual

mode controllability implies almost sure stabilizability. []
To prove this, we need the following lemma.
Lemma 3.6.21:

Consider a companion matrix

0 1 0 0
0 0 1 0
A=1| + = :
o o0 0 : 1
rT T2 X3 ... Ip

which has distinct real eigenvalues A1,..., A, with [A; — ;| > 1 (i # j), then
there exists a constant M > 0 and a positve integer k£ which are independent

of A\1,..., A\n, and a nonsingular matrix 7" satisfying
T|< M MDE T < M Ai|)*
TN < M(max [A:])", |77 < M(max [A])",

such that
T~ 'AT = diag{\1, A2y ..., An ).

Proof of Lemma 3.6.21: Since A has distinct real eigenvalues, A can be

diagonalized over the real field. After some algebraic manipulation, we can
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find the transformation matrix

1 1 o1
)\1 )\2 )\3 )\n
r=| A A A A
ApThoapTtoaagTt oL antt

such that T7YAT = diag{A1,...,A\,}. To prove that T satisfies the required
condition, we can use the 1—norm because all matrix norms over the real field

are equivalent. Notice that

o _adi@) _ adi(T)
det(T)  Tlicicjcn(Xi—Aj)’

hence from |A; — ;| > 1, we have [|[T~!|| < ||adj(T)||. Since all entries of T

and adj(T") are polynomials of A1,..., Ay, it is easy to show that there exists
an M > 0 and a positive integer £ > 0, which are independent of Ay,..., \,,
such that

< Nk -1 < N
IT] < M (e D, |77 < M (max [n)

This completes the proof. [
Now, we are ready to prove Theorem 3.6.20.

Proof of Theorem 3.6.20: Without loss of generality, we only prove the
single input case. For any 7 € N, from the individual mode controllability
assumption, (A(j), B(j)) is controllable, then there exists a nonsingular matrix

T (j) such that

oo
o
— o
oo

def

T1(§)A(H) T (5) = = A1(5),



Let A1,..., A, be negative real numbers satisfying: 2n > |\, — A\;| > 1 (i # j)
(say, —m — 1,—m — 2,..., —m — n for sufficiently large m, for example), then

we can choose a matrix Ki(j) such that
. . .\ def =7 ..
A7) = B1()K1(j) = A())

has eigenvalues Ai,..., )\, for any j € N. Now A(j) is in companion form,
from Lemma 3.6.21, there exists My > 0, [ > 0, which are independent of
AL,y ..., A\n and j, and nonsingular matrices T5(j) (j € IN) satisfying
. < Y -1/, < 1
ITo )l < Mo DY, (TG < Mo DD

such that

Ty () AG)Ta(j) = diag{Ar, ... A} = D, (j € N).

Now, choose the feedback control u(t) = —K (o (t))x(t), where
K(j) = K1())Ta(5), T() =TT ()T2(5), (€N).
Then the closed-loop system becomes
@(t) = T(o(t)) DT (o (t))x(t), (3.6.15)

From the choice of T1(j) and T%(j), there exists an My > 0 and [ > 0, which

are independent of j and Aq,..., \,, such that

Nl < ) L)< e
1T ()l _Mz(lrél%xnlM), T (J)||_M(1I£?§Xn|>\z|)
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Since A; < 0, let A = max;<;<n A, then it is easy to show that there exists an

M3 > 0, which is independent of A\{,..., A, and j, such that
[eP!]] < Mae, (¢ > 0).

From the sojourn time description of a finite state Markov chain, (3.6.15) is

almost surely stable if and only if the state transition matrix

®(t,0) = eZ(Tk)(t—tk)eZ(Tk—l)kal .. .eZ(To)To t=op 0

almost surely, where g(]) =T(j)DT~1(j) (j € N). However, we have
12 (2, 0)]
= (1T (ri)eP T (ri) T (rio—1)eP ™ T~ (rie—1) - T(ro)eP™ T~ (ro) |
<NT e M= ) INT (- )P ] ¢ -
17 (ro) 1€ 17~ (ro)

z 2(k+1)
J

S |:M2( max >"L M§+16A(7k+7k71+"'+7'0)

1<i<n

T TL st T k+1
o {MeA—H S 0} (3.6.16)
where M = (M2 mMaxi<i<n |)\i|l)2M3. Since {o;} is a finite state ergodic

Markov chain, from the Law of Large Numbers, there exists a nonrandom

constant a > 0, which is the average sojourn time, such that

. Tt Tg—1+ "+ To
lim

=a (a.s.).

Hence, almost surely, we have

TL4TL 14T
lim M FT = Mer < [My(A| +2n)!]” Mae® *==7 0.

k— 00
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So we can choose |A| sufficiently large so that Me*® < 1, from (3.6.16), almost
surely

lim ®(¢,0) = 0,

t—o00
i.e., (3.6.15) is almost surely stable, hence the system (3.6.1) is almost surely

stabilizable. This completes the proof. L]

Remark: From the proof, we can observe that it is possible to relax the
ergodicity assumption. In fact, all that is required is that the average sojourn

time is positive.

One may wonder if we can relax the individual mode controllability to the
individual stabilizability in Theorem 3.6.20. The answer is negative, the fol-
lowing example show that although the system is individual mode stabilizable,

the jump linear control system is not almost surely stabilizable.

Example 3.6.22: (Individual mode stabilizability does not guarantee

d—moment stabilizability and almost sure stabilizability)

Let

where ¢ > 0 and ¢ > 0 satisfying 1 — a/q > 0.5. The system (3.6.1) is
individual mode stabilizable, however, from Example 3.3.7, we know that the
top Lyapunov exponent for this system is positive, hence the system (3.6.1)

with any control is almost surely unstable.

Example 3.6.23: (Almost sure stabilizability does not imply individual mode
stabilizability)
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1 -1
Obviously, (A(1),B(1)) is not stabilizable. However, the system is almost

Let A(1) = 1, A(2) = 2, B(1) =0, B(2) = 1 and Q = (_1 1 )

surely stablizable. In fact, the invariant measure of the form process is 7 =

{0.5,0.5}. K(1) =0 and K(2) = 10 almost surely stabilizes the system.

If we choose A(2) = —10 and B(2) = 0 in this example, then the system is

still almost surely stabilizable, and none of individual modes are controllable.

From Example 3.6.23, we can see that when one of the individual modes
is controllable, then the system is almost surely stabilizable. This is true for

any one dimensional systems. This is formalized as follows.
Proposition 3.6.24:

Assume that the form process {o(¢)} is a finite state ergodic Markov chain
with invariant measure 7 . For a one dimensional system (3.6.1), if at least
one of the individual modes, say, (A(1), B(1)) is controllable and 7; > 0, then

the system (3.6.1) is almost surely stabilizable.

Proof: Notice that for any scalar ¢, we have p(c) = c¢. Suppose that
(A(1), B(1)) is controllable, i.e., B(1) # 0, then we can choose B(2) = B(2) =
-+ = B(N) =0, and choose K (1) such that

m1(A(1) — BA)K(1)) < mAQ2) + - - + my A(N),

then it can be easily shown that the system (3.6.1) is almost surely stabilizable.
[

Proposition 3.6.24 seems to be true also for high dimensional system, that

is, if there exists an i € N such that (A(7), B()) is controllable and m; > 0,
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then the system (3.6.1) is almost surely stabilizable. This is formalized as the

following proposition, which is a generalization of Theorem 3.6.20.
Proposition 3.6.25:

Assume that {o(¢)} is a finite state ergodic Markov chain with the invari-
ant measure 7. If there exists an ¢ € N such that (A(7), B(4)) is controllable

and 7; > 0, then the system (3.6.1) is almost surely stabilizable.

Proof: We do not want to give a detailed proof because a similar idea as
used in the proof of Theorem 3.6.20 can be used here with some mathematical
modifications. A sketch of the proof is given as follows. Without loss of
generality, assume ¢ = 1. Choose B(2) = B(3) = --- = B(N) = 0, and choose
K (1) and A as in the proof of Theorem 3.6.20, then there exists an M > 0 and
«, which are independent of A, such that

HeA(i)t SM@at (i;ﬁl),

He(A(l)—B(l)K(l))tH < p(N)eM, vt > 0.

Here p()) is a polynomial with degree independent of X\. Let v} denote the
time occupied by the state 1 during the time interval (0, ¢;) and let 77 denote
the time occupied by the states 2,3,..., N during the interval (0,%;). From

the ergodicity of {o(¢)}, we can obtain

1 2
lim 2% — 7, lim Jk

=1- U
k—oo Tg k—oo g

Similar to the proof of Theorem 3.6.20, we can obtain

k

| (tx, 0)]] < (Mp()\)o(kﬂ)/tkem,ﬁ/tﬁay,g/tk ¢

Y

and the term inside [- - -] has a limit

(Mp(\))YeemA-m)a 50 (X = —o0).
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From this argument, we can complete the proof. L]

As we observed before that matrix measure can be used to study
d—moment stabilization, we can use the matrix measure to derive a testable

result for almost sure stabilization. We have
Theorem 3.6.26:

Suppose that {o(¢)} is a finite state ergodic Markov chain with invariant
measure m = {my,Ta,...,mn}. For any matrix measure pu(-), if there exists

matrices K(1), K(2),..., K(N) such that
mu(A(l) = BA)K(1)) + - - - + v p(A(N) — B(N)K(N)) < 0,

then the system (3.6.1) is almost surely stabilizable. Moreover, for the one-

dimensional system, the above condition is also necessary.

Proof: This can be proved by the almost sure stability result( refer to section

3.3). O

By specifying the matrix measure p(-) in Theorem 3.6.26, we can obtain
many easy-to-use results for almost sure stabilization. Application of Theorem

B.1 in Appendix B gives the following result.
Corollary 3.6.27:

Suppose that {o(t)} is a finite state ergodic Markov chain with invariant
measure 7, let A(i) = A(i) — B(i)K (i) (i € N). The system (3.6.1) is almost
surely stabilizable if there exists matrices K (1), K(2),..., K(N) such that one

of the following conditions holds:
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(1). There exists a positive definite matrix P such that

N
> Tidmax[PA@E) P + A(i)T] < 0;
=1

(2). There exists positive numbers r1,rs, ...,y such that

N

E Tp Max ¢ a;(p) + E |a” <0,
2

p=1

iEi
or
N
_ T
prmax ajj(p +Z |a” <0,
p=1 / z;éj

where A(i) = (@;);

(3).
> mpmax § aa(p) + ) _lai;(p)l ¢ <0,

J#i
or
N
> m max a;5(p) + Y lai(p)| p <0;
p=1 1#£]
(4)-
N
Zﬂ'i)\max[le(i) + A(Z)T] <0.
i=1
L]
Remarks:

(a). (3) and (4) are just special cases of (2) and (1), respectively. Although they

are easy to use, sometimes they yield conservative results. As we remarked
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previously, usually, a similarity transformation is necessary before the

results of Corollary 3.6.27 can be applied.

. In order to use (2), the positive numbers have to be appropriately cho-

sen. Using the following fact from M —matrix theory, we can obtain
a necessary condition for (2) to be applicable: If A = (a;;) satisfying
aij < 0 (i # j), then there exists positive numbers 71,72, ..., r, such that
aiiri > Y4 vlaij| (1 =1,2,...,n) if and only if A is Hurwitz stable or
equivalently, all principal minors of A are positive. Let U = (uij)nxn,

where

N N
wii =Y mpan(p), wig =Y mlai(p) (j # i)
p=1 p=1

Then, if (2) is satisfied, then U is Hurwitz stable and all principal minors
of —U are positive. From this, we can see that if we want to use (2),
then we need to check if U is Hurwitz stable. If not, then (2) can not be
satisfied. We conjecture that the stability of U is also a sufficient condition

for almost sure stabilizability.

In section 3.2, we have shown that in the parameter space of the system,

the domain for d—moment stability monotonically increases and converges,

roughly speaking, to the domain of almost sure stability as 6 > 0 decreases

to zero. This implies that almost sure stability is equivalent to d—moment

stability for sufficiently small 6 > 0. From this, we can also say that almost

sure stabilizability is equivalent to d—moment stabilizability for sufficiently

small § > 0, that is, the system (3.6.1) is almost surely stabilizable if and only

if there exists a § > 0 such that the system (3.6.1) is d—moment stabilizable.

Thus, almost stabilizability can be stuided by d—moment stabilizability. From
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this idea, we can obtain the following general sufficient condition for almost

sure stabilizability.
Theorem 3.6.28:

Let A(i) = A(i) — B(i)K (i) (i € N). If there exists matrices K (1), K(2),
.., K(N) and positive definite matrices P(1), P(2),..., P(N) such that for

any © € N
oT[P(i)A(i) + AT (§)P(i)]x L (TPG)
felo=1 PG # Sasos (S ) | <0

(3.6.17)
then there exists a § > 0 such that (3.6.1) is d—moment stabilizable, hence it

is also almost surely stabilizable.

Proof: This can be proved in a manner similar to the proof of the almost sure

stability result Theorem 3.3.1 . [

This result does not require that the form process is ergodic, thus Theorem
3.6.28 is more general and is likely to have more applications in practice. The
following result shows that Theorem 3.6.28 is very general sufficient condition

for almost sure stabilizability.
Corollary 3.6.29:

(1). If the system (3.6.1) is second moment stabilizable, then there exists
matrices K(1),...,K(N) and positive definite matrices P(1),..., P(N)
such that (3.6.17) is satisfied;

(2). For a one-dimensional system (3.6.1), it is almost sure stablizable if and
only if there exists K(1),..., K(N) and positive numbers P(1),..., P(N)
such that (3.6.17) holds;



273

(3). If there exists matrices K(1),...,K(IN) and positive definite matrices
P(1),...,P(N) such that for i € N,

Amaxd [P(D)A(0) + AT (@) P()]P7H (D)} + ) 4ij log[P(/) P~ (i)] < 0,
J#i
then (3.6.1) is almost surely stabilizable with feedback control wu(t) =
—K(a(t))x(t).

Proof: (1) can be proved by the second moment stabilizability result, (2) can
be proved by calculating the explicit solution and (3) is straightforward from

(3.6.17). O

The necessary and sufficient condition (2) in Corollary 3.6.29 for the one
dimensional system is very interesting and can be used to obtain some sufficient
conditions for almost sure stabilization for higher dimensional systems. The
idea is to use Coppel’s inequality to reduce a higher dimensional system to a
one dimensional system for the purpose of almost sure stabilizability. Theorem
3.6.26 can be applied only for the case where the form process is ergodic,
condition (2) in Corollary 3.6.29 may provide a more general sufficient condition
for almost sure stabilizability. First, we consider the one dimensional system
(3.6.1). From (2) of Corollary 3.6.29, (3.6.1) is almost surely stabilizable if and
only if there exists matrices K(1),..., K(N) such that the following series of
inequalities hold: (A <. B or A <. B means elementwise inequalities of the

matrices A and B)

3P (i) > 0, 2A(i) + Zqﬁ log % <0, (i€ N)
J#i

< 3P(i) > 0, 24(i) + Y _qijlog P(j) <0, (i€ N)

J=1



1‘1(1) Y1
N A(2) Y2

<~ dJye R", y>0, ) +Q ) <. 0.
A(N) YN

From this, we can obtain the following result.
Theorem 3.6.30:

Let p(-) denote any induced matrix measure, and let a = (p(A(1) —
B(1)K(1)),...,u(A(N) — B(N)K(N)))T. If there exists matrices K(1),...,
K(N) such that the inequality a + Qy <. 0 has a solution y € R, then
the system (3.6.1) is almost surely stabilizable. Moreover, the solvability
of the inequality a + Qy <. 0 is also a necessary condition for almost sure

stabilizability for a one dimensional system.

Proof: Let p(-) be the matrix measure induced by the vector norm || - ||
and let z(t) denote the sample solution of the closed-loop system i(t) =

[A(c(t)) — B(o(t))K(o(t))]z(t). From Coppel’s inequality, we have

[z (@) < ol exp[/o p(A(o(r)))dr]. (3.6.18)

Consider the system 2(t) = u[A(c(t))]z(t) with initial condition z(0) = [|zo]|-
Then the sample solution z(¢) can be represented on the right hand side of
the inequality (3.6.18). It is easy to show that if 2(t) = u[A(c(t))]2(t) is
almost surely stable, then from (3.6.18), the system (3.6.1) is almost surely
stabilizable with the feedback control u(t) = —K(o(t))z(t). Using the result

for one dimensional systems, we can complete the proof. L]

As we observed earlier, by specifying the matrix measure, we can obtain
some useful easy-to-use criteria for almost sure stabilizability, this is left to

the reader. Next, we want to show that Theorem 3.6.30 is more general than
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Theorem 3.6.26. In fact, we have proved that if () and 7 are the infinitesmal
generator and invariant measure, respectively, of a finite state ergodic Markov
chain, then for any vector a, the inequality a + Qy <. 0 has a solution y
if and only if ma < 0. Suppose that {o(t)} is a finite state ergodic Markov
chain, from the above fact, it follows that Theorem 3.6.26 and Theorem 3.6.30
are equivalent. However, when the form process {o(t)} is not ergodic, then
Theorem 3.6.30 can not be used, however, Theorem 3.6.30 is still applicable.

This is illustrated in the next example.
Example 3.6.31:

Let A(1) = a; and A(2) = ay denote two real numbers and B(1) = B(2) =

0. Assume that the form process {o(t)} is a two state Markov chain with
0 0
0 0
ergodic, and Theorem 3.6.26 can not be used. However, from Theorem 3.6.30,

infinitesimal generator Q) = ( ) . It is obvious that the form process is not
the system (3.6.1) is almost surely stabilizable if and only if a + Qy = a <. 0,
i.e., a; < 0 and as < 0. From @, we see that the only uncertainty about the

form process is the initial probability distribution.

In the rest of this section, we present some examples to show how the
criteria developed in this section can be used to study stochastic stabilizability.
We first begin with an example motivated by the study of dynamic reliability

of multiplexed control systems ([91]).

Example 3.6.32:

Let
0 0 0 10 b k0
AQ)=1[15 0 15|, BW)=[0 0], K(l):(ol k2 k)
0 0 0 0 1 2 M
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00 0 10 Lo o

A2)=[0 0 15|, B2 =|0 0], K(2):(01 h k)
00 0 0 1 2 M
0 00 10

AB)=1(15 0 0], BB)=|0 0], K(3):(%1 %2 ;)
0 0 0 0 1 !
0 0 0 10

A4 =10 0 0], B@W=1|0 0], K(4):<’B1 8 ;)
00 0 0 1 !

This models a first order system with two controllers (incorporating the re-
dundancy principle for reliability) (see [91] for details). The first mode (state
1) corresponds to the case where both controllers are good, and the second
and third modes (the states 2 and 3) correspond to the case where one of the
controllers fails, and the fourth mode (the state 4) corresponds to the case
where both controllers fail. We assume that whenever a controller fails, it will
be repaired. Suppose that the failure rate is A and the repair rate is pu, and the
failure process and the repair process are both exponentially distributed. Then

the form process is a finite state Markov chain with infinitesmal generator

—2X A A 0

I T O ) 0 A
@= 1 0 —(A+p) A
0 Iz p —2p

In [91], Ladde and Siljak developed a sufficient condition for second moment
(mean square) stabilizability and used this to show that when A = 0.4 and
p = 0.55, k; = 2.85 and ky = 0.33, the controller u(t) = —K(o(t))x(t)
stabilizes the jump linear system (3.6.1). In this approach, an appropriate
choice of positive definite matrices should be sought, which is very difficult.
However, using Theorem 3.6.16, we can easily check that in this case, the
eigenvalues of the matrix H in Theorem 3.6.16 have negative real parts, hence

H is Hurwitz stable. It is also easy by computation to show that for the failure
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rate A = 0.4 and the repair rate p = 0.55, any controller with the parameters k;
and ko satisfying 0.1 < k; < 5 and 0.1 < k3 < 5 can second moment stabilize
the jump linear system (3.6.1). Similarly, using the controller with k; = 4 and
ko = 0.55, for any failure rate 0.4 < A < 0.6 and repair rate 0.4 < p < 0.6,
the system (3.6.1) can be second moment stabilized by such controller. One
important fact is that even if the failure rate is greater than the repair rate,
this controller still stabilizes the system, i.e., the multiplexed control system
is reliable. This result is not readily apparent from [91]. From the computer
computations, it seems that whenever the repair rate is greater than the failure

rate, then this controller can second moment stabilize the system (3.6.1).
Example 3.6.33:

In this example, we study the d —moment stabilization problem for general
9 > 0. Consider the one-dimensional jump linear system (3.6.1) with

A(l):al, B(l):bl, A(2):CL2, B(2):b2, Q: <_qq _qq> .
Theorem 3.6.18, we can easily obtain that the system (3.6.1) is d—moment

stabilizable if and only if there exists k1 and ko such that
5(@1 — blkl) <q

6(az — baks2) <q (3.6.19)
q q

. <1
q— 5(611 - blkl) q— 5(612 - bzk‘z)

(1). If by # 0 and by # 0, i.e., the system is individual mode controllable, then
we can choose ki1 and ks such that a; — b1k1 < 0 and as — boks < 0,
then (3.6.19) is satisfied, hence (3.6.1) is —moment stabilized by such a

controller;
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(2). If by # 0 and by = 0, then we can prove that (3.6.1) is d—moment
stabilizble if and only if as < ¢/d. The necessity can be proved by the
second inequality in (3.6.19). Suppose that a2 < ¢/J, choosing k; such

that
Q(al + az) —daiaz
q — daz

biky >

we can easily verify that (3.6.19) is satisfied with such a k; and for any

k2, hence (3.6.1) can be stabilized by such controller;

(3). If by = 0 and be # 0, then (3.6.1) is 6—momnet stabilizble if and only if

a1 < q/d;

(4). If by = by = 0, then (3.6.1) is d—moment stabilizble if and only if

day < q

das < q

q ) q
q—o0ay q—daz

< 1.

The domain of (aq,as) for which the system (3.6.1) is d—moment stabi-

lizble is illustrated in [74].
Example 3.6.34:

Let
A(1)=<_04 110),A<2>=(_foo 207>’B(1):B(2):<(1)>’

=3 1)

It is obvious that the system (3.6.1) with this data is individual mode con-
trollable. From Theorem 3.6.20, we can obtain that the system (3.6.1) is al-

most surely stabilizable. We want to find the feedback matrices K (1) and
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K (2) such that the control u(t) = —K(o(t))z(t) almost surely stabilizes the
system (3.6.1). We use Theorem 3.6.26 to solve this problem. First notice
that the invariant measure for the form process is 7 = (0.5,0.5). Choose
K(2) = (-100,27), then A(2) = A(2) — B(2)K(2) = 0, and for any ma-
trix measure pu(-), u(A(2)) = 0. For the first mode, we can choose a K (1)
such that the eigenvalues of A(1) — B(1)K (1) can be assigned, for exam-
ple, to —1 and —3. This can be achieved by setting K (1) = (—2,13), then
A(1) = A(1) = B()K(1) = ( 0 1

9 _3>. From the proof of Lemma 3.6.21, we
know that

-1
1 (0 1 (1 1
TAT " = (_2 _3>, where T = <_1 _3> .

Define the vector norm ||z|r = ||Tx||2, from Appendix B, the induced matrix

measure is given by ur(A) = ua(TAT~1). From this, we can easily compute

e i) =g (7 5)) =10 wrtd) = o) o,

We have 71 p7(A(1)) + mopr(A(2)) = 0.5 % (=1) + 0.5 x 0 = —0.5 < 0, and
from Theorem 3.6.26 the controller u(t) = —K (o(t))z(t) with K (1) = (-2,13)
and K(2) = (—100,27) almost surely stabilizes the system (3.6.1).



CHAPTER FOUR

CONCLUSIONS AND

FUTURE RESEARCH DIRECTIONS

In this dissertation, we have studied stochastic stability of both discrete-
time and continuous-time jump linear systems with a finite state Markov chain
form process. We first study the various moment stability properties and
delibrately illustrate the relationship between almost sure stability and moment
stability, and between the regions of almost sure stability and moment stability.
An important tool so-called large deviation theorem is first introduced to solve
the stochastic stability problems. This work is first one in current literature
systematically studying almost sure (sample path) stability of jump linear
systems, and it is our hope that this work could pave the way for the future
research on sample path stability of more general stochastic systems, e.g. the

nonlinear jump systems with a finite state Markov chain form process.
The following few research directions are suggested for near future.

(1). Computational Procedure for Almost Sure Stability

In Chapter two and three, we have obtained some very general sufficient
conditions for almost sure stability, e.g., Theorem 2.5.11-2.5.16 and Theorem
3.3.1-3.3.2. We conjectured that the conditions in Theorem 2.5.11 and The-
orem 3.3.1 are also necessary, respectively. One research topic is to find a
vigorous proof or to seek counterexamples. It is witnessed that to effectively
apply these general sufficient conditions, we have to find an appropriate pos-
itive definite matrices P(1), P(2),..., P(IN). However, at present, we are not

able to find a good procedure. One possibility is to solve the corresponding

280
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minimax problem. Unfortunately, the admissible domain for minimum problem
in the minimaxiation is all positive definite matrices, which really complicates
the matter. One practically important research topic will be to seek a feasible
and practical procedure to solve or approximately solve such minimaxiation

problems.

As we also noticed that matrix norm and matrix measure also give some
simple but useful sufficient conditions for almost sure stability (e.g. Theorem
2.4.1 or Theorem 3.4.1). As we show that different choice of matrix norm or
matrix measure may provide different results. It is worthwhile finding some
appropriate procedure to obtain a “good” matrix norm or matrix measure so

that the “best” results can be obtained for almost sure stability.

Another research topic is to continue to look for verifiable ) —moment sta-
bility criteria for sufficiently small § > 0. Some computational test procedures
for )—moment stability are also desirable. One possible procedure is to obtain
some good estimates for top d—moment Lyapunov exponent of jump linear

systems.

(2). Stabilization Problems

Almost sure stabilization problem has been briefly studied in Chapter two
and substantially investigated in Chapter three. As we remarked there that any
almost sure stability criteria can be used to obtain almost sure stabilizability
criteria, which involve solving a set of inequalities with matrix variables. This
is not easy problem and is usually reduced to multiobjective optimization
problems. One possible solution for this may lie in the nonlinear optimization

algorithm development whose variables are matrices.
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It is also interesting to consider the j—moment stabilization problem for
jump linear systems. Second moment stabilization problem has been studied by
Ji et al ([71]-[74]), however, their criteria are reduced to test the convergence of
matrix sequence which may be very difficult. We also suggested in Chapter two
and three that second moment stabilization problem can be reduced to a linear
quaratic optimization problem, which is hoped to reduce the complexity of the
problem. This is still an open problem in the current literature. When § # 2,
the d—moment stabilization problem is totally new and is a very important

research area considering its relationship to almost sure stabilizability.

As we noted earlier, all the stabilization results were developed under the
assumption that {ox} or {o:} is observable at the moment k or ¢t. If this is
not true, then all results failed and the corresponding linear quadratic optimal
problem has dual effect ([80]). Another rich research area is to find some
physically realizable feedback control to stabilize the jump linear systems. Up
to now, there is no results yet except the robust stabilizability criteria obtained

from the robust stability criteria (see section 2.8 and section 3.5).

(3). Optimal Control of Jump Linear Systems

The Linear quadratic optimal control has been studied extensively in the
literature ([7],[49],[67]-[73]). When the form process is not observable, this
is reduced to dual control problem ([80]), it is interesting to study this dual
control problem because jump linear control systems with a finite state Markov
chain form process. Another important problem is to consider the case when
the form process is a controlled finite state Markov chain. This problem, which
has a practical background, is also intensively studied by many researchers

([180],[181]).
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It may be also interesting to consider the optimal control problem whose

cost, function is given by

J(u)=E {Z[iﬂ(k)TQ(ak)x(k‘) + uT(k)R(Uk)U(k)]‘s} )

k=0
or

J(u)=E { /0 2T (1)Q(0n)x(t) + uT(t)R(at)u(t)]5dt} .

This cost functional or its variants may be helpful, especially for the suboptimal
control designs. This cost functional is never be used in current literature and

may be worthwhile studying.

(4). Stability Analysis of Nonlinear Jump Systems

In this dissertation, we only study the stochastic stability of jump linear
systems with a finite state Markov chain form process. For some pratical
problems, the resulting closed-loop control system may be a nonlinear jump
system, therefore, it is useful to study the stochastic stability of such systems.
It may be possible to generalize the results in this dissertation to the case of

nonlinear systems with a finite state Markov chain form process.

(5). Applications of Large Deviation Theory

As we witnessed in our research, the large deviation theorem is very
important tool to study the relationship between almost sure stability and
moment stability. It is possible to apply this theory to more general systems
for stochastic stability study. This forms another new rich research area for

the future.

(6). Stability of Jump Linear Systems with Noise
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The linear quadratic optimal designs of jump linear systems with additive
Gaussian noise have been studied by many authors ([7],[72],[73]). It is also
very important research topic to generalize our results in this dissertation to

such systems. This seems to be a fairly easy task to be accomplished.
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APPENDIX A

SOME PROPERTIES OF MATRIX NORMS

To study the stability of discrete-time jump linear systems, we need some
properties of (induced) matrix norms. Some of the properties are known, and
some of them are new. Let M,, denote the n x n matrix set on real or complex
field, a function || - ||: M,, — R is called a matrix norm if for all A, B € M,,,

it satisfies the following conditions:
(1). [|A]| > 0, and ||A]| =0 iff A = 0;
(2)- [leAll = [e]l[A]] Ve € C;

(3). A+ Bl < [[All + Bl

(4)- [[AB] < | AlllIB]|-

It is not necessary to assume (4) for the definition of matrix norms, but
for the stability study purpose, it is essential to assume this, which is satisfied
by a norm induced by a vector norm. A matrix norm || - || is called an induced

matrix norm by a vector norm |- | if

A
]| = sup 1221,
w20 ||

In [172], the matrix norm defined in the above fashion is called consistent
matrix norm and the induced norm is called the operator norm and it can be
proved that for any matrix norm || - || defined above, there exists a vector norm
v such that v(Az) < ||A||v(x), if we use || - ||, to denote the induced matrix

norm by v, then we have ||A||, < [|A]|. For the stability purpose as we will
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see, the induced matrix norm is enough. we summarize some of the useful

properties in the following lemma.
Theorem A.1:
For any matrix norm,

(a). || - || is convex, i.e., for any Ay, Ag,..., A, € My, and A1, Ag,..., A, >0,

where }2, ;. Ai = 1, we have

1D NAl < D Nl Al

1<i<p 1<i<p

(b). The following are the special matrix norms:

1Al =) lai]

2,7=1

n
Z la;j|2 (Frobenius norm)

ij=1

1Al =

n

Al = lr%aéxn; la;j| (induced by 1-norm)

n

[Alloo = max Z la;j| (induced by oo-norm)
Sisn £

|All2 = v/ Amax(A*A) (induced by 2-norm)

(c). Il < [IAll]|Alloos

(d). If T is nonsingular, and || - || is a vector norm, then ||Tz|| is also a vector
norm and its induced matrix norm is given by ||A||7 = [|[TAT ||, where
we still use || - || to denote the matrix norm induced by the vector norm

| - ||. In particular, let R = diag{ry,...,r,}, where r1,..., 7, are positive
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numbers, then the induced matrix norm by the vector norm ||Rz||,, where
p=1,+00, F, are given, respectively, by
n

Al = —ag;
Hﬂllggﬁ”ﬁm

AllE = AP
HHw_@g;Jﬁw

(e). For any matrix norm || - ||, we have p(A) < ||A||. Here p(A) denotes the

spectral radius of A.

(f). Let 7 denote the set of nonsingular matrices, and || -[|T" denote the matrix
norm induced by the vector norm ||Tz||, where p = 1,2, +o00, then we
have

inf [|A||T = inf [|A]|Z = inf [|A]|L = p(A).
Jof AT = inf A5 = inf || A% = p(4)

(g). Ais (Schur) stable if and only if there exists an induced matrix norm || - ||

such that ||A]| < 1.

Proof: (a),(b),(d) can be deduced easily from the definition of matrix norm.

(c) can be found in [172].

(e). Suppose that A is an eigenvalue of A with spectral radius p(A) = |A|,
then there exists a vector x # 0 such that Ax = Az. Define X = (z,z,...,x),
then we have AX = AX, hence from the multiplicative property of the matrix

norm, we obtain

IAX = [IAX = lAX] < [[A[[[[X]],
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and since X # 0, we have || < ||A]|, i.e., p(A) < ||A]].

(f). In (f), for 2—norm case, the proof can be found in [145]. Following a
similar procedure, we can prove the rest. For example, consider the co—norm
case. From Jordan’s Theorem, there exists a nonsingular matrix P such that
PAP~! = D + U, where D = diag{\,...,\,} is diagonal matrix whose
diagonal elements \; are the eigenvalues of the matrix A and U = (u;;) is a
matrix satisfying u;; = 0 if j # ¢+ 1 and u;; = 0 or 1if j = ¢+ 1. Let
R = diag{l,e71,... ,8_("_1)}, where € > 0 is a small positive number to be

determined. Let T'= RP, then T is nonsingular, and it is easy to check that
[A]% = ITAT oo < max {|Ai| + €} = p(A) +e.
1<i<n

This means that for any € > 0, there exists a nonsingular matrix 7" such that
|A[|Z, < p(A) +e. From (e), it is easy to show that infre7 || A|Z, > p(A), thus

we have infrer || AL = p(A).

(g). If there exists a matrix norm || - || such that ||A]| < 1, from (e), we

have p(A) < ||A]] < 1, hence A is (schur) stable. Conversely, if A is stable,

then p(A) < 1. From (f), there exists a matrix norm || - || such that ||A] < 1,
this completes the proof of (g). [
Remarks:

(1). Property (g) is the crucial one which explains why the matrix norm can be
used to study the stability of discrete-time systems. Consider the discrete

linear time-invariant system

z(k+1) = Az(k), xo=x(0).
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For the vector norm || - || and its induced matrix norm || - ||, we have
lz(8) ]| = [|[Az(k — D]l < [|Alllle(k = 1] < -+ < [JA]* ][0l

And because all norms on M,, are equivalent, there exists an M > 0 such
that
(k)2 < Mjz(k)|| < M|zl A]*.

Thus, || Al is an estimate for the degree of stability as defined in [4]. From
this, we observe that different choice of matrix norm will give a different
estimate for the degree of stability. (f) suggests a method to choose a
suitable matrix norm so that the best estimate for the degree of stability

can be achieved.

. The infimum in (f) may not be achieveable, that is, we can not change the

0 1
0 0

However, there is no matrix norm || - || such that ||Al| = p(A) = 0.

infimum to minimum. For example, let A = ), we have p(A) = 0.
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APPENDIX B
PROPERTIES OF MATRIX MEASURE

Matrix measure had been used to study the error bounds in the numerical
integration of ordinary differential equations ([164],[165],[167]) and estimation
and stability of solutions of differential equations ([158],[169]). Blankenship
([166]) used this technique to study the stochastic stability of linear stochastic
differential equations with random coefficients and obtained the best results
in this area up to date. Ladde ([168]) generalized the matrix measure concept
to random matrix case. Recently, Fang et al ([159]) revitalized this technique
to study the robust stability of interval dynamical systems and observed that
this may be the best way to deal with the robust stability against convex
parameter uncertainty. For convenience, we collect in this section properties

of matrix measure, some of which are new to the readers.

Let |x| denote a vector norm of z on C™, and ||A|| is the induced matrix

norm of A given the vector norm |.|. p(A) is the matrix measure of A defined
as
AL |T+0A| -1
A) = lim ————
w(A) = lim 7

where I is identity matrix.
Theorem B.1.

p(A) is well defined for any induced norm and has the following properties:
(a). u(I) =1, p(=I) = =1, u(0) = 0;

(b). p(aA) =au(A), Va > 0;
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. w(A+cl) = p(A) + Re(c), Ve € C;
- max[p(A) — p(—=B), —pu(—A) + u(B)] < (A + B) < u(A) + u(B);

. v is convex on C™*", i.e., for any a; > 0 (1 < j < k), and Z?ﬂ a; =1,

and any matrices A; (1 <j <k), we

k k
Z (Z a]-Aj) <Y aju(4y).

J=1

. For any norm, and any A, we have

—[lAll £ —u(—A) < ReA(A) < u(A) < ||A]l.

- |#(A) = p(B)| < max{|p(A = B)|, (A= B)|} < ||A - Bl;
- —u(A)fz] < | Azl,—p(A) < |Aal;
. If A is nonsingular, max[—pu(A), —pu(=A)] < (JJA7H) = < ||Al);

. Let |.| be a norm on C™ and P € C™*™ be nonsigular. Let up be the

matrix measure induced by the vector norm |z|p = |Px|, then

pp(A) = n(PAP™Y);

. For the 1-norm |z|; = >"1" | |z;], the induced matrix measure y; is given

by

pi1(A) = max
J

Re(a;;) + az’j] ;

i#j
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For the 2—norm |z[, = (31, |$i|2)1/2, the induced matrix measure ps is
given by
p2(A) = max[A; (A + A*)/2];

For the co—norm |z|s = maxi<i<n |2;|, the induced matrix measure is
given by

too(A) = max | Re(a;;) + Z |aijl
Jj#i

. Let H denote a positive definite Hermitian matrix and gy denote the

matrix measure induced by the vector norm |z|g = Vz*Hz, then

pr(A) = %)\max(HAH_l + A*);

. For any positive numbers {r1,ro,...,7,}, let R = diag{r; ', r5%, ..., ro 1},

r'n

then the matrix measure pl induced by the norm |z|gp = |Rxz|; is given
by
"
pi(A) = max |Re(a;;) + ) —laigl| ;
! i )
and the matrix measure pg induced by the vector norm |z|gr = |Rz|s is

given by

i (4) = max Re(ai) + Y ~ag| |
[ j#i 7 J

If A is given by the following block form:

A A oo Ay

Agr Axp ... Ay
A= . . .

At Agz oo A
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then for the induced matrix measure p, we have

< g .
RA() <t | (i) + 3 145
VE

or a stronger result for certain choice of norm:

< . .
ReA(4) < 1I£zagxk max Re\(A;;) + 27; | Al
YED)

For any positive numbers {ry,rs,..., 7}, we have

r

< iy § JNA;

RGA(A) < f’gflsxk M(Au) + — r. ||Al]||
V)

or a stronger form for certain choice of norm:

"
ReA(A) < lréliaé(k max ReA(A;;) + éé. . 1Al ]
FES)

(0). Let N be the set of all vector norms on C", for any p € N, the corre-
sponding matrix measure is denoted as y1,. Then for any matrix on C"*",

we have

(p). Let P be the set of nonsingular matrices in C™*", and H be the set of
positive Hermitian matrices in C™*", and using g% and pg to denote
the matrix measures induced by |z|» = |Pz|, (p = 1,2,00) and |z|g =

va*Hzx, respectively, then
. = 1 1 = 1 2 = 1 0 = 1 M
max ReAi(A) = inf pp(A) = inf pp(A) = inf up(A) = inf pr(A);

1<i<n

(q). A is astable matrix iff there exists a matrix measure p such that u(A) < 0;
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(1) p2(A) < 5(pa(A) + poo (A));

(s). If A is skew Hermitian, then po(A) = 0; if A is Hermitian, then ug(A) =
max; A\; (A); If A is diagonal, then p,(A) = max; ReX;(4)(p = 1,2, 00); If
A is singular positive semidefinite, then ps(—A) = 0; If A is normal, i.e.,

A*A = AA*, then p2(A) = max; Re);(A);

(t). For any induced matrix measure p, u(A) is continuous in A and is convex

in its C™"; And po(A) is infinitely differentiable in A.

Proof: The proof of (a), (b),(d)-(f),(h)-(k) can be found in [145]. (c) has been

proved only for the case where c is real.

(c). If ¢ is complex, then we have p(A + cI) = pu(A + bil) + Re(c), where
i = +/—1. So it suffices to show that p(A + bil) = u(A). In fact,

. ; 0
WA 4 bil) = fig HEOAHODI =L O g Al

910+ 0 810+ 0
9l0+ 0
9
i V1+6202||1 + WAH -1 (A
a0t 0 —#

where we have used the fact that 6/(1 + b262) | 07.
(g). We only need to prove the first inequality. If u(A) > u(B), then
|1(A) =p(B)| = u(A)=p(B) = n(B+(A=B))—p(B) < n(A-B) < |u(A-B)|.

In the similar fashion, we can prove that if u(B) > u(A), then |pu(A) —pu(B)| <

|u(B — A)|. Therefore, the first inequality holds.
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(i). In [145], it has proved that —u(—A) < (]]JA7Y|)~!. Replacing A with

—A in the above, we obtain —u(A) < (||A™1)7!, this completes the proof of

(i)-

(D).

Since H is positive definite, there exists a nonsingular matrix P, so
that H = P*P. Then |z|g = |Pz|2, using (j) and (k), we have

p(A) = py(PAP™Y) = %)\max(PAP_1+P_*A*P*) = lAmaX(HAH_lJrA*).

(m). Since
r r
ali ;falg . ;faln
ry 'n
ry #21 a22

. ;;agn
RAR ' = , , ,

T1 T2
;;anl ;;anZ Ann

using (j) and (k), we obtain the proof of (m).

(n). To prove this, we need the following Lemma due to Feigold and Varga

([170])

Lemma. For the partitioned A, let ||.|| be the corresponding induced

norm, if A is an eigenvalue of A, then for some ¢

IO = A) 7<) (1A441l-

i

Applying (c) and (i), we obtain for the corresponding induced matrix
measure

AT — Aig) M7 > —p(— (AT = Ai)) = Re(X) — p(Ay)



296

hence applying the Lemma, we obtain

Re(X) < u(Aii) + Y [l 4]
i

From which, we prove the first inequality in (n).
The second inequality can be proved by observing the fact in (o).

Let R = diag{riIy,721s,..., 7}, where I; is the identity matrix with
the same dimensinon as that of A;;. Applying the above results to R™*AR,

we can prove the rest of the inequalities in (n).
(0). This has been established in [159].

(p). In fact, we have proved in [159] that maxi<;<, ReA;(A) =

infpep p%(A) for the 2—norm, i.e., p = 2 case.

For any A, there exists nonsingular matrix T’ such that TAT ! = J where
J is Jordan form, let R = diag{ry,ro,...,r,}, where r1, 79, ..., r, are positive

numbers to be determined, then let P = RT € P, we have

)\1 :—;61 0 e 0

0 )\2 :—;62 . 0
PAP ' =RTAT 'R~ = :

0 0 0 . e,y

0 0 0 0 An

where A1, A2,..., A, are the eigenvalues of A and ej =0orl (1 <j<n-—1).
For p =1, using (k), we have

pb(4) = p1 (PAP™Y) = max |Re(A;) + ——¢;
J rj+1
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Thus, we choose R in the way that ri{l < ¢, then we have ph(A) <
J

max; ReA;(A) + e. This proves the case where p = 1.

In the similar fashion, we can prove the case where p = oc.
Let H = (RT)*RT, then H € H, and

pa(A) = %,\max(mw—1 + A*) = %Amax(RTAT_IR_l + (RTAT'R™Y)%)

1 /i .
< max [Re()\j) + - (TJ—I + T—Jﬂ
J 2 Ty

Tj+1
thus using similar choice of R, we can obtain pg(A) < max; ReA;(A) + ¢, this

proves the last equlity in (p). Summarizing the above, we completes the proof

of (p).
(q). This is direct result of (o) or (p).

(r). First notice that A = (A + A*) is Hermitian, its eigenvalues are real.

From Gershgorin’s theorem, we have that for any eigenvalue A of A, there

exists a ¢ such that

A —aii| < ]
J#i
Thus, we obtain

A< ag+ Y ]

J#i
1 *
= Re(aii) + Z §|a,~j + a’ji|
j#i
1 1
< 5 |2Rela) + Y (lai |+ lazil) | = 5 (11(4) + poo (4))

J#i

From this, we conclude the relationship.
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(s). The first four claims can be directly verifiable. If A is normal,
then from Theorem 2.5.4 in [148], there exists a unitary matrix U such that

U*AU = diag{\1,...,\n}. Thus
1 * 1 * * p %
1
= §>\max(diag{)‘1 + X{v R )‘n + )\:L}) = maXRe)‘z(A)
This completes the proof of (s).
(t). We first prove the continuity. It is easy to show
p(A)=[[AA] < p(A)—p(-AA) < p(A+AA) < p(A)+u(AA) < p(A)+[|AA].

Hence Ve > 0, 36(< €) > 0, such that if [|AA|| < J, we have |u(A + AA) —

p(A)| < e, hence u(A) is continuous.
The convexity follows directly from (e).
To prove the infinite differentiability, we need the following result:

Lemma: (Kato, [160]) If the matrix family 7'(f), which is infinitely
differentiable elementwise, is Hermitian, its eigenvalues A;(f) are infinitely

differentiable in 6.

Since A = (A + A*) is always symmetric for any A, and between A and
A+ AA, we can always use smooth curve to connect them so that we can

reparametrize the matrix A, finally using the Lemma, we can prove (t). [
Remarks:

(1). In [145], (g) was in the following form:

(1(A) — u(B)| < |w(A = B)|, [n(A) — u(B)| < |u(B — A)|.
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In general, this is incorrect. For example, A =0 and B = <(1) 8), then

p2(A) —u(B) = —1, and ps(A — B) = 0, thus the first inequality does not
hold.

. (f) is the crucial property for the matrix measure to be applicable in

stability analysis of control systems. Matrix measure provide a upper
bound for the real parts of eigenvalues and if this bound is negative, then
the matrix is stable. Moreover, this bound has nice convex properties
which provides some information about the real parts of the eigenvalues
of matrices in a convex hull. The importance of this property will be seen

in the next section;

. In continuous time-invariant system, the norm of system matrix gives us

nothing about the stability of the system, and matrix measure contains
the stability information. In discrete case, there is no direct counterpart of
matrix measure, and induced matrix norm contains the stability informa-
tion. Thus we have the following corresponding relationship: largest real

part of eigenvalues <> spectral radius, matrix measure <> matrix norm;

. It is obvious that matrix measure really depends on the choice of vector

norm. Different vector norm will induce different matrix measure. In
applying matrix measure technique to the stability analysis, we need to
choose the suitable vector norm so that the matrix measure is as small as
possible. Properties (0) and (p) are very important in this aspect, because
they provide some kind of procedure to minimize the upper bound for the
largest real part of eigenvalues. For a set of matrices Aq,..., Ay, we
may find systematic search method from (o) or (p) for the “best matrix

measure” so that we can test the stability of all Ay,..., An;
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If matrix A is very large, for example, the system matrix of large scale
system,property (n) can be used to study its stability. It can also be

applied to the stabilization problems of decentralized control systems;

. From the proof of (r), we can obtain the following easily computable upper

bound of p2(A):

1
MZ(A) < InlaX Re(au) + z;; §|aij + aj¢|
VES)

or the following scaling version: for any positive numbers,
T

Ty
— Qi + —aj;
T; i

Y

1
pa(A) < max Re(aii) + 3 z;;
VES)

. It is easy to show that (b) and (d) implies the convexity (e). Moveover,

(b) and (d) is true if and only if the following is true: for any integer k,any
a; >0and any A; € C™*" (j =1,2,...,k),

j=1 7=1
In general, for any «; (j =1,2,...,k), the following inequality holds

k

k
ZajAj Z lovj|pe(sgn(ey)Aj),
j=1

where sgn(x) is the classical sign function defined as follows: sgn(z) = 1
if > 0 and sgn(z) = —1 if z < 0. This observation will be used in the

next section.

. Matrix measure defined above is only for the matrix norm induced by some

vector norm. Because of this, (f) can be guaranteed. For general matrix
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norm, the above may not be true and the definition of matrix measure

should be modified as

def . |II+0A| —|I]
A¥ .
n(A) Jim 7

Follow the same procedure as in [145], we can prove that n(A) does exist.
In the above definition, we replace 1 with ||I||, because for general matrix
norm, ||I|| is not identity. For example, the Frobenius norm defined by

1/2

n
[Alr = | ) lai;|” :

7,7=1
we have ||I||lp = /n # 1 (n > 1)! From this, we can conclude that

Frobenius norm can not be induced by some vector norm, because for any

induced matrix norm ||.||, ||| = 1. It is easy to show that

sy g VEIT IS PE ol =y
nr —gﬁ){lr ) _\/ﬁizl e(a;;).

This measure of matrix 1 can not guarantee the validity of (f). For

example, A = diag{—1, —2}, then Ayax(4) = —1 and np(4) = %(—1 -
2) < —1, hence Apax(A) > np(A). This is why we can not consider this
kind measure of matrix for stability analysis. But this may be of interest

on its own right;

. For any matrix norm, we have ||AB|| < ||A||||B]|, one may conjecture that

this submultiplicativity property also holds for matrix measure, unfortu-
nately, this is not true. For example, A = diag{—1, -2}, then ps(A4%) = 4
and p2(A) = —1, hence pz(A?) < puz(A)? does not hold;

From (s), we know that if A is diagonal, then p,(A) = max; ReX;(A). One

may conjecture that for any matrix measure this is true. Unfortunately,
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0 1
1 -1
exists a unitary matrix such that UT BU = A = diag{(—1+/5)/2, (~1—

V/5}, then max; ReX;(A) = (=1 + v/5)/2, and p}(A) = p(UAUY) =
p1(B) = max{0 + 1,—1 + 1} = 1, which is not the largest real part of

this is not correct. Consider B = < >, this is symmetric, there

the eigenvalues of A. When A is normal, the (s) gives a easy computation
of pa(A). Since skew-Hermitian matrices, Hermitian matrices, unitary
matrices are all normal, their 2-norm matrix measures can be computed

very easily.

. For general matrix measure y, it may not be differentiable. For example,

0 0
z. From the proof of (t), we notice that |u(A + AA) — u(A)| < [|AA],

if A= (0 x), then pq(A) = |x|, which is not differentiable function in

thus p(A) satisfies Lipschitz condition or is a contraction map.

From (k), we can observe that matrix measure can be used to describe
the diagonal dominance property or positive definiteness property for a
set of matrices. It is easily verified that {A(w)lw € Q} is uniformly
column-sum dominant (or uniformly positive definite, or uniformly row-
sum dominant) iff there exists a positive number € such that p;(—A(w)) <
—€ (or pa(—A(w)) < —€, or peo(A(w)) < —¢) for any w € €, respectively.
This is already observed in [43]. ]

Although matrix measure is only defined for constant fixed matrix, it

applies to any matrix, whether time-invariant or time-varying, deterministic

or stochastic. This is why matrix measure can be used to study the stability

of linear time-varying systems or stochastic systems. The key idea is that the

estimation of solution of linear systems can be obtained by using the matrix
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measure technique. The following theorem plays an central role in stability

analysis using matrix measure technique.
Theorem B.2 (Coppel’s Inequality)

Under fair condition on A(t) (e.g., piecewise continuous, or integrability

condition), the solution of the following linear system :
z(t) = A(t)x(t) (B.1)
satisfies the inequalities

feteolosp {~ [ a(-aas b < oo < leolonn { [ naceas)

to to

Proof. The proof can be found either [145] or [158]. [J
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