
Computer Networks 47 (2005) 87–104

www.elsevier.com/locate/comnet
An efficient quality of service routing algorithm for
delay-sensitive applications

Wei Liu a,*, Wenjing Lou b, Yuguang Fang a

a Wireless Networks Laboratory (WINET), Department of Electrical and Computer Engineering, University of Florida,

Gainesville, FL 32611, United States
b Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States

Received 22 July 2003; received in revised form 13 May 2004; accepted 22 July 2004

Available online 11 September 2004

Responsible Editor: J. Hou
Abstract

It is well known that the Delay-Constrained Least-Cost (DCLC) unicast routing problem is NP-complete, hence var-

ious heuristic algorithms have been developed for this problem. In this paper, we propose a more efficient distributed

algorithm, namely, Selection-Function-based DCLC (SF-DCLC), based on a novel selection function for the DCLC

problem. The proposed SF-DCLC algorithm requires limited network state information at each node and is always able

to find a loop-free path satisfying the delay bound if such paths exist. Simulation study shows that SF-DCLC is not as

sensitive to the delay bound and the size of networks as some other DCLC routing algorithms, and has very low cost-

inefficiency compared to the optimal one in various network scenarios we have studied. A noteworthy feature of SF-

DCLC is that SF-DCLC has very high probability of finding the optimal solution in polynomial time with low

computational complexity and message complexity.

� 2004 Elsevier B.V. All rights reserved.

Keywords: DCLC; QoS; Routing
1. Introduction

The emerging distributed real-time multimedia

applications have diverse and stringent service
1389-1286/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.comnet.2004.07.016

* Corresponding author. Tel.: +1 352 392 8576.

E-mail addresses: liuw@ufl.edu (W. Liu), wjlou@ece.wpi.

edu (W. Lou), fang@ece.ufl.edu (Y. Fang).
requirements, defined by the quality of service

(QoS) metrics in the service level agreements

(SLA) between the service provider and the user

applications. For example, the delay-sensitive

applications such as real-time voice and video re-

quire the data streams to be received at the desti-

nation within a certain time deadline. Intensive
research work has been carried out within the
ed.

mailto:liuw@ufl.edu
mailto:wjlou@ece.wpi.
mailto:fang@ece.ufl.edu

88 W. Liu et al. / Computer Networks 47 (2005) 87–104
Internet engineering task force (IETF) in order to

provide the support for such QoS requirements

in the current computer networks, particularly

over the Internet. Many service models and

mechanisms, such as the integrated service (Int-
Serv)/Resource Reservation Protocol (RSVP)

model, the differentiated services (DiffServ) model,

Multi-Protocol Label Switching (MPLS), traffic

engineering, and QoS routing, have been proposed

[1].

QoS routing is one of the most promising mech-

anisms developed in the current literature. The ba-

sic function of QoS routing is to find a feasible
path, which has sufficient residual (unused) re-

sources to satisfy the QoS requirements requested

by a connection. Here, the QoS requirements are

represented as a set of constraints, such as link

constraints, end-to-end path constraints, or tree

constraints for the entire multicast tree. The con-

straints can also be ones on bandwidth, delay, de-

lay jitter, loss ratio, and so on. In addition, a QoS
routing algorithm should also consider the optimi-

zation of resource utilization, which is usually

measured by an abstract cost metric. The optimi-

zation of QoS routing is then to find the minimal

cost path among all the feasible paths under the re-

quested constraints [2].

Many QoS routing algorithms incorporating a

variety of constraints have been proposed in the
past few years. For unicast routing, the Multi-

Constrained Optimal Path (MCOP, also known

as PCPO) and the Multi-Constrained Path

(MCP) problems are the most notorious ones for

their NP-complete property [2]. MCOP routing is

to find a path satisfying the required path con-

straints, meanwhile, the found path is optimized

on another QoS metric. An example of MCOP is
the delay-constrained least-cost (DCLC) routing

problem, which is to find a least-cost path with

bounded delay. MCP routing is to find a path sat-

isfying multiple path constraints. An example of

MCP is the delay/delay-jitter-constrained routing

problem, which is to find a path with both

bounded delay and bounded delay jitter. The two

routing problems are related to each other, and
MCP may be simpler than MCOP because MCP

does not optimize on any metric, and instead, it

only finds a path that meets all the constraints.
Due to their NP-complete property, both routing

problems are considered intractable for large

networks. General approaches tackling the NP-

complete problem are approximations or heuristic

algorithms that guarantee to find a near-optimal
solution with polynomial complexity.

In this paper, we propose an efficient distributed

heuristic algorithm, namely, SF-DCLC, for DCLC

unicast routing. The proposed algorithm makes

use of two vectors, the least-delay path (LDP) vec-

tor and the least-cost path (LCP) vector. Our new

algorithm uses a novel selection function, which

leads to heuristics for finding a suboptimal path
closer to the optimal one. This algorithm can eas-

ily find a loop-free delay-constrained path with

only O(jV j) message complexity in the worst case
(where jV j is the number of nodes in the network)
and has very high probability of finding the opti-

mal solution if such a path exists.

The rest of the paper is organized as follows.

The related work on QoS routing is given in Sec-
tion 2. Section 3 presents the proposed SF-DCLC

algorithm. We start with the formulation of

DCLC problem, and then describe the operations

of SF-DCLC, followed by the correctness proof

and complexity analysis. Simulations and perform-

ance evaluations are presented in Section 4. Final-

ly, we conclude the paper in Section 5.
2. Related work

QoS routing has been extensively studied in re-

cent years. In general, the QoS routing consists of

two functions. The first one is the routing protocol

whose task is to collect information about the

states of the network and the available network re-
sources and to distribute the information through-

out the network. The second one is the routing

algorithm whose task is to calculate the desired

path with the information provided by the routing

protocol. In this paper, we consider the latter one

only. We assume that the first function is already

in place and can always provide the most up-to-

date information. Also, we only review works
related to MCP and DCLC problems, a more de-

tailed survey about QoS routing can be found in

[2,32,33].

W. Liu et al. / Computer Networks 47 (2005) 87–104 89
Many work has been carried out for the MCP

problems. One large group of such algorithms is

based on the calculation of a single metric aggre-

gated from a combination of multiple weighted

QoS constraints [3,6,19,21,22,24]. With the aggre-
gated metric, a simple shortest-path algorithm

can be used to find the shortest-path correspond-

ing to the aggregated metric. Jaffe [3] proposed a

pseudo-polynomial heuristic and a polynomial-

time heuristic for the MCP problem under two

constraints. Jaffe first defined an aggregated link

cost as a linear combination function of the

two link weights: x(e) = ax1(e) + bx2(e), where
a,b 2 Z+. With this aggregated cost, the path

found by the Dijkstra�s shortest-path algorithm
does not necessarily satisfy the constraints. Thus,

to appropriately choose the multipliers a and b
such that the returned path is likely to satisfy the

constraints is not a trivial task. Later, Jaffe

proposed a nonlinear function f(p) = max{x1(p),
c1} + max{x2(p),c2} which guarantees to find a
feasible path if such a path exists. Korkmaz et al.

[19] proposed an algorithm that can dynamically

adjust the values of a and b within a logarithmic
number of function calls to Dijkstra�s shortest-
path algorithm. Andrew and Kusuma [25] ex-

tended Jaffe�s algorithm to the case with more than
two constraints. Iwata et al. [24] proposed a poly-

nomial-time algorithm to solve the MCP problem.
The algorithm first finds one (or more) shortest

path(s) based on one aggregated cost and then

checks if all the constraints are met. If it fails, it

will repeat with another aggregated cost until an

appropriate path satisfying all the constraints is

found. Neve et al. in TAMCRA algorithm [6]

and Mieghem et al. in SAMCRA algorithm [20]

used the k-shortest path algorithm [21] with a non-
linear cost function to solve the MCP problem

with more than two constraints. In addition, the

concept of non-dominated paths is used to reduce

the search space without compromising the solu-

tion. The performance of these two algorithms de-

pends on the value of k. If k is large, the algorithm

has good performance but with excessive compu-

tational cost. In [22], the authors proposed an
algorithm, namely MEFPA, for MCP based on

some linear energy function. For each node, it first

constructs a number (B) of uniform coefficients to
construct B linear energy functions, then B least

energy trees rooted from this node are calculated.

The MEFPA may be useful to implement the

admission control at the router, but the algorithm

itself does not guarantee the quality of the path it
returns. Similar to TAMCRA and SAMCRA,

whose performance relies on k, the performance

of MEFPA highly depends on the choice of B.

The group of algorithms discussed above shares

the similar drawbacks: they are very sensitive to

the selected aggregated weights, and also lack clear

guideline on how the weights should be chosen.

Chen et al. [5,23] proposed an approximate algo-
rithm for the MCP. The algorithm first maps the

m�1 unbounded link metrics (real) into the

bounded integers as follows: x�
i ðeÞ¼ dxiðeÞ 	 xi=cie

for i = 2,3, . . . ,m, where xi are predefined positive
integers. By doing this, the original MCP is re-

duced to a simpler one: finding a path P for which

x1(p) 6 c1 and x�
i ðpÞ 6 xi for i = 2,3, . . . ,m. Thus,

they solved the reduced problem using the ex-
tended Bellman–Ford (EBF) algorithm or the

extended Dijkstra algorithm (EDSP). The algo-

rithm proposed in [5] is of polynomial time com-

plexity. However, it has to use high granularity

in approximating the metrics, and it does not guar-

antee that the simplified problem has a solution if

the original problem does. Yuan [26] presented

two heuristics for the MCP problem. The first
one, namely, limited granularity heuristic, is a gen-

eralization of the algorithm in [5]. The second heu-

ristic, called limited path heuristic, requires each

node to maintain k non-dominated paths (not nec-

essarily the k shortest-paths) such that the time

complexity of the EBF can be reduced. Liu and

Ramakrishnan [27] proposed a so-called A*Prune

to find not only one but multiple (K) shortest paths
satisfying the constraints.

Meanwhile, the DCLC problem, one of the

most famous MCOP problems, has attracted

much research attention in the last few years. In

1994, Widyono [7] proposed a Constrained Bell-

man–Ford (CBF) algorithm that can be used to

solve the DCLC problem optimally. The CBF per-

forms a breadth-first search to discover the least-
cost path while monotonically increasing delay.

CBF maintains a list of least-cost paths for each

delay value from the source to each other node.

90 W. Liu et al. / Computer Networks 47 (2005) 87–104
Once the delay exceeds the constraint, CBF stops.

CBF exactly solves the DCLC problem, unfortu-

nately, the worst case running time of CBF grows

exponentially with the network size. To overcome

the worst-case complexity of CBF, several e-opti-
mal approximation algorithms were proposed

[28–30] based on CBF. Another attempt to solve

the DCLC problem is to map the DCLC problem

into the possibly easier MCP problem. Guo et al.

[8] introduced a cost bound based on the network

state and then employed the k-shortest path algo-

rithm [21] with a non-linear function of path de-

lays and path costs to search a path that meets
the delay constraint and cost constraint. In [9–

11], the authors gave a few algorithms based on

the Lagrange relaxation technique. The basic idea

is first to construct an aggregated weight with a

linear or non-linear function using Lagrange relax-

ation technique, then to use the Dijkstra algorithm

repeatedly to find a feasible path. The problem of

this kind of algorithms is how to choose appropri-
ate multipliers for the Lagrange relaxation. Several

researchers proposed distributed algorithms in or-

der to alleviate the centralized computational over-

heads. Reeves and Salama [12] proposed a

distributed algorithm called DCUR for the DCLC

problem. The DCUR explores the network by

choosing the node along the least-delay path or

the least-cost path as the next node to be explored.
Sun and Langendorfer [13] improved the DCUR

such that no loop would be formed during the

exploration of the network. Ishida et al. [14] and

Sriram et al. [31] proposed two distributed algo-

rithms similar to DCUR. Two interesting distrib-

uted algorithms, ticket-based routing [34] and

enhanced ticket-based routing [35], use probes

(routing messages) carrying colored tickets to ex-
plore the possible feasible paths. In ticket-based

approaches, yellow tickets prefer paths with smal-

ler delay, while green tickets prefer paths with

smaller cost. And by properly choosing the num-

ber of green (yellow) tickets, ticket-based routing

can find a feasible path with modest message

overhead.

From the literature, we observe that there is a
tradeoff between the quality of the path that an

algorithm is able to find and the expense spent in

finding the path—generally a better quality path
could be found at the expense of increased com-

plexity. By now there is no algorithm that can

maintain a satisfactory tradeoff between these

two. In other words, the above heuristics are either

too costly in terms of computation or communica-
tion, or too complex in terms of the execution

time, or inefficient in the sense that they fail to find

the optimal solution with reasonable probability.

Thus, more efficient QoS routing algorithms are

still desired. Our proposed algorithm in this paper

represents our contribution along this direction.
3. SF-DCLC routing algorithm

In this section, we present the proposed DCLC

algorithm SF-DCLC which is based on a selection

function, and we discuss a few properties of the

proposed SF-DCLC algorithm.

3.1. Description of DCLC routing problem

Before we present our algorithm, we first de-

scribe the DCLC problem to facilitate our discus-

sion. As a usual practice in the literature, a

network is modeled as a connected, directed graph

G = (V,E), where V is the set of the network nodes

and E is the set of edges representing physical or

logical connectivities between nodes. Let R+ de-
note the set of non-negative real numbers. Two

non-negative functions are defined associated with

each link e (e 2 E): the delay function delay(e) :
E! R+ and the cost function cost(e) :E! R+.

Each link may be asymmetric, that is, the costs

and the delays of the link e = (vi,vj) and the link

e 0 = (vj,vi) may have different values. We also de-

fine the non-negative delay and cost functions for
any path p as

delayðpÞ ¼
X
e2p

delayðeÞ

and

costðpÞ ¼
X
e2p

costðeÞ:

Given a source node s 2 V, a destination node
d 2 V, and a positive delay constraint D, the
DCLC routing problem is to find a path p from

W. Liu et al. / Computer Networks 47 (2005) 87–104 91
s to d such that min{cost(p),p 2 Pd} is achieved,
where Pd is the set of all feasible paths from s to

d that satisfy the delay constraint D, i.e.,

delay(p) 6 D.
It has been proven that the DCLC problem is

NP-complete even for undirected networks [4,18].

3.2. Routing information—the vectors

The traditional distance vector routing algo-

rithms require each router to maintain a table

(i.e., a vector), which gives the best known distance

to each destination and which outgoing link to use
to reach there. While in the DCLC routing algo-

rithm, each node maintains two vectors, the

least-delay vector and the least-cost vector, which

provide the best known values based on two differ-

ent metrics, delay and cost, respectively. Each vec-

tor is indexed by, and contains one entry for, each

node in the network. One entry in the least-delay

vector at one node (e.g., node vi) contains the fol-
lowing information:

• vj: the destination node identity;

• delay(Pld (vi,vj)): the delay of the least-delay

path Pld (vi,vj);

• cost(Pld (vi,vj)): the cost of the least-delay path

Pld (vi,vj);

• nid(Pld (vi,vj)): the next hop on the least-delay
path Pld (vi,vj);

the least-delay path Pld (s,d) is the path from s to d,

which satisfies delay(Pld (s,d)) = min{delay(p),p 2
P(s,d)}, where P(s,d) is the set of all possible paths

from s to d.

Similarly, the entry in the least-cost vector con-

tains the following information:

• vj: the destination node identity;

• delay(Plc (vi,vj)): the delay of the least-cost path

Plc (vi, vj);

• cost(Plc (vi,vj)): the cost of the least-cost path

Plc (vi,vj);

• nid(Plc (vi,vj)): the next hop on the least-cost

path Plc (vi,vj);

the least-cost path Plc (s,d) is the path from s to

d, which satisfies cost(Plc (s,d)) = min{cost(p),
p 2 P(s,d)}, where P(s,d) is the set of all possible
paths from s to d.

The least-delay vector and the least-cost vector

are similar to the vectors used in the existing dis-

tance vector routing protocols. We assume that
each node knows the delay and cost to all its

neighboring nodes. Then, the same procedure used

to update and maintain the vectors in the existing

distance vector routing protocols can be used to

update and maintain these two vectors. As men-

tioned in Section 2, in this paper we focus on

one of the two functions of QoS routing: the rout-

ing algorithms, and leave the problems that how to
update the distant vectors in response to topology

changes and how to prevent instability to the other

function of QoS routing: the routing protocols.

We further assume that the contents of the vectors

are up-to-date and the contents of the two vectors

do not change during the route setup period.

Though in this paper we assume that some dis-

tance vector routing protocol is used in the net-
work, we should note that, our SF-DCLC can be

readily applied to networks using link state routing

protocols such as OSPF. In link state routing pro-

tocols, every node has the complete topology of

the network and is aware of the delay and the cost

of each link, thus by using Dijkstra algorithm it is

easy for a node to calculate not only its own but

also all the other nodes� tables containing the re-
quired information for SF-DCLC. Then a central-

ized implementation of SF-DCLC can be used to

search a feasible path.

3.3. Operation of SF-DCLC

The proposed SF-DCLC algorithm constructs

the DCLC path node by node from the source
node s to the destination node d. Each node

chooses its subsequent node by evaluating a selec-

tion function weight() on all its neighbors. A spe-

cial PATH_CONSTRUCTION message is sent

by the node to the selected subsequent node that

requests the continuing construction of the path

till the destination. The PATH_CONSTRUC-

TION message contains the following information
{d,D,delaySoFar,Psf (s,v)}, where d is the destina-
tion node identity, D is the delay bound, delay-

SoFar is the accumulated delay till the current

92 W. Liu et al. / Computer Networks 47 (2005) 87–104
node, and Psf (s,v) is the set of nodes indicating the

partial found DCLC path till the current node v.

The operation of the algorithm is summarized

in Fig. 1. Initially, the source node s checks if con-

dition (1) is satisfied. If (1) is not satisfied, there ex-
ists no path that meets the given delay constraint

from s to d and SF-DCLC stops. Further action

could be interactive negotiation with the applica-

tion for a looser delay constraint, which is out of

the scope of this paper. If condition (1) is satisfied,

there should exist at least one or more feasible

paths that satisfy the delay constraint. Then, the

source node s proceeds to check condition (2). If
(2) is satisfied, the least-cost path Plc (s,d) is the

optimal path. A PATH_CONSTRUCTION mes-

sage {d,D,delay(s,nid(Plc (s,d)),{s}} is sent to the
node nid(Plc (s,d)) retrieved from its least-cost vec-

tor. If condition (2) is not satisfied, it evaluates the

functions weight() and extract(), based on which

the subsequent node is chosen. Assume that the

current node is vi, for each neighboring node vj,
the selection function weight() is defined as

follows:
Step 1: (Initially at source node s)
 if (delay(Pld(s,d)) ≤ ∆)

 delaySoFar = 0;
 Psf = {s};
 goto Step 2;

 else
 stop with the delay-constrained pat

Step 2: (Upon receiving a PATH_CONST
node s)

 if (this_node != d)
 if (delay(Plc(this_node,d)) + delaySo
 v = nid(Plc(this_node,d));
 delaySoFar = delaySoFar + delay(
 Psf = Psf + v;
 send PATH_CONSTRUCTION t
 else

 for each neighboring node w and w
 calculate weight(this_node,w);
 end
 v = extract(this_node);
 delaySoFar = delaySoFar + delay(
 Psf = Psf + v;
 send PATH_CONSTRUCTION to

 else
 stop with "path found, Psf " ;

,,

Fig. 1. Pseudo-code for the
weightðvi; vjÞ ¼

costðvi; vjÞ þ cost0ðvj; dÞ;
delaySoFar þ delayðvi; vjÞ
þdelayðP ldðvj; dÞÞ 6 D;

þ1; otherwise;

8>>><
>>>:

ð1Þ
where

cost0ðvj; dÞ ¼

costðP lcðvj; dÞÞ;
delaySoFar þ delayðvi; vjÞ
þdelayðP lcðvj; dÞÞ 6 D;

costðP ldðvj; dÞÞ; otherwise;

8>>><
>>>:

The function extract() is to choose the node, say

w, whose value of the selection function weight

(vi,w) is the minimum one among all the neighbor-

ing nodes. If more than one nodes have the same

minimum value, it chooses the one with the least

delaySoFar + delay(vi,vj) + delay(Pld (vj,d)). The

rationale of the choice of the selection function

will be discussed later. Once the subsequent node
has been chosen, a new PATH_CONSTRUC-

TION message is formed and sent to that node.
(1)

h does not exist ;

RUCTION message or at source

Far ≤ ∆) (2)

this_node, v)));

o v;
(3)

∉ Psf

this_node,v);

 v;

,,

SF-DCLC algorithm.

W. Liu et al. / Computer Networks 47 (2005) 87–104 93
The new delaySoFar contained in the new message

is equal to the old delaySoFar plus the delay of link

vi to w. The new Psf (s,w) is the old Psf (s,vi) concat-

enating node w.

When a node different from the destination re-
ceives a PATH_CONSTRUCTION message, it

will repeat the similar procedure as described in

step 2 and send a PATH_CONSTRUCTION mes-

sage to the next hop it selects. When the

PATH_CONSTRUCTION message arrives at

the destination d, the algorithm terminates and a

feasible path Psf (s,d) has been found. Further

action such as resource reservation can be
performed.

To facilitate the computation of the selection

function weight(), each node should cache the

most recent least-delay vector updates and least-

cost vector updates received from its neighbors.

We also want to point out that our SF-DCLC is

different from DCR proposed in [13] in that

DCR chooses the next hop node from either the
least-delay path or the least-cost path, while our

algorithm takes advantage of the selection func-

tion to select the next hop from all neighboring

nodes. The selection function approach used in

our protocol is similar to those used in [17]. In

[17] two selection functions are proposed to

construct a Constrained Stein Tree. To find a Con-

strained Stein Tree is also known to be NP-com-
plete [18]. A cost-delay selection function is used

to add edge to the constructed subtree. The defini-

tion of the selection function in our protocol is dif-

ferent from the cost-delay selection function used

in [17]. Basically, the selection function defined in

[17] is as follows:

fCDðvi; vjÞ ¼

costðvi; vjÞ
D � delaySoFar � delayðvi; vjÞ

;

delaySoFar þ delayðvi; vjÞ
þdelayðP ldðvj; dÞÞ 6 D;

þ1; otherwise;

8>>>>><
>>>>>:

The basic idea of this selection function is to select

the edge with lower cost and/or longer residual de-
lay. However, as the numerator and denominator

are two different measures, this cost-delay selection

function is likely to mislead the selection of the

next hop to a non-optimal direction when the
two measures are of very different magnitudes.

For example, it may select paths with delays far

lower than D but of much higher cost. In our algo-
rithm, we attempt to optimize the path at each

intermediate node. Since the optimization objec-
tive of DCLC problem is the cost of the path, at

each intermediate node v, our algorithm always

chooses the next hop w with minimum cost

(v,w) + cost 0(w,d), and meanwhile, without violat-

ing the delay constraint.
3.4. An example

Fig. 2 shows an example of the path constructed

by the SF-DCLC algorithm from source s = A to

destination d = B with D = 3.5. The least delay
path from A to B is the path (A! E! B), the

least cost path from A to B is the path (A! B).

The SF-DCLC path Psf (A,B) found is the path

(A! C! E! B) when D = 3.5. Obviously, our
algorithm leads to a better choice: a path with low-
er cost while still meeting the delay constraint.
3.5. Correctness of SF-DCLC

When the contents in the vectors at all nodes

are up-to-date and do not change during the path

construction period, our SF-DCLC can always

find a feasible and loop-free path if such a path ex-
ists. To prove the correctness of the proposed SF-

DCLC algorithm, we have the following theorems.

Theorem 1. SF-DCLC can always find a feasible

path from a source s to a destination d satisfying the
given delay bound D if such feasible paths exist.

Proof. If no feasible path exists for the given (s,d)

pair and the delay bound, SF-DCLC would termi-

nate immediately with failure notification at the

source node after checking the condition (1):

delay(Pld (s,d)) 6 D.Condition (1) is actually an

indicator of whether or not feasible paths exist.
As we know, the minimum possible delay from

one node to a certain destination is the delay of

the least-delay path to that destination. If the

least-delay path cannot satisfy the delay con-

straint, then there exists no feasible path. On the

contrary, if the least-delay path satisfies the delay

A' s Vectors
Dest D_LD C_LD NH_LD D_LC C_LC NH_LC
 E 1 5 E 2 4 C
 D 4 2 D 4 2 D
 C 1 3 C 1 3 C
 B 2 12 E 5 4 B
 A 0 0 NULL 0 0 NULL

E' s Vectors
Dest D_LD C_LD NH_LD D_LC C_LC NH_LC
 E 0 0 NULL 0 0 NULL
 D 4 2 D 4 2 D
 C 1 1 C 1 1 C
 B 1 7 B 5 4 C
 A 1 5 A 2 4 C

B' s Vectors
Dest D_LD C_LD NH_LD D_LC C_LC NH_LC
 E 1 7 E 5 4 C
 D 5 9 E 8 4 C
 C 2 8 C 4 3 C
 B 0 0 NULL 0 0 NULL
 A 2 12 E 5 4 A

C' s Vectors
Dest D_LD C_LD NH_LD D_LC C_LC NH_LC
 E 1 1 E 1 1 E
 D 4 1 D 4 1 D
 C 0 0 NULL 0 0 NULL
 B 2 8 E 4 3 B
 A 1 3 A 1 3 A

At Node A
weight (A,C) = 3+8 = 11
weight (A,E) = 5+7 = 12
weight (A,B) =
weight (A,D) =
extract (A) = C

At Node C
weight (C,E) = 1+7 = 8
weight (C,B) =
weight (C,D) =
extract (C) = E

At Node E
weight (E,D) =
weight (E,B) = 7+0 = 7
extract (E) = B

At Node B
SF-DCLC terminates

 (4,1)

D

 (1,5)

A

C

(4,2)
(4,2)

(8,6)

(1,7)

(5,4)

(1,3)

B

 (1,1)

(4,3)

(delay,cost)

s=A, d=B, =3.5

E

∆

+∞
+∞

+∞
+∞

+∞

Fig. 2. An example of the construction of the path from node A to node B with delay bound of 3.5 using SF-DCLC. Figures along

links are (delay, cost) for both directions.

94 W. Liu et al. / Computer Networks 47 (2005) 87–104
constraint, there exists at least one feasible path,

which is the least-delay path. This condition is

explicitly checked once at source node. If it is

satisfied, feasible paths exist, and SF-DCLC starts.
Then at each following node vi, this condition is

implicitly guaranteed by the definition of the

weight() function or inherited from the preceding

node, however, in a slightly different format, i.e.,

delaySoFar + delay(Pld (vi,d)) 6 D, where the left
side of the inequality is the summation of the delay

accumulated from s to vi and the minimum possi-

ble delay from node vi to d. We now complete the
proof by the induction on node vi.At first, s is the

only member in the partial path Psf, delay-

SoFar = 0, and delaySoFar + delay(Pld (s,d)) 6 D.
The source node is the basis for our induction.

We assume that at an intermediate node vi,delay-

SoFar is already updated and delaySoFar +

delay(Pld (vi,d)) 6 D still holds.Then SF-DCLC

will check the condition (2): delaySoFar + delay
(Plc (vi,d)) 6 D. Condition (2) indicates whether

or not the least-cost path Plc (vi,d) satisfies the

delay constraint D � delaySoFar. If (2) is satisfied,

then the partial path so far Psf (s,vi) concatenating

the least-cost path Plc (vi,d) from vi to d would be
the desired path, and SF-DCLC will choose the

nodes along the least-cost path Plc (vi,d) one by

one till a PATH_CONSTRUCTION message

reaches the destination. In this case, it is obvious
that once the condition (2) is satisfied at node vi,

it will be always satisfied at each node along the

least-cost path from vi to d. If condition (2) is

not satisfied, then the selection function of each

neighboring node is calculated. According to the

definition of the selection function, only those

nodes (vj) satisfying the condition (4): delay-

SoFar + delay(vi,vj) + delay(Pld (vj,d)) 6 D and are
not already in the partial path Psf (s,vi), are consid-

ered in the selection function. This guarantees that

when the selected next hop node, say w, receives

the PATH_CONSTRUCTION message with

updated delaySoFar, the condition delaySoFar +

delay(Pld (w,d)) 6 D still holds. On the other hand,
among the neighboring nodes, there is always at

least one node satisfying condition (4), which is
the node along the least-delay path. One may won-

der what if this node along the least-delay path has

already been on the partial path Psf, and since our

algorithm excludes the nodes already in the partial

path Psf when evaluating the selection function

W. Liu et al. / Computer Networks 47 (2005) 87–104 95
weight(), our SF-DCLC would be stuck in this

case. To facilitate our proof, here we consider a

variant of SF-DCLC that when one node, say vi,

finds its only possible choice w = nid(Pld (vi,d)),

the next node of the least-delay path from vi to
d, is already on the partial path Psf (s,vi), node vi

still sends the PATH_CONSTRUCTION message

to w to avoid the possible stuck situation. With

this minor modification, though loops may be

formed, the search for the feasible path will con-

tinue, and eventually SF-DCLC will terminate at

destination d, where the condition delaySoFar 6 D
is still valid. Thus SF-DCLC finds a feasible path
satisfying the delay bound D. In all, SF-DCLC
can always find a path from the source s to the des-

tination d satisfying the given delay bound D if

such a path exists. h

In the following proof of Theorem 2 we will

prove that the aforementioned stuck situation will

never happen and no loop will be formed. In other

words, our algorithm is valid and does not need

the minor modification we introduced for the

proof of Theorem 1.

Theorem 2. The path found by SF-DCLC contains

no loop.

Proof. We first proof this theorem based on the

modified SF-DCLC as discussed above. According
to the operation of SF-DCLC protocol (as shown

in Fig. 1), we notice that if condition (2) is satisfied

at any node v, then from that node onwards, con-

dition (2) will always be satisfied. SF-DCLC will

actually follow the least-cost path Plc (v,d). Since

we assume the vectors at each node are consistent,

there should exist no loop along the least-cost
s

d
qyx

p

least cost path
partial SF-DCLC path

... ...

…...

…...

(a)

Fig. 3. The possible loop scenarios: (a
path. If condition (2) is not satisfied at any node,

SF-DCLC will calculate the selection function

weight() and select the next node based on the

weight() function.

One possibility where loops might be formed is
that, from the source node s to some node x SF-

DCLC falls into condition (3), and from y (assume

the next node after x on the Psf is y) to d, SF-DCLC

falls into condition (2), and chooses the nodes

along Plc (y,d). The loop occurs when the least-cost

path Plc (y,d) shares some node, e.g., node p, with

the Psf (s,y). In addition, we have Psf (s,d) = Psf

(s, y) + Plc (y,d). Fig. 3(a) shows such a scenario.
Since node p is first added into Psf (s,y) under

condition (3), it implies that condition (2) is not

satisfied at node p when it receives the

PATH_CONSTRUCTION message for the first

time. While node p is also on the path Plc (y,d),

which indicates condition (2) is satisfied when node

p receives the PATH_CONSTRUCTION message

for the second time. These contradict each other
because the accumulated delaySoFar would be

greater when SF-DCLC visits node p for the

second time. Thus, this scenario does not exist. h

Recall that to avoid the ‘‘possible’’ stuck situa-
tion, our aforementioned minor modification

allows SF-DCLC to send a PATH_CONSTRUC-

TION message to the only possible next node on

the least-delay path, even when this next node is al-

ready on the partial Psf, thus loops might be

formed due to this modification. As shown in

Fig. 3, we assume that at node C SF-DCLC runs

across the stuck situation that the only choice of
the next hop at node C is along the least-delay

path Pld (C,d) and node A = nid(Pld (C,d)) is al-

ready on the partial path Psf (s,C). Suppose the
s C

B

A

least delay path
partial SF-DCLC path

N1 N2 Nn

......

......
x

(b)

) Scenario I and (b) Scenario II.

96 W. Liu et al. / Computer Networks 47 (2005) 87–104
partial path is as follows: Psf (s,C) = {s, . . . ,A,
B,N1,N2, . . . ,Nn,C}. In this case a loop would
have been formed by sending node A another

PATH_CONSTRUCTION message. In what fol-

lows we will prove that this case is not possible
and thus the loop would never happen.

With the proof of non-existence of the first loop

scenario, we can assure that none of the nodes,

B,N1,N2, . . . ,Nn,C, is on its preceding node�s least-
cost path. Therefore, node B5 nid(Plc (A,d)), node

N15 nid(Plc (B,d)), etc. According to our defini-

tions of the weight() and extract() functions, node

B, not necessary the next node nid(Pld (A,d) on the
least-delay path from A to d, is selected because its

value of weight() function is the minimum among

node A 0s neighbors. Thus we have

costðP ldðA; dÞÞ P costðA;BÞ þ costðP ldðB; dÞÞ: ð2Þ
Similarly, we have the following inequations:

costðP ldðB; dÞÞ P costðB;N 1Þ þ costðP ldðN 1; dÞÞ;
ð3Þ

costðP ldðN 1; dÞÞ P costðN 1;N 2Þ þ costðP ldðN 2; dÞÞ;
ð4Þ

costðP ldðNn; dÞÞ P costðNn;CÞ þ costðP ldðC; dÞÞ:
ðnþ 2Þ

In addition, since A = nid(Pld (C,d)), we have the

following equation:

costðP ldðC; dÞÞ ¼ costðC;AÞ þ costðP ldðA; dÞÞ:
ðnþ 3Þ

Furthermore, the nodes (A,B,N1,N2, . . . ,Nn,C)
cannot be the nodes along the least-delay path

Pld (x,d) all at the same time, since no loop should

be formed with consistent routing information.

Thus, the equal conditions in the above inequa-

tions cannot be satisfied all at the same time. Then

after summing up the above n + 3 (in)equations,

we have

costðP ldðA; dÞÞ > costðP ldðA; dÞÞ þ costðA;BÞ
þ costðA;BÞ þ costðB;N 1Þ
þ costðN 1;N 2Þ þ 	 	 	 þ costðNn;CÞ
þ costðC;AÞ: ðnþ 4Þ
Obviously, the inequation (n + 4) does not

hold. Thus, we demonstrate that the stuck situa-

tion does not exist and the minor modification

we introduced to facilitate the proof of Theorem

1 is redundant. SF-DCLC operations described
in Fig. 1 are completely correct and need no fur-

ther enhancement.

With the above loop-freedom proof, now we

are safe to claim that the path found by SF-DCLC

contains no loop.

Theorem 3. SF-DCLC always terminates in finite

time.

If no feasible path exists for the given source–

destination pair and the delay bound D, SF-DCLC
should terminate immediately with failure notifica-

tion at the source node after checking condition

(1). If condition (1) is satisfied, SF-DCLC will pro-

ceed. Since no loop will be formed, after running

at jVj � 1 (a finite number) nodes in the worst
case, SF-DCLC will terminate at the destination
d, thus a feasible path Psf (s,d) will be found in fi-

nite time.
3.6. Complexity of SF-DCLC

The proposed SF-DCLC maintains two vec-

tors, the least-cost vector and the least-delay vec-

tor. For a network G = (V,E), using the similar
procedures as distance vector routing protocols,

the worst case computation complexity for each

node to compute the two vectors is O(jVj3) [15].
Since we assume that our SF-DCLC is based on

the existing distance vector routing protocols, the

overhead for routing vector maintenance has al-

ready been consider in the distance vector routing,

and thus in the following we only consider the ex-
tra overhead introduced by SF-DCLC.

As discussed before, in SF-DCLC each path is

constructed in an ‘‘on demand’’ manner. For each

path finding, a node should evaluate the link selec-

tion function weight() at most jVj times, and
should compare at most jVj values to find out
the minimum weight(), thus, in the worst case

the extra computational complexity for a node to
select the next hop is O(jVj). Since the worst case
path length would be jV j, the computational

W. Liu et al. / Computer Networks 47 (2005) 87–104 97
complexity for finding a SF-DCLC path in the

worst case is O(jVj2).
The messages for updating and maintaining the

vectors are exchanged only between the neighbor-

ing nodes. In a stable network, the messages trans-
mitted for the path finding procedure is one

PATH_CONSTRUCTION message per node (ex-

cept the destination node). In the worst case, the

longest path from the source to the destination

contains jVj nodes, then the worst case message
complexity for a path finding by SF-DCLC is

O(jVj).
Each node caches the most up-to-date least-de-

lay vector and least-cost vector received from its

neighbors. Since a node at most has jVj neighbors
and a vector from one neighbor contains jVj en-
tries, the worst case memory complexity at each

node is O(jVj2).
4. Performance evaluation

We carried out the performance evaluation for

this new routing algorithm. Comparison study

was made by using simulations.

4.1. Simulation environment

We developed a unicast routing simulator to
carry out the simulations. To generate the network

topology, we adapted BRITE [36] into the simula-

tor. Two kinds of network topologies were gener-

ated in our simulations. The first one is based on

the Waxman model [16]. In the Waxman model,

two nodes u and v are connected with probability

p(u,v) = a Æ e�d(u,v)/(bL), where 0 < a,b 6 1, d(u,v)

is the Euclidean distance between u and v, and L
is the maximum distance between any two nodes.

In our implementation, we set a = 0.15, and
b = 0.2. The second kind of graph is based on
the Barabasi–Albert model proposed in [37]. In

the Barabasi–Albert model, the networks are

formed by the continual addition of new nodes

and a newly joining node has high probability to

connect to existing nodes that are highly connected
or popular. For example, a node v joins the net-

work and the probability that it connects to a node

u already belonging to the network is given by:
pðu; vÞ ¼ du=
P

k2V dk, where du is the outdegree of

node u,V is the set of nodes that have already

joined the network and
P

k2V dk is the sum of out-

degrees of all nodes that previously joined the net-

work. It is shown that, the topologies generated
with the Barabasi–Albert model bear a power

law distribution in terms of outdegrees [38]. In

fact, recent studies reveal that in the Internet, the

nodal�s outdegree also has such power-law distri-
bution. In addition, the topologies generated with

the Barabasi–Albert model have some features of

‘‘small world’’, e.g., higher clustering coefficient

than those random topologies based on the Wax-
man model [39]. In our simulation, the random

graph generator can always generate connected

graph with average node degree of 4, which is close

to the average node degree of the current Internet.

The cost value of a link varies from 1 to 8 with a

uniform distribution. As for the delay in our sim-

ulation, we only considered the propagation delay,

which depends on the distance between the com-
munication nodes. In order to capture the delay

characteristics of the national wide network, the

delay values of the links were selected from three

ranges [9]. Seventy-five percent of the delay values

were selected from the first range (1–5ms), which

represents the short local links. Twenty percent

were selected from (5–8ms), which represents the

long local links. The remaining 5% were from
(20–30ms), representing the continental links. In

our simulation, we assumed that the links are

undirected. The simulation was repeated with net-

work size ranging from 20 nodes up to 200 nodes.

The delay constraint D was randomly selected

from a range corresponding to the delay level rang-

ing from 1 to 5, where the delay level is a new com-

parison index we introduce in this paper and will
be described in the next subsection. For a specific

network size, five network instances were used,

and for each network instance, 100 routing re-

quests were generated.

For comparison purpose, we also implemented

three other algorithms, LDP, CBF, and DCR.

The LDP algorithm is used to find the least-delay

path. As we mentioned in Section 1, when there ex-
ists a feasible path, the CBF algorithm can always

find the optimal DCLC path from source s to des-

tination d. The DCR algorithm proposed in [13] is

98 W. Liu et al. / Computer Networks 47 (2005) 87–104
very similar to the DCUR algorithm proposed in

[12], while DCR improves the worst-case perform-

ance of DCUR by avoiding, instead of detecting

and removing, loops. DCR is a well-performed

DCLC algorithm, so we also compared the
performance of our SF-DCLC algorithm with

DCR.

4.2. Performance metrics

In the literature of the performance comparison

of DCLC algorithms, arbitrary D value is usually
used for any two nodes, regardless the source, des-
tination and the actual delay between them. How-

ever,according to the operation of the DCLC

operation, when D < delay(Pld (s,d)), there is no
feasible path. All the algorithms would not be able

to find a path satisfying that bound. When

D P delay(Plc (s,d)), CBF, DCR, and SF-DCLC

should all find the same path Plc (s,d). Only when

delay(Pld (s,d)) 6 D < delay(Plc (s,d)), there exists
one or more feasible paths and it depends on the

routing algorithm to find out the optimal feasible

path. Thus, using arbitrary D may not a good

way for comparison, because for some network in-

stance, this bound might be too loose or too strin-

gent that fails to reveal the sophistication of the

algorithms. We introduced a new comparison in-

dex metric in our simulation, delay level, which is
related to the actual delay between each source

and destination. The range between [delay

(Pld (s,d)),delay(Plc (s,d))] was divided into five

equal length periods, and each period corresponds

to a delay level (1–5). Thus the smaller the delay le-

vel is, the more stringent the bound is. In our sim-

ulation, D was randomly selected from the period

corresponding to the five delay levels. The simula-
tion results reported in the paper do not count the

cases where delay(Pld (s,d)) = delay(Plc (s,d)).

Since the CBF algorithm can always find the

optimal DCLC path from source s to destination

d, the cost of the path found by CBF, cost(PCBF),

can be viewed as the lower bound of the cost of

feasible DCLC paths. On the other hand, the

least-delay path Pld (s,d) is always a feasible path
if the delay bound D is appropriately chosen.

The cost of Pld (s,d) can be viewed as a sort of

upper-bound (although theoretically there should
not be a upper-bound) of the cost of feasible

DCLC paths if such a path exists.

We define the following two performance met-

rics to compare the proposed algorithm with other

algorithms:

• Cost inefficiency (CI)

dA ¼ costðPAÞ � costðPCBF Þ
costðPCBF Þ

where A represents the algorithm by which the

path is found. In our simulation, A could be

LDP, DCR or SF-DCLC. This metric is used
to evaluate the quality of the paths found by

these algorithms.

• Optimality Miss Ratio (OMR). The probability

that the path found is not the optimal one, i.e.,

the cost is different from that of the path found

by CBF. This measurement is used to evaluate

an algorithm�s capability to find the optimal
path.

In addition to these two metrics, we also study

the Average Number of Messages (ANM) for each

connection request to represent the average mes-

sage complexity of SF-DCLC. Here, we only con-

sider the messages engaged in the path-finding

process, not those for updating the vectors.

4.3. Simulation results

In this section, we present the performance of

our SF-DCLC algorithm and compare it with

other DCLC algorithms. The evaluations are done

by simulations. As we mentioned before, the Wax-

man model is the classical network topology gen-

eration model while the Barabasi–Albert model
was recently proposed and has been identified as

more closely resembling the practical Internet

topology. To demonstrate the adaptivity and

applicability of our algorithm, we carried out

simulations on the topologies randomly generated

by both of the models.

4.3.1. Efficiency

We compare the quality of the path found by

different algorithms in this subsection. First, we

examine the performance metrics with various

W. Liu et al. / Computer Networks 47 (2005) 87–104 99
delay constraint levels. Fig. 4 compares the per-

formance of the Cost Inefficiency (CI) versus delay

level while Fig. 5 presents the results of Optimality

Miss Ratio (OMR) versus delay level. We only pre-

sent the cases where the size of the network are 40
and 100. In both figures (and also in subsequent

three figures), subfigure (a) shows the results from

the Waxman model while subgraph (b) is from the

Barabasi–Albert model. We should pointed out

that all the three routing algorithms under study

are capable of finding a feasible path if such a path

exists. However, the path found by different algo-

rithms might be different and of different costs. It
is observed that, when delay bound is very strin-

gent (i.e., small DL), both the CI and the OMR
1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

Delay Level

C
os

t I
ne

ffi
ci

en
cy

 (
%

)

Node#=40 LDP
Node#=40 DCR
Node#=40 SF-DCLC
Node#=100 LDP
Node#=100 DCR
Node#=100 SF-DCLC

(a) (

Fig. 4. CI vs. delay level (size of network = 40, 100): (a

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

O
pt

im
al

ity
M

is
s

R
at

io
(%

)

Node#=40 LDP
Node#=40 DCR
Node#=40 SF-DCLC
Node#=100 LDP
Node#=100 DCR
Node#=100 SF-DCLC

(a) (Delay Level

Fig. 5. OMR vs. delay level (size of network = 40, 100): (
of the three compared algorithms are very close

and all of them are small. However, the CI and

the OMR of LDP grow faster than those of

DCR and SF-DCLC with the increase of the delay

level (i.e., delay requirement becomes less strin-
gent). This results can be explained as follows.

When the delay constraint is stringent, the number

of feasible paths is very limited. All the algorithms

are likely to choose the least-delay path PLDP,

which results in low inefficiency and close perform-

ance. For the same reason, the OMR of these algo-

rithms is very close as well. However, when the

delay constraint becomes loose, the number of
feasible paths becomes larger and the algorithms

have more room to choose from, therefore their
1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Delay Level

C
os

t I
ne

ffi
ci

en
cy

 (
%

)

Node#=40 LDP
Node#=40 DCR
Node#=40 SF-DCLC
Node#=100 LDP
Node#=100 DCR
Node#=100 DSF

b)

) Waxman model and (b) Barabasi–Albert model.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

Delay Level

O
pt

im
al

ity
M

is
s

R
at

io
(%

)

Node#=40 LDP
Node#=40 DCR
Node#=40 SF-DCLC
Node#=100 LDP
Node#=100 DCR
Node#=100 DSF

b)

a) Waxman model and (b) Barabasi–Albert model.

100 W. Liu et al. / Computer Networks 47 (2005) 87–104
performance starts to diverge. It is observed that

the paths found by the proposed SF-DCLC algo-

rithm remains very close to the optimal one at all

levels of delay constraints, e.g., less than 3% CI

and less than 12% OMR, compared with 15% CI
and 47% OMR for DCR algorithm, and 23%

CI and 54% OMR for LDP algorithm. The com-

parison clearly indicates that the proposed SF-

DCLC algorithm is more likely to find the optimal

path and the path found is more cost efficient.

By examining the paths returned by each of the

algorithms, we noticed that in the cases where

PCBF is found to be the same as PLDP, PDCR and
PSF�DCLC would also be the same as PLDP. This

implies that when LDP path is the optimal DCLC

path, both DCR and SF-DCLC are able to select

it, the optimal one. We also observe that SF-

DCLC has better capability to find the optimal

path than DCR. Actually, in our simulation (when

the Waxman model is used, the size of network is

100 and the delay level is 4), 54% of optimal
DCLC paths are not LDP paths. In these cases,

SF-DCLC has the capability to find the optimal

paths with probability of 78% (1�12%/54%), while
DCR is only able to find the optimal paths with

12% (1�47%/54%) of them. In fact, in DCR the

source node s or a node receiving a PATH_CON-

STRUCTION message only checks two neighbors

along its least-delay path and least-cost path, so
the path returned by DCR may be either the

least-delay path Pld (s,d) or a path consisting of

Pld (s,x) concatenating Plc (x,d), where x is an
20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

Size of Network

C
os

t
In

ef
fic

ie
nc

y(
%

)

DL=2 LDP
DL=2 DCR
DL=2 SF-DCLC
DL=4 LDP
DL=4 DCR
DL=4 SF-DCLC

(a) (b

Fig. 6. CI vs. size of network (delay level (DL) = 2, 4): (
intermediate node where the path_direction

changes from LD to LC [13]. In our SF-DCLC,

source node s or a node receiving a PATH_CON-

STRUCTION message checks not only its two

neighbors along the least-delay path and the
least-cost path, but also the other neighbors, and

subsequently chooses one node with the minimum

weight() as the next hop. In this sense, DCR can be

viewed as a special case of our SF-DCLC when

SF-DCLC only considers outgoing links along

the least-delay path and the least-cost path. Obvi-

ously, the definition and the design of the weight()

and the extract() functions make it possible to lo-
cally optimize the overall cost in a hop-by-bop

manner. Since the checking of a neighbor only in-

volves some trivial computation (i.e., calculate

weight() function), this performance gain is

achieved at almost no additional cost.

Next, we examine the performance of the rout-

ing algorithms on networks with various sizes.

Fig. 6 shows the CI versus size of the network
for the cases that the delay levels (DL) are 2

and 4; Fig. 7 shows the OMR versus the size of

the network for the same cases.

It is observed that the performance of all the

three algorithms is not sensitive to the network

size. The CI and the OMR of the proposed SF-

DCLC algorithm are relative steady in all sized

networks, while those of LDP and DCR increase
slightly with the increase of the network size. An-

other observation is that the CI and the OMR of

SF-DCLC are very low and always lower than
20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Size of network

C
os

t
In

ef
fic

ie
nc

y
(%

)

DL=2 LDP
DL=2 DCR
DL=2 SF-DCLC
DL=4 LDP
DL=4 DCR
DL=4 SF-DCLC

)

a) Waxman model and (b) Barabasi–Albert model.

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Size of Netowrk

O
pt

im
al

ity
M

is
s

R
at

io
(%

)

DL=2 LDP
DL=2 DCR
DL=2 SF-DCLC
DL=4 LDP
DL=4 DCR
DL=4 SF-DCLC

20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Size of network

O
pt

im
al

ity
M

is
s

R
at

io
(%

)

DL=2 LDP
DL=2 DCR
DL=2 SF-DCLC
DL=4 LDP
DL=4 DCR
DL=4 SF-DCLC

(a) (b)

Fig. 7. OMR vs. size of network (delay level (DL) = 2, 4): (a) Waxman model and (b) Barabasi–Albert model.

W. Liu et al. / Computer Networks 47 (2005) 87–104 101
those of LDP and DCR, indicating that the cost of
a path found by SF-DCLC is very close to the

optimal one and better than paths found by the

other two algorithms. Thus, the SF-DCLC algo-

rithm has better ability to find better path than

the other two. If we look back to Fig. 2, we can

see an example that our SF-DCLC can find a bet-

ter path than the other two. In fact, the path found

by SF-DCLC in that example is A! C! E! B

with cost 11, while the path found by DCR is

A! E! B with cost 12.

4.3.2. Overhead

We examine the protocol overhead in this sub-

section. For communication overhead, we measure
20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

A
ve

ra
ge

N
um

be
r

of
M

es
sa

ge

Size of Network

DL=1
DL=3
DL=5
log(# of Nodes)

A
ve

ra
ge

N
um

be
r

of
M

es
sa

ge

(a) (b

Fig. 8. ANM vs. size of network: (a) Waxman
the number of messages exchanged between nodes
when SF-DCLC is used. The messages counted

here are the PATH_CONSTRUCTION messages

for SF-DCLC. Messages for updating and main-

taining routing vectors are not counted. Fig. 8

gives the average number of messages per path

found versus the size of the network. It is observed

that no direct relation exists between the ANM

and the delay level. Since only m messages are
required for finding a m-hop path, it is not sur-

prising to see that the average growth of the

number of messages is approximately logarith-

mic to the network size which implies that the

proposed SF-DCLC scales well. We also observe

that the ANM in the networks based on the
20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

Size of Network

DL=2
DL=4

)

model and (b) Barabasi–Albert model.

Table 1

Average execution time for each connection request (1s = 1000ms)

Size of network 20 40 60 80 100 120 160 200

CBF (s/req) 0.012 0.226 1.787 293.46 292.783 29.647 119.183 62.781

DCR (ms/req) 0.062 0.032 0.032 0.032 0.05 0.03 0.21 0.522

SF-DCLC (ms/req) 0.096 0.092 0.126 0.504 0.57 0.79 0.78 0.858

102 W. Liu et al. / Computer Networks 47 (2005) 87–104
Barabasi–Albert model is smaller than that for the

networks based on the Waxman model. We can
explain this observation as follows. On one hand,

ANM of SF-DCLC is closely related to the path

length of PSF�DCLC; on the other hand, networks

based on the Barabasi–Albert model has larger

clustering coefficient than those based on the Wax-

man model, and this fact leads to shorter average

path length. Thus, it is no surprise to observe that

our SF-DCLC has smaller ANM in networks
based on the Barabasi–Albert model.

To demonstrate the computational overheads

that the different routing algorithms incur, we pre-

sent in Table 1 the average simulation time for

finding one path by different algorithms when run-

ning in a same computer. As expected, we observe

that CBF algorithm, although theoretically pro-

viding the optimal solution to the DCLC problem,
requires excessive computation time (a magnitude

of 2 or 3), which makes it inapplicable in the prac-

tical use. Compared to CBF, DCR and SF-DCLC

incur much shorter execution time. As we men-

tioned before, SF-DCLC incurs longer execution

time than DCR because our SF-DCLC considers

all the neighbors rather than the two neighbors

along directions of LCP or LDP [13]. However,
we argue that with the fast advancement in micro-

processor technologies, the computation overhead

incurred by SF-DCLC is trivial.

In summary, via simulation, we validated that

SF-DCLC has high probability to find the optimal

solution while keeping the overhead low, striking a

very good balance between the path quality and

complexity.
5. Conclusions and future work

In this paper, we studied the DCLC problem,

which is crucial for the emerging delay-sensitive
applications. We proposed a distributed unicast

routing algorithm, namely, SF-DCLC, based on a
special heuristic selection function. This algorithm

is always able to find a loop free path if such a path

exists. The worst case computational complexity

and the worst case memory complexity of SF-

DCLC are O(jVj2). In addition, the worst case mes-
sage complexity for the path finding is O(jVj),
which does not grow exponentially with the size

of the network, thus our proposed SF-DCLC
scales well with the increase of the size of the net-

work. We proposed a new comparison index, delay

level, other than the arbitrary delay bound D value
that is commonly used in other papers on DCLC

problem. We also evaluated our algorithm by com-

paring it with DCR, LDP and CBF in terms of

path cost and optimality. Our simulation results

from both networks based on the Waxman model
and the Barabasi–Albert model show that SF-

DCLC has much better performance than DCR

and LDP. SF-DCLC is insensitive to network sizes

and delay levels. More specifically, for the net-

works based on the Waxman model, the cost inef-

ficiency of SF-DCLC compared to CBF, the

optimal one, is less than 3% with different delay lev-

els and different sizes of networks. Our SF-DCLC
also performs pretty well in the networks based

on the Barabasi–Albert model. Furthermore, the

optimality miss ratio of SF-FCLC is far less than

those of DCR and LDP. Thus, the most attractive

feature of the SF-DCLC algorithm is its high effi-

ciency in the sense that it has very high probability

of finding the optimal path with very low complexity.

A possible improvement to SF-DCLC is to
modify the selection function to take the delay into

consideration. Since our algorithm can always find

a delay-constrained path with promising cost, our

future work is to extend the algorithm to support

multi-path or multicast routing for the delay-sensi-

tive multimedia applications.

W. Liu et al. / Computer Networks 47 (2005) 87–104 103
Acknowledgments

This work was supported in part by the Office

of Naval Research Young Investigator Award un-

der grant N000140210464 and the Office of Naval
Research under grant N000140210554. The

authors would like to thank all the anonymous

reviewers for their valuable suggestion to improve

the quality of this paper.
References

[1] X. Xiao, L.M. Ni, Internet QoS: a big picture, IEEE

Network 13 (2) (1999) 8–18.

[2] S. Chen, K. Nahrstedt, An overview of quality of service

routing for next-generation high-speed networks: problems

and solutions, IEEE Networks 12 (6) (1998) 64–79.

[3] J.M. Jaffe, Algorithms for finding paths with multiple

constraints, Networks 14 (1984) 95–116.

[4] Z. Wang, J. Crowcroft, Quality-of-service routing for

supporting multimedia applications, IEEE Journal on

Selected Areas in Communications 14 (7) (1996) 1228–

1234.

[5] S. Chen, K. Nahrstedt, On finding multi-constrained paths,

in: Proceedings of ICC�98, Atlanta, GA, 1998, pp. 874–879.
[6] H. De Neve, P. Van Mieghem, A multiple quality of service

routing algorithm for PNNI, in: Proceedings of the ATM

Workshop, May 1998, pp. 324–328.

[7] R. Widyono, The design and evaluation of routing

algorithms for real-time channels, Technical Report ICSI

TR-94-024, International Computer Science Institute, UC,

Berkeley, June 1994.

[8] L. Guo, I. Matta, Search space reduction in QoS routing,

Computer Networks 41 (1) (2003) 73–88.

[9] A. Juttner, B. Szviatovszki, I. Mecs, Z. Rajko, Lagrange

relaxation based method for the QoS routing problem, in:

Proceedings of the IEEE INFOCOM�2001, AK, 2001.
[10] T. Korkmaz, and M. Krunz, Multi-constrained optimal

path selection, in: Proceedings of IEEE INFOCOM�2001,
AK, 2001.

[11] G. Feng, C. Doulgeris, K. Makki, N. Pissinou, Perform-

ance evaluation of delay-constrained least-cost routing

algorithms based on linear and nonlinear Lagrange relax-

ation, in: Proceedings of ICC�02, New York, April 2002,
pp. 2273–2278.

[12] D.S. Reeves, H.F. Salama, A distributed algorithm for

delay-constrained unicast routing, IEEE/ACM Transac-

tions on Networking 8 (2) (2000) 230–250.

[13] Q. Sun, H. Langendorfer, A new distributed routing

algorithm for delay-sensitive application, Computer Com-

munications 21 (6) (1998) 572–578.

[14] K. Ishida, E. Amana, N. Kannari, A delay-constrained

least cost path routing protocol and the synthesis method,

in: Proceedings of the Fifth IEEE International Conference
on Real-Time Computer System and Applications, Octo-

ber 1998, pp. 58–65.

[15] D. Bertsekas, R. Gallager, Data Networks, second ed.,

Prentice-Hall, Englewood Cliffs, NJ, 1992, p. 399.

[16] B.M. Waxman, Routing of multipoint connections, IEEE

Journal on Selected Areas in Communications 6 (9) (1988)

1617–1622.

[17] V.P. Kompella, J.C. Pasquale, G.C. Polyzos, Multicast

routing for multimedia communication, IEEE/ACM

Transactions on Networking 1 (3) (1993) 286–292.

[18] M.R. Garey, D.S. Johnson, Computer and Intractability:

A Guide to the Theory of NP-completeness, Freeman, San

Francisco, 1979.

[19] T. Korkmaz, M. Krunz, S. Tragoudas, An efficient

algorithm for finding a path subject to two additive

constraints, in: Proceedings of the ACM SIGMET-

RICS�00, vol. 1, 2000, pp. 318–327.
[20] P. Van Mieghem, H. De Neve, F.A. Kuipers, Hop-by-Hop

quality of service routing, Computer Networks 37 (2001)

407–423.

[21] E.I. Chong, S. Maddila, S. Morley, On finding single-

source single-destination k shortest paths, in: Proceedings

of International Conference on Computing and Informa-

tion (ICCI)�95, July 1995, pp. 40–47.
[22] Y. Cui, K. Xu, J. Wu, Performance for multi-constrained

QoS routing in high-speed networks, in: Proceedings of

IEEE INFOCOM�03.
[23] S. Chen, K. Nahrstedt, On finding multi-constrained path,

Technical Report UIUCDCS-R-97-2026, Department of

Computer Science, UIUC, August 1997.

[24] A. Iwata, R. Izmailov, D.-S. Lee, B. Sengupta, G.

Ramamurthy, H. Suzuki, ATM routing algorithm with

multiple QoS requirements for multimedia internetwork-

ing, IEICE Transactions and Communications E70-B (8)

(1998) 999–1006.

[25] L.H. Andrew, A.N. Kusuma, Generalized analysis of a

QoS-aware routing algorithm, in: Proceedings of IEEE

GLOBECOM 1998, vol. 1, 1998, pp. 1–6.

[26] X. Yuan, Heuristic algorithm for multi-constrained qual-

ity-of-service routing, IEEE/ACM Transactions on Net-

working 10 (2) (2002) 244–256.

[27] G. Liu, K.G. Ramakrishnan, A*Prune: an algorithm for

finding K shortest paths subject to multiple constraints, in:

Proceedings of IEEE INFOCOM 2001.

[28] R. Hassin, Approximation schemes for the restricted

shortest path problem, Mathematics of Operational

Research 17 (1) (1992) 36–42.

[29] D.H. Lorenz, A. Orda, QoS routing in networks with

uncertain parameters, IEEE/ACM Transactions on Net-

working 6 (6) (1998) 768–778.

[30] D. Raz, Y. Shavitt, Optimal partition of QoS requirements

with discrete cost functions, in: Proceedings of the of IEEE

INFOCOM 2000.

[31] R. Sriram, G. Manimaran, C.S. Murthy, Preferred link

based delay-constrained least-cost routing in wide area

networks, Computer Communications 21 (1998) 1655–

1669.

104 W. Liu et al. / Computer Networks 47 (2005) 87–104
[32] F.A. Kuipers, T. Korkmaz, M. Krunz, P. Van Mieghem,

An overview of constraint-based path selection Algorithms

for QoS routing, IEEE Communications Magazine 40 (12)

(2002) 50–55.

[33] O. Younis, S. Fahmy, Constraint-based routing in the

Internet: basic principle and recent research, IEEE Com-

munications Surveys and Tutorials 5 (1) (2003) 2–13.

[34] S. Chen, K. Nahrstedt, Distributed quality-of-service

routing in ad-hoc networks, IEEE Journal on Selected

Areas in Communications 17 (8) (1999) 1488–1505.

[35] L. Xiao, J. Wang, K. Nahrstedt, The enhanced ticket-

based routing algorithm, in: Proceedings of the of ICC�02,
New York, April 2002.

[36] Available from: <http://www.cs.bu.edu/brite/>.

[37] A.L. Barabasi, R. Albert, Emergence of scaling in random

networks, Science 286 (1999) 509–512, October.

[38] A. Medina, A. Lakhina, I. Matta, J. Byers, Brite: an

approach to universal topology generation, MASCOTS,

2001.

[39] D.J. Watts, S.H. Strogatz, Collective dynamics of small-

world networks, Nature 393 (4) (1998) 440–442.

Wei Liu received the B.E. and M.E.
degrees in Electrical Engineering from
Huazhong University of Science and
Technology, Wuhan, China, in 1998
and 2001, respectively. He is currently
pursuing the PhD degree in the
Department of Electrical and Compu-
ter Engineering, University of Florida,
Gainesville, where he is a research
assistant in the Wireless Networks
Laboratory (WINET). His research
interest includes QoS, Secure, and
Power Efficient Routing, and MAC

protocols in Mobile Ad Hoc Networks and Sensor Networks.
Wenjing Lou is currently an assistant
professor in the Electrical and Com-
puter Engineering department at
Worcester Polytechnic Institute. She
obtained her Ph.D degree in Electrical
and Computer Engineering from Uni-
versity of Florida in 2003. She received
the M.A.Sc. degree from Nanyang
Technological University, Singapore,
in 1998, the M.E degree and the B.E
degree in Computer Science and
Engineering from Xi�an Jiaotong Uni-
versity, China, in 1996 and 1993

respectively. From December 1997 to July 1999, she worked as

a Research Engineer in Network Technology Research Center,
Nanyang Technological University. Her research interests are
in the areas of ad hoc and sensor networks, and network
security.
Yuguang Fang received a Ph.D degree
in Systems and Control Engineering
from Case Western Reserve Univer-
sity, Cleveland, Ohio, in January 1994,
and a Ph.D degree in Electrical Engi-
neering from Boston University, Mas-
sachusetts, in May 1997. From
September 1989 to December 1993, he
was a teaching/research assistant in
Department of Systems, Control and
Industrial Engineering at Case West-
ern Reserve University, where he held
a research associate position from

January 1994 to May 1994. He held a post-doctoral position in

Department of Electrical and Computer Engineering at Boston
University from June 1994 to August 1995.
From September 1995 to May 1997, he was a research

assistant in Department of Electrical and Computer Engineer-
ing at Boston University. From June 1997 to July 1998, he was
a Visiting Assistant Professor in Department of Electrical
Engineering at the University of Texas at Dallas. From July
1998 to May 2000, he was an Assistant Professor in the
Department of Electrical and Computer Engineering at New
Jersey Institute of Technology, Newark, New Jersey. In May
2000, he joined the Department of Electrical and Computer
Engineering at University of Florida, Gainesville, Florida,
where he got the early promotion with tenure in August 2003
and has been an Associate Professor since then. His research
interests span many areas including wireless networks, mobile
computing, mobile communications, automatic control, and
neural networks. He has published over one hundred (100)
papers in refereed professional journals and conferences. He
received the National Science Foundation Faculty Early Career
Award in 2001 and the Office of Naval Research Young
Investigator Award in 2002.

He has actively engaged in many professional activities. He

is a senior member of the IEEE and a member of the ACM. He
is an Editor for IEEE Transactions on Communications, an
Editor for IEEE Transactions on Wireless Communications, an
Editor for IEEE Transactions on Mobile Computing, a tech-
nical editor for IEEE Wireless Communications Magazine, an
Editor for ACM Wireless Networks, and an Area Editor for
ACM Mobile Computing and Communications Review. He
was an Editor for IEEE Journal on Selected Areas in Com-
munications: Wireless Communications Series from May 1999
to December 2001, an Editor for Wiley International Journal
on Wireless Communications and Mobile Computing from
April 2000 to January 2004 and the Feature Editor for Scan-
ning the Literature in IEEE Personal Communications (now the
IEEE Wireless Communications) from April 2000 to April
2003. He has also actively involved with many professional
conferences. He is the Program Co-Chair for the Global
Internet and Next Generation Networks Symposium in IEEE
Globecom�2004, was the Program Vice Chair for 2000 IEEE
Wireless Communications and Networking Conference
(WCNC�2000) where he received the IEEE Appreciation Award
for the service to this conference. He has been serving on many
Technical Program Committees such as IEEE INFOCOM
(2005, 2004, 2003, 2000, and 1998), IEEE ICC (2004), IEEE
Globecom (2004, 2003 and 2002), IEEE WCNC (2004, 2002,
2000 and 1999), and ACM MobiCom (2001). He served as the
Committee Co-Chair for Student Travel Award for 2002 ACM
MobiCom. He was the Vice-Chair for the IEEE Gainesville
Section in 2002 and 2003, and is the Chair in 2004.

http://www.cs.bu.edu/brite/

	An efficient quality of service routing algorithm for delay-sensitive applications
	Introduction
	Related work
	SF-DCLC routing algorithm
	Description of DCLC routing problem
	Routing information mdash the vectors
	Operation of SF-DCLC
	An example
	Correctness of SF-DCLC
	Complexity of SF-DCLC

	Performance evaluation
	Simulation environment
	Performance metrics
	Simulation results
	Efficiency
	Overhead

	Conclusions and future work
	Acknowledgments
	References

