
An Efficient Tag Search Protocol in Large-Scale RFID
Systems with Noisy Channel

Min Chen† Wen Luo† Zhen Mo† Shigang Chen† Yuguang Fang‡
†Department of Computer & Information Science & Engineering

‡ Department of Electrical & Computer Engineering
University of Florida, Gainesville, FL 32611, USA

Abstract—Radio frequency identification (RFID) technology has
many applications in inventory management, supply chain, product
tracking, transportation and logistics. One research issue of
practical importance is to search for a particular group of tags
in a large-scale RFID system. Time efficiency is a crucial factor
that must be considered when designing a tag search protocol to
ensure its execution will not interfere with other normal inventory
operations. In this paper, we design a new technique called filtering
vector, which can significantly reduce transmission overhead during
search process, thereby shortening search time. Based on this
technique, we propose an iterative tag search protocol. In each
round, we filter out some tags and eventually terminate the search
process when the search result meets the accuracy requirement.
Furthermore, we extend our protocol to work under noisy channel.
The simulation results demonstrate that our protocol performs
much better than the best existing work.

Keywords—RFID, tag search, time efficiency, noisy channel.

I. INTRODUCTION

Recent years have witnessed the rapid development of radio
frequency identification (RFID) technology. It is becoming
increasingly utilized in various applications, such as inventory
management, supply chain, product tracking, transportation
and logistics [1]–[10]. Generally speaking, an RFID system
comprises three components: one or multiple RFID readers, a
large set of RFID tags, and a backend server. Each tag has
a unique ID to identify the object it is attached to. Equipped
with an antenna, a tag is capable of transmitting and receiving
radio signals, through which communications with the readers
are achieved. Hence, the readers can collect the IDs and other
useful information from tags located in their coverage areas, and
then send the gathered data to the backend server for further
process.

This paper focuses on the tag search problem in large RFID
systems. We use an example to illustrate the problem. Suppose
a manufacturer finds that some of its products may be defective,
but those products have already been distributed in different
warehouses. The manufacturer knows the IDs of tags attached
to those suspected products and wants to recall them for further
inspection. Thus the manufacturer asks for tag search in each
warehouse: Given a set of wanted tag IDs, the problem is to
search in the coverage area of a reader and identify the tags that
belong to the set. Note that there may exist other tags in the area
that do not belong to the set.

To meet the stringent delay requirements of real-world
applications, time efficiency is a critical performance metric

for the RFID tag search problem. In our example, it is highly
desirable to make the search quick in a busy warehouse as
lengthy searching process may interfere with other activities that
move things in and out of the warehouse. The only prior work
studying this problem is called CATS [11], which however does
not work well under some common conditions (e.g., if the size
of the wanted set is much larger than the number of tags in the
coverage area of the reader).

The main contribution of this paper is a fast tag search method
based on a new technique called filtering vectors. A filtering
vector is a compact one-dimension bit array constructed from
tag IDs, which can be used not only for tag filtration, but also
for parameter estimation. Using the filtering vectors, we design,
analyze, and evaluate a novel iterative tag search protocol, which
progressively improves the accuracy of search result and reduces
the time of each iteration to a minimum by using the information
learned from previous iterations. Given an accuracy requirement,
the iterative protocol will terminate once the search result meets
the accuracy requirement. We show that our protocol performs
much better than the CATS protocol and other alternatives that
we use for comparison. We then extend our protocol to work
under noisy channel and demonstrate that the increase in its
execution time due to channel error is modest.

The rest of this paper is organized as follows. Section II gives
the system model and the problem statement. Section III briefly
introduces the prior work. Section IV describes our new protocol
in detail. Section VI evaluates the performance of our protocol
by simulations. Section V addresses noisy wireless channel.
Section VII discusses the related work. Section VIII draws the
conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
We consider an RFID system of one or more readers, a

backend server, and a large number of tags. Each tag has a unique
96-bit ID according to the EPC global Class-1 Gen-2 (C1G2)
standard [12]. A tag is able to communicate with the reader
wirelessly and perform some computations such as hashing.
The backend server is responsible for data storage, information
processing, and coordination. It is capable of carrying out high-
performance computations. Each reader is connected to the
backend server via a high speed wired or wireless link. If
there are many readers (or antennas), we divide them into non-
interfering groups and the protocol proposed in this paper (or any

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

prior protocol) can be performed for one group at a time, with
the readers in that group executing the protocol in parallel. The
readers in each group can be regarded as an integrated unit, still
called a reader for simplicity. Many works regarding multi-reader
coordination can be found in literature [13], [14], [15].

In practice, the tag-to-reader transmission rate and the reader-
to-tag transmission rate may be different and subject to the
environment. For example, as specified in the EPC global Class-
1 Gen-2 standard, the tag-to-reader transmission rate is 40kbps
– 640 kbps in the FM0 encoding format or 5kbps – 320kbps
in the Miller modulated subcarrier encoding format, while the
reader-to-tag transmission rate is about 26.7kbps – 128kbps.
However, to simplify our discussions, we assume the tag-to-
reader transmission rate and the reader-to-tag transmission rate
are the same, and it is straightforward to adapt our protocol for
asymmetric transmission rates.

B. Time Slots

The RFID reader and the tags in its coverage area use a framed
slotted MAC protocol to communicate. We assume that clocks
of the reader and all tags in the RFID system are synchronized
by the reader’s signal. During each frame, the communication is
initialized by the reader in a request-and-response mode, namely,
the reader broadcasts a request with some parameters to the tags
and then waits for the tags to reply in the subsequent time slots.

Consider an arbitrary time slot. We call it an empty slot if
no tag replies in this slot, or a busy slot if one or more tags
respond in this slot. Generally, a tag just needs to send one-bit
information to make the channel busy such that the reader can
sense its existence. The reader uses ‘0’ to represent an empty
slot with an idle channel and ‘1’ for a busy slot with a busy
channel. The length of a slot for a tag to transmit a one-bit short
response is denoted as ts. Note that ts can be set larger than the
time of one-bit data transmission for better tolerance of clock
drift in tags. Some prior RFID work needs another type of slots
for transmission of tag IDs, which will be introduced shortly.

C. Problem Statement

Suppose we are interested in a known set of tag IDs
X = {x1, x2, x3, · · · }, each xi ∈ X is called a wanted
tag. For example, the set may contain tag IDs on a certain
type of products under recall by a manufacturer. Let Y =
{y1, y2, y3, · · · } be the set of tags within the coverage area of
an RFID system (e.g., in a warehouse). Each xi or yi represents
a tag ID. The tag search problem is to identify the subset W
of wanted tags that are present in the coverage area. Namely,
W ⊆ X . Since each tag in W is in the coverage area, W ⊆ Y .
Therefore, W = X ∩ Y . We define the intersection ratio of X
and Y as

RINTS =
|W |

min{|X|, |Y |}
. (1)

Exactly finding W can be expensive if X and Y are very large.
It is much more efficient to find W approximately, allowing small
bounded error [11] — all wanted tags in the coverage area must

Symbols Descriptions
X Set of wanted tags
Y Set of tags in the RFID system
W Intersection of X and Y , i.e., W = X ∩ Y
Xi Set of remaining candidate tags in X , i.e., search result

at the beginning of the ith round of our protocol;
Yi Set of remaining candidate tags in Y at the beginning

of the ith round of our protocol
Ui Difference between Xi and W , i.e., Ui = Xi −W
Vi Difference between Yi and W , i.e., Vi = Yi −W
| · | Cardinality of the set
h(·) A uniform hash function

FV (·) Filtering vector of a set

TABLE I
NOTATIONS

be identified, but a few wanted ones that are not in the coverage
may be accidentally included.1

Our solution performs iteratively. Each round rules out some
tags in X when it becomes certain that they are not in the
coverage area (i.e., Y), and it also rules out some tags in Y
when it becomes certain that they are not wanted ones in X .
These ruled-out tags are called non-candidate tags. Other tags
that remain possible to be in both X and Y are called candidate
tags. At the beginning, the search result is initialized to all
wanted tags X . As our solution is iteratively executed, the search
result shrinks towards W when more and more non-candidates
are ruled out.

Let W ∗ be the final search result. We have the following two
requirements:

1) All wanted tags in the coverage area must be detected,
namely, W ⊆ W ∗.

2) A false positive occurs when a tag in X −W is included
in W ∗, i.e., a tag not in the coverage area is kept in the
search result by the reader.2 The false positive ratio is the
probability for any tag in X − W to be in W ∗ after the
execution of a search protocol. We want to bound the false
positive ratio by a pre-specified system requirement PREQ,
whose value is set by the user. In other words, we expect

|W ∗ −W |
|X −W |

≤ PREQ. (2)

Notations used in the paper are given in Table I for quick
reference.

III. BACKGROUND

A. Tag Identification

A straightforward solution for the tag search problem is
identifying all existing tags in Y . After that, we can apply
an intersection operation X ∩ Y to compute W . EPC C1G2
standard assumes that the reader can only read one tag ID
at a time. Dynamic Framed Slotted ALOHA (DFSA) [16]–
[20] is implemented to deal with tag collisions, where each

1If perfect accuracy is necessary, a post step may be taken by the reader
to broadcast the identified IDs. As the wanted tags in the coverage reply after
hearing their IDs, those mistakenly-included tags can be excluded due to non-
response to these IDs.

2The nature of our protocol guarantees that all tags in Y −W are not included
in W ∗.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

frame consists of a certain number of equal-duration slots.
It is proved that the theoretical upper bound of identification
throughput using DFSA is approximately 1

e tags per slot (e
is the natural constant), which is achieved when the frame
size is set equal to the number of unidentified tags [21]. As
specified in EPC C1G2, each slot consists of the transmissions
of a QueryAdjust or QueryRep command from the reader, one
tag ID, and two 16-bit random numbers: one for the channel
reservation (collision avoidance) sent by the tags, and the other
for ACK/NAK transmitted by the reader. We denote the duration
of each slot for tag identification as tl. Therefore, the lower
bound of identification time for tags in Y using DFSA is

TDFSA = e× |Y | × tl. (3)

One limitation of the current DFSA is that the information
contained in collision slots is wasted. A number of recent papers
[22]–[27] focus on Collision Recovery (CR) techniques, which
enable the resolution of multiple tag IDs from a collision slot.
Benefiting from the CR techniques, the identification throughput
can be dramatically improved up to 3.1 tags per slot in [26].
Suppose the throughput is υ tags per slot after adopting the CR
techniques. The lower bound for identification time is

TCR =
|Y |
υ

× tl. (4)

Note that after employing the CR techniques the real duration
of each slot can be longer than tl. The reason is that the reader
may need to acknowledge multiple tags and the tags may need
to send extra messages to facilitate collision recovery.

Readers may refer to Section VII for more information about
tag identification and collision recovery.

B. Polling Protocol

The polling protocol provides an alternative solution to the tag
search problem. Instead of collecting all IDs in Y , the reader can
broadcast the IDs in X one by one. Upon receiving an ID, each
tag checks whether the received ID is identical to its own. If so,
the tag transmits a one-bit short response to notify the reader
about its presence; otherwise, the tag keeps silent. Hence, the
execution time of the polling protocol is

TPolling = |X| × (tid + ts), (5)

where tid is the time cost for the reader to broadcast a tag ID.
The polling protocol is very efficient when |X| is small.

However, it also has serious limitations. First, it does not work
well when |X| ≫ |Y |. Second, the energy consumption of tags
(particularly when active tags are used) is significant because
tags in Y have to continuously listen to the channel and receive
a large number of IDs until its own ID is received.

C. CATS Protocol

To address the problems of the tag identification and polling
protocols, Zheng et al. propose a two-phase protocol named
Compact Approximator based Tag Searching protocol (CATS)
[11], which is the most efficient solution for the tag search
problem to date.

The main idea of the CATS protocol is to encode tag IDs
into a Bloom filter and then transmit the Bloom filter instead
of the IDs. In its first phase, the reader encodes all IDs of
wanted tags in X into a L1-bit Bloom filter, and then broadcasts
this filter together with some parameters to tags in the coverage
area. Having received this Bloom filter, each tag tests whether
it belongs to the set X . If the answer is negative, the tag is a
non-candidate and will keep silent for the remaining time. After
the filtration of phase one, the number of candidate tags in Y
is reduced. During the second phase, the remaining candidate
tags in Y report their presence in a second L2-bit Bloom filter
constructed from a frame of time slots ts. Each candidate tag
transmits in k slots that it is mapped to. Listening to channel,
the reader builds the Bloom filter based on the status of the time
slots: ‘0’ for an idle slot where no tag transmits, and ‘1’ for
a busy slot where at least one tag transmits. Using this Bloom
filter, the reader conducts filtration for the IDs in X to see which
of them belong to Y , and the result is regarded as X ∩ Y .

With a pre-specified false positive ratio requirement PREQ,
the CATS protocol uses the following optimal settings for L1

and L2:

L1 = |X| logϕ
(
− α|X|
β|Y | lnPREQ

)
, (6)

L2 =
|X|
lnϕ

(
lnPREQ − α

β

)
, (7)

where ϕ is a constant that equals 0.6185, α and β are constants
pertaining to the reader-to-tag transmission rate and the tag-
to-reader transmission rate, respectively. In CATS, the authors
assume ts is the time needed to delivering one-bit data, and
α = β, i.e., the reader-to-tag transmission rate and the tag-to-
reader transmission rate are identical. Therefore, the total search
time of the CATS protocol is:

TCATS = (L1 + L2)× ts

= |X|
(
logϕ

(
−|X|

|Y | lnPREQ

)
+

lnPREQ − 1

lnϕ

)
× ts.

(8)

IV. A FAST TAG SEARCH PROTOCOL BASED ON FILTERING
VECTORS

In this section, we propose an Iterative Tag Search Protocol
(ITSP) to solve the tag search problem in large-scale RFID
systems. We will ignore channel error for now and delay this
subject to Section V.

A. Motivation

Although the CATS protocol takes a significant step forward
in solving the tag search problem, it still has several important
drawbacks. First, when optimizing the Bloom filter sizes L1

and L2, CATS approximates |X ∩ Y | simply as |X|. This rough
approximation may cause considerable overhead when |X ∩ Y |
deviates significantly from |X|.

Second, it assumes that |X| < |Y | in its design and formula
derivation. In reality, the number of wanted tags may be far
greater than the number in the coverage area of an RFID system.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

For example, there may be a huge number |X| of tagged products
that are under recall, but as the products are distributed to many
warehouses, the number |Y | of tags in a particular warehouse
may be much smaller than |X|. Although CAT can still work
under conditions of |X| >> |Y |, it will become less efficient as
our simulations will demonstrate.

Third, the performance of CATS is sensitive to the false
positive ratio requirement PREQ. The performance deteriorates
when the value of PREQ is very small. While the simulations
in [11] set PREQ = 5%, its value may have to be much smaller
in some practical cases. For example, suppose |X| = 100, 000,
and |W | = 1, 000. If we set PREQ = 5%, the number of wanted
tags that are falsely claimed to be in Y by CATS will be up to
|X−W |×PREQ = 4, 995, far more than the 1,000 wanted tags
that are actually in Y .

We will show that an iterative way of implementing Bloom
filters is much more efficient than the classical way that the CATS
protocol adopts.

B. Bloom Filter

A Bloom filter is a compact data structure that encodes
the membership for a set of items. To represent a set S =
{e1, e2, · · · , en} using a Bloom filter, we need a bit array of
length l in which all bits are initialized to zeros. To encode each
element e ∈ S, we use k hash functions, h1, h2, · · · , hk, to map
the element randomly to k bits in the bit array, and set those
bits to ones. For membership lookup of an element b, we again
map the element to k bits in the array and see if all of them
are ones. If so, we claim that b belongs to S; otherwise, it must
be true that b /∈ S. A Bloom filter may cause false positive: a
non-member element is falsely claimed as a member in S. The
probability for a false positive to occur in a membership lookup
is given as follows [28]:

PB =

(
1−

(
1− 1

l

)kn
)k

≈
(
1− e−kn/l

)k
. (9)

When k = ln 2× l
n , PB is approximately minimized to

(
1
2

)k
=(

1
2

)ln 2 l
n . In order to achieve a target value of PB , the minimum

size of the filter is − lnPB

(ln 2)2n.
CATS sends one Bloom filter from the reader to tags and

another Bloom filter from tags back to the reader. Consider the
first Bloom filter that encodes X . As n = |X|, the filter size is
− lnPB

(ln 2)2 |X|. As an example, to achieve PB = 0.001, the size
becomes 14.4× |X| bits. Similarly, the size of the second filter
from tags to the reader is also related to the target false-positive
probability.

Below we show that the overall size of the Bloom filter can
be significantly reduced by reconstructing it as filtering vectors
and then iteratively applying these vectors.

C. Filtering Vectors

A Bloom filter can also be implemented in a segmented way.
We divide its bit array into k equal segments, and the ith hash
function will map each element to a random bit in the ith

segment, for i ∈ [1...k]. We name each segment as a filtering

110 0

110 0

110 0

h1(a) h2(b) h1(b)h2(a)

Bloom filter

110 0

1st FV

h1(a) h1(b) h2(b)h2(a)

2nd FV

Fig. 1. Bloom filter and filtering vectors

vector (FV), which has l/k bits. The following formula gives
the false-positive probability of a single filtering vector, i.e., the
probability for a non-member to be hashed to a ‘1’ bit in the
vector:

PFV = 1−
(
1− 1

l/k

)n

≈ 1− e−kn/l. (10)

Since there are k independent segments, the overall false-positive
probability of a segmented Bloom filter is

PFP = (PFV)
k ≈

(
1− e−kn/l

)k
, (11)

which is approximately the same as the result in (9). It means
that the two ways of implementing a Bloom filter have similar
performance. The value PFP is also minimized when k = ln 2×
l
n . Hence, the optimal size of each filtering vector is

l

k
=

n

ln 2
, (12)

which results in
PFV ≈ 1

2
. (13)

Namely, each filtering vector on average filters out half of non-
members.

Fig. 1 illustrates the concept of filtering vectors. Suppose we
have two elements a and b, two hash function h1 and h2, and
an 8-bit bit array. First, suppose h1(a) mod 8 = 1, h1(b) mod
8 = 7, h2(a) mod 8 = 5, h2(b) mod 8 = 2, and we construct a
Bloom filter for a and b in the upper half of the figure. Next, we
divide the bit array into two 4-bit filtering vectors, and apply h1

to the first segment and h2 to the second segment. Since h1(a)
mod 4 = 1, h1(b) mod 4 = 3, h2(a) mod 4 = 1, h2(b) mod 4
= 2, we build the two filtering vectors in the lower half of the
figure.

D. Iterative Use of Filtering Vectors

In this work, we use filtering vectors in a novel iterative way:
Bloom filters between the reader and tags are exchanged in
rounds; one filtering vector is exchanged in each round, and the
size of filtering vector is continuously reduced in subsequent
rounds, such that the overall size of each Bloom filter is much
reduced.

Below we use a simplified example to explain the idea, which
is illustrated in Fig. 2: Suppose there is no wanted tag in the
coverage area of an RFID reader, namely, X ∩ Y = ∅. In round
one, we firstly encode X in a filtering vector of size |X|/ ln 2

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Reader Tags

1st round

filtering vectors

2nd round
.

.

.

.

.

.

th roundK

/ln2
/2ln2|Y|

|X|

/2ln2|X|
/4ln2|Y|

/2 ln2|X|
K-1

/2 ln2|Y|
K

.

.

.

Fig. 2. Iterative use of filtering vectors. Each arrow represents a filtering vector,
and the length of the arrow indicates the size of the filtering vector, which is
specified to the right. As the size shrinks in subsequent rounds, the total amount
of data exchanged between the reader and the tags is significantly reduced.

through a hash function h1, and broadcast the vector to filter
tags in Y . Using the same hash function, each candidate tag in
Y knows which bit in the vector it is mapped to, and it only needs
to check the value of that bit. If the bit is zero, the tag becomes a
non-candidate and will not participate in the protocol execution
further. The filtering vector reduces the number of candidate tags
in Y to about |Y |×PFV ≈ |Y |/2. Then a filtering vector of size
|Y |/(2 ln 2) is sent from the remaining candidate tags in Y back
to the reader in a way similar to [11]: Each candidate tag hashes
its ID to a slot in a time frame and transmit one-bit response in
that slot. By listening to the states of the slots in the time frame,
the reader constructs the filtering vector, ‘1’ for busy slots and
‘0’ for empty slots. The reader uses this vector to filter non-
candidate tags from X . After filtering, the number of candidate
tags remaining in X is reduced to about |X| × PFV ≈ |X|/2.
Only the candidate tags in X need to be encoded in the next
filtering vector, using a different hash function h2. Hence, in the
second round, the size of the filtering vector from the reader to
tags is reduced by half to |X|/(2 ln 2), and similarly the size of
the filtering vector from tags to the reader is also reduced by
half to |Y |/(4 ln 2). Repeating the above process, it is easy to
see that in the ith round, the size of the filtering vector from
the reader to tags is |X|/(2i−1 ln 2), and the size of the filtering
vector from tags to the reader is |Y |/(2i ln 2). After K rounds,
the total size of all filtering vectors from the reader to tags is

1

ln 2

K∑
i=1

|X|
2i−1

<
2|X|
ln 2

, (14)

where 2|X|
ln 2 is an upper bound, regardless of the number K of

rounds (i.e., regardless of the requirement on the false-positive
probability). It compares favorably to CATS whose filter size,
− lnPB

(ln 2)2 |X|, grows inversely in PB , and reaches 14.4× |X| bits
when PB = 0.001 in our earlier example.

Similarly, the total size of all filtering vectors from tags to the
reader is

1

ln 2

K∑
i=1

|Y |
2i

<
|Y |
ln 2

, (15)

and PFP = (PFV)
K ≈

(
1
2

)K
. We can make PFP as small as we

like by increasing n, while the total transmission overhead never
exceeds 1

ln 2 (2|X|+ |Y |) bits. The strength of filtering vectors in
bidirectional filtration lies in their ability to reduce the candidate
sets during each round, thereby diminishing the sizes of filtering

Reader Tags

1st round

filtering vectors

2nd round
.

.

.

.

.

.

th roundK

m1= 2

m2 = 0

Fig. 3. Generalized approach. Each round has two phases. In phase one, the
reader transmits zero, one or multiple filtering vectors. In phase two, the tags
send exactly one filtering vector to the reader. In the example shown by the
figure, m1 = 2 and m2 = 0, which means there are two filtering vectors sent
by the reader in the first round, while no filtering vector from the reader during
the second round.

vectors in subsequent rounds and thus saving time. Its power of
reducing subsequent filtering vectors is related to |X −W | and
|Y −W |. The more the numbers of tags outside of W , the more
they will be filtered in each round, and the greater the effect of
reduction.

E. Generalized Approach

Unlike the CATS protocol, our iterative approach divides the
bidirectional filtration in tag search process into multiple rounds.
Before the ith round, the set of candidate tags in X is denoted
as Xi (⊆ X), which is also called the search result after the
(i − 1)th round. The final search result is the set of remaining
candidate tags in X after all rounds are completed. Before the
ith round, the set of candidate tags in Y is denoted as Yi (⊆ Y).
Initially, X1 = X and Y1 = Y . We define Ui = Xi − W and
Vi = Yi −W , which are the tags to be filtered out. Because W
is always a subset of both Xi and Yi, we have

|Ui| = |Xi| − |W |
|Vi| = |Yi| − |W |.

(16)

Instead of exchanging a single filtering vector at a time, we
generalize our iterative approach by allowing multiple filtering
vectors to be sent consecutively. Each round consists of two
phases. In phase one of the ith round, the RFID reader broadcasts
a number mi of filtering vectors, which shrink the set of
remaining candidate tags in Y from Yi to Yi+1. In phase two
of the ith round, one filtering vector is sent from the remaining
candidate tags in Yi+1 back to the reader, which uses the received
filtering vector to shrink its set of remaining candidates from
Xi to Xi+1, setting the stage for the next round. This process
continues until the false positive ratio meets the requirement of
PREQ.

The values of mi will be determined in the next subsection. If
mi > 0, multiple filtering vectors will be sent consecutively
from the reader to tags in one round. If mi = 0, no
filtering vector is sent from the reader in this round. When this
happens, it essentially allows multiple filtering vectors to be sent
consecutively from tags to the reader (across multiple rounds).
An illustration is given in Fig. 3.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

F. Values of mi

Let K be the total number of rounds. After all K rounds,
we use XK+1 as our search result. There are in total K
filtering vectors sent from tags to the reader. We know from
subsection IV-C that each filtering vector can filter out half of
non-members (in our case, tags in X − W). To meet the false
positive ratio requirement PREQ, the following constraint should
hold

(PFV)
K ≈

(
1

2

)K

≤ PREQ. (17)

Hence, the value of K is set to ⌈− lnPREQ

ln 2 ⌉. (We will discuss how
to guarantee meeting the requirement PREQ in Section IV-I.)

Next, we discuss how to set the values of mi, 1 ≤ i ≤ K,
in order to minimize the execution time of each round. We use
FV (·) to denote the filtering vector of a set. In phase one of
the ith round, the reader builds mi filtering vectors, denoted as
FVi1(Xi), FVi2(Xi), · · · , FVimi(Xi), which are consecutively
broadcasted to the tags. From (12), we know the size of each
filtering vector is |Xi|/ ln 2. After the filtration based on these
vectors, the number of remaining candidate tags in Yi+1 is on
average

|Yi+1| ≈ |Vi| × (PFV)
mi + |W |

≈ |Vi| × (1/2)
mi + |W |

= |Vi|/2mi + |W |.
(18)

In phase two of the ith round, the tags in Yi+1 use a time frame
of 1

ln 2 × |Yi+1| slots to report their presence. After receiving
the responses, the reader builds a filtering vector, denoted as
FVi(Yi+1). After the filtration based on FVi(Yi+1), the size of
the search result Xi+1 is on average

|Xi+1| ≈ |Ui| × PFV + |W |
≈ |Ui|/2 + |W |
= (|Xi|+ |W |)/2.

(19)

We denote the transmission time of the ith round by f(mi).
To make a fair comparison with CATS, we utilize the parameter
setting that conforms with [11]. Therefore, f(mi) =

1
ln 2 ×mi×

|Xi| × ts +
1

ln 2 × |Yi+1| × ts, which is set to be:

f(mi) =
ts
ln 2

(mi|Xi|+ |Vi|/2mi + |W |) . (20)

To find the value of mi that minimizes f(mi), we take the first
order derivative and set the right side to zero.

df(mi)

dmi
=

ts
ln 2

(|Xi| − ln 2|Vi|/2mi) = 0 (21)

Hence, the value of f(mi) is minimized when

mi =
ln(ln 2|Vi|/|Xi|)

ln 2
. (22)

Because mi cannot be a negative number, we reset mi = 0
if ln(ln 2|Vi|/|Xi|)

ln 2 < 0. Furthermore, mi must be an integer. If
ln(ln 2|Vi|/|Xi|)

ln 2 is not an integer, we round mi either to the ceiling
or to the floor, depending on which one results in a smaller value
of f(mi).

For now, we assume that we know |W | and |Y | in our
computation of mi. Later we will show how to estimate these

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 0 0 0 0

TABLE II
THE INITIAL VALUES OF mi .

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 2 0 0 0

TABLE III
THE OPTIMIZED VALUES OF mi .

values on the fly in the execution of each round of our protocol.
Initially, |X1| (= |X|) is known. |V1| can be calculated from
(16). Hence, the value of m1 can be computed from (22). After
that, we can estimate |Y2|, |X2|, and |V2| based on (18), (19), and
(16), respectively. From |X2| and |V2|, we can calculate the value
m2. Following the same procedure, we can iteratively compute
all values of mi for 1 ≤ i ≤ K.

We find it often happens that the mi sequence has several
consecutive zeros at the end, that is, ∃p < K, mi = 0 for
i ∈ [p,K]. In this case, we may be able to further optimize the
value of mp with a slight adjustment. We first explain the reason
for mp = 0: It costs some time for the reader to broadcast a
filtering vector in phase one of the pth round. It is true that this
filtering vector can reduce set Yp, thereby reducing the frame
size of phase two in the pth round. However, if the time cost
of sending the filtering vector cannot be compensated by the
time reduction of phase two, it will be better off to remove
this filtering vector by setting mp = 0. (This situation typically
happens near the end of the mi sequence because the number
of unwanted tags in the remaining candidate set Yp is already
very small.) But if all values of mi in the subsequent rounds
(after mp) are zeros, increasing mp to a non-zero value m′

p may
help reduce the transmission time of phase two of all subsequent
rounds, and the total time reduction may compensate more than
the time cost of sending those m′

p filtering vectors.
Consider the transmission time of these (K − p + 1) rounds

as a whole, denoted by G(m′
p, p). It is easy to derive

G(m′
p, p) =

(
m′

p

ln 2
|Xp|+

K − p+ 1

ln 2

(
|Vp|
2m

′
p
+ |W |

))
ts.

(23)
To minimize G(m′

p, p), we have

m
′

p =

{
0 if γ < 0

γ if γ ≥ 0
(24)

where γ =
ln(ln 2(K−p+1)|Vp|/|Xp|)

ln 2 . As a result, mp is updated
to m′

p, while other mi, i ̸= p, remains unchanged.
Here, we give an example to illustrate how to calculate the

values of mi. Suppose |X| = 5, 000, |Y | = 50, 000, |W | = 500,
and PREQ = 0.001, so K = ⌈− ln 0.001

ln 2 ⌉ = 10. Using (22), we
can calculate the values from m1 to m10. The result is listed in
Table II. There is a sequence of zeros from m7 to m10. Thus, we
can make an improvement using (24), and the optimized result
is shown in Table III.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

G. Iterative Tag Search Protocol

Having calculated the values of mi, we can present our
iterative tag search protocol (ITSP) based on the generalized
approach in Section IV-E. The protocol consists of K iterative
rounds. Each round consists of two phases. Consider the ith

round, where 1 ≤ i ≤ K.
1) Phase one: The RFID reader constructs mi filtering vectors

for Xi using mi hash functions. According to (12), we set the
size LXi of each filtering vector as

LXi =
1

ln 2
× |Xi|. (25)

The RFID reader then broadcasts those filtering vectors one by
one. Once receiving a filtering vector, each tag in Yi maps its ID
to a bit in the filtering vector using the same hash function that
the reader uses to construct the filter. The tag checks whether
this bit is ‘1’. If so, it remains a candidate tag; otherwise, it
is excluded as a non-candidate tag and drops out of the search
process immediately. The set of remaining candidate tags is Yi+1.

If the filtering vectors are too long, the reader divides each
vector into blocks of a certain length (e.g., 96 bits) and transmits
one block after another. Knowing which bit it is mapped to, each
tag only needs to record one block that contains its bit.

From (13), we know that the false positive probability after
using mi filtering vectors is (PFV)

mi ≈ (1/2)mi . Therefore,
|Yi+1| ≈ |Vi| × (PFV)

mi + |W | ≈ |Vi|/2mi + |W |.
2) Phase two: The reader broadcasts the frame size LYi+1 of

phase two to the tags, where

LYi+1 =
1

ln 2
(|Vi|/2mi + |W |) . (26)

After receiving LYi+1 , each tag in Yi+1 randomly maps its ID
to a slot in the time frame using a hash function and transmits
a one-bit short response to the reader in that slot. Based on the
observed state (busy or empty) of the slots in the time frame,
the reader builds a filtering vector, which is used to filter non-
candidates from Xi.

The overall transmission time of all K rounds in the ITSP is

TITSP =

K∑
i=i

(mi × LXi + LYi+1)× ts. (27)

H. Cardinality Estimation

Recall from Section IV-F that we must know the values of
|Xi|, |W | and |Vi| to determine mi, LXi and LYi+1 . It is trivial
to find the value of |Xi| by counting the number of tags in
the search result of the (i − 1)th round. Meanwhile, we know
|Vi| ≈ |Vi−1|/2mi−1 , and |V1| = |Y1| − |W |. Therefore, we only
need to estimate |W | and |Y1|.

Besides serving as a filter, a filtering vector can also be used
for cardinality estimation, a feature that is not exploited in [11].
Since no filtering vector is available at the very beginning, the
first round of the ITSP should be treated separately: We may
use the efficient cardinality estimation protocol ART proposed
in [29] to estimate |Y | (i.e., |Y1|) if its value is not known at
first. As for |W |, it is initially assumed to be min {|X|, |Y |}.

Next, we can take advantage of the filtering vector received
by the reader in phase two of the ith (i ≥ 1) round to estimate

|W | without any extra transmission expenditure. The estimation
process is as follows: First, counting the actual number of ‘1’
bits in the filtering vector, denoted as N∗

1 , we know the actual
false-positive probability of using this filtering vector, denoted
by P ∗

i , is
P ∗
i = N∗

1 /LYi+1 , (28)

because an arbitrary unwanted tag has a chance of N∗
1 out of

LYi+1 to be mapped to a ‘1’ bit, where LYi+1 is the size of
the vector. Meanwhile, we can record the number of tags in the
search results before and after the ith round, i.e., |Xi| and |Xi+1|,
respectively. We have |Xi| = |Ui|+ |W |, |Xi+1| = |Ui+1|+ |W |,
and |Ui+1| ≈ |Ui| × P ∗

i . Therefore,

|W | ≈ |Xi+1| − |Xi| × P ∗
i

1− P ∗
i

. (29)

For the purpose of accuracy, we may estimate |W | after every
round, and obtain the average value.

I. Additional Filtering Vectors

Estimation may have error. Using the values of mi and LYi

computed from estimated |W | and |Yi|, a direct consequence is
that the actual false positive ratio, denoted as PT , can be greater
than the requirement PREQ. Fortunately, from (28), the reader
is able to compute the actual false positive ratio P ∗

i , 1 ≤ i ≤ k,
of each filtering vector received in phase two of the ITSP. Thus,
we have

PT =
K∏
1

P ∗
i . (30)

If PT > PREQ, our protocol will automatically add additional
filtering vectors to further filter XK+1 until PT ≤ PREQ (as
described in Section IV-D).

J. Hardware Requirement

The proposed protocol cannot be supported by off-the-shelf
tags that conform to the EPC Class-1 Gen-2 standard [12],
whose limited hardware capability constrains the functions which
can be supported. By our design, most of the ITSP protocol’s
complexity is on the reader side, but tags also need to provide
certain hardware support. Besides the mandatory commands of
C1G2 (e.g., Query, Select, Read), in order for a tag to execute
the ITSP protocol, we need a new command defined in the set
of optional commands, asking each awake tag to listen to the
reader’s filtering vector, hash its ID to a certain slot of the vector
for its bit value, keep silent and go sleep if the value is zero, and
respond in a hashed slot (by making a transmission to make the
channel busy) if the value is one. Note that the tag does not need
to store the entire filtering vector, but instead only need to count
to the slot it is hashed to, and retrieve the value (0/1) carried in
that slot.

Hardware-efficient hash functions [30], [31], [32] can be
found in the literature. A hash function may also be derived
from the pseudo-random number generator required by the
C1G2 standard. To keep the complexity of a tag’s circuit low,
we only use one uniform hash function h(·), and use it to
simulate multiple independent hash functions: In phase one

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

of the ith round, we use h(·) and mi unique hash seeds
{s1, s2, · · · , smi} to achieve mi independent hash outputs. Thus,
a tag id is mapped to bit locations (h(id⊕ s1) mod LXi),
(h(id⊕ s2) mod LXi), · · · , (h(id⊕ smi) mod LXi) in the mi

filtering vectors, respectively. Each hash seed, together with its
corresponding filtering vector, will be broadcast to the tags. In
phase two of the ith round, the reader generates a new hash seed
s′ and sends it to the tags. Each candidate tag in Yi+1 maps its id
to the slot of index

(
h(id⊕ s′) mod LYi+1

)
, and then transmits

a one-bit short response to the reader in that slot.

V. ITSP OVER NOISY CHANNEL

So far the ITSP assumes that the wireless channel between the
RFID reader and tags is reliable. Note that the CATS protocol
does not consider channel error, either. However, it is common in
practice that the wireless channel is far from perfect due to many
different reasons, among which interference noise from nearby
equipment, such as motors, conveyors, robots, wireless LAN’s,
cordless phones, is a crucial one. Therefore, our next goal is to
enhance ITSP making it robust against noise interference.

A. ITSP with Noise on Forward Link
The reader transmits at a power level much higher than the

tags (which after all backscatter the reader’s signals in the case
of passive tags). It has been shown that the reader may transmit
more than one million times higher than tag backscatter [33].
Hence, the forward link (reader to tag) communication is more
resilient against channel noise than the reverse link (tag to
reader). To provide additional assurance against noise for forward
link, we may use CRC code for error detection. The C1G2
standard requires the tags to support the computation of CRC-
16 (16-bit CRC) [12], which therefore can also be adopted by
future tags modified for ITSP. Each filtering vector built by the
reader can be regarded as a combination of many small segments
with fixed size of lS bits (e.g., lS = 80). For each segment, the
reader computes its 16-bit CRC and appends it to end of that
segment. Those segments are then concatenated and transmitted
to tags. When a tag receives a filtering vector, it first finds the
segment it hashes to and computes the CRC of that segment. If
the calculated CRC matches the attached one, it will determine
its candidacy by checking the bit in the segment which it maps
to. For mismatching CRC, the tag knows that the segment has
been corrupted, and it will remain as a candidate tag regardless
of the value of the bit which it maps to.

Suppose we let lS = 80, then

LXi =
1

ln 2 × |Xi|
lS

× (lS + 16) =
1.2|X|
ln 2

. (31)

We assume the probability that the noise corrupts each segment
is PS (PS is expected to be very small as explained above).
A corrupted segment can be thought as consisting of all ‘1’s.
Hence, the false-positive probability for a filtering vector sent
by reader, denoted by PRT , is roughly

PRT ≈
LXi

96 × PS × lS +
LXi

96 × (1− PS)× lS × PFV

LXi

96 × lS

=
1 + PS

2
.

(32)

We can also get

|Yi+1| ≈ |Vi| × (PRT)
mi + |W | (33)

and now (20) can be rewritten as

f(mi) =
ts
ln 2

(
1.2mi|Xi|+

(
1 + PRT

2

)mi

|Vi|+ |W |
)
.

(34)
Therefore, f(mi) is optimized when

mi =
ln[(ln 2− ln(1 + PRT))|Vi|/1.2|Xi|]

ln 2− ln(1 + PRT)
. (35)

B. ITSP with Noise on Reverse Link

Now let us study the noise on the reverse link and its effect
on the ITSP. Since the backscatter from a tag is much weaker
than the signal transmitted by the reader, the reverse link is more
likely to be impacted by noise.

First, channel noise may corrupt a would-be empty slot into
a busy slot. The original empty slot is supposed to be translated
into a ‘0’ bit in the filtering vector by the reader; if a candidate
tag is mapped to that bit, it is ruled out immediately. However, if
that slot is corrupted and becomes a busy slot, the corresponding
bit turns into ‘1’; a tag mapped to that bit will remain a
candidate tag, thereby increasing the false-positive probability
of the filtering vector.

Second, noise may also occur during a busy slot. Although the
noise and the transmissions from tags may partially cancel each
other in a slot if they happen to reach the reader in opposite
phase, it is extremely unlikely that they will exactly eliminate
each other. As long as the reader can still detect some energy,
regardless of its source (it may even come from the noise),
that slot will be correctly determined as a busy slot, and the
corresponding bit in the filtering vector is set to ‘1’ just as it is
supposed to be. However, if we take the propagation path loss,
including reflection loss, attenuation loss and spreading loss [34],
into account, there is still a chance that a busy slot may not
be detected by the reader. This may happen in a time varying
channel where the reader may fail in receiving a tag’s signal
during a deeply faded slot when the tag transmits. We stress
that this is not a problem unique to ITSP, but all protocols that
require communications from tags to readers will suffer from this
problem if it happens that the reader cannot hear the tags. ITSP
is not robust against this type of error. But there exists ways to
alleviate this problem — for instance, each filtering vector from
tags to the reader is transmitted twice. As long as a slot is busy
in one of two transmissions, the slot is considered to be busy.

Next, we will investigate the reverse link with noise
interference for ITSP under two error models.

1) ITSP under Random Error Model (ITSP-rem): The random
error model is characterized by a parameter called error rate
PERR, which means every slot independently has a probability
PERR to be corrupted by the noise. Influencing by the channel
noise, the reader can detect more busy slots as some empty slots
turn into busy ones, which raises the false-positive probability of
phase-two filtering vectors. Suppose the frame size of phase two
in a certain round is l, the original number of busy slots is about
l×PFV ≈ l/2. At the reader’s side, however, the number of busy

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

slots averagely increases to l/2 + l/2 × PERR = (1+PERR)×l
2 .

After encoding the slot status into a filtering vector, the false-
positive probability of that filtering vector is:

P ′
FV ≈

(1+PERR)×l
2

l
=

1 + PERR

2
. (36)

To satisfy the false-positive ratio requirement, (P ′
FV)

K ≤ PREQ

should hold. Therefore, the search process of ITSP-rem contains
at least

K = ⌈ lnPREQ

ln[(1 + PERR)/2]
⌉ (37)

rounds. Also, we can derive

|Xi+1| ≈ |Ui| × P ′
FV + |W |

≈ |Ui|(1 + PERR)/2 + |W |.
(38)

With K, |Xi|, |Yi| and mi, 1 ≤ i ≤ K, the search time of
ITSP-rem can be calculated using (31) (26) (27).

2) ITSP under Burst Error Model (ITSP-bem): In
telecommunication, a burst error is defined as a consecutive
sequence of received symbols, where the first and last symbols
are in error, and there exists no continuous subsequence of m
(m is a specified parameter called the guard band of the error
burst) correctly received symbols within the error burst [35].
A burst error model describes the number of bursts during an
interval and the number of incorrect symbols in each burst error,
which differs greatly from the random error model.

According to the burst error model presented in [36], both the
number of bursts in an interval and the number of errors in each
burst have Poisson distributions. Assume the expected number of
bursts in a l-bit interval is η, the probability distribution function
for the number of bursts can be expressed as

h(x) =

∞∑
i=0

ηi

i!
e−ηδxi, (39)

where δxi is the Kronecker delta function [37]. Meanwhile, if
the mean value of errors due to a burst in the l bits is τ , then the
probability distribution function of the number of error is given
by

g(y) =

∞∑
j=0

τ j

j!
e−τδyj . (40)

Therefore, the probability of having w errors in an interval of l
bits is

Pl(w) = e−η τ
w

w!

∞∑
i=0

iw

i!
ηie−iτ . (41)

In other words, for a frame with l slots, the probability that w
slots will be corrupted by the burst noise is Pl(w).

Now we evaluate the ITSP under the burst error model,
denoted as ITSP-bem. Given a filtering vector with size of l-
bit, recall from (41) that the probability of having w errors in
this l-bit vector is Pl(w). In this case, each original ‘0’ bit has a
probability w

l to be corrupted by the errors, and becomes a ‘1’
bit. Consequently, the false-positive probability of the filtering
vector is expected to be:

P ′
FV ≈ 1

2
+

1

2

l∑
w=0

Pl(w)×
w

l
. (42)

After obtaining the value of P ′
FV , the ITSP-bem can use (37),

(38), to determine the values of other necessary parameters.

VI. PERFORMANCE EVALUATION

A. Performance Metric

We compare our protocol ITSP with CATS [11], the polling
protocol (Section III-B), the optimal DFSA (dynamic frame
slotted ALOHA), and a tag identification protocol with collision
recovery [27], denoted as CR, which identifies 4.8 tags per slot
on average, about 13 times the speed of the optimal DFSA.
For ITSP and CATS, their Bloom filters (or filtering vectors)
constitute most of the overall transmission overhead, while
other transmission cost, such as transmission of hash seeds,
is comparatively negligible. Both protocols need to estimate
the number of tags in the system, |Y |, as a pre-protocol step.
According to the results presented in [11], the time for estimating
|Y | takes up less than 2% of the total execution time of CATS.
Hence, we do not count the estimation time of |Y | in the
simulation results because it is relatively small and does not
affect fair comparison as both protocols need it. Consequently,
the key metric concerning the time efficiency is the total size
of Bloom filters or filtering vectors, and then (8) can be used
for calculating the search time required by CATS, while (27) for
ITSP.

After the search process is completed, we will calculate the
false positive ratio PFP using PFP = |W∗−W |

|X−W | , where W ∗ is
the set of tags in the search result and W is the actual set of
wanted tags in the coverage area. PFP will be compared with
PREQ to see whether the search result meets the false positive
ratio requirement.

B. Performance Comparison

We evaluate the performance of our protocol and compare
it with the CATS protocol. In the first set of simulations, we
set PREQ = 0.001, fix |Y | = 50, 000, vary |X| from 5,000 to
640,000, and let RINTS = 0.1, 0.3, 0.5, 0.7, 0.9. In the second
set of simulations, we set PREQ = 0.001, fix |X| = 10, 000,
vary |Y | from 1,250 to 40,000 to investigate the scalability of
ITSP with tag population from a large range, and let RINTS =
0.1, 0.3, 0.5, 0.7, 0.9. For simplicity, we assume tid = 96ts, and
tl = 137ts, in which a 9-bit QueryAdjust or a 4-bit QueryRep
command, a 96-bit ID and two 16-bit random numbers can be
transmitted. Tables IV and V show the number of ts slots needed
by the protocols under different parameter settings. Each data
point in these tables or other figures/tables in the rest of the
section is the average of 500 independent simulation runs with
± 5% or less error at 95% confidence level.

From the tables, we observe that when RINTS is small (which
means |W | is small), the ITSP performs much better than the
CATS protocol. For example, in Table IV, when RINTS = 0.1,
the ITSP reduces the search time of the CATS protocol by as
much as 90.0%. As we increase RINTS (which implies larger
|W |), the gap between the performance of the ITSP and the
performance of the CATS gradually shrinks. In particular, the
CATS performs poorly when |X| ≥ |Y |. But the ITSP can work
efficiently in all cases. In addition, the ITSP is also much more

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

|X| ITSP CATS Polling DFSA CR
RINTS=0.1 RINTS=0.3 RINTS=0.5 RINTS=0.7 RINTS=0.9

5,000 61,463 96,989 105,828 108,346 124,553 126,370 485,000 18,620,231 1,427,083
10,000 108,017 145,553 206,709 199,586 231,236 238,313 970,000 18,620,231 1,427,083
20,000 185,204 255,898 335,426 397,462 403,954 447,772 1,940,000 18,620,231 1,427,083
40,000 304,767 467,433 512,156 598,718 678,066 837,837 3,880,000 18,620,231 1,427,083
80,000 414,686 590,150 656,426 721,347 721,347 1,560,259 7,760,000 18,620,231 1,427,083
160,000 472,677 630,669 721,347 721,347 721,347 2,889,689 15,520,000 18,620,231 1,427,083
320,000 529,835 668,794 721,347 721,347 721,347 5,317,715 31,040,000 18,620,231 1,427,083
640,000 573,270 696,015 721,347 721,347 721,347 10,533,732 62,080,000 18,620,231 1,427,083

TABLE IV
PERFORMANCE COMPARISON OF TAG SEARCH PROTOCOLS, WHERE DFSA REPRESENTS A TAG IDENTIFICATION PROTOCOL WITH DFSA, AND CR REPRESENTS

A TAG IDENTIFICATION PROTOCOL WITH COLLISION RECOVERY TECHNIQUES. |Y | = 50, 000, PREQ = 0.001.

|Y | ITSP CATS Polling DFSA CR
RINTS=0.1 RINTS=0.3 RINTS=0.5 RINTS=0.7 RINTS=0.9

1,250 13,047 17,364 18,033 18,033 18,033 164,589 970,000 465,506 35,677
2,500 24,289 33,337 36,067 36,067 36,067 175,960 970,000 931,012 71,354
5,000 42,835 62,862 68,528 72,134 72,134 190,387 970,000 1,862,023 142,708
10,000 73,909 109,281 119,022 137,056 144,269 204,814 970,000 3,724,046 285,417
20,000 95,833 132,546 169,065 167,713 192,960 219,241 970,000 7,448,092 570,833
40,000 111,904 152,606 174,926 228,215 232,904 233,668 970,000 14,896,184 1,141,667

TABLE V
PERFORMANCE COMPARISON OF TAG SEARCH PROTOCOLS, WHERE DFSA REPRESENTS A TAG IDENTIFICATION PROTOCOL WITH DFSA, AND CR REPRESENTS

A TAG IDENTIFICATION PROTOCOL WITH COLLISION RECOVERY TECHNIQUES. |X| = 10, 000, PREQ = 0.001.

efficient than the polling protocol, and any tag identification
protocol with/without CR techniques. Even in the worst case,
the ITSP only takes about half of the execution time of a
tag identification protocol with CR techniques (Note that the
identification process actually takes much more time since the
throughput 4.8 tags per slot may not be achievable in practical
and the duration of each slot is longer.). In practice, the wanted
tags may be spatially distributed in many different RFID systems
(e.g., warehouses in the example we use in the introduction), and
thus RINTS can be small. The ITSP is a much better protocol
for solving the tag search problem in these practical scenarios.

Another performance issue we want to investigate is the
relationship between the search time and PREQ. The the polling
protocol, DFSA, and CR do not have false positive. Our focus
will be on ITSP and CATS. We set |X| = 5, 000, 20, 000
or 80, 000, |Y | = 50, 000, vary RINTS from 0.1 to 0.9, and
vary PREQ from 10−6 to 10−2. Fig. 4 compares the search
times required by the CATS and the ITSP under different false
positive ratio requirements. Generally speaking, the gap between
the search time required by the ITSP and the search time by
the CATS keeps getting larger with the decrease of PREQ,
particularly when RINTS is small. For example, in Fig. 4 (c),
when PREQ = 10−2 and RINTS = 0.1, the search time by
the ITSP is about one third of the time by the CATS; when we
reduce PREQ to 10−6, the time by the ITSP becomes about one
fifth of the time by the CATS. The reason is as follows: When
RINTS is small, |W | is small and most tags in X and Y are non-
candidates. After several ITSP rounds, as many non-candidates
are filtered out iteratively, the size of filtering vectors decreases
exponentially and therefore subsequent ITSP rounds do not cause
much extra time cost. This merit makes the ITSP particularly
applicable in cases where the false positive ratio requirement is

very strict, requiring many ITSP rounds. On the contrary, the
CATS protocol does not have this capability of exploiting low
RINTS values.

C. False Positive Ratio

Next, we examine whether the search results after execution
of the ITSP will indeed meet the requirement of PREQ. In this
simulation, we set the false-positive ratio requirement based on
the following formula:

PREQ ≤ |W |
λ (|X| − |W |)

, (43)

where λ is a constant. We use an example to give the rationale:
Consider an RFID system with |X| = 20, 000. If |W | = 10, 000,
PREQ = 0.01 may be good enough because the number of false
positives is about (|X| − |W |) × PREQ = 100, which is much
fewer than |W |. However, if |W | = 10, PREQ = 0.01 may
become unacceptable since (|X|− |W |)×PREQ ≈ 200 ≫ |W |.
Therefore, it is desirable to set the value of PREQ such that the
number of false positives in the search result is much smaller
than |W |, namely, (|X| − |W |) × PREQ ≤ 1

λ |W |. Let λ = 10
and we test the ITSP under three different parameter settings:
(a) |X| = 5, 000, |Y | = 50, 000, and RINTS varies from

0.1 to 0.9, i.e., |W | varies from 500 to 4,500. PREQ ≤
500

10×(5,000−500) ≈ 0.01111. We set PREQ = 10−2.
(b) |X| = 20, 000, |Y | = 50, 000, and RINTS varies from

0.01 to 0.9, i.e., |W | varies from 200 to 18,000. PREQ ≤
200

10×(20,000−200) ≈ 0.00101. We set PREQ = 10−3.
(c) |X| = 80, 000, |Y | = 50, 000, and RINTS varies from

0.01 to 0.9, i.e., |W | varies from 500 to 45,000. PREQ ≤
500

10×(80,000−500) ≈ 0.00063. We set PREQ = 10−4.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

0

0.5

1

1.5

2

2.5

10-6 10-5 10-4 10-3 10-2

N
um

be
r

of
 s

lo
ts

 (
*1

05)

PREQ

(a)

ITSP RINTS = 0.1
ITSP RINTS = 0.3
ITSP RINTS = 0.5
ITSP RINTS = 0.7
ITSP RINTS = 0.9

CATS

0

2

4

6

8

10-6 10-5 10-4 10-3 10-2

N
um

be
r

of
 s

lo
ts

 (
*1

05)

PREQ

(b)

ITSP RINTS = 0.1
ITSP RINTS = 0.3
ITSP RINTS = 0.5
ITSP RINTS = 0.7
ITSP RINTS = 0.9

CATS

0

5

10

15

20

25

30

10-6 10-5 10-4 10-3 10-2

N
um

be
r

of
 s

lo
ts

 (
*1

05)

PREQ

(c)

ITSP RINTS = 0.1
ITSP RINTS = 0.3
ITSP RINTS = 0.5
ITSP RINTS = 0.7
ITSP RINTS = 0.9

CATS

Fig. 4. Relationship between search time and PREQ. Parameter setting: |Y | = 50, 000; (a) |X| = 5, 000, (b) |X| = 20, 000, (c) |X| = 80, 000.

0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

Fa
ls

e
po

si
tiv

e
ra

tio
 (

*1
0-2

)

RINTS

(a) |X|=5,000, |Y|=50,000, PREQ=10-2

0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

Fa
ls

e
po

si
tiv

e
ra

tio
 (

*1
0-3

)

RINTS

(b) |X|=20,000, |Y|=50,000, PREQ=10-3

0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

Fa
ls

e
po

si
tiv

e
ra

tio
 (

*1
0-4

)

RINTS

(c) |X|=80,000, |Y|=50,000, PREQ=10-4

Fig. 5. False positive ratio after running the ITSP.

0
0.2
0.4
0.6
0.8
1.0
1.2

 0 50 100 150 200 250 300 350 400 450 500fa
ls

e
po

si
tiv

e
ra

tio
 (

*1
0-2

) Parameter setting: |X|=5000, |Y|=50000, RINTS=0.1, PREQ=0.01

Fig. 6. False positive ratio by the ITSP of 500 runs.

For each parameter setting, we repeat the simulation 500 times
to obtain the average false positive ratio.

Fig. 5 shows the simulation results. In (a), (b), and (c),
we can see that the average PFP is always smaller than the
corresponding PREQ. Hence, the search results using the ITSP
meet the prescribed requirement of false positive ratio in the
average sense.

If we look into the details of individual simulations, we
find that a small fraction of simulation runs have PFP beyond
PREQ. For example, Fig. (6) depicts the results of 500 runs with
|X| = 5, 000, |Y | = 50, 000, |W | = 500 and PREQ = 10−2.
There are about 5% runs having PFP > PREQ, but that does
not come as a surprise because the false positive ratio in the
context of filtering vectors (ITSP) or Bloom filters (CATS) is
defined in a probability way: The probability for each tag in
X−W to be misclassified as one in W is no greater than PREQ.
This probabilistic definition enforces a requirement PREQ in an
average sense, but not absolutely for each individual run.

D. Performance Evaluation under Channel Error

1) Performance of ITSP-rem and ITSP-bem: We evaluate the
performance of ITSP-rem and ITSP-bem. To simulate the error
rate PERR in ITSP-rem, we employ a pseudo-random number
generator, which generates random real numbers uniformly in the
range [0, 1]. If a bit in the filtering vector is ‘0’ and the generated
random number is in [0, PERR], that bit is flipped to ‘1’. PS can
be simulated in a similar way. As for the burst error in ITSP-
bem, we first calculate the values of Pl(w) with different w for
a given l. Then each w is assigned with a non-overlapping range
in [0, 1], whose length is equal to the value of Pl(w). For each
interval, we generate a random number and check which range
the number locates, thereby determining the number of errors in
that interval.

We set PREQ = 0.001, PS = 0.01, and RINTS =
0.1, 0.5, 0.9, respectively. The values of |X| and |Y | are the same
as those in Tables IV and V. ls is set to 80 bits and a 16-bit CRC
is appended to each segment on forward link for integrity check.
For ITSP-rem, we consider two cases with PERR = 5% and 10%
respectively. For ITSP-bem, the prescribed parameters are set to
be: η = 0.135, τ = 7.10 with each interval to be 96 bits [36].

Tables VI ∼ XI show the number of ts slots needed under
each parameter setting. The second column presents the results
of ITSP when the channel is perfectly reliable. The third and
fourth columns present the results of ITSP-rem with an error rate
of 5% or 10%. The fifth column presents the results of ITSP-
bem. It is not surprising that the search process under noisy
channel generally takes more time due to the use of CRC and
the higher false positive-probability of filtering vectors, and the
execution time of the ITSP-rem is usually longer in a channel
with a higher error rate. An important positive observation is that

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

|X| ITSP ITSP-rem ITSP-bem
PERR = 5% PERR = 10%

5,000 61,463 74,288 75,812 72,144
10,000 108,017 129,995 133,022 125,779
20,000 185,204 241,026 247,824 238,962
40,000 304,767 361,242 398,198 358,361
80,000 414,686 441,365 458,433 437,256
160,000 472,677 504,565 545,338 499,058
320,000 529,835 567,403 630,174 560,456
640,000 573,270 626,379 690,400 618,913

TABLE VI
PERFORMANCE COMPARISON. |Y |=50,000, RINTS=0.1, PREQ = 0.001.

|X| ITSP ITSP-rem ITSP-bem
PERR = 5% PERR = 10%

5,000 105,828 160,481 166,469 153,838
10,000 206,709 211,513 221,771 210,805
20,000 335,426 371,974 391,983 370,557
40,000 512,156 577,305 617,196 577,305
80,000 656,426 735,592 789,874 735,592
160,000 721,347 793,482 865,617 793,482
320,000 721,347 793,482 865,617 793,482
640,000 721,347 793,482 865,617 793,482

TABLE VII
PERFORMANCE COMPARISON. |Y |=50,000, RINTS=0.5, PREQ = 0.001.

the performance of the proposed protocol gracefully degrades in
all simulations. The increase in execution time for both ITSP-
rem and ITSP-bem is modest, compared to ITSP with a perfect
channel. For example, even when the error rate is 10%, the
execution time of ITSP-rem is about 10% ∼ 30% higher than
that of ITSP. This modest increase demonstrates the practicality
of our protocol under noisy channel.

|X| ITSP ITSP-rem ITSP-bem
PERR = 5% PERR = 10%

5,000 124,553 156,041 163,718 155,972
10,000 231,236 275,394 290,493 275,256
20,000 403,954 454,929 486,150 454,929
40,000 678,066 752,753 814,890 752,753
80,000 721,347 793,482 865,617 793,482
160,000 721,347 793,482 865,617 793,482
320,000 721,347 793,482 865,617 793,482
640,000 721,347 793,482 865,617 793,482

TABLE VIII
PERFORMANCE COMPARISON. |Y |=50,000, RINTS=0.9, PREQ = 0.001.

|Y | ITSP ITSP-rem ITSP-bem
PERR = 5% PERR = 10%

1,250 13,047 14,868 15,898 14,174
2,500 24,289 26,626 28,617 25,283
5,000 42,835 46,994 50,863 44,393
10,000 73,909 76,807 84,135 75,983
20,000 95,833 103,255 106,693 102,121
40,000 111,904 133,043 137,348 130,382

TABLE IX
PERFORMANCE COMPARISON. |X|=10,000, RINTS=0.1, PREQ = 0.001.

|Y | ITSP ITSP-rem ITSP-bem
PERR = 5% PERR = 10%

1,250 18,033 19,837 21,640 19,837
2,500 36,067 39,674 43,280 39,674
5,000 68,528 77,021 82,448 77,021
10,000 119,022 134,208 143,261 134,208
20,000 169,065 202,891 212,105 202,467
40,000 174,926 214,563 224,227 213,970

TABLE X
PERFORMANCE COMPARISON. |X|=10,000, RINTS=0.5, PREQ = 0.001.

|Y | ITSP ITSP-rem ITSP-bem
PERR = 5% PERR = 10%

1,250 18,033 19,837 21,640 19,837
2,500 36,067 39,674 43,280 39,674
5,000 72,134 79,348 86,561 79,348
10,000 144,269 158,696 173,123 158,696
20,000 192,960 217,245 232,272 217,245
40,000 232,904 261,277 277,300 261,173

TABLE XI
PERFORMANCE COMPARISON. |X|=10,000, RINTS=0.9, PREQ = 0.001.

2) False Positive Ratio of ITSP-rem and ITSP-bem: We
use the same parameter settings in Section VI-C to examine
the accuracy of search results by ITSP-rem and ITSP-bem.
Meanwhile, for ITSP-rem, we set PERR = 5% or 10%. For
ITSP-bem, the required input parameter setting is η = 0.135
and τ = 7.10, with each 96-bit interval. Simulation results are
delineated in Fig. 7, where the error rate is given between the
parentheses after ITSP-bem. Clearly, the false positive ratio in the
search results after executing ITSP-rem or ITSP-bem is always
within the bound of PREQ. These results confirm that the false-
positive ratio requirement is met under noisy channel.

3) Signal Loss due to Fading Channel: We consider the
scenario of a time-varying channel in which it may happen that
a signal from a tag is not received by the reader in a deep fading
slot. Although we consider this condition is relatively rare in a
RFID system that is configured to work stably, we acknowledge
in Section V-B that ITSP (or CATS) is not robust against this
type of error. However, the problem can be alleviated by the
tags transmitting each filtering vector twice. Figure 8 shows the
simulation results under parameters |X| = 10000, |Y | = 5000,
|W | = 500, and PREQ = 0.01. The horizontal axis shows the
error rate, which is defined as the fraction of slots in deep fading,
causing complete signal loss. ITSP-2 denotes the approach of
transmitting each filtering vector from tags to the reader twice.
When a wanted tag in W is not identified, we call it a false
negative. The simulation results show that ITSP incurs significant
false negatives when the error rate becomes large. For example,
when the error rate is 2%, the average number of false negatives
is 90.7. ITSP-2 works very well in reducing this number. When
the error rate is 2%, its number of false negatives is just 1.95.

VII. RELATED WORK

A. Prior RFID Research

In the past, much RFID research concentrated on two fronts:
(1) physical-layer technologies for transmitting IDs from tags to

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

0

0.5

1.0

1.5

2.0

2.5

3.0

 0 0.2 0.4 0.6 0.8 1

Fa
ls

e
po

si
tiv

e
ra

tio
 (

*1
0-2

)

RINTS

(a) |X|=5,000, |Y|=50,000, PREQ=10-2

ITSP-rem(5%)
ITSP-rem(10%)

ITSP-bem

0

0.5

1.0

1.5

2.0

2.5

3.0

 0 0.2 0.4 0.6 0.8 1

Fa
ls

e
po

si
tiv

e
ra

tio
 (

*1
0-3

)

RINTS

(b) |X|=20,000, |Y|=50,000, PREQ=10-3

ITSP-rem(5%)
ITSP-rem(10%)

ITSP-bem

0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

Fa
ls

e
po

si
tiv

e
ra

tio
 (

*1
0-4

)

RINTS

(c) |X|=80,000, |Y|=50,000, PREQ=10-4

ITSP-rem(5%)
ITSP-rem(10%)

ITSP-bem

Fig. 7. False positive ratio after running ITSP-rem, ITSP-bem and CATS.

 0

 100

 200

 300

 400

 500

0.01 0.02 0.03 0.04 0.05

nu
m

be
r

of
 f

al
se

 n
eg

at
iv

es

error ratio

ITSP
ITSP-2

Fig. 8. False negatives due to signal loss in time-varying channel.

a reader more reliably, over a longer distance, and using less
energy; (2) MAC-layer technologies for improving the rate at
which a reader can collect IDs from tags. Tag identification
protocols, which read IDs from all tags in an RFID system,
mainly fall into two categories. One is tree-based [38]–[42], and
the other is ALOHA-based [43]–[46]. The tree-based protocols
organize all IDs in a tree of ID prefixes [38]–[41]. Each in-tree
prefix has two child nodes that have one additional bit, ‘0’ or ‘1’.
The tag IDs are leaves of the tree. The reader walks through the
tree, and requires tags with matching prefixes to transmit their
IDs. The ALOHA-based protocols work as follows: The reader
broadcasts a query request. With a certain probability, each tag
chooses a time slot in the current frame to transmit its ID. If there
is a collision and the reader does not acknowledge positively, the
tag will continue participating in the next frame. This process
repeats until all tag IDs are read successfully. Unlike the basic
ALOHA-based protocols where the frame size is fixed, RFID
systems with Dynamic Frame Slotted ALOHA (DFSA) [16]–
[20] dynamically adjust the frame size in each round to improve
throughput.

Another related research topic is cardinality estimation in
an RFID system. Kodialam and Nandagopal [47] estimate the
number of tags based on the probabilistic counting methods [48].
The same authors propose a non-biased follow-up work in [49].
Han et al. [50] improve the performance of [47]. Qian et al.
[51] present the Lottery-Frame scheme (LoF) for estimating the
number of tags in a multiple-reader scenario. The work in [52]
uses the maximum likelihood method. Sheng et al. design two
probabilistic algorithms to identify large tag groups [3].

B. Tag Identification with Collision Recovery Techniques

Collision recovery embodies an emerging direction for RFID
technology, which aims at resolving tag IDs from collided
signals, thereby improving the identification throughput.

Fyhn et al. [22] develop a theoretic model to resolve multiple
tags from collisions. They take advantage of the channel fading,
the difference in delay and the frequency dispersion of tags to
separate the collided signals. Meanwhile, by using the technique
of Successive Interference Cancellation (SIC), more tag IDs can
be decoded from collisions that contain no more than 5 tags.
This approach brings about 16% throughput gain compared to
conventional tag identification protocols.

In [23], the Inter-frame SIC (ISIC) protocol is proposed to
improve the collision recovery capability. In contrast to the
traditional DFSA, where the tags randomly select slots within
each frame to transmit their IDs, ISIC employs a deterministic
pseudo-random function for slot selection. Hence, the tags do
not need to explicitly inform the reader about the selected slots
in different frames. A throughput improvement to about 1.2
tags per slot can be observed in ISIC. In the follow-up work
[24], the authors find that the throughput grain of ISIC depends
on the signal format. A new technique called Inter-frame Soft
Combining (ISoC) is introduced. The idea of ISoC originates
from the observation that the reader may only recover a few bits
of a tag ID from a single collision slot. Therefore, combining
the bits recovered across multiple slots selected by the tag can
increase the probability of successful decoding. ISoC is more
efficient in terms of memory and computation when comparing
to ISIC, but its throughput gain is much smaller.

Based on rateless coding [53], a flameless slotted ALOHA
is presented in [25]. Each frame is terminated when the
instantaneous throughput of SIC is maximized. This protocol
gives a throughput around 0.9 tags per slot. The problem is that
since the frame sizes are not pre-determined, a tags can hardly
know its selected slots in other frames.

A theoretical upper bound of throughput in multi-antenna
RFID systems with collision recovery is derived in [26]. The
reader is assumed to have perfect channel knowledge, and it
can decode and acknowledge up to 8 tags per slot using four
receiving antennas. In addition, the tags are modified by adding
postpreambles to responses to facilitate collision recovery. As a
result, the maximal theoretical throughput is 3.1 tags per slot.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

In the follow-up work [27], the received signal is postprocessed
by a beamformer to further improve collision recovery. With this
strategy, the maximal throughput is increased to 4.8 tags per slot
using four receiving antennas.

VIII. CONCLUSIONS

This paper studies the tag search problem in large-scale RFID
systems. To improve time efficiency and eliminate the limitation
of prior solutions, we propose an iterative tag search protocol
(ITSP) based on a new technique that iteratively applies filtering
vectors. Moreover, we extend the ITSP to work under noisy
channel. The main contributions of our work are summarized
as follows: (1) The iterative method of ITSP based on filtering
vectors is very effective in reducing the amount of information
to be exchanged between tags and the reader, and consequently
saves time in the search process; (2) the ITSP performs much
better than the existing solutions; (3) the ITSP works well under
all system conditions, particularly in situations of |X| ≫ |Y |
when CATS works poorly; (4) the ITSP is improved to work
effectively under noisy channel.

IX. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grants NeTS 1409797 and NeTS 1115548.

REFERENCES

[1] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang, “An Efficient Tag Search
Protocol in Large-Scale RFID Systems,” Proc. of IEEE INFOCOM, pp.
1325–1333, April 2013.

[2] C. H. Lee and C. W. Chung, “Efficient Storage Scheme and Query
Processing for Supply Chain management Using RFID,” Proc. ACM
SIGMOD, 2008.

[3] B. Sheng, C. Tan, Q. Li, and W. Mao, “Finding Popular Categories for
RFID Tags,” Proc. of ACM Mobihoc, 2008.

[4] S. Chen, M. Zhang, and B. Xiao, “Efficient Information Collection
Protocols for Sensor-augmented RFID Networks,” Proc. of IEEE
INFOCOM, pp. 3101–3109, April 2011.

[5] Y. Qiao, S. Chen, and T. Li, “Energy-efficient Polling Protocols in RFID
Systems,” Proc. of ACM Mobihoc, May 2011.

[6] W. Luo, S. Chen, and T. Li, “Probabilistic Missing-tag Detection and
Energy-time Tradeoff in Large-scale RFID Systems,” Proc. of ACM
Mobihoc, June 2012.

[7] W. Luo, Y. Qiao, and S. Chen, “An Efficient Protocol for RFID Multigroup
Threshold-based Classification,” Proc. of IEEE INFOCOM, pp. 890–898,
April 2013.

[8] T. Li, S. Chen, and Y. Ling, “Efficient Protocols for Identifying the Missing
Tags in a Large RFID System,” IEEE/ACM Transactions on Networking,
vol. 21, no. 6, pp. 1974 – 1987, December 2013.

[9] J. Liu, B. Xiao, K. Bu, and L. Chen, “Efficient Distributed Query Processing
in Large RFID-enabled Supply Chains,” Proc. of IEEE INFOCOM, pp.
163–171, April 2013.

[10] M. Chen, S. Chen, and Q. Xiao, “Pandaka: A Lightweight Cipher for RFID
Systems,” Proc. of IEEE INFOCOM, pp. 172 – 180, April-May 2014.

[11] Y. Zheng and M. Li, “Fast Tag Searching Protocol for Large-Scale RFID
Systems,” IEEE/ACM Transactions on Networking, vol. 21, no. 3, August
2012.

[12] “EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID
Protocol for Communications at 860MHz-960MHz, EPCglobal,” http:
//www.epcglobalinc.org/uhfclg2, April 2011.

[13] Y. Kang, M. Kim, and H. Lee, “A hierarchical structure based reader anti-
collision protocol for dense RFID reader networks,” Proc. of ICACT, pp.
164–167, February 2011.

[14] J. Choi and C. Lee, “A Cross-layer Optimization for a LP-based Multi-
Reader Coordination in RFID Systems,” Proc. of IEEE GLOBECOM, pp.
1–5, December 2010.

[15] L. Dan, P. Wei, J. Wang, and J. Tan, “TFDMA: A scheme to the RFID
reader collision problem based on graph coloration,” Proc. of IEEE SOLI,
pp. 502–507, October 2008.

[16] C. T. Nguyen, K. Hayashi, M. Kaneko, P. Popovski, and H. Sakai,
“Probabilistic Dynamic Framed Slotted ALOHA for RFID Tag
Identification,” Wireless Personal Communications, vol. 71, pp. 2947–2963,
August 2013.

[17] I. Onat and A. Miri, “A Tag Count Estimation Algorithm for Dynamic
Framed ALOHA Based RFID MAC Protocols,” Proc. of IEEE ICC, pp.
1–5, June 2011.

[18] J. Eom and T. Lee, “Accurate tag estimation for dynamic framed-slotted
ALOHA in RFID systems,” Proc. of IEEE Communication Letters, pp.
60–62, January 2010.

[19] J. R. Cha and J. H. Kim, “Dynamic Framed Slotted ALOHA Algorithms
Using Fast Tag Estimation Method for RFID Systems,” Proc. of IEEE
Consumer Communications and Networking Conference(CCNC), January
2006.

[20] S. Lee, S. Joo, and C. Lee, “An Enhanced Dynamic Framed Slotted
ALOHA Algorithm for RFID Tag Identification,” Proc. of IEEE
MobiQuitous, 2005.

[21] F. C. Schoute, “Dynamic Frame Length ALOHA,” IEEE Transactions on
Communications, vol. 31, pp. 565–568, April 1983.

[22] K. Fyhn, R. M. Jacobsen, P. Popovski, A. Scaglione, and T. Larsen,
“Multipacket Reception of Passive UHF RFID Tags: A Communication
Theoretic Approach,” IEEE Transactions on Signal Processing, vol. 59,
no. 9, pp. 4225–4237, September 2011.

[23] F. Ricciato and P. Castiglione, “Pseudo-Random ALOHA for Enhanced
Collision-Recovery in RFID,” IEEE Communications Letters, vol. 17, no.
3, pp. 608–611, March 2013.

[24] P. Castiglione, F. Ricciato, and P. Popovski, “Pseudo-Random Aloha for
Inter-frame Soft Combining in RFID Systems,” Proc. of IEEE DSP, pp.
1–6, July 2013.

[25] C. Stefanovic and P. Popovski, “ALOHA Random Access that Operates as
a Rateless Code,” IEEE Transactions on Communications, vol. 61, no. 11,
pp. 4653–4662, November 2013.

[26] R. Langwieser J. Kaitovic and M. Rupp, “A smart collision recovery
receiver for RFIDs,” EURASIP Journal on Embedded Systems, July 2013.

[27] J. Kaitovic and M. Rupp, “Improved Physical Layer Collision Recovery
Receivers for RFID Readers,” Proc. of IEEE RFID, pp. 103 – 109, April
2014.

[28] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters:
A Survey,” Internet Math, vol. 1, no. 4, pp. 485–509, 2003.

[29] M. Shahzad and A. Liu, “Every Bit Counts - Fast and Scalable RFID
Estimation,” Proc. of ACM MOBICOM, 2012.

[30] J. Guo, T. Peyrin, and A. Poschmann, “The PHOTON family of lightweight
Hash functions,” Proc. of CRYPTO, pp. 222–239, 2011.

[31] M. O’Neill, “Low-Cost SHA-1 Hash Function Architecture for RFID Tags,”
Proc. of RFIDSec, 2008.

[32] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, and
Y. Seurin, “Hash Functions and RFID Tags: Mind the Gap,” Proc. of
CHES, pp. 283 – 299, 2008.

[33] Impinj. Inc, “RFID Communication and Interference,” White paper, Grand
Prix Application Series, 2007.

[34] R. Fletcher, U. P. Marti, and R. Redemske, “Study of UHF RFID signal
propagation through complex media,” IEEE Antennas and Propagation
Society International Symposium, vol. 1B, pp. 747–750, 2005.

[35] “Federal Standard 1037C,” http://www.its.bldrdoc.gov/ fs-1037/ fs-1037c.
htm, August 1996.

[36] B. Cornaglia and M. Spini, “New statistical model for burst error
distribution,” European Transactions on Telecommunications, vol. 7, pp.
267–272, May 1996.

[37] “Kronecker delta,” http://en.wikipedia.org/wiki/Kronecker delta.
[38] “Information technology automatic identification and data capture

techniques C radio frequency identification for item management air
interface - part 6: parameters for air interface communications at 860-960
MHz,” Final Draft International Standard ISO 18000-6, November 2003.

[39] J. Myung and W. Lee, “Adaptive Splitting Protocols for RFID Tag Collision
Arbitration,” Proc. of ACM MOBIHOC, May 2006.

[40] N. Bhandari, A. Sahoo, and S. Iyer, “Intelligent Query Tree (IQT) Protocol
to Improve RFID Tag Read Efficiency,” Proc. of IEEE International
Conference on Information Technology (ICIT), December 2006.

[41] F. Zhou, C. Chen, D. Jin, C. Huang, and H. Min, “Evaluating
and Optimizing Power Consumption of Anti-collision Protocols for
Applications in RFID Systems,” Proc. of ACM International Symposium
on Low Power Electronics and Design (ISLPED), August 2004.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

[42] M. Shahzad and A. X. Liu, “Probabilistic Optimal Tree Hopping for RFID
Identification,” Proc. of ACM SIGMETRICS, pp. 293–304, June 2013.

[43] B. Sheng, Q. Li, and W. Mao, “Efficient Continuous Scanning in RFID
Systems,” Proc. of IEEE INFOCOM, 2010.

[44] V. Sarangan, M. R. Devarapalli, and S. Radhakrishnan, “A Framework
for Fast RFID Tag Reading in Static and Mobile Environments,” The
International Journal of Computer and Telecommunications Networking,
vol. 52, no. 5, pp. 1058–1073, 2008.

[45] B. Zhen, M. Kobayashi, and M. Shimizu, “Framed ALOHA for Multiple
RFID Objects identification,” IEICE Transactions on Communications,
March 2005.

[46] H. Vogt, “Efficient Object Identification with Passive RFID Tags,” Proc.
of IEEE PerCom, April 2002.

[47] M. Kodialam and T. Nandagopal, “Fast and Reliable Estimation Schemes
in RFID Systems,” Proc. of ACM MobiCom, September 2006.

[48] K. Huang, B. Vander-Zanden, and H. Taylor, “A Linear-time Probabilistic
Counting Algorithm for Database Application,” ACM Transactions on
Database Systems, vol. 15, no. 2, June 1990.

[49] M. Kodialam, T. Nandagopal, and W. Lau, “Anonymous Tracking using
RFID tags,” Proc. of IEEE INFOCOM, 2007.

[50] H. Han, B. Sheng, C. Tan, Q. Li, W. Mao, and S. Lu, “Counting RFID
Tags Efficiently and Anonymously,” Proc. of IEEE INFOCOM, 2010.

[51] C. Qian, H. Ngan, and Y. Liu, “Cardinality Estimation for Large-scale
RFID Systems,” Proc. of IEEE PerCom, 2008.

[52] T. Li, S. Wu, S. Chen, and M. Yang, “Energy Efficient Algorithms for the
RFID Estimation Problem,” Proc. of IEEE INFOCOM, March 2010.

[53] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data,” Proc. of ACM SIGCOMM,
pp. 56–67, November 1998.

Min Chen (min@cise.ufl.edu) received his B.E. degree
in Information Security from the University of Science
and Technology of China in 2011. He is currently a
Ph.D. student with the Department of Computer and
Information Science and Engineering at the University
of Florida. His advisor is Dr. Shigang Chen, and
his research interests include next-generation of RFID
system, Energy Harvested Active Networked Tags
(EnHANTs), big network data and network security.

Wen Luo received his B.S. degree in Computer Science
and Technology from the University of Science and
Technology of China in 2008. After that he joined the
University of Florida as a Ph.D. student. His research
interests include RFID technologies and Internet traffic
measurement. His email address is wluo@cise.ufl.edu.

Zhen Mo (zmo@cise.ufl.edu) is a current PHD student
in the Department of Computer and Information
Science Engineering at University of Florida. He
received his B.E degree in Information Security
Engineering from Shanghai Jiao Tong University in
2007. Then he received his M.E degree in Theory
and new technology of Electrical Engineering from
Shanghai Jiao Tong University in 2010. His research
interests include network security and cloud computing
security.

Dr. Shigang Chen (sgchen@cise.ufl.edu) is a professor
with Department of Computer and Information Science
and Engineering at University of Florida. He received
his B.S. degree in computer science from University
of Science and Technology of China in 1993. He
received M.S. and Ph.D. degrees in computer science
from University of Illinois at Urbana-Champaign in
1996 and 1999, respectively. After graduation, he had
worked with Cisco Systems for three years before
joining University of Florida in 2002. He served on
the technical advisory board for Protego Networks in

2002-2003. His research interests include computer networks, Internet security,
wireless communications, and distributed computing. He published more than
100 peer-reviewed journal/conference papers. He received IEEE Communications
Society Best Tutorial Paper Award in 1999 and NSF CAREER Award in 2007.
He holds 11 US patents. He is an associate editor for IEEE/ACM Transactions
on Networking, Elsevier Journal of Computer Networks, and IEEE Transactions
on Vehicular Technology. He served in the steering committee of IEEE IWQoS
from 2010 to 2013. He is a senior member of IEEE.

Yuguang “Michael” Fang (S’92-M’97-SM’99-F’08)
received a Ph.D. degree in Systems Engineering from
Case Western Reserve University in January 1994
and a Ph.D degree in Electrical Engineering from
Boston University in May 1997. He was an assistant
professor in the Department of Electrical and Computer
Engineering at New Jersey Institute of Technology from
July 1998 to May 2000. He then joined the Department
of Electrical and Computer Engineering at University
of Florida in May 2000 as an assistant professor, got an
early promotion to an associate professor with tenure

in August 2003 and to a full professor in August 2005. He holds a University
of Florida Research Foundation (UFRF) Professorship from 2006 to 2009, a
Changjiang Scholar Chair Professorship with Xidian University, Xi’an, China,
from 2008 to 2011, and a Guest Chair Professorship with Tsinghua University,
China, from 2009 to 2012. He has published over 250 papers in refereed
professional journals and conferences. Dr. Fang received the National Science
Foundation Faculty Early Career Award in 2001 and the Office of Naval Research
Young Investigator Award in 2002, and is the recipient of the Best Paper Award
in IEEE International Conference on Network Protocols (ICNP) in 2006 and the
recipient of the IEEE TCGN Best Paper Award in the IEEE High-Speed Networks
Symposium, IEEE Globecom in 2002. Dr. Fang is also active in professional
activities. He is a Fellow of IEEE and a member of ACM. He is currently serving
as the Editor-in-Chief for IEEE Wireless Communications and serves/served on
several editorial boards of technical journals.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2014.2386318

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

